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Abstract 

Studies of fish life-history evolution and population demography require knowledge of populations’ 

age structure. However, reliable aging of wild-collected individuals poses practical and logistic 

challenges associated with aging protocols. In order to assess the accuracy and reliability of age 

estimates from calcified structures in the three-spined stickleback (Gasterosteus aculeatus), we 

evaluated intra- and inter-reader repeatability from three structures (viz. otoliths, gill covers and 

pelvic spines). Average age estimates were also compared between the structures. The overall intra-

reader repeatabilities of age estimates were highest for otoliths (69%), lowest for gill covers (53%), 

and intermediate for spine cross-sections (63%). Although four of the seven readers had the highest 

intra-reader repeatability score for spine cross-sections, the inter-reader variance in this structure was 

much higher than in others. Otoliths were the easiest in terms of their pre-analysis treatment and 

exchange of materials (as digital images) between readers. In addition, otoliths are more well-studied 

compared to the other structures with respect to their development through ontogenesis; hence, age 

estimates based on otoliths should be the most reliable. Therefore, our recommendation is that 

whenever possible, analysis of otoliths should be the preferred approach for aging three-spined 

sticklebacks. 
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Significance Statement 

The three-spined stickleback is a popular model in ecology and evolutionary biology. The age of 

wild-caught sticklebacks is often crucial for understanding their biology, but since different aging 

techniques are widely used, substantial heterogeneity in age estimates is possible. We compared 

intra- and inter-reader repeatabilities of age estimates obtained from three calcified structures 

(otoliths, gill covers, and pelvic spines). Otoliths provided the most consistent results and should 

therefore be the preferred structure for aging three-spined sticklebacks. 
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1. INTRODUCTION 

Age analysis is a highly important component of fish population studies (e.g. Chugunova, 1959; 

Pravdin, 1966; Schneider et al., 2000; Campana & Thorrold, 2001). Aging of fish, as well as other 

ectothermic vertebrates, is commonly done by analyzing annual or daily growth marks on calcified 

structures such as bones and otoliths. These analyses are based on the fact that distinct zones, called 

annuli, are formed during periods of slow growth (Craig, 1985; Wright & Huntingford, 1993; Secor 

et al., 1995; Campana & Thorrold, 2001). While not without caveats and difficulties, including 

processing time and reliability, analysis of annual or daily growth increments on calcified structures 

still remains a powerful tool for providing age estimates (Campana, 2001). 

 

The three-spined stickleback (Gasterosteus aculeatus) is a widely distributed small teleost that has 

become a model species in ecological, evolutionary and genetic studies (Schluter, 2000; McKinnon 

& Rundle, 2002; Bell et al., 2004; Gibson, 2005; Cresko et al., 2007; Barber & Nettleship, 2010). 

For this reason, the assessment of age structure in wild populations is especially important, and could 

provide advances for many fields (e.g. Baker et al., 2008; DeFaveri & Merilä, 2013). However, age 

estimation in three-spined sticklebacks is challenging, as a universal method for aging has yet to be 

established. The absence of scales, which are among the most widely used structures for age 

estimation in fish (Campana & Thorrold, 2001), has motivated researchers to look for other structures 

that would be suitable for aging sticklebacks. 

The most popular approach for stickleback age estimation is based on the analysis of their sagittal 

otoliths: the method was developed in the early 1950’s (Jones & Hynes, 1950) and is still used today 

(Pichugin et al., 2008; Herczeg et al., 2009; Moser et al., 2012; von Hippel et al., 2013; Bergström et 

al., 2015; Golovin et al., 2015). However, otoliths can easily dissolve in non-buffered alcohol- or 

formaldehyde-preserved material, and hence, cannot be used for aging purposes in many collections. 
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To a lesser extent, other structures such as pelvic or dorsal spines (Reimchen, 1992; Gambling & 

Reimchen, 2012; DeFaveri et al., 2014), and gill covers (Mukhomediarov, 1966; Patimar et al., 2010; 

Yershov & Sukhotin, 2015) have also been used for aging sticklebacks. Worryingly, studies 

conducted in other fish species have shown that there may be large discrepancies in age estimates 

depending on which structure was used for the analysis (Zymonas & McMahon, 2009; Hüssy et al., 

2012; van der Meulen et al., 2013; Sotola et al., 2014; Baudouin et al., 2015; Elzey et al., 2015; 

Khan et al., 2015; Watkins et al., 2015; Zhu et al., 2015). Two recent stickleback studies have 

analyzed several structures (DeFaveri & Merilä, 2013; DeFaveri et al., 2014), but no study has 

formally compared the age estimates from different structures and their reliability in sticklebacks. 

Thus, the relative accuracy of stickleback age estimation using the aforementioned structures remains 

uncertain. Such comparisons would be of great practical relevance, especially since otoliths can be 

damaged during preservation. Furthermore, otolith and spine cross-section-based age estimation is 

time consuming, whereas analyses of gill covers are much faster to conduct. Hence, if gill cover 

analysis is deemed to be a reliable aging technique in sticklebacks, considerable amounts of time can 

be saved. 

The goal of this study was to assess and compare the reliability of three-spined stickleback age 

estimates based on otoliths, gill covers and pelvic spine cross-sections. This was done by comparing 

repeatabilities of age estimates within and between readers for all three types of aging structures. 

Given the large number of readers (n = 8) and several (two to three) repeated measures per reader per 

structure, the results should provide information about the magnitude and sources of variation in 

stickleback age estimates. We also discuss and reflect upon practical matters related to obtaining 

reliable age estimates in sticklebacks. 
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2. MATERIALS AND METHODS 

2.1. SAMPLE COLLECTION AND PREPARATION 

 

Three-spined sticklebacks were collected from two locations in the White Sea using a beach seine 

(7.5 ×1.5 m, 5 mm mesh size in wings and 1 mm in the cod end). Forty-eight adults (6 males, 42 

females; total length [± SD]: 70.8 ± 9.4 mm) of unknown age were caught on June 30th 2015 from 

Seldianaya Inlet (66.3378°N, 33.6234°E), and used as the focal individuals for the age estimation 

protocols. Fifteen one-year-old juvenile fish (40.9 ± 3.6 mm) were caught in the Koliushkovaya 

Lagoon (66.3137°N, 33.6440°E) on June 23rd 2015, and were used as references when aging the 

focal individuals. Their age was inferred to be one year based on the absence of breeding coloration 

and their small size. Other reference individuals were three sticklebacks that were obtained from the 

Sukhaya Salma Strait (66.3116°N, 33.6470°E) in August 2014 when they were roughly one month 

old, and subsequently released into a freshwater pond (66.2637°N, 33.4295°E) uninhabited by 

stickleback. They were re-captured after 11 months, in July 2015. Their body lengths were 54, 54 and 

56 mm. All fish were stored at -20oC until further analyses. The authors assert that all procedures 

contributing to this work comply with the ethical standards of the relevant national guides, and have 

been approved by the Institutional Animal Ethics Committee (Zoological Institute RAS, St. 

Petersburg, Russia). 

Three types of structures were analyzed: otoliths, gill covers, and pelvic spines. Fish were thawed, 

and all structures were extracted using forceps and scissors. To obtain otoliths, the head was cut on 

the top midline between the frontals, and the lateral parts were opened. The brain was removed, and 

otoliths located in the lateral sides of the skull in the otic area were extracted. Otoliths and gill covers 

were rinsed with water to clear residual soft tissues. All structures were dried at room temperature 

and stored in Eppendorf tubes. 
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2.2. AGE ASSESSMENT 

 

In order to assess inter- and intra-reader variability in age estimates, structures were analyzed by 

eight different readers, who performed aging independently from each other. Each reader scored the 

age of each fish either twice (gill covers) or three times (otoliths and spines) with two to seven days 

between scoring rounds. All readers were blind to the identity of the fish. The total and per reader 

sample sizes for each structure type are given in Table S1. Six readers (TA, SV, DL, TI, MI, PG) had 

previous experience with otolith aging, whereas two (AYu, KN) did not. None of the readers had 

previous experience in aging from spine cross-sections, and only two readers (DL, TI) had 

experience in aging from gill covers. 

2.2.1. OTOLITHS 

Otolith analyses were conducted using digital images taken with a Leica DMLB microscope under 

10× magnification with an integrated digital Leica DC 300 camera. Only the largest otoliths, known 

as sagitta, were used for age estimates (Jones & Hynes, 1950). Otoliths were placed on a glass slide 

and immersed in 1,2-propanediol to obtain more transparent and clear images (DeFaveri & Merilä, 

2013; DeFaveri et al., 2014). In an earlier study, otoliths were polished in order to obtain more 

clearly demarcated annuli (Jones & Hynes, 1950). However, in the current study all annuli in otoliths 

were deemed to be easily visible in a drop of 1,2-propanediol (Fig. 1). Hence, as in many previous 

studies (Greenbank & Nelson, 1959; Tiller, 1972; Allen & Wootton, 1982; Pichugin et al., 2008, 

Golovin et al., 2015), otoliths were not polished in this study. 

Images were organized in PDF-format files for further analyses, where each page included two 

otoliths from each focal individual (Fig. 1 A-B), and two reference otoliths of marine yearlings (the 

largest and smallest ones individuals in the sample; Fig. 1 C-D). Images of all four otoliths on the 

page were in the same scale, allowing comparison between focal and reference otoliths, particularly 

to estimate the size of the first year annuli. Hence, a final PDF file included 48 pages – one for each 
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focal individual. Three copies of this final file, each having randomly numbered pages, were 

distributed to each reader in order to estimate intra-reader variance in replicate age estimates. Otoliths 

of the 11-month-old pond-transplanted juveniles (Fig. 1 E-F) were not included in the PDF files. 

However, they were used to verify the age of the reference juveniles caught in the lagoon. 

Specifically, the patterns in their otoliths were similar to those in the marine juveniles (cf. Fig. 1 C-D 

vs E-F), whose growth patterns should be similar to those of the experimental fish. Hence, the pond-

transplanted juveniles were used to confirm that the lagoon-caught individuals were yearlings, and 

these were further used as reference fish. 

2.2.2. GILL COVERS 

Gill covers were analyzed according to the method applied earlier to sticklebacks (Mukhomediarov, 

1966; Patimar et al., 2010; Yershov & Sukhotin, 2015). Gill covers were removed with scissors and 

mechanically cleared of soft tissues. The age was determined directly from the physical samples by 

counting the annuli on the operculum bone. This was carried out under normal transmitted light 

conditions with a stereomicroscope without the use of optics. Gill covers of the yearlings from the 

sea were used as a reference. 

2.2.3. PELVIC SPINES 

Pelvic spines were extracted from the fish by cutting them as close to the spine base as possible. 

Spine slices were prepared for age analysis using a previously applied method (DeFaveri & Merilä, 

2013, DeFaveri et al., 2014). Briefly, pelvic spines were set in epoxy and sectioned using a Struers 

Accutom 100 (slice width 200 µm, motor rotation speed 3000 rpm; Struers ApS, Ballerup, Denmark). 

Later, spine sections were mounted on an object glass and photographed with Leica DMLB 

microscope with an integrated digital Leica DC 300 camera. 
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Similar to the otoliths, digital images of spine cross-sections were organized into a PDF file. Each 

file included images of 30 individuals randomly taken from the sample of 48 fish (Fig. 2). Three 

copies, each with images in a randomly shuffled order, were distributed to each reader for intra-

reader variance estimates. No reference images of juveniles were used for this structure. 

 

2.3. STATISTICAL ANALYSES 

 

The ages of the 48 focal fish were independently estimated by eight readers, two to three times for 

each of the three structures. This generated a total of 2337 age estimates; the distribution across 

readers and structure types are summarized in Table S1.  

 

We adopted two different linear mixed effect models (LMM) to evaluate which of the three structure 

types would provide the most accurate basis for age estimation. The first model was defined as: 

 

0 ,                                                                                             (1)ijkl ijkl i j ik ijkly x e                (1) 

 

where i, j, k, l represent structure, sample ID, reader and replication (within structure and reader), 

respectively. The parameter β0 is the fixed intercept, βi is the fixed structure effect, 
i.i.d.

2~ N(0, )j   is 

the random effect of sample ID, 
i.i.d

2~ (0, )ik iN   is the random effect of the interaction between 

structure and reader (which have structure-specific variances), and 
i.i.d.

2

0~ N(0, )ijkle   is the residual 

error. 

Equation (1) was used to evaluate the variances of age estimates, 2ˆ
i , among the eight readers for 

each structure. The smaller the variance, the more consistent the age estimates among different 
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readers are. Hence, this model offers a means to identify which aging structure is likely to provide the 

most reliable age estimates for three-spined sticklebacks. 

 

The second model was defined as: 

 

0 ,                                                                                             (2)ijkl ijkl i j jk ijkly x e                (2) 

where 
i.i.d.

2

1~ N(0, )j   is the random effect of sample ID, 
i.i.d.

2

2~ N(0, )jk   is the random effect of the 

interaction between ID and reader, and the residual error
i.i.d.

2

0~ N(0, )ijkl ie   is assumed to follow a 

normal distribution with structure-specific variances. All other variables and parameters were defined 

in the same way as in equation (1). Hence, the difference between this and the previous model is that 

the random interaction effect between fish ID and reader was used instead of the interaction effect 

between structure and reader, and the residual variances were assumed to be structure-specific. This 

model provides a means to estimate the technical repeatability of the whole data from the equation: 

2 2 2 2 2 1

1 1 2 0
ˆ ˆ ˆ ˆ ˆ[ mean( )]i i                 (3) 

where 2

1̂ , 2

2̂ , 2

0
ˆ

i  are the estimated variances of the random effects on the sample ID, the 

interaction between ID and reader, and the structure, respectively. In other words, the equation gives 

the proportion of the variance explained by different fish (but not by structures and readers) of the 

total variance equalling the overall repeatability of age estimates. Conversely, the reciprocal of X (i.e. 

1-X) equals the proportion of variance explained by measurement/estimation error. Repatabilities are 

thus expressed as proportions ranging from zero to one; the higher the value, the higher the 

repeatability. 

Furthermore, LMMs similar to those described in equation (2) were used to calculate the technical 

repeatability separately for each structure type: 

y
jkl

= b
0
+a

j
+a

jk
+e

jkl
,                                                                                             (3)         (4) 
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as well as to estimate the technical repeatability separately for each reader: 

0 ,                                                                                             (4)ijl ijl i j ijly x e               (5) 

and to estimate the technical repeatability separately for each structure and reader: 

 
0 ,jl j jly e                                                                                                                   (6) 

A summary of the equations used in data analysis is provided in Table 1. In these analyses, a 

potential concern is that the dataset was incomplete, in the sense that there was unbalanced 

representation of repeated measurements in different groups (c.f. structures and readers). In principle, 

LMM should be able to provide reasonable estimates of the between- and within-group variances, 

even when the data are unbalanced (Cnaan et al., 1997). However, to ensure that our conclusions 

were not biased because of the imbalance, we performed extra analyses using the same models (1)–

(2), and (4)–(6) on a subset of the data, by randomly selecting roughly equivalent numbers of 

repeated measurements within each reader and/or structure.  

To provide intuitive illustrations of how age estimates obtained from different structures are related, 

we calculated their degree of correlation. For these analyses, we averaged the estimates for a given 

fish over the repeated measures within and across the readers. We estimated both Pearson product 

moment correlation and linear least squares regression statistics for these comparisons. 

All the LMM analyses were performed using the statistical packages “nlme” (https://cran.r-

project.org/web/packages/nlme/index.html) and “lme4” (https://cran.r-

project.org/web/packages/lme4/index.html) with R3.3 software (R Core Team, 2013). 

 

3. RESULTS 

 

3.1. REPEATABILITIES OF AGE ESTIMATES 
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In the LMM analysis of the unbalanced data using model (1), the estimated inter-reader variances 

were 0.030 (SE = 0.003, 95% CI: [0.024, 0.036]) for otoliths, 0.067 (SE = 0.017, 95% CI: [0.034, 

0.100]) for gill covers, and 0.191 (SE = 0.041, 95% CI: [0.111, 0.271]) for spine cross-sections. This 

suggests that the ages estimated from otoliths are generally more consistent across readers than from 

the two other structure types. LMM analysis of models (2) and (4) revealed that technical 

repeatabilities ranged from 0.53 to 0.69, with otoliths having the highest technical repeatability 

(Table 2).  

 

Intra-reader repeatability varied greatly depending on the structure used (Table 2). For otoliths, which 

were scored by eight readers, repeatabilities ranged from 0.52 to 0.88. Gill covers were scored by 

five readers, and repeatabilities ranged from 0.37 to 0.73. Repeatabilities for spine-based estimates 

(scored by seven readers) ranged from 0.67 to 0.91. In fact, for four out of the seven readers, spine 

cross-sections gave the highest repeatabilities (0.75–0.91). 

 

To further evaluate the significance of inter-reader variance, model (1) was compared with a LMM 

without the structure-by-reader random effect using ANOVA. Model (1), which included the 

structure-by-reader effect, was indeed favored over a model without this effect (P = 2×10-16), which 

indicates that there is a significant inter-reader effect in the data. 

 

To further validate the results, analyses conducted on a randomly selected subset of the data revealed 

qualitatively similar results to those obtained with the entire dataset. The inter-reader variances were 

0.034 for otoliths, 0.041 for gill covers, and 0.192 for spine cross-sections. Likewise, although the 

overall technical repeatabilities were lower in the subset than in the entire dataset (Table S2), the 

repeatabilities across the entire (Table 2) and subsampled (Table S2) data were highly correlated r2
 = 

0.85, P = 4×10-9). Hence, the unbalanced data structure did not have a marked effect on within- and 

between-group variances. 
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3.2. DIFFERENCES IN AGE ESTIMATES AMONG STRUCTURES 

 

Age estimates were as follows (Mean ± SE): otoliths: 2.0 ± 0.7, gill covers: 2.2 ± 0.7, spine cross-

sections 2.6 ± 1.0 years. Differences in age estimates were significant in all pairwise comparisons 

between structures (ANOVA, P < 0.01). These differences resulted mainly from a higher proportion 

of younger age groups estimated with otoliths, and older age groups estimated with spines (Fig. 3). 

Despite these discrepancies, two-year-old fishes were the modal age group, regardless of the structure 

analyzed (Fig. 3). Age estimates were correlated between gill covers and otoliths (r2 = 0.66, P = 

2.8×10-7), and between gill covers and spines (r2 = 0.49; P = 0.005), but not between otoliths and 

spines (r2 = 0.32, P = 0.09; Fig. S2). 

 

4. DISCUSSION 

 

We assessed the reliability of three different structures for age estimation in three-spined sticklebacks 

and found that otoliths provided the most repeatable source of data for age assessment in this species. 

For gill covers and spine cross-sections, intra- and inter-reader repeatabilities were lower, thus 

providing less reliable age estimates. Indeed, the differences in age estimates between the three 

assessed structures were significant. This result is in agreement with other studies that have also 

observed tendencies to under- or overestimate fish age depending on the structure used (e.g. Elzey et 

al., 2015). Significant correlations were found between age estimates based on gill covers vs. otoliths, 

and between gill covers vs. pelvic spines, but not between otoliths vs. pelvic spines. Moreover, we 

also demonstrated a significant reader effect, which may have a considerable influence on the 

reliability of age scorings from different structures. In the sections below we will discuss these 

findings and their implications, as well as reflect upon practical considerations when choosing 

particular structures for aging sticklebacks. 
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4.1. RELIABILITY OF AGE ESTIMATES 

 

Similar to the current study, earlier studies of other fish species have also used repeatabilities as a 

measure of the reproducibility of measurements, i.e. a measure of precision (Campana, 2001) or 

reliability of age estimates. Although there are doubts about the use of repeatability as a reliable 

measure of accuracy of age estimates (Beamish & McFarlane, 1983), this approach is often the only 

one that is applicable when fish age is unknown, particularly in wild-caught individuals. Other 

related measures of aging precision have been widely used (e.g. average percent error, coefficient of 

variation, percent agreement between readers; Beamish & Fournier, 1981; Campana, 2001; Sotola et 

al., 2014; Elsey et al., 2015; Khan et al., 2015). However, use of these different approaches has made 

comparison among different studies difficult (Campana, 2001). 

 

Among the studies that have compared aging structures for their reliability, otoliths are reported to be 

superior to other structures such as gill covers, spine or vertebrae sections (Zymonas & McMahon, 

2009; Ma et al., 2011; van der Meulen et al., 2013; Elzey et al., 2015). Our results complement these 

earlier findings in other fish species, and suggest that otoliths are also the most reliable structure for 

aging three-spined sticklebacks. This notion is supported by the finding that among the eight readers, 

variances for age estimates were lowest and technical repeatabilities highest (average = 0.69) for 

otoliths. Pelvic spine cross-sections had intermediate variances and repeatabilities (0.63), whereas 

gill covers proved to be the least reliable, yielding the highest variances and lowest inter-reader 

repeatabilities (0.53). This contrasts with studies on Micropterus sp. (Sotola et al., 2014) and 

Coregonus lavaretus (Raitaniemi et al., 1998), which found opercules to be the best structure for 

aging the analyzed species. A combination of factors such as availability of reference material of 

known age (otoliths, gill covers), inherent difficulty of reading annuli, and existing knowledge about 

their formation could have led to differences among readers in the current study. Indeed, otoliths 
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were considered by readers as convenient structures for age estimation due to the presence of 

reference yearling otolith photos (Fig. 1), relatively clear annuli, and available information on their 

formation (Jones & Hynes, 1950; Tiller, 1972; Allen & Wootton, 1982; Singkam & MacColl, 2018). 

The repeatabilities for otoliths could have been even higher if not for extra markings observed in the 

central part of larger otoliths, which were absent in yearlings (Fig. 1 A&B vs. C&D). Similar marks 

have been seen in earlier studies (Tiller, 1972; Pichugin et al., 2008; Moser et al., 2012), and a 

method to remove these “false” rings has been developed (Odelström et al., 2014). However, these 

rings can be seen in relatively large otoliths of fishes older than yearlings, and it is unclear if they 

should be removed from age estimates. Hence, having both known-age yearlings and older fish as 

references during analyses would most likely further improve repeatabilities and accuracy of age 

estimates. 

 

In this study, age was scored by eight independent readers, allowing analysis of a reader effect on 

repeatability estimates. Indeed, this effect was significant. Readers differed not only in average 

repeatability (0.48-0.86), but also in the structure that proved to give the most repeatable age 

estimates. For instance, as discussed above, otoliths seem to be the most reliable structure when 

compared at the inter-reader level. However, half of the readers reached their highest repeatabilities 

when scoring pelvic spine cross-sections. This was quite unexpected, since none of the readers had 

previous experience with age scoring from this structure. In general, marks on spine cross-sections 

were quite clear, although there were some difficulties in finding the inner marks and counting the 

outer marks. Apparently, most readers counted these marks in their own way with quite high 

repeatability, but each reader did this differently, resulting in the relatively low inter-reader 

repeatability (0.63). This could be explained by the lack of comparative material (no reference 

yearlings as for otoliths), making inter-reader standardization impossible. Similar to the case of 

otolith-based scoring, having reference samples of known age – ideally both young and old – could 

help increase repeatabilities for spine cross-sections.  
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Gill covers provided the fastest material to prepare for aging sticklebacks, and building on evidence 

from other species (Raitaniemi et al., 1998; Sotola et al., 2014), proved to be an efficient method for 

age assessment when large sample sizes had to be processed. However, gill covers had the lowest 

repeatability of all three structures, and only one out of five readers who scored age from gill covers 

more than once reached their highest repeatability with this structure. We attribute such results to the 

difficulty of reading annuli in three-spined stickleback gill covers. In contrast to the other two 

structures, age from gill covers was scored from physical material rather than photos. This was done 

primarily because we hoped to see if gill covers might be a quick and reliable way to score age in 

sticklebacks. We also tried to score annuli from digital images, but this proved to be even more 

difficult because annuli were more poorly visible in photos than in the physical structures. 

Consequently, we allowed readers to analyze materials under the conditions they found best 

(stereoscopes, light regime, etc.), and this lack of standardized protocol most likely increased the 

variability in age estimates. While the overall variance for age estimates was highest for gill covers, 

some readers managed to have very high technical repeatabilities (0.70–0.73). This would suggest 

that gill covers could indeed be a quick method for repeatable age estimation, as reported in studies 

of other species (Raitaniemi et al., 1998; Sotola et al., 2014). However, individual readers can differ 

greatly in their consistency when using this structure, even when having access to reference material. 

Hence, along with additional considerations (see below), this suggests that gill covers may lead to 

overestimation of true fish age. 

 

4.2. DATA ON OTOLITH FORMATION TO INCREASE RELIABILITY OF AGE 

SCORING  

 

Growth increments are formed on otoliths on a daily basis (von Hippel et al., 2013), which generates 

a pattern of zones (rings) that differ in their optical characteristics depending on the season in which 

they are formed (Jones & Hynes, 1950; Tiller, 1972; Allen & Wootton, 1982). At the beginning of 
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otolith development, a centre (core/nucleus) develops first, which can be observed during and just 

after the breeding season (Jones & Hynes, 1950). According to Jones & Hynes (1950), a transparent 

ring begins to lay down thereafter, followed by an opaque zone laid down later on. However, later 

studies demonstrated different patterns, where opaque zones were thought to be formed during the 

summer and transparent zones during other seasons (Tiller, 1972; Allen & Wootton, 1982; Singkam 

& MacColl, 2018). 

 

Our material on yearlings reared in the pond provided valuable data on otolith development in 

northern stickleback populations. Otoliths of yearlings sampled in early July had a clearly visible 

wide central opaque zone surrounded by a narrow transparent zone (Fig. 1, E&F). This allowed us to 

conclude that a wide opaque zone appears around the nucleus first in the summer (not clearly 

distinguishable off nucleus in figures). Therefore, this opaque zone corresponds to a period of intense 

growth, as proposed earlier (Tiller, 1972). Following this growth phase, a narrow transparent zone 

develops and remains to be the outermost until the next summer (growing) season. This pattern of 

otolith formation in northern stickleback is different from that described earlier (Jones & Hynes, 

1950), but agrees with later observations (Tiller, 1972; Allen & Wootton, 1982; Singkam & MacColl, 

2018).  

 

 

4.3. DIFFERENCES BETWEEN STRUCTURES IN AVERAGE AGE ESTIMATES 

 

We found that the estimated age structure of our sample was skewed towards older individuals when 

scored from gill covers and spine cross-sections as compared to otoliths. A possible explanation for 

these differences can be attributed to ontogenetic properties. Specifically, otoliths are mainly 

inorganic structures in which minerals are deposited consistently throughout ontogenesis (Brothers et 

al., 1976; Campana & Thorrold, 2001; von Hippel et al., 2013), whereas osseous tissues undergo a 
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dynamic process of remodeling (Witten & Hall, 2015). Therefore, physiological processes such as 

stress and compensatory growth can leave extra markings on osseous skeletal structures, which can 

be incorrectly counted as annuli. Since otoliths are not skeletal, similar processes do not leave such 

marks on these structures, rendering them less susceptible to age overestimation. This possibility is 

supported by studies that have found higher age estimates when using bones instead of otoliths 

(Elzey et al., 2015; Blackwell et al., 2016; Yates et al., 2016).  

 

An important consideration in age scoring is that due to inflation of growth with age, there is a 

progressive reduction in the distances between annuli on aging structures as age increases, leading to 

less clear annuli on older individuals. This tendency affects both otoliths and skeletal structures. 

However, in some cases annuli may be easier to identify from cross-sections of skeletal structures 

than from those of otoliths. 

 

The majority of stickleback studies that have used otoliths for aging have found that individuals die 

after their first breeding season, typically at the age of two to three years (Table S3, Jones & Hynes, 

1950; Tiller, 1972; Allen & Wootton, 1982; Wootton, 1984; Reimchen, 1992; Pichugin et al., 2008; 

Bergström et al., 2015). Studies that have used pelvic spine cross-sections (or a combination of 

spines and otoliths) found that sticklebacks can reach six to eight years of age (Table S3; Reimchen, 

1992; Gambling & Reimchen, 2012; DeFaveri & Merilä, 2013). Similarly, relatively high age 

estimates (up to seven years old) were obtained for the closely related nine-spined stickleback 

(Herczeg et al., 2009; DeFaveri et al., 2014). This is almost twice the known maximum age observed 

in populations within the five genera of Gasterosteidae (Reimchen, 1992). However, since the study 

by Reimchen (1992) was based on a mark-recapture approach, it is unlikely that use of pelvic spine 

cross-sections led to overestimated lifespans. Likewise, the Finnish studies (Herczeg et al., 2009; 

DeFaveri & Merilä, 2013; DeFaveri et al., 2014) utilized both otoliths and spine cross-sections, 

which should reduce the likelihood of upwardly-biased age estimates. Similarly, there is a clear 

tendency for the average age in stickleback populations to increase with increasing latitude (DeFaveri 
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& Merilä, 2013), and the abovementioned aging studies (conducted with spine cross-sections) tend to 

come from more northern populations than those conducted with otoliths.  

 

High age estimates from bone structures have also been suggested in other studies of White Sea 

sticklebacks. Age estimated with gill covers demonstrated that three-year-old fish prevailed in 

samples from the Kandalaksha Bay, while one-year-old fish were not found (Ivanova et al., 2007; 

Yershov & Sukhotin, 2015). This is puzzling since other studies using otoliths (this study, Golovin et 

al., 2015), found mature one-year-old stickleback from the same area, despite having smaller sample 

sizes. Furthermore, the average size of four-year-old fish was smaller in studies where age was 

estimated with gill covers (Yershov & Sukhotin, 2015) than with otoliths (Mukhomediarov, 1966). 

This could indicate that studies using gill covers for aging, especially in the absence of reference 

individuals, may overestimate stickleback age. 

 

Despite some discrepancies in age estimates between structures and readers (Fig. S1), overall 

stickleback age estimates were quite similar, and ranged from one to five years, with a modal age 

group of two years old (Fig. 3). Therefore, estimates of modal population age were quite similar, and 

the differences between structures and readers were found in the ‘marginal’ age groups. Regular  

discussion between readers (researchers), and knowledge of how growth affects different structures 

can reduce discrepancies in age estimates (Golovin et al., 2015). 

 

Finally, as to the sampling of material from different populations, our study used material only from 

one particular area, the White Sea. Repeating this study with material from additional populations 

from different geographic locations and environmental conditions – such as from lakes, especially 

those where sticklebacks are known to reach older ages (e.g. Herczeg et al., 2009; DeFaveri & 

Merilä, 2013; DeFaveri et al., 2014) – could provide additional insights into the reliability of 

different structures in age estimation. 
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4.4. PRACTICAL CONSIDERATIONS FOR THE CHOICE OF STRUCTURE 

 

When selecting a method for aging, practical considerations (summarized in Table 3) should be 

weighed. For instance, otolith extraction may require special training, and spine sectioning requires 

specific equipment. Age scoring was rather uncomplicated for otoliths due to the obvious annuli; this 

structure had the lowest intra-reader variability in age estimates. Pelvic spine slices were moderately 

difficult to read because annuli located closer to the outer edge were dense. Annuli on gill covers 

were the least pronounced, thus leading to uncertainty within and between readers. Although all 

structures can be safely stored dry at room temperature, it is important to caution that alcohol or 

formaldehyde can eventually dissolve otoliths (Jones & Hynes, 1950; Pichugin et al., 2008), if not 

properly buffered (Kristoffersen & Salvanes, 1998; Gagliano et al., 2006; Schnell et al., 2016). 

Pelvic spines and opercular bones can be more easily prepared in the field without compromising the 

specimens’ integrity. However, use of these structures for aging should be interpreted with caution, 

as illustrated by the results of the current study. 

 

In this study we used digital images for scoring otoliths and spine sections. It is likely that this 

approach increased the repeatability of the age estimates. Using digital images offers several benefits, 

including their easy exchange and simple arrangement for repeatability scoring. Images of gill covers 

were not used because annuli could not be seen in pictures as clearly as in physical samples. 

 

4.5 CONCLUSIONS 

 

In conclusion, we found that stickleback ages estimated from otoliths were more precise (repeatable) 

as compared to those from pelvic spines and gill covers. Otoliths were also relatively easy structures 
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to prepare and exchange as digital images among readers. Furthermore, since the development of 

otoliths through ontogenesis has been thoroughly studied, this increases their reliability in age 

estimation. Therefore, it is our recommendation that whenever possible, analysis of otoliths should be 

the preferred approach for aging three-spined sticklebacks. In studies where otolith extraction is 

incompatible with the main purpose of the study, for instance where head anatomy is being studied, 

or when preservation of specimens in either ethanol or formaldehyde had led to otolith breakdown, 

other structures could be used. The results of this study provide important insights into the 

differences in age scoring that can result from using different structures within the same fish.  
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22 

 

Figure S2 Pairwise scatter plots of age estimates (averaged over readers and replicate measurements) 

based on three different aging structures. The red lines represent linear regression lines (P = 2.8×10-7 
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Table captions 

Table 1. Summary of linear mixed model equations used for estimation of repeatabilities of age 

scoring. 

Table 2. Technical repeatability of age estimates in the three-spined stickleback (Gasterosteus 

aculeatus) for different structure types and readers. The analyses are based on the original dataset. 

Highest repeatabilities for each reader are indicated in bold-face. Column headings refer to 

abbreviated reader identities. 

Table 3. Comparison of three aging structures of the three-spined stickleback (Gasterosteus 

aculeatus), in terms of their convenience for treatment and analysis. Characterizations are somewhat 

subjective based on experiences and results gained from the current study. 

 

Figure legends 

Fig. 1. Images of otoliths used for age estimation in three-spined stickleback. A&B – otoliths of a 

focal fish in which age is to be identified (2+ in this case), C&D – otoliths of marine yearlings (the 

largest and smallest in the sample), E&F – otoliths of sticklebacks reared for 11 months in the pond. 

Light is transmitted from the bottom, hence opaque zones are dark, and transparent zones are white. 

Fig. 2. Images of pelvic spine cross-sections used for age estimation in three-spined sticklebacks. 

Fig. 3. Distribution of age groups (in %) in the sample of three-spined sticklebacks from the White 

Sea, based on analysis of three types of aging structures: otoliths, gill covers, and spines. Fish age 

(years): white – 1, light grey – 2, grey – 3, dark grey – 4, black – 5. 









Table 1. Technical repeatability of age estimates in the three-spined stickleback (Gasterosteus

aculeatus) for different structure types and readers. The analyses are based on the original dataset.

Highest repeatabilities for each reader in bold-face.

All readers AYu† DL† KN† MI PG SV† TA† TI

All structures 0.57 E2 0.48 E5 0.74 E5 0.86 E5 0.61 E5 0.59 E5 0.62 E5 0.61 E5

Otoliths 0.69 E4 0.80 E6 0.81 E6 0.88 E6 0.74 E6 0.72 E6 0.67 E6 0.52 E6 0.73 E6

Gill covers 0.53 E4 0.37 E6 0.61 E6 0.51 E6 0.73 E6 0.70 E6

Spines 0.63 E4 0.68 E6 0.83 E6 0.77 E6 0.78 E6 0.67 E6 0.75 E6 0.91 E6

†AYu, DL: Gill covers analysed twice, KN and TA: Gill covers analysed only once, SV: Gill covers

and Spines not analysed. Other readers analysed each structure thrice.

E- equation number from Materials and Methods section used to obtain given estimate.



Table 2. Comparison of three aging structures of the three-spined stickleback (Gasterosteus

aculeatus), in terms of their convenience for treatment and analysis

Otoliths Gill covers Spine sections

Extraction Difficult Easy Easy

Pre-analysis treatment Easy Easy Difficult

Age reading Easy Difficult Moderate

Exchange of scoring materials Easy Moderate Easy

Intra-reader repeatability High Low High

Inter-reader repeatability High High Very low



Table S1. Sample sizes (number of individuals) in the study together with number of repeated age 

measurements (in parentheses) per reader (columns) and structure type (rows). 

 AY DL KN MI PG SV TA TI 

Otoliths 48 (3) 48 (3) 48 (3) 48 (3) 48 (3) 48 (3) 48 (3) 47 (3) 

Gill covers 48 (2) 48 (2) 32 (1) 32 (3) 48 (2)  32 (1) 32 (3) 

Spines 31 (3) 31 (3) 31 (3) 31 (3) 31 (3)  31 (3) 22 (3) 

 



Table S2. Technical repeatability of age estimates for different structure types and readers as 

estimated on the basis of a randomly selected subset of data, where each reader and structure had the 

same number of measurements. 

 All readers AY DL KN MI PG SV* TA TI 

All structures 0.46  0.66 0.65 0.81 0.54 0.64   0.41 0.30 

Otoliths 0.68 0.83 0.78 0.84 0.77 0.75  0.55 0.57 

Gill covers 0.51  0.52 0.48  0.49 0.68   0.58 

Spines 0.64 0.62 0.86 0.79 0.81 0.67  0.74 0.93 

*Not in use here 
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Table S3. Age estimates of the three-spined stickleback from different parts of their distribution 

range with use of three types of reference structures: otoliths, gill covers and pelvic spines. 

Locality Structures  Age        Reference 

 Otoliths           1 2 3 4 5 6 7 8  

Wirral peninsula (Cheshire, 

NW England) 

+ + + + – – – – Jones & Hynes, 1950 

Kodiak Island, Alaska + + + – – – – – Greenbank & Nelson, 1959 

Kandalaksha Bay, the White 

Sea 

+ + + + – – – – Mukhomediarov, 1966 

Lake Dal’nee, Kamchatka + + + – – – – – Tiller, 1972 

Lake Frongoch (Great Britain) + + – – – – – – Allen & Wootton, 1982 

Upland Irish 

Reservoir System 

+ + + + – – – – Dauod et al., 1985 

L'Isle Verte, Quebec, Canada + + – – – – – – Dufresne et al., 1990 

Utkholok River, NW 

Kamchatka 

– – + + + – – – Pichugin et al., 2008 

Lake Constance and tributaries, 

Central Europe 

+ + + – – – – – Moser et al., 2012 

The northern and central parts 

of the Baltic Sea 

+ + + + – – – – Odelström et al., 2014 

The Bothnian Sea and Central 

Baltic Sea 

+ + + + – – – – Bergström et al., 2015 

Solovetsky Islands, the White 

Sea 

+ + + + + – – – Golovin et al., 2015 

 Gill covers         

Kandalaksha Bay, the White 

Sea 

– – + + + – – – Ivanova et al., 2007 

Nonindigenous, southeast + + + – – – – – Patimar et al., 2010 
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Caspian Sea, Iran 

Kandalaksha Bay, the White 

Sea 

+ + + + + – – – Yershov & Sukhotin, 2015 

 Pelvic spines         

Drizzle Lake, Haida Gwaii, 

British Columbia, Canada 

+ + + – + + + + Reimchen, 1992 

13 localities, Haida Gwaii, 

British Columbia, Canada 

+ + + + + + – – Gambling & Reimchen, 2012 

Fennoscandia + + + + + + – – DeFaveri & Merilä, 2013 

(both otoliths and spines were 

examined) 

 


