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1 INTRODUCTION 

 

When the heart, like any organ or system, faces excessive stress, it has to adapt to the new 

circumstances. However, due to their lack of proliferation capability cardiomyocytes start 

growing in response to increased stress (Grossman et al. 1975). This phenomenon is 

called hypertrophy, and in pathological cases usually more accurately left ventricular 

hypertrophy (LVH) based on its location (Campbell et al. 1991). LVH is both the cause 

and result of other cardiovascular diseases. Hypertension is the most common background 

for it, and advanced LVH increases the risk for cardiac failure and myocardial infarction 

among others (Devereux et al. 1987; Levy et al. 1988). 

 

Current treatment of LVH and cardiac failure is based on antihypertensive drugs 

(Hypertension, Käypä hoito recommendations 2014; Cardiac failure, Käypä hoito 

recommendations 2018). This is logical considering that hypertension is a significant risk 

factor for LVH. However, antihypertensive drugs do not repair the damage; they only 

alleviate symptoms and slow down the progression of the condition. A recent key 

question among researchers have been why the cardiomyocytes are only able to grow but 

not proliferate. 

 

Understanding the cellular and molecular mechanisms behind both hypertrophy and 

proliferation are crucial for finding new, innovative treatment options. Long non-coding 

RNAs (lncRNAs) present an example of a new target of interest. All non-coding RNAS 

(ncRNAs) are RNA sequences that do not directly code for any protein but fine-tune 

transcriptional, post-transcriptional and epigenetic regulation of other genes (Kapranov 

et al. 2007). Because of their high organ-selectivity they present significant potential for 

medical research (Ramos et al. 2013). Transcription factors, which also adjust gene 

transcription and have very organ-selective functions, are another important target 

(Estella et al. 2012). They are special proteins that bind to DNA promoter regions, 

enabling them to enhance or inhibit the expression of certain genes. 

 

In the first experimental part of this project, neonatal mouse cardiomyocytes were 

transfected with LNA GapmeRs that silence lncRNAs, which out group has previously 
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found to have similar expression patterns during the first postnatal days and weeks in 

neonatal mice. The cardiomyocytes were exposed to endothelin-1 (ET-1) to stimulate 

hypertrophy, and their response to the stress was studied. In the second part, a compound 

screening assay for protein-protein interaction between GATA4 and FOG2 transcription 

factors was set up and optimized. Then, the assay was tested with five compounds, which 

our group has earlier shown to alter the interaction of GATA4 with one of its other 

cofactors, NKX2-5, to see if they also affect GATA4-FOG2 interaction. 

 

2 LITERATURE REVIEW 

 

2.1 Left ventricular hypertrophy 

 

The human heart is normally about the size of a fist. In cardiac hypertrophy the walls of 

the ventricles have thickened, which with the exception of certain genetic diseases signals 

that the heart is trying to function with excessive hemodynamic stress, with the exception 

of certain genetic diseases such as hypertrophic cardiomyopathy (Grossman et al. 1975). 

The systemic circulation requires a continuous supply of blood, but the heart falls behind 

from the demands. However, the heart does not have many ways to compensate. 

Cardiomyocytes, which are the contracting unique muscle cells in the heart, have a nearly 

nonexistent regeneration capability, but they can grow in size. In practice, hypertrophy is 

almost synonymic to left ventricular hypertrophy (LVH), because the highest number of 

cardiomyocytes is localized in the walls of the left ventricle (Campbell et al. 1991). This 

is logical considering that the left ventricle is responsible for the systemic circulation 

(Guyton and Hall 2006). Right ventricular hypertrophy exists, too, but it is usually a cause 

of lung-related conditions, such as pulmonary hypertension (Parikka 2016). The idea of 

this compensatory mechanism is understandable; thicker ventricular walls can push a 

bigger volume of blood to the aorta. This strategy, however, quickly reaches its limits. 

Simultaneously, fibrosis and death of millions of cardiomyocytes take place, and 

hypertrophy cannot compensate for all of that (Kajstura et al. 1996).  

 

Diagnostics rely on electrocardiography (ECG) and clinical examination of the patient 

(Hypertension, Käypä hoito recommendations 2014). ECG measures the electric 
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impulses in the heart, therefore making it possible to draw a curve of the contractions and 

detect abnormalities. Echocardiography (Echo), which uses ultrasound to gain 

information of the structure of the heart, is an option in unclear or otherwise difficult 

cases (Devereux et al. 1986). The results from Echo are more reliable than the ones 

obtained from ECG but also the usage is much more expensive. The reliability of ECG 

can be increased by using certain validated criteria, known as Cornell and Sokolow 

criteria (Okin et al. 2000). Medical research usually opts for Echo because of the higher 

number of quantities that can be measured: thickness and mass of the walls and volume 

of the ventricles among others (de Simone et al. 2008). Among hypertensive patients ECG 

finds approximately 5 – 10% to have LVH (Kaplan 1998). The Framingham Heart study, 

which covered nearly 5 000 patients, published even smaller numbers, 3%, while Echo 

detected 16 – 19% LVH cases (Kannel et al. 1969; Levy et al. 1988). Eventually, no 

matter how precise the method being used to diagnose the patient, the line between a 

normal and enlarged mass of the heart is not sharp. The results must be individually set 

in proportion to height, weight and gender among other factors before drawing 

conclusions. 

 

2.1.1 Background and outcomes of LVH 

 

Arterial hypertension is the most common condition in the background of LVH, 

increasing the risk up to 5-fold (Devereux et al. 1987; Kumpusalo et al. 2001). 

Hypertension, however, is treatable, whereas the effects of LVH cannot be entirely cured. 

Additionally, not only does hypertension risk developing LVH, as also the other way 

around LVH can cause hypertrophy. Ageing, gender, myocardial infarction (MI), obesity 

and valvular heart diseases increase the risk, too (Levy et al. 1988; Jula and Karanko 

1994; de Simone et al. 1994; Benjamin and Levy 1999). de Simone et al. (1994) found 

that the significances of these factors may vary between genders, as men were more likely 

to develop LVH with hypertension and women with excess weight. A follow-up study by 

Hubert et al. (1983) suggested obesity is a significant risk for LVH and other 

cardiovascular diseases (CVD) even with no other common risk factors. In addition to the 

previous common risk factors, additional examples such as smoking, diabetes, insulin 
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resistance, alcohol consumption, urine sodium levels and lack of physical activity have 

been linked with LVH (Benjamin and Levy 1999). 

 

Both systolic and diastolic functionality can be significantly reduced because of LVH. 

This means that the heart is unable to perform its most fundamental task: pumping blood. 

When this inability develops further it is called cardiac failure; a condition that affects 

about one to two percent of the population worldwide (Mosterd and Hoes 2007). 

Shortness of breath and fatigue especially during physical activity are the most common 

symptoms and are caused by blood accumulating in pulmonary circulation as the heart 

does not have the power to push the incoming blood forward (Lommi 2018). Liquid starts 

to accumulate in the body and particularly legs get easily swollen. Patients with difficult 

cases of cardiac failure often find their symptoms worse when lying down because it 

allows blood in the veins of the legs re-enter bloodstream. In cardiac failure the heart may 

not be able to keep up with the re-entering blood, which again starts to accumulate in the 

pulmonary circulation. The swelling can also be seen on the scale and patients can 

experience rapid weight gain.  

 

Cardiac failure is a common cause of death: in 2013 it was reported to be at least one 

factor in every 9th case of death in the United States (Mozaffarian et al. 2016). 

Additionally to its lethality, cardiac failure decreases the quality of life of the patients, 

leads to several hospital admissions and therefore consumes lots of money. In 2012 the 

treatment costs for cardiac failure were 700 million dollars in the United States only and 

are expected to rise in the future. Because of the strong correlation, a heart with LVH is 

considered an intermediate form between a healthy heart and cardiac failure. In addition 

to cardiac failure, LVH is a direct risk for MI, arrhythmias and sudden cardiac deaths 

(Levy et al. 1990). 

 

In the case of MI, millions of cardiomyocytes are lost and the damage starts building 

immediately. This type of remodeling differentiates from hypertension-induced LVH. 

Cardiac healing following MI is a complex system, which begins with a triggered 

inflammatory phase, during which the necrotic myocardium is replaced with granulation 

tissue (Fraccarollo et al. 2012). Second, fibrogenesis results in scar tissue formation. The 
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scar is not able to contract like cardiomyocytes but it is a crucial part in MI recovery, as 

it prevents the left ventricle from rupturing (Brown et al. 2005; Dobaczewski et al. 2010). 

In contrast, fibrosis in areas remote from the infarct site results in significant increase in 

myocardial stiffness (Brown et al. 2005). Hypertrophy and many other structural changes 

take place during the following weeks and months. The phases of cardiac remodeling in 

case of MI is presented in Figure 1. 

 

 

Figure 1: Phases of cardiac remodeling following a myocardial infarction (Fraccarollo et 

al. 2012). 

 

2.1.2 Classification of hypertrophy 

 

Hypertrophy is not necessarily bad - in fact, it is essential for normal growth, adaptation 

and maintenance. There are two ways to categorize hypertrophy: physiological and 

pathological hypertrophy, and concentric and eccentric hypertrophy (Weeks and 

McMullen 2011; van Berlo et al. 2013b) (Fig 2). Physiological hypertrophy is a healthy, 

normal phenomenon. A classic cause for this includes substantial physical activity, for 

example (Boström et al. 2010; Weeks and McMullen 2011). The volume of ventricles 

and the thickness of cardiomyocytes grow proportionally, which increases pumping 
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efficacy and reduces the pressure falling upon the walls. This kind of hypertrophy is 

benign and allows the heart to maintain its functionality – or even increase it as the 

volume of the ventricle is increased in relation to the thickness of the wall (Fig 2). 

Neonates and pregnant females experience the same phenomenon as their hearts face 

increased pressure and start to grow (Weeks and McMullen 2011). 

 

 

Figure 2: Different types of cardiac hypertrophy. In physiologic hypertrophy 

cardiomyocytes grow proportionally in length and width so that the ventricular volume is 

increased together with the thickness of the wall. In concentric remodeling 

cardiomyocytes grow significantly more in width compared with length. This results in 

thickening of the walls and a loss of chamber volume. In eccentric growth cardiomyocytes 

grow longer but not wider, leading to excessive chamber enlargement with thinner walls. 

(van Berlo et al. 2013b). 
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Chronic overload and stress lead to pathological changes (Grossman et al. 1975). There 

is a significant difference, though: the cardiomyocytes do not grow proportionally. If 

pathological hypertrophy is concentric, the volume of the left ventricle shrinks the thicker 

the walls grow, because the cardiomyocytes are mostly stretched across their diameter 

but not in length (Pearson et al. 1991) (Fig 2). Concentric pathological hypertrophy is 

usually a consequence of long-term, gradual increase in blood pressure, but it can also be 

seen in cases of aortic stenosis (Messerli et al. 1987; Frohlich et al. 1992). Simultaneous 

fibrosis and scar formation make the structure of the walls very stiff (Grossman et al. 

1975). If the constant stress continues long enough, the compensatory mechanisms of the 

heart slowly start scraping its own functionality. 

 

Another form of pathological growth is eccentric pathological hypertrophy. In this case, 

the cardiomyocytes grow more in length than across their diameter (Grossman et al. 1975; 

Ganau et al. 1992). The volume of the left ventricle is increased but the walls become thin 

in relation to the diameter of the ventricle (Fig 2). One fourth of LVH cases are eccentric 

hypertrophy (Ganau et al. 1992). This form of cardiomyocyte growth is also known as 

dilatative cardiomyopathy (DCM), and considering that cardiac remodeling it does not 

belong under the term of hypertrophy, as the walls do not actually thicken. Examples of 

conditions often linked with DCM include mitral and aortic valve leakage conditions, MI 

and cardiac failure (Grossman et al. 1975; Messerli and Aepfelbacher 1995). MI results 

in death of millions of cardiomyocytes and the heart must find a way to compensate the 

decreased workforce. Valvular diseases allow blood to flow backwards in the heart, which 

leads to pathological remodeling to compensate the loss in cardiac output. Despite the 

functional logic behind increasing the ventricular volume in such cases, the phenomenon 

significantly upsurges the end-diastolic volume. As the tension upon ventricular walls is 

higher in the case of eccentric LVH, scientists expected it to have mortality rates as well.   

However, it was shown to be the exact other way around, indicating that the thickening 

is even more damaging for the myocardium than ventricular dilation (Koren et al. 1991; 

Ghali et al. 1998; Akinboboye et al. 2004) 
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2.1.3 Cardiomyocyte regeneration 

 

Cardiomyocytes make approximately one third of the heart, the contracting tissue 

myocardium (Nag 1980; Banerjee et al. 2007; Pinto et al. 2016). However, considering 

the volume of the heart, they occupy up to 90% (Anversa et al. 1980, Tang et al. 2009; 

Pinto et al. 2016). Other predominant cell types include fibroblasts, endothelial cells and 

smooth muscle cells. Cardiomyocytes can be further classified into four subtypes (Guyton 

and Hall 2006). One class of contracting cardiomyocytes is located in the ventricles while 

another one is in the atriums. The third subtype is pacemaker cells that give rise to electric 

stimuli and the fourth group conducts it forward. 

 

Neonatal mammals are able to recover from cardiac damage as the cardiomyocytes at the 

site of injury proliferate and give rise to substitutive cells (Porrello et al. 2011). Their 

hearts respond in a different manner: hyperplasic growth. Neonatal mice have been 

proven to be capable of replenishing lost cardiomyocytes in case of an injury (Soonpaa et 

al. 1996; Porrello et al. 2011). A few years ago, Haubner et al. (2016) were the first to 

report that a newborn human had fully both structurally and functionally recovered from 

a major ischemic injury, providing stronger evidence of the regeneration capability than 

ever before. Because of this special characteristic of neonatal cardiomyocytes, neonatal 

rodents have a fundamental role in cardiac regeneration research. They are easy to modify 

genetically and outcomes can be seen relatively quickly (Zaruba and Field 2011). Another 

common model for cardiac regeneration is the zebrafish, which maintains its capability 

of cardiac regeneration throughout its lifespan (Poss et al. 2002). 

 

Soon after birth, however, mammal cardiomyocytes lose the ability to proliferate. Only 

0.5 – 2% of adult murine and human cardiomyocytes regenerate every year, and it has 

been estimated that a 75-year-old still has 50% the exact same cardiomyocytes he had 

when he was born (Parmacek and Epstein 2009; Bergmann et al. 2015). However, not all 

researchers entirely agree on these renewal rate numbers (Nadal-Ginard et al. 2003; 

Bergmann and Jovinge 2014). Reliably labeling proliferating cardiomyocytes to 

differentiate them from non-proliferating ones has been challenging, which plays a part 

in the varying results (Bergmann et al. 2009; Laflamme and Murry 2011). 
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Cardiomyocytes carry one or two nuclei, making the task to separate new cardiomyocytes 

from old ones even more challenging. Soonpaa et al. (1996) found out postnatal 

cardiomyocytes tend to replicate their DNA and nuclei, but not the cytosol. The cells 

become binuclear, after which going through a full mitotic cycle is even more unlikely 

(Li et al. 1996) (Fig 3). 

 

 

Figure 3: The cell cycle. During phases G1 and G2 the cell is focusing on maintaining 

homeostasis and carrying out its basic tasks, including cell respiration and protein 

synthesis, for example. DNA is duplicated in phase S. Cell division takes place in the 

mitotic M phase. If needed, the cell can also go to a passive resting phase G0, which 

significantly decreases its energy requirement. 

 

In mice, the loss of regeneration capacity takes place quickly after birth; already at one-

week-old it is practically nonexistent (Li et al. 1996; Porrello et al. 2011). Mice younger 

than that are able to recover from an artificial injury at myocardium nearly perfectly 

because of their cardiomyocytes’ proliferation capacity (Soonpaa et al. 1996). Older mice 

without this capability undergo scar formation and get different stages of cardiac failure. 

This phenomenon has been studied by surgically removing tissue from the tip of 

myocardium (Porrello et al. 2011; Konfino et al. 2015) or blocking circulation from the 

coronary artery (Porrello et al. 2011; Haubner et al. 2012; Konfino et al. 2015). Rough 

estimations of the renewal time window in humans have been made, despite not everyone 

completely agrees on whether the rodent cardiomyocyte renewal window exists in large 
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animals or in humans in the first place (e.g. Porrello et al. 2011; Mollova et al. 2013, 

Lázár et al. 2017). 

 

2.1.4 Left ventricular hypertrophy on cellular level 

 

Inside a cardiomyocyte, there are elongated myofibrils organized side by side. The 

myofibrils are made of recurring sarcomeres, which for their part consist of thin actin- 

and thick myosin filaments. The earliest publications on the sarcomere structure and 

function track decades back in time and are still relevant (Huxley 1957). The sarcomere 

filaments move in an interlocked pattern, and this movement acts as a bow in the 

contractions (Sequeira et al. 2014). The sarcomeres are outlined by α actinin sheets that 

attach actin filaments to so called Z-discs. Actin filaments are thin, and they dominate the 

perimeters of a sarcomere unit. This is called the I-band. The thicker myosin filaments 

for there are concentrated in the middle of the sarcomere – the A-band. Myosin-binding 

protein C (MyBP-C) holds the myosin filaments in place. Additionally, six titin proteins 

cross the sarcomere along the surface of the thick filament and further to the Z-disc, where 

they interact with α-actinin. The sarcomere structure is presented in Figure 4. During 

hypertrophy the sarcomere structures lose their organized pattern, and cardiomyocytes 

change their genetic expression and increase protein synthesis. 

 

 

Figure 4: Structure of a sarcomere unit. Z-discs determine the outliers of the sarcomere 

and consist of α-actinin. Thin actin filaments are attached to the Z-discs and they form 

the I-bands of the unit. In the middle, thick myosin filaments form the inner A-band. In 

addition to actin and myosin, the sarcomere structure includes myosin-binding protein C 

(MyBP-C) that holds the myosin filaments together, and six titin proteins crossing 

through the entire structure along the myosin filaments (Hwang and Sykes 2015). 
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Immediate early response genes (IEG) are upregulated within 30 minutes from the 

beginning of hypertrophic stress (Izumo et al. 1988; Iwaki et al. 1990; Chien et al. 1991).. 

Particularly A- and B-type natriuretic peptides (ANP, BNP) (Nppa, Nppb), β-myosin 

heavy chain (β-MHC)(Myh7) and α-actinin (Acta1) are activated simultaneously with 

IEGs (Schwartz et al. 1986; Izumo et al. 1987; Izumo et al. 1988; Chien et al. 1991). 

Examples of IEGs include c-fos and c-myc protooncogenes as well as a major heat shock 

protein gene (hsp70). What is interesting is that BNP, β-MHC and α actinin are at their 

highest activity during embryogenesis, after which their expression decreases in relation 

to other cardiac genes (Hunter and Chien 1999; van Berlo et al. 2013b). BNP is prevalent 

in the ventricular walls throughout lifespan, but after birth ANP is usually expressed 

mostly in the atriums. However, during hypertrophic stimulus, both ANP and BNP are 

significantly increased in the ventricular walls. The reason why these factors are 

reactivated is relatively unclear to this day but likely the phenomenon has to do with 

cardiac protection, since ANP and BNP have been shown to carry anti-hypertrophic 

effects (e.g. Rosenkranz et al. 2003a, Rosenkranz et al. 2003a). According to some 

research groups, the induction of fetal genes itself could be harmful and a possible drug 

target (O’Donoghue and Braunwald 2010). 

 

After IEGs have emerged, the changes take place in other sarcomere protein genes, too.  

This leads to growth and reorganization of the sarcomere structures (Lee et al. 1988; Long 

et al. 1989; Pratt and Dzau 2018). It is a natural phenomenon in both physiological and 

pathological hypertrophy and essential for increasing the contraction force. However, the 

mechanism of sarcomere growth is different between concentric and eccentric (Hunter 

and Chien 1999). In concentric pathological hypertrophy proteins are added side by side 

to the sarcomeres, causing the cell to widen out. In eccentric pathological hypertrophy 

the proteins are stacked on top of one another, which is why the cells are stretched longer. 

In addition, contractibility is negatively impacted as hypertrophic stress affects the 

expression of genes regulating intracellular calcium ions (Kent et al. 1993; Chung et al. 

2011; Luo and Anderson 2013; Coppini et al. 2018). 
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2.2 Treatment of left ventricular hypertrophy and cardiac failure 

 

Currently, there is no curing treatment available for cardiac failure despite about one to 

two percent of the population worldwide suffers from it (Mosterd and Hoes 2007). 

Medication aims at lowering the workload of the heart via renin angiotensin system, 

adrenergic β receptors or diuresis, for example (Cardiac failure, Käypä hoito 

recommendations 2018). Starting the right combination of medicine at the right time will 

significantly increase the patient’s life expectancy. However, in severe cases and after the 

syndrome has continued and developed for many years, there is a shortage of options. 

The treatment of LVH is crucial for the prevention of complications from pathological 

remodeling (Ruilope and Schmieder 2008). 

 

2.2.1 Medical treatment 

 

Due to its strong association with hypertension, the treatment of LVH is based on blood 

pressure medication (Hypertension, Käypä hoito recommendations 2014). Patients 

benefit from these drugs even if they did not have an abnormally high blood pressure to 

begin with. The most common blood pressure medication classes include adrenergic β 

receptor blockers (β blockers), selective for type β1 or both β1 and β2, Ca2+ receptor 

blockers, angiotensin convertase enzyme (ACE)  blockers, angiotensin II receptor (ATR) 

blockers and diuretics. The adrenergic system increases heart rate via β1 receptors, among 

other effects, which increases the workload of the heart. Preventing stimulus via this track 

mediates the efficacy of β blockers. Calcium ion influx intermediates Ca2+ electric current 

inside cardiomyocytes and vascular smooth muscle cells, which affects heart rate and the 

diameter of blood vessels. Diuretics regulate different ion efflux and influx transporters 

so that more fluid is excreted from the kidneys. A smaller blood volume puts less load on 

the heart and decreases blood pressure and also helps cardiac failure patients with 

swelling.  

 

Angiotensin I (ATI) is formed from renin, which is excreted from the kidneys. 

Angiotensinogen enzyme from the liver converts renin into ATI. ATI is then further 

converted into angiotensin II (ATII) by ACE. ATII is highly vasoconstrictive when 
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binding to ATRs. A decrease in the diameter of blood vessels naturally decreases the 

volume in which all blood is supposed to fit, which then upsurges blood pressure. 

Additionally, ATII also increases aldosterone secretion from adrenal glands. Aldosterone 

enhances Na+, Cl- and H2O reabsorption and K+ secretion, which results in a higher blood 

volume and further increases blood pressure. ATII also raises sympathetic activity, which  

stimulates β receptors, and indirectly increases blood volume via the kidneys. This system 

is known as the renin-angiotensin system (RAS) (Fig 5) and it mediates the efficacy of 

ACE and ATR blockers. RAS has been shown to be highly activated in hypertrophy 

(Baker et al. 1992; Sadoshima et al. 1993). Research has revealed that ACE and ATR 

blockers prevent hypertrophy, supposedly because cardiomyocytes release ATII upon 

stretching, and this ATII activates internal RAS signaling in the heart (Pfeffer et al. 1982; 

Baker et al. 1990; Baker et al. 1992; Sadoshima et al. 1993). ATII has also been found to 

induce hypertrophy independently. Transgenic mice that overexpress angiotensinogen 

only in the heart developed both left and right ventricular hypertrophy over the course of 

their development and full-grown mice had approximately 20% larger ventricular walls 

than wild-type controls (Mazzolai et al. 1998; Mazzolai et al. 2000) These findings further 

emphasize the role of RAS affecting drugs in LVH. 

 

Figure 5: The renin-angiotensin system (RAS). ACE = angiotensin convertase enzyme, 

Na+ = sodium ion,  K+ = potassium ion, Cl- = chloride ion. 
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Gottdiener et al. (1997) conducted a double-blinded randomized trial with six common 

antihypertensives administered to 1 105 male patients who all had particularly high 

diastolic pressure levels. According to their findings, captopril, hydrochloride thiazide 

and atenolol significantly reduced the mass of the left ventricular wall. Diltiazem, 

clonidine and prazosin were equally effective in hypertension but had no effect on the 

ventricular walls. At the same time, Liebson et al. (1995) did a similar setting with five 

antihypertensive drugs (n = 844) and found that in the long run drug treatment did not 

have a better positive impact on the ventricular walls than non-medical treatment, such 

as lifestyle changes. To compare different classes of medication, Schmieder et al. (1998) 

carried out meta-analysis covering  1 175 patients on placebo (n = 165), diuretics (n = 

304), β blockers (n = 367), calcium channel blockers (n = 441) and ACE blockers (n = 

438). The results showed the overall duration of medication is important for the obtained 

results and decrease in systolic pressure significantly reduced the mass of ventricular 

walls. ACE and calcium channel blockers ranked higher than β blockers and diuretics 

although they all reduced blood pressure equally in both groups. 

 

The Losartan Intervention For Endpoint reduction (LIFE) studies began in the 1990’s as 

it became more evident that β blockers and diuretics did not benefit patients with 

hypertension considering morbidity (Dahlöf et al. 1997). Although they reduced blood 

pressure, patient deaths did not decrease. Overall, the LIFE project covered several 

clinical studies and only a couple of examples are presented here. Devereux et al. (2004) 

examined 960 patients having either losartan (n = 457) or atenolol (n = 459) and found 

losartan reducing the mass in the left ventricular walls more than atenolol. In addition, 

atenolol increased the diameter of the left ventricle compared to losartan. Another 

publication from the LIFE study by Dahlöf et al. (2002) got similar results from an even 

larger group of patients. They double-blinded 9193 participants with hypertension and 

LVH to receive either losartan (n = 4605) or atenolol (n = 4588) and found that losartan 

reduced cardiac morbidity compared to atenolol even if blood pressure was reduced 

equally. 

 

It is worth acknowledging that the classic antihypertensive drugs were developed a couple 

of decades ago, and their efficacy was studied back then as can be seen in the years of 
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these publications. However, they maintain their relevancy in treatment recommendations 

to this day (Hypertension, Käypä hoito recommendations 2014). More recent studies 

have, instead, examined the benefits of combining two or more antihypertensive drugs.  

Like the starting point of the LIFE project stated, final health outcomes must be taken 

into account besides the direct effects on the ventricular walls. Research shows that 

combining an angiotensin receptor (ATR) blocker, such as losartan, with a thiazide 

diuretic appears to reduce the risk of stoke more than a β blocker with a thiazide diuretic 

(Dahlöf et al. 2005; Ruilope and Schmieder 2008). The inferiority of β blockers among 

LVH patients has also been pointed out in monotherapy, for which ACE, ATR and Ca2+ 

blockers are more beneficial choices (Fagard et al. 2009). For cardiac failure patients 

diuretics are an essential drug to remove excessive body fluids that accumulate in the 

lower limbs and lungs as a result from insufficient heart function (Cardiac failure, Käypä 

hoito recommendations 2018). Depending on the severity of their illness they may also 

need medication for cardiac arrhythmias, such as  fairly usual atrial fibrillation. The 

European guidelines for LVH medical treatment were summarized from by Mancia et al. 

(2013) who gathered over 700 studies about hypertension medication under a variability 

of other conditions that may have an impact on the outcome, such as LHV. Like the 

examples mentioned here, their final outcome was that the primary medication should be 

an ACE, ATII or Ca2+ blocker, a diuretic or an aldosterone antagonist. 

 

2.2.2 Non-medical treatment and prevention 

 

The first steps that should be taken to decrease the workload of the heart lie within 

lifestyle choices. Excessive sodium intake, substantial alcohol consumption, unhealthy 

eating with little vegetables and plenty of saturated fats and lack of physical activity are 

well established risk factors of hypertension (Marmot et al. 1994; Benjamin and Levy 

1999; Appel et al. 1997; Sacks et al. 2001). The exact same factors are also known to 

enhance LVH of themselves, but as LVH and hypertension are strongly linked together, 

aiming at a lower blood pressure should be one of the main focuses (Devereux et al. 1987; 

Levy et al. 1988; Hypertension, Käypä hoito recommendations 2014). Focusing solely on 

LVH, medical and non-medical treatment are of same efficacy (Liebson et al. 1995). 
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The average salt intake in Finland is approximately ten-fold to the recommendations 

(Paturi et al. 2008; Puska et al. 2009; Helldán et al. 2013). Excessive sodium significantly 

increases the risk of cardiovascular end points and deaths (Alderman et al. 1998; He et al. 

1999; Tuomilehto et al. 2001; Strazzullo et al. 2009). In a study by He et al. (2004) cutting 

salt intake down by six grams a day significantly reduced blood pressure in just four 

weeks. Reducing salt also improves the efficacy of many antihypertensive drugs, such as 

ACE, ATR and β blockers and diuretics (Parijs et al. 1973; Erwteman et al. 1984; 

MacGregor et al. 1987; Singer et al. 1995; Houlihan et al. 2002). Not only is the indirect 

effect via blood pressure important in the prognosis, reducing salt intake can also directly 

decrease LVH. Jula and Karanko (1994) conducted a study in which patients (n = 76) 

were given a salt-restricted diet. Treatment group was also given advice by a dietician 

while control group did not. After 12 months the treatment group dropped an average of 

5.4% of their left ventricle mass, but no change was detected in the control group. The 

decreased mass could not be explained with other factors, such as weight loss, which led 

the researchers to believe it was the sodium restriction that caused the difference between 

the groups. 

 

Those who exercise substantially have on average lower blood pressure than those with 

very little physical activity (Huai et al. 2013). According to  the U.S. Department of 

Health and Human Services (2008) 150 minutes of moderately straining endurance 

training is the most recommendable form of exercise for hypertension patients. It has been 

shown to reduce blood pressure approximately 8/5 mmHg (Cornelissen and Smart 2013). 

Among overweight patients losing weight only 4% on a sparse energy diet reduces blood 

pressure roughly 6/3 mmHg and decreases the need of medical treatment (Neter et al. 

2003; Horvath et al. 2008). Combination of weight loss and reduced salt consumption 

appears to diminish LVH (MacMahon et al. 1986). Similar results can be obtained by 

increasing exercise, which helps lose weight. However, it is important to emphasize the 

importance of maintaining the weight loss results and the reduced sodium levels 

(Fagerberg et al. 1984; Bao et al. 1998). The changes one makes in their lifestyle must be 

sustainable in order to benefit from them in the long run. 
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2.2.3 Recent targets of interest in research 

 

Despite antihypertensive drugs benefiting patients with LVH even if they were not 

hypertensive, the demand for innovative treatments is high. Particularly in the case of MI 

it would be crucial to prevent the pathological remodeling in an early phase (Fig 1). 

Researchers are breaching out to find treatments that repair and prevent cardiac 

remodeling instead of only alleviating symptoms. 

 

Cardiac regeneration has been a hot topic in the field of LVH and cardiac failure treatment 

for the past decades. Researchers have spent considerable effort and resources to find a 

way to overcome the immediate hypertrophic response to injury. Stem cells are one of 

the most studied fields in several diseases and conditions, and the heart is no exception. 

Animal models and humans have confirmed that cellular replacement, which means stem 

cells or other types of cells, are injected directly to the site of injury, has modest yet 

potential effects in cardiac repair (e.g. Fisher et al. 2016; Khan et al. 2016; Park et al. 

2019; Fan et al. 2020). However, before drawing any conclusions, it was also shown that 

the implanted cells seldom retain in the heart and the mechanistic base of cardiac 

improvement after cell therapy remains undecided. The transient benefit obtained from 

stem cell implantation is likely due to paracrine signaling between neighboring cells 

(Mercola et al. 2011).  

 

Another approach has been turning other cardiac cells, such as fibroblasts, into 

cardiomyocytes by taking advantage of developmental gene regulatory networks 

(Buckingham et al. 2005; Olson 2006; Srivastava 2006). In theory, such reprogrammed 

cells can occupy the site of injury before hypertrophy and fibrosis, therefore enhancing 

cardiac function after MI (Ieda et al. 2010; Qian et al. 2012; Song et al. 2012). Fibroblasts 

can be reprogrammed into induced pluripotent stem cells (iPSCs), which exhibit the 

properties of embryonic stem cells (ESCs) after forced expression of pluripotency genes 

OCT4, SOX2, Krüppel-like factor 4 and MYC – together also known as OSKM factors 

(Takahashi et al. 2006; Takahashi et al. 2007). Generating iPSC intermediates from 

patient fibroblasts offers a possibility for patient-specific disease models and better 

choices of treatment (Yoshida and Yamanaka 2011; Nakamura et al. 2013). Efe et al. 
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(2011) successfully generated contracting patches of cardiomyocytes from mouse 

embryonic fibroblasts and adult mouse fibroblasts when using specific culture conditions 

without the iPSc intermediate stage. However, there are major issues to be solved. First, 

iPSCs are highly teratogenic, meaning they pose a risk for embryos if the receiver is 

pregnant. Second, the pluripotency genes are carcinogenic. Additional challenges include 

low induction rate to iPSCs, inadequacy of iPSCs to further differentiate into 

cardiomyocytes and failure of exogenous cells to gain a foothold at the site of injury, for 

example (Yoshida and Yamanaka 2011; Bellin et al. 2012).  

 

Attempts to bypass these hardships have been made, such as implementing the 

reprogramming directly within the heart without the stem cell intermediate stage. 

Recently, a deeper understanding of transcription factors and their interactions, which 

specify cardiac lineage and the differentiation of cardiomyocytes during embryogenesis, 

has been gained. The same transcription factors carry potential to activate cardiac gene 

expression in fibroblasts in vitro. Ieda et al. (2010) got initial results that combining three 

transcription factors – GATA4, myocyte specific enhancer factor 2C (MEF2C) and TBX5 

(collectively called GMT factors) – could reprogram cardiac and dermal fibroblasts into 

induced cardiac- like myocytes (iCLMs) in mice, with a yield of ~5−7%. A tiny fraction 

of these iCLMs were able to contract spontaneously after 4–5 weeks. Nevertheless, the 

efficacy obtained by Ieda et al. (2010) varies between research groups and some, such as 

Chen et al. (2012) report the method not successful at all. The variables causing the 

inconsistency are most likely the need for a specific stoichiometry of reprogramming 

factors to activate the cardiac gene programme, the heterogeneity of fibroblasts between 

different studies and the variances in the cell culture conditions used among others. Song 

et al. (2012) managed to increase the yield to ~20% by adding in a fourth transcription 

factor, HAND2, and the newly generated iCLMs  apparently  rise from direct conversion 

of fibroblasts without an intermediate stem cell state. Additional strategies to generate 

cardiomyocytes include muscle-specific micro RNAs (miRNAs) and combining this with 

transcription factor introduction (Efe et al. 2011; Jayawardena et al. 2012). The exact 

mechanism accountable for direct cardiac reprogramming remains partially unknown. 

Various combinations of different transcription factors have been proven to directly 

activate genes encoding cardiac proteins and regulate their own expression patterns (Ieda 
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et al. 2010; Qian et al. 2012; Song et al. 2012). Seemingly, these factors can switch on 

endogenous cardiac genes that gradually create a stable cardiac phenotype when they 

reach their threshold expression levels. 

 

Surprisingly, applying these strategies in vivo was a greater success than anticipated after 

the iCLM yields in in vitro studies. Qian et al. (2012) and Song et al. (2012) both delivered 

GMT factors by retroviral vectors to mouse hearts after left anterior descending ligation 

and saw major improvement in cardiac function which was still clear a year after surgery. 

When these iCLMs were examined by isolating and culturing them in vitro the sarcomere 

structures, contractility and cardiomyocyte-like gene expression were similar to mature 

cardiomyocytes. Encouraging results were also obtained by Jayawardena et al. (2012) 

who transfected miRNAs with lentivirus vector. Presumably the native surroundings in 

the living heart improved the results significantly from artificial in vitro conditions. These 

findings were not, however, an operational treatment for humans.  Human cells are much 

harder to reprogramme, likely due to their stable epigenetic modifications that take place 

over time. Nam et al. (2013) reported initial progress towards reprogramming human 

fibroblasts into cardiomyocytes in vitro. The foremost problem is that these cells do not 

proliferate, which significantly reduces their potential in therapeutic use where millions 

of dead cardiomyocytes should be replenished. An additional danger lies in the possible 

alterations in cardiac architecture, which could quickly become deadly. 

 

Instead of making new cardiomyocytes from other cells, researchers have also studied 

ways to make cardiomyocytes proliferate again. Positive cell cycle regulators that have 

been identified include cyclins, cyclin-dependent kinases and proto-oncoproteins, and 

they are expressed at considerably higher levels in the embryonic heart and 

downregulated in the adult heart (Pasumarthi and Field 2002; Ahuja et al. 2007). Forcing 

overexpression of some of these factors, such as cyclin A2, cyclin D2, neuregulin 1 and 

SV40 large T antigen have been shown to be linked with dedifferentiation and 

proliferation of mature cardiomyocytes (Chaudhry et al. 2004; Engel et al. 2005; Engel 

et al. 2006 Kühn et al. 2007; Bersell et al. 2009). However, all experiments have resulted 

in relatively low yields but a chance for future therapeutics remains. 
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A third direction is utilizing the same transcription factors as in cell reprogramming, but 

rather aiming at preventing hypertrophic response. Synergy between transcription factors 

determines lots of cellular processes, such as which genes are expressed and whether the 

cell should opt for apoptosis, for instance (Lyons et al. 1995; Molkentin et al. 1997; Horb 

and Thomsen 1999). Some of these protein-protein interactions are mediators for 

hypertrophic gene expression. Our research group has focused on synthetizing numerous 

small molecules that interfere with the interaction between GATA4 and NKX2-5 and was 

in fact the first one to reportedly succeed (Välimäki et al. 2017). These two factors have 

been a particular target of interest and other research groups have also acknowledged their 

potential in future treatments (Ieda et al. 2010; Song et al. 2012; Kang et al. 2015). 

However, this topic will be covered more profoundly further in this literary survey. 

 

2.3 Long non-coding RNA 

 

During the past couple of decades an increasing number of studies have found long non-

coding RNAs (lncRNAs) an important factor in genetic regulation. They belong to a 

larger group of non-coding RNAs (ncRNAs). All ncRNAs are all indirect regulators of 

gene transcription despite not coding for any proteins themselves and their duties include 

transcriptional, post-transcriptional and epigenetic modifications in gene expression 

among others (Kapranov et al. 2007). They are highly organ-selective and are likely to 

contribute to both developmental and functional cell events and are therefore an 

interesting drug target. 

 

The discovery of ncRNAs helped provoke a change in the general understanding of 

genetics towards the acknowledgement that a single sequence can be read in multiple 

ways: it can be transcribed into sense, antisense, coding and non-coding transcripts 

(Carninci et al. 2005; Kapranov et al. 2005). In fact, the number of non-coding RNA in 

the human genome is more than double compared to protein-coding RNA (NONCODE 

database version v5.0 (www.noncode.org); GENCODE database release 32  

(www.gencodegenes.org/human). Because this newly found system clearly had many 

more aspects to be considered and had a more complex nature altogether than the simple 

idea of one sequence resulting in one protein, ncRNAs had to be classified. One crude 

http://www.gencodegenes.org/human
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classification system was based on their proximity to gene-coding genes, such as 

overlapping, cis-antisense, bidirectional or intronic ncRNAs (Carninci et al. 2005; 

Kapranov et al. 2007). The problem with this classification was, however, that very few 

ncRNAs match only one category. Another way to roughly classify ncRNAs is their size, 

which is used in the determination of lncRNA. They are characterized by their size of 

more than 200 nucleotides. On the other hand, other ncRNAs such as micro RNA 

(miRNA), small interfering RNA (siRNA) and transfer RNA (tRNA) are functionally so 

different that the size should not be considered an indicator of the nature of the ncRNA. 

 

Focusing on lncRNAs, they come with various functions and structures and interact with 

different targets, therefore having to do with many endogenous pathways. Depending on 

their location either in the nucleus or in the cytoplasm, lncRNAs may interfere with 

transcriptional or post-transcriptional events, or translation of messenger RNA (mRNA). 

Examples of the functions of nuclear lncRNAs include chromosome scaffolding, 

chromatin remodeling, alternative splicing, epigenetic modification and transcriptional 

activation or silencing (Clemson et al. 2009; Hung et al. 2011; Mercer et al. 2011; Derrien 

et al. 2012; Kugel and Goodrich 2012; Lee 2012). In almost all cases, these functions 

require lncRNA interacting with RNA-binding proteins, forming nuclear lncRNA-

associated ribonucleoprotein complexes (lncRNPs). While cytoplasmic lncRNAs also 

form lncRNPs, they are generally less understood. Mercer et al. (2011) presented results 

showing that cytoplasmic lncRNPs can consist of lncRNAs transcribed from nuclear 

DNA or expressed locally in the cytoplasm from mitochondria. These cytoplasmic 

lncRNPs can direct cytoplasmic events vital for maintaining cellular structure and 

functions, such as protein localization and turnover, mRNA translation and stability, 

obtainability of cytoplasmic factors, and protein scaffolding (Yoon et al. 2013; Rashid et 

al. 2016).  

 

When discovered in the first place, the massive amount of lncRNAs took researchers by 

surprise and led them to believe it was only transcriptional noise derived from low DNA 

polymerase fidelity (Struhl 2007). However, it was soon noticed that expression of many 

lncRNAs is restricted to specific developmental contexts. In vivo studies carried out with 
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mice showed large numbers of lncRNAs specifically expressed only during embryonic 

development or stem cell differentiation (Amaral and Mattick 2008; Dinger et al. 2008). 

The overall importance of ribonucleic acid, RNA, can be highlighted with s a scientific 

hypothesis that all life begun with RNA. It is a simple structure – an easy way to store 

information (Mercer et al. 2009). Presumably, the double-stranded version with a slight 

extra to its structure, DNA, slowly developed from the single-stranded RNA as an 

upgraded version. Due to its higher stability, DNA then made it possible to start producing 

the material for which it contained instructions. As evolution went on, more complex and 

elaborate organisms were developed. Currently it is known that most of the genome in 

intricate organisms is regulated by far more steps than simply DNA sequence leading to 

a certain protein (Carninci et al. 2005; Kapranov et al. 2007). Instead, transcriptional 

activity is developmentally regulated. After the discovery of ncRNAs it was clear the 

development of RNA did not stop when first strands of DNA emerged; DNA never 

actually replaced RNA. It went along handling its own role and territory, which was 

undiscovered until recent times. 

 

2.3.1 Long non-coding RNA in disease 

 

An important distinctive factor between lncRNAs and protein-coding RNAs is that 

lncRNAs are more tissue or cell selective (Ramos et al. 2013). This makes them 

encouraging targets for medical research as they are likely to contribute only to the 

functions of their specific tissue or organ. Specialization in certain tissues also supports 

the theory that lncRNAs must have an impact on the embryonic development of the organ 

and tissue of question. If every possible combination of functions and structures of living 

organisms was stored solely inside protein-coding DNA, it should be possible to link all 

genetic diseases to mutations in that code. A codon – a unique set of three nucleotides 

that determine a single amino acid – can be observed for aberrations (Crick et al. 1961). 

The results can be used to predict possible outcomes in the order of amino acids being 

linked together, affecting the structure, folding and function of the final protein and the 

possible effects taking place in the organ and entire organism. However, the genetic 

background of various diseases and conditions are yet to be explained despite the human 
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genome has been sequenced, which suggests coding sequences do not work alone 

(Wapinski and Chang 2011).  

 

As recently as in the beginning of the century, small- and large-scale mutations in the 

non-coding regions of the genome were easily labeled unimportant. Examples include 

chromosomal translocations, copy-number alterations, nucleotide expansions and single 

nucleotide polymorphisms. Recently, the interest in them has been increasingly growing. 

It is still challenging to point out, which of these mutations have to do with human disease 

and how exactly they contribute to them. When mutations take place in the mostly well 

established, protein coding genome, outcomes are predictable. Instead, when they take 

place in the vastly unknown non-coding regions, even the most sophisticated estimates 

are just speculation (Fig 6). 

 

Figure 6: A graph of possible mutations taking place in any regions of the genome and 

the known effects. When a mutation occurs in protein coding genes, the consequences are 

well established and even predictable. However, the same does not apply to the non-

coding genes. Even if it is possible to detect a change in sequence and function of the 

gene, the full mechanisms are unclear (Wapinski and Chang 2011). 

 

2.3.2 Cardiac long non-coding RNAs 

 

Matkovich et al. (2014) characterized 321 cardiac-specific lncRNAs by comparing mouse 

RNA sequencing from the heart, liver and skin. Further on, 52 of them were found 

abundant and highly cardiac-enriched. Approximately two out of three of these lncRNAs 

were expressed by cardiomyocytes, whereas cardiac fibroblasts contributed to only 2%. 

Li et al. (2013) used deep sequencing and microarrays to profile lncRNA expression and 

identified several upregulated lncRNAs in mouse hearts after treating them with a β 

adrenoreceptor agonist, which increases heart rate. Another similar study profiled 

upregulated lncRNAs in mouse hearts after ischemia or reperfusion, also finding a large 
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number of matches (Liu et al. 2014). An even more intriguing discovery was made by 

Ounzain et al. (2014) when they identified 1521 novel lncRNAs that were not listed in 

the mouse genome at the time. Interestingly, almost three in four of these lncRNAs were 

found in the human genome, suggesting possible conservation in human. Especially ultra-

conserved regions (UCRs), defined as DNA stretches at least 200 bp long conserved in 

human, rat and mouse genome, have been associated with congenital abnormalities in the 

heart and other organs as well (Baira et al. 2008; Martinez et al. 2010; Liu et al. 2019). 

These studies and numbers are just examples of how much potential the cardiac research 

field sees in lncRNAs. 

 

The first evidence of the relevance of lncRNAs in CVDs originate from vast genome 

studies that identified a susceptibility locus of coronary artery disease on the human 

chromosome 9p21.53 (Helgadottir et al. 2007; McPherson et al. 2007; Samani et al. 

2007). This locus was found to be adjacent to the last exon of a specific lncRNA, which 

was named ANRIL (or CDKN2BAS). The three research groups independently came to 

the conclusion that single nucleotide polymorphisms (SNPs) on ANRIL significantly 

increases the risk of coronary artery disease. Later on, these suspicions turned out to be 

correct: ANRIL SNPs have been linked to the development of coronary atherosclerosis, 

peripheral artery disease, carotid arteriosclerosis among other CVDs (Chen et al. 2014). 

Another discovery connected lncRNAs and MI for the first time, arose from genetic 

studies showing enriched SNPs in a MI-susceptible locus coding for a lncRNA that was 

later named MIAT (also known as RNCR2/AK028326/Gomafu) (Ishii et al. 2006). 

 

Despite these achievements in lncRNA and CVD research, the role of lncRNAs is only 

starting to be acknowledged. Surprisingly few lncRNAs have been reliably associated 

with hypertrophy when compared to the thousands of upregulated lncRNAs in infarction 

studies (Matkovich et al. 2014). In addition to disease, lncRNAs regulate and control 

embryonic cardiac development (Grote et al. 2013; Klattenhoff et al. 2013). An example 

is Braveheart (Bvht), which was discovered by Klattenhoff et al. (2013) after they used 

multiple ESC differentiation strategies to find necessary factors for cardiac gene 

activation. After birth, lncRNAs remain essential for normal cardiac function throughout 

lifespan. Han et al. (2014) discovered a group of lncRNAs partially overlapping the gene 
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locus Myh7, coding for β-MHC. These lncRNAs were named myosin heavy-chain-

associated RNA transcripts (Mhrt). Their research was one of the first major ones proving 

the relevance of lncRNAs to cardiac hypertrophy. After inducing cardiac hypertrophy in 

mice by transverse aortic constriction (TAC) surgery the expression of Mhrt was 

dynamically downregulated. In addition, TAC has been shown to induce isoform change 

from Myh7 to Myh6, which is characteristic of cardiomyopathy (Miyata et al. 2000; 

Krenz and Robbins 2004). Respectively, overexpression of Mhrt after TAC significantly 

reduced hypertrophy and improved cardiac function in mice (Han et al. 2014). 

 

By today, many research groups have identified different lncRNA strands that contribute 

to the complex chains of events in cardiac functionality and generation. Nonetheless, no 

one has been able to take these findings to be tested and developed towards possible 

treatments for heart illnesses. Viereck et al. (2016) compared the lncRNA transcriptome 

between TAC and sham operated mice. The group discovered a specific conserved 

lncRNA cardiac hypertrophy associated transcript (Chast) that was upregulated in 

hypertrophic cardiomyocytes after it had been activated by pro-hypertrophic transcription 

factors. In addition, overexpressing Chast was effective enough to promote hypertrophy 

both in vitro and in vivo with no other hypertrophy-promoting factors on site. 

Correspondingly, blocking the effect of Chast with GapmeR antisense oligonucleotides 

prevented cardiac hypertrophic growth after TAC surgery. The researchers also found 

Chast to be upregulated in aortic stenosis patients. 

 

Another known pro-hypertrophic lncRNA is cardiac hypertrophy associated epigenetic 

regulator, cardiac-hypertrophy-associated epigenetic regulator (Chaer). Wang et al. 

(2016) reported Chaer cardiac knockout mice suffered less hypertrophic growth and 

fibrosis after TAC than wild type control group. Respectively, Chaer overexpression 

resulted in cardiomyocyte growth. Cardiac hypertrophy related factor (CHRF) was 

discovered by Wang et al. (2014) when the group profiled ATII -regulated lncRNAs. 

TAC in murine hearts and human heart failure samples showed upregulation of CHFR in 

vivo and resulted in increased cardiomyocyte hypertrophy and apoptosis. ATII treatment 

in vitro had the similar effects.  
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Silent information regulator factor 2 related enzyme 1 (Sirt1) antisense lncRNA was 

found by Li et al. (2018) and it significantly promoted cardiomyocyte proliferation both 

in vitro and in vivo, while the suppression of Sirt1 antisense lncRNA had the opposite 

effect. Cardiomyocyte proliferation regulator (CPR), on the other hand, appears to block 

proliferation (Ponnusamy et al. 2019). The expression of CPR is significantly higher in 

adult hearts than during fetal stage. Moreover, inhibition of CPR restores cardiac function 

and reduces scarring after MI, and overexpressing CPR in neonatal mouse hearts nearly 

obliterated their regeneration capacity. Finally, as promising as these couple of examples 

of cardiac lncRNAs appear, the world has barely revealed the tip of the iceberg. Piccoli 

et al. (2017) managed to identify over 1400 different lncRNAs deregulated in overloaded 

mouse cardiomyocytes, suggesting there is plenty of work left for the future. All the 

examples covered in this chapter are summarized in Table 1. 

 

2.4 Transcription factors 

 

As briefly mentioned above when discussing current targets of interest in cardiac 

regeneration research, transcription factors are an extensive yet promising direction. 

According to one definition: “Transcription factors are key proteins that decode the 

information in our genome to express a precise and unique set of proteins and RNA 

molecules in each cell type in our body” (Estella et al. 2012). They are proteins holding 

specific domains that bind to the promoter regions of particular genes. They also contain 

a domain that interacts with RNA polymerase II or other transcription factors and 

therefore control the amount of mRNA produced by the gene in question. In this following 

paragraph I will focus on a couple of cardiac-specific transcription factors that have a 

significant role in cardiac development and hypertrophy. 
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Table 1: Examples of studied cardiac-selective long non-coding RNAs (lncRNA) and 

their effects. SNP = single nucleotide polymorphism. 

 

 

  

Name Single / group Function in the heart Ref.

MIAT single

Normal function prevents myocardial 

infarct, SNPs increase risk. Adjacent to the 

locus of a susceptility gene.

Ishii et al. 2006

ANRIL single

Normal function prevents coronary artery 

disease; SNPs significantly increase risk. 

Exon adjacent to the locus of a susceptility 

gene.

Helgadottir et al. 2007; 

McPherson et al. 2007; 

Samani et al. 2007

Myosin heavy-chain-

associated RNA 

transcript (Mhrt)

group

Hypertrophic stress causes downregulation. 

Partially overlapping Myh7  locus, which is 

why these lncRNAs can affect myosin 

heavy chain synthesis. Restoring levels to 

pre-stress levels protects heart from 

hypertrophy and failure.

Han et al. 2014

Cardiac hypertrophy 

related factor (CHRF)
single

Upregulation causes cardiomyocyte 

hypertrophy and apoptosis. Stress induces 

expression, regulated via sngiotensin II.

Wang et al. 2014

Braveheart (Bvht) single
Essential for for cardiac gene activation 

and embryonic development of the heart.
Klattenhoff et al. 2016

Cardiac hypertrophy 

associated transcript 

(Chast)

single

Activating with pro-hypertrophic 

transcription factors causes upregulation in 

cardiomyocytes. Capable of promoting 

hypertrophy on its own both in vitro and in 

vivo.

Viereck et al. 2016

Cardiac-hypertrophy-

associated epigenetic 

regulator (Chaer)

single

Strongly hypertrophic. Myocardial 

inhibition results in less hypertrophy. 

Overexpression promotes cardiomyocyte 

growth.

Wang et al. 2016

Silent information 

regulator factor 2 

related enzyme 1 

(Sirt1) antisense 

lncRNA

single Promotes cardiomyocyte proliferation. Li et al. 2018

Cardiomyocyte 

proliferation regulator 

(CPR)

single

Inhibits cardiomyocyte proliferation. 

Overexpression in neonatal hearts 

significantly decreases regeneration 

capability, while inhibition in adult hearts 

restores function and reduces scarring after 

myocardial infarct.

Ponnusamy et al. 2019
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2.4.1 GATA family 

 

The family of GATA transcription factors consists of six members (GATA1-6), all of 

which bind to DNA nucleotides with their two zinc finger structures (Ko and Engel 1993; 

Merika and Orkin 1993) (Fig 7). Their name origins from their binding to 

(A/T)GATA(A/G) sequence. Functions of GATA transcription factors cover cell 

differentiation and proliferation among many others throughout lifespan from infancy to 

old age. The first subfamily, GATA1, -2 and -3 affect mostly blood cells (Molkentin 

2000). GATA1 regulates the development of red blood cells, mast cells, megakaryocytes 

et cetera. GATA2, on the other hand, has an effect on endothelial cells in blood vessels, 

fibroblasts, monocytes and red blood cell progenitors to some extent, among others. 

Targets of GATA3 include T lymphocytes, mast cells, the brain and kidneys (Patient and 

McGhee 2002). The second subfamily – GATA4, -5 and -6 are located particularly in 

internal organs: liver, intestines, lungs and heart, for instance (Arceci et al. 1993; Kelley 

et al. 1993; Laverriere et al. 1994; Morrisey et al. 1996; Morrisey et al. 1997). GATA4 

and -6 are myocardium-specific in the heart, whereas GATA5 is mostly located in the 

endocardium (Charron and Nemer, 1999). In each organ GATA transcription factors 

control genetic expression, function and development of that specific type of tissue. This 

survey will focus especially on GATA4 due to its cardiac functions. In addition to the 

heart, it can be found in the gastrointestinal tract, the pancreas, the liver, the bladder and 

the gonads to some extent (Grépin et al. 1994; The Human Protein Atlas – GATA4). 

 

Figure 7: Functional structures of GATA4, -5 and -6. The zinc finger structures (Zn) and 

nuclear localization sequence (nls) are responsible for binding to DNA and cofactors. 

Topologically associating domains (TAD) activate transcription of target genes 

(Molkentin 2000). 
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Pressure-induced overload has been shown to stimulate both expression and DNA-

binding of GATA4 and -6 in mice (van Berlo et al. 2013a). Excessive expression has also 

been reliably linked with increased hypertrophy in vitro and in vivo (Liang et al. 2001; 

van Berlo et al. 2013a). Oka et al. (2006) and van Berlo (2013a) have demonstrated how 

reducing GATA4 expression in mouse heart reduces hypertrophy caused by pressure 

overload, and GATA6 deletion also showed decrease in ATII and phenylephrine based 

hypertrophy. These results indicate GATA4 and -6 have a great significance in LVH. 

 

GATA4 regulates the expression of many sarcomere protein coding genes, such as Myh7, 

troponins I and C and natriuretic peptides Nppa and Nppb (Molkentin 2000). It affects 

many proteins related to hypertrophy and cardiac function in general: endothelin-1 (ET-

1), muscarine receptors and A1 adenosine receptor to name a few. Hypertrophy and 

hypertrophic factors, such as ATII, stimulate GATA4, which further stimulates 

transcription of ATRs and Myh7 (Hasegawa et al. 1997; Herzig et al. 1997). GATA4 

stimulation, however, does not necessarily mean an increase in the total amount of 

GATA4 – it can also mean an improvement in its affinity to DNA. This happens by 

changes in the post-translational modifications of GATA4, such as phosphorylation, 

acetylation and protein-protein interactions (Katanasaka et al. 2016). 

 

GATA6 is a less known hypertrophic transcription factor but evidence of its necessity for 

hypertrophic response has been found (van Berlo et al. 2013a). It works by the side of 

GATA4 and can take over its duties in some cases. Cardiac differentiation is an example 

of a process in which the tasks of GATA4 and GATA6 overlap in many respects 

(Pikkarainen et al. 2004; Zhao et al. 2008, van Berlo et al. 2013a). This explains why 

GATA4 knockout animal models can still express some target genes of GATA4 (Pu et al. 

2004; Zeisberg et al. 2005; Bisping et al. 2006). 

 

2.4.2 Protein-protein interactions 

 

Knocking GATA4 out of the genome could seem a suitable way to target LVH as it so 

strongly enhances hypertrophy, but this would lead to severe issues considering that 

GATA4 is also needed for cardiac development and maintenance. Several studies have 
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shown homozygous GATA4 knockout mice suffering severe cardiac developmental 

disorders (Pu et al. 2004; Zeisberg et al. 2005; Oka et al. 2006). Most die during 

embryonic stage and the ones that survive express clear symptoms of cardiac failure (Pu 

et al. 2004; Rojas et al. 2008;  Mohammadi  et al. 2017). Rather than labeling GATA4 

good or bad, one must take a deeper look at its interactions with cofactors. Other 

transcription factors can bind to GATA4 and regulate its activity. This is called protein-

protein interaction, as it involves at least two different proteins working together in a 

unique pattern.  Some of them increase the expression of hypertrophic genes while some 

induce cell cycle and proliferation. Abnormal protein-protein interactions cause various 

diseases, which has led many scientists to searching for an inhibitor against these 

interactions (Scott et al. 2016). Apart from LVH, examples include cervical cancer, 

leukemia, infection and neurodegenerative conditions (Ryan and Matthews 2005). 

 

Our research group has done previous work on the interaction between GATA4 and its 

cofactor homeobox protein NKX2-5. Like GATA4 it is essential for normal cardiac 

development and homozygous knockout mouse models die during embryonic phase 

(Lyons et al. 1995). NKX2-5 has a high affinity for T(C/T)AAGTG sequence (Chen and 

Schwartz 1995) and it alone can induce hypertrophic genes, such as natriuretic peptides 

(Akazawa and Komuro 2003). The heterodimer complex of GATA4 and NKX2-5 is a 

highly effective activator of hypertrophic genes. A study by Pikkarainen et al. (2003) 

showed that GATA4-NKX2-5 interaction induces the expression of BNP in stretched 

cardiomyocytes, for example. Previously, our group has discovered a selection of small 

molecules that affect the synergy between GATA4 and NKX2-5 (Välimäki et al. 2017). 

Chemical structures of hit compounds are seen in Figure 8.  No previous inhibitors have 

been published apart from one compound that prevents GATA4 from binding to DNA 

(El-Hachem et al. 2011). Isoxazole compound 3i-1000 showed the highest potential for a 

GATA4-NKX2-5 interaction inhibitor, so our group studied the chemical space around 

the molecule and created more 200  new potential derivates from it (Välimäki et al. 2017; 

Jumppanen et al. 2019). 
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Figure 8: Chemical structures of three hit compounds for GATA4-NKX2-5 synergy 

modifiers by Välimäki et al. (2017). Compounds 3i-1000 and 3i-777 inhibited the 

interaction, whereas 3i-595 enhanced it. 

 

2.4.3 Friend of GATA 2 – FOG2 

 

The zinc finger transcriptional regulator Friend of GATA2 (FOG2, also known as 

ZFPM2) is a regulative protein that lacks the ability to bind to DNA by itself, but instead 

pairs up with other transcription factors to regulate the transcription of specific genes. It 

is most highly expressed in cardiac and nervous tissues. In the heart, the most essential 

roles of FOG2 are found in the development and morphogenesis of coronary vessels 

(Tevosian et al. 2000). Fog2-/- knockout mouse embryos die around embryonic day 

(E)13.5 with severe deficiencies in cardiac development: large ventricular septal defect, 

thin myocardium, overriding aorta and grave underdevelopment of the coronary vascular 

plexus. Under normal conditions, epicardial cells go through a transition to mesenchymal 

cells, giving rise to the subepicardial coronary vasculature. Despite an intact epicardial 

layer forms and epicardium-specific genes are expressed in Fog2-/- heart, no markers of 

cardiac vessel development are detected. Expression of FOG2 under the control of Myh6 

promoter, which is restricted to cardiomyocytes only, partially recovered the damage in 

cardiac development, but the other deficits remained. 

 

In the myocardium the most important co-factor for FOG2 is GATA4 (Cantor and Orkin 

2005). Transfecting FOG2 transiently in primary cardiomyocytes has been shown to 

either enhance or inhibit GATA4 transcriptional activity (Lu et al. 1999; Svensson et al. 

1999). Whether it functions as an enhancer or an inhibitor depends on the cell line and 

the promoter in which they interact. Lu et al. (1999) investigated how FOG2 affects the 

interaction of GATA4 with α-MYH promoter and discovered that in COS-1 cells it 

enhanced this interaction, whereas in neonatal rat cardiomyocytes the effect was 
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inhibitory. Crispino et al. (2001) reported that a single amino acid mutation in Gata4 

inhibits the interaction between GATA4 and FOG2 in mice. They develop similar 

developmental deficits as Fog2-/- knockout mice and die by embryonic day (E) 13.5. The 

mutation did not impact protein expression or DNA binding properties of the transcription 

factors. The effects of FOG2 in the adult heart were investigated by Zhou et al. (2001). 

Inhibition of myocardial FOG2 in adult mice did not result in structural deficits as in 

embryos, but they developed severe cardiac failure symptoms and died within a couple 

of months. These results suggest GATA4-FOG2 interaction is necessary for 

cardiomyocyte development and therefore an interesting target to look at in cardiac drug 

development. 

 

In a recent study, Liu et al. (2019) carried out experiments on P19 cells, which are mouse 

embryo-derived teratocarcinoma cells. A lncRNA with ultra-conserved elements (UCEs), 

named uc.245, was either overexpressed or silenced in the P19 cells. The group 

transfected the cells with recombinant pGPU6/GFP/Neo-FOG2 or 

pGPU6/GFP/NeoshRNA FOG2 vectors to up- or downregulate FOG2 gene. The group 

hypothesized uc.245 would influence P19 proliferation and apoptosis via FOG2. The 

results showed that when uc.245 was overexpressed, sh-FOG2 further repressed 

proliferation but induced apoptosis. However, overexpressing FOG2 obviously weakened 

proliferation inhibition  and apoptosis driven by uc.245. These results provided evidence 

that uc.245, an example of a cardiac lncRNA with UCEs, functioned closely related to 

FOG2. 

 

3 AIM OF THE STUDY 

 

This project aims at gaining a deeper understanding of the effects of three types of 

lncRNAs – here named lncRNA-J, -C and -F – in neonatal mouse ventricular 

cardiomyocytes. The phenomena in focus include doxorubicin- (DOX) induced apoptosis 

and hypertrophy after ET-1 induced stress on the cardiomyocytes. Our group has 

previously discovered that lncRNA C and F are upregulated and J downregulated in the 

neonatal mouse myocardium but soon to be leveled out during the following weeks, 

which is the same time gap where cardiomyocytes lose their cardiac regeneration 
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capability (Fig 9; Pohjolainen et al. unpublished). In addition, they have been shown to 

be mostly expressed in cardiomyocytes instead of other cell types, such as endothelial 

cells. The lncRNAs of interest will be silenced in neonatal mouse ventricular 

cardiomyocytes using antisense LNA GapmeRs. Then, known hypertrophic and apoptotic 

markers will be immunostained and their fluorescence signals will be used to analyze the 

cardiomyocytes. 

 

Additionally, previous hit compounds for GATA4-NKX2-5 interaction will be tested for 

their effects on GATA4-FOG2 interaction, using a similar COS-1 cell luciferase assay as 

described in Jumppanen et al. (2019). As the method has already proven to be functional 

with GATA4 and NKX2-5 plasmid transfections, it is worth seeing if some of these 

compounds could, in fact, have efficacy in manipulating interactions of GATA4 with 

more than just one of its cofactors. This part of the study will be comprised of first setting 

up optimizing the GATA4-FOG2 luciferase assay and then exposing the cells to the test 

compounds. 

 

Figure 9: Three LncRNAs go through significant changes in their expression during the 

first postnatal days in neonatal mouse ventricular cardiomyocytes. The cardiomyocytes 

were isolated on postnatal day 1 (P1) and cultured for one (P2) or four (P5) days. The 

results are shown as means ± the standard error of the mean (SEM) (n=3-7) (Pohjolainen 

et al. unpublished). 
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4 MATERIALS AND METHODS 

 

4.1 Reagents and other compounds 

 

Dulbecco's modified eagle medium/Ham's F12 nutrient mixture (DMEM/F-12; 31330-

038), penicillin-streptomycin (PenStrep) and Fetal Bovine Serum (FBS) used in neonatal 

cardiomyocyte cultures were purchased from Gibco Life Sciences (Paisley, UK). 

Dimethyl sulfoxide (DMSO), ET-1, insulin – transferrin - sodium selenite solution, 

sodium pyruvate (NaP), triiodothyronine (T3) and bovine serum albumin (BSA) were 

from Sigma (Darmstadt, Germany). DOX for cardiomyocyte apoptosis assays was from 

Tocris Bioscience (Bristol, UK). 

 

LNA GapmeRs were purchased from Qiagen (Hilden, Germany). Lipofectamine 3000 

and P3000 reagents for LNA GapmeR transfections were from Thermo Fisher Scientific. 

Tromethamine - Ethylenediaminetetraacetic acid (TE) buffer was purchased from 

Integrated DNA Technologies (Coralville, Iowa, USA). 

 

Immunofluorescent staining antibody monoclonal anti-α-actinin (sarcomeric) antibody 

produced in mouse (A7811) and DNA-staining 4′,6-diamidino-2-phenylindole (DAPI) 

were purchased from Sigma. CellEvent™ Caspase-3/7 Green Detection Reagent was 

from Invitrogen (Carlsbad, California, USA). Alexa Fluor™ 488 goat anti-mouse IgG 

(A-11029), Alexa Fluor™ 647 goat anti-mouse IgG (A21236) and Alexa Fluor™ 647 

phalloidin (A22287) were obtained from Thermo Fisher Scientific (Waltham, 

Massachusetts, USA). 

 

Antifoam 204 for plasmid-containing bacteria cultures was from Sigma. FuGENE6 

reagent, which was used for plasmid transfections in COS-1 cells was from Promega 

(Madison, Wisconsin, USA). Test compounds for GATA4-FOG2 interaction screening 

were synthetized in the Faculty of Pharmacy, University of Helsinki. 
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4.2 Neonatal mouse ventricular cardiomyocytes 

 

Neonatal mouse cardiomyocytes were harvested from maximum 48 h old 

C57BL/6JOlaHsd mice. The mice were decapitated. Hearts were isolated surgically, and 

the ventricles were separated from other tissue and atrium in a dish with phosphate 

buffered saline (PBS). The ventricular cardiomyocytes were dissociated into a suspension 

using Miltenyi Biotec Neonatal (Mouse) Heart Dissociation Kit (reference number 130-

098-373, Macs Miltenyi Biotec, Bergisch Gladbach, Germany). Cardiomyocytes were 

isolated with Miltenyi Biotec Neonatal Cardiomyocyte Isolation Kit, mouse (reference 

number 30-100-825, Macs Miltenyi Biotec). The cardiomyocytes were suspended and 

cultured in DMEM/F-12 supplemented with 10% FBS, 100 U/ml penicillin and 100 μg/ml 

streptomycin. To enhance attachment, 96-well plates were coated with gelatin: 0.1% 

gelatin in purified H2O incubated at +37 ᵒC, saturated air humidity, 5% CO2 for 30 – 60 

min. Cardiomyocytes were plated on the coated 96-well plates at densities varying 

between 30 000 and 50 000 cells/well. After plating the cardiomyocytes were incubated 

at +37 ᵒC, saturated air humidity, 5% CO2 for 24 h. After 24 h, those cardiomyocytes that 

were to be transfected 72 h after plating had their medium changed into complete serum 

free medium (CSFM): DMEM/F-12 supplemented with 5 μg/ml of insulin, 5 μg/ml of 

transferrin, 5 ng/ml of selenium, 2.8 mM NaP, 1 % BSA, 0.1 nM T3, 100 U/ml of 

penicillin and 100 μg/ml of streptomycin. 

 

4.3 Exposure to endothelin-1 and doxorubicin 

 

Cardiomyocytes were exposed to ET-1 or 1% BSA in DMEM, which was the solvent of 

ET-1, diluted to 100 nM in CSFM 24 h or 72 h after plating. Exposure times were 24 h at 

+37 ᵒC, saturated air humidity, 5% CO2, and transfections were carried out within 30 min 

from the initiation of the exposures. 

 

DOX was added for two purposes: a positive control for apoptosis and combined with the 

antisense LNA GapmeRs to see if they affect the cytotoxicity of DOX. For preliminary 

experiments, cardiomyocytes were exposed to 3 and 1 µM of DOX. When combined with 

antisense LNA GapmeRs only 1 µM concentration was used. Exposure time was 23 h at 
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+37 ᵒC, saturated air humidity, 5% CO2, and transfections were carried out within 30 min 

from the initiation of the exposures. An equal number of wells was exposed to DMSO 

diluted to CSFM in the same ratio as DOX. 

 

4.4 LNA GapmeR transfections 

 

The target lncRNAs, lncRNA C, F and J, were silenced with antisense locked nucleic acid 

(LNA) GapmeRs. LNA GapmeRs are oligonucleotides comprised of three parts. In the 

middle, there is a DNA sequence antisense to the target RNA. The LNA parts increase 

binding affinity and protect the GapmeR from being deactivated by nuclease enzymes. 

When LNA GapmeR finds its target RNA, they are attached to one another with the 

antisense sequence and the GapmeR catalyzes degradation of the RNA by RNAse (Fig 

10). 

 

 

Figure 10: The mechanism of silencing RNA by antisense LNA GapmeRs. 

 

Cardiomyocytes were exposed to 100 nM GapmeRs 1-3 for lncRNA J, GapmeRs 3 and 

6 for lncRNA F, and GapmeR 3 for lncRNA C. Later, they will be referred either as 

GapmeRs J-1, J-2, J-3, F-3, F-6 and C-3 or lncRNA J/F/C GapmeRs. A larger group of 

LNA GapmeRs has been previously tested and these six were chosen based on 

preliminary results by Pohjolainen et al. (unpublished).  
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In lncRNA J GapmeR experiments the transfections were carried out 24 h after plating 

the cardiomyocytes, whereas in lncRNA F and C GapmeR trials the cardiomyocytes were 

incubated for 72 h after plating (Fig 11). The time points were based on the natural 

expression pattern of the lncRNAs in neonatal mouse ventricular cardiomyocytes 

(Pohjolainen et al. unpublished). First, the GapmeRs were diluted with DMEM/F-12. In 

the case of all other GapmeRs but C-3, 2 µl/µg DNA reagent lipid P3000 (Thermo 

Scientific) was added too. The DNA in LNA GapmeRs is usually negatively charged, and 

P3000 enhances the transfection by coating the negative charge. Lipofectamine 3000 

reagent (Thermo Scientific) was diluted with DMEM/F-12 and mixed 1:1 with the 

GapmeR dilution. The GapmeR – reagent – solution was incubated for 10 – 15 min at 

room temperature (~ 22 ᵒC) and added to cells so that the final concentration of the 

GapmeRs was 100 nM. After transfections the cardiomyocytes were incubated at +37 ᵒC, 

saturated air humidity, 5% CO2 for 23 (apoptosis assays) or 24 h (hypertrophy assays). 

For each experiment, negative control groups were transfected either with GapmeR 

negative control A alone or with P3000 reagent. 

 

4.5 Immunofluorescence staining and high content screening 

 

4.5.1 Caspase-3/7 reporter 

 

Cardiomyocytes were stained with 7 µM CellEvent™ Caspase-3/7 Green Detection 

Reagent in 5 %FBS in PBS (later: caspase reporter). The reporter becomes fluorescent 

and binds to DNA if caspase-3 and caspase-7 –common biomarkers for apoptosis – are 

expressed and activated in the cells. This was carried out 23 h after the transfections (Fig 

11). Cardiomyocytes were incubated with the caspase reporter at +37 ᵒC, saturated air 

humidity, 5% CO2 for 60 min. 
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4.5.2 Immunofluorescence staining 

 

Plates were washed 2 x 5 min with PBS 24 h after transfections and in apoptosis assays 

60 min after applying caspase reporter (Fig 11). The cardiomyocytes were fixed with 4% 

paraformaldehyde (PFA) for 15 min at room temperature (~ 22 ᵒC). The wells were again 

washed 3 x 5 min with PBS. The cardiomyocytes were permeabilized with 0.1% Triton 

X-100 in PBS for 10 min. Then, they were washed 2 x 5 min with PBS. Non-selective 

binding sites were blocked with 4% FBS in PBS for 45 – 60 min at room temperature. 

Primary antibody dilution was prepared to 4% FBS in PBS and added to cells. The 

cardiomyocytes were incubated for 60 min in a shaker (300 rpm). The primary antibody 

solution for both apoptosis and hypertrophy assays included anti-α-actinin at a dilution of 

1:600. After incubation, cardiomyocytes were washed 3 x 5 min with PBS. Secondary 

antibody dilutions were prepared to 4% FBS in PBS and added to cells. The 

cardiomyocytes were incubated for 45 min in a shaker (300 rpm) protected from light. 

For apoptosis assays, the secondary antibody solution contained AlexaFluor™ 647 nm 

anti-mouse at 1:200 and 0.1 mg/ml DAPI at 1:50. For hypertrophy assays the secondary 

antibody solution contained AlexaFluor™ 488 nm anti-mouse at 1:200, AlexaFluor™ 

647 nm phalloidin at 1:50 and 1 µg/ml of DAPI. Finally, the cardiomyocytes were washed 

3 x 5 min with PBS. The cardiomyocytes were left in PBS and the plates were stored at 

+4 ᵒC protected from light. 
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Figure 11: Cardiomyocyte treatment flow chart. Yellow boxes mark lncRNA C and F 

GapmeR experiments and purple boxes lncRNA J GapmeR experiments. 

 

4.5.3 High Content Screening 

 

Immunostained cardiomyocytes were imaged and analyzed with ThermoFisher 

CellInsight CX5; a high content screening imaging instrument, using a 10x objective. In 

Compartmental Analysis protocol, plates were imaged for DAPI (at 386 nm), caspase-3/7 

(at 485 nm) and α-actinin (at 650 nm). Cells were identified by their nuclear staining with 

DAPI. Cardiomyocytes were differentiated from other cell types with the presence of  α-

actinin. DAPI, caspase reporter and α-actinin intensities inside the nuclei were measured. 

Additionally to intensity measurements, in preliminary experiments a fluorescence 

intensity threshold for caspase-3/7 positive and negative cells was manually set as 

described by Karhu et al. (2018). Morphology Explorer protocol imaged the plates for 

DAPI (at 386 nm), for α-actinin (at 485 nm) and phalloidin (at 650 nm).  The cells were 

again identified with DAPI and cardiomyocytes were selected with α-actinin. In addition, 

only cells with 1 or 2 nuclei were included to further specify the differentiation from other 

cell types. From α-actinin and phalloidin images the number of fibers detected, their area 

and their alignment were measured in addition to intensity measurements. Fiber 

alignment was measured as the standard deviation of angles formed between individual 

fibers. Therefore, a higher fiber alignment value means the fibers are less aligned, and in 

theory, perfectly parallel fibers would have a value of zero. 
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4.6 GATA4-FOG2 compound screening optimization 

 

4.6.1 COS-1 cultures 

 

Frozen COS-1 cells were thawed from liquid nitrogen containers and cultured in DMEM 

supplemented with 10% FBS and 1% PS. They were cultured in 75 cm2 Easy Flasks 

(Thermo Fisher Scientific) and kept at +37 ᵒC, saturated air humidity, 5% CO2. The cells 

were passaged 1:10 twice a week. For transfections, COS-1 were plated on Isoplate 96-

well plates with white walls (PerkinElmer, Waltham, Massachusetts, USA) at a density 

of 10 000 cells/well. 

 

4.6.2 Plasmid production and purification 

 

The empty expression plasmid MT2 (pMT2, 4976 bp) and mouse GATA4 expressing 

plasmid (pMT2-GATA4, 4976 + 1700 bp) were donations from DB Wilson (Department 

of Pediatrics, St. Louis Children’s Hospital) (Arceci et al. 1993). The mouse FOG2 

expression plasmid (pCS2-FOG2, 4095 + 5477 bp) was a gift from M Heikinheimo 

(Children´s Hospital, University of Helsinki) (Tevosian et al. 1999; Anttonen et al. 2003). 

The luciferase reporter plasmid NP-112 with rat BNP (rBNP) minimal promoter region 

attached with a -90 tandem binding site for GATA4 has been previously described by 

Grépin et al. (1994) and Kinnunen et al. (2015). The plasmids were produced in bacterial 

culture. Bacteria containing the desired plasmid was added to lysogeny broth 

supplemented with 0,1% ampicillin and 0,1% antifoam 204 first diluted 1:10. Bacteria 

was cultured overnight at + 37 ᵒC in a shaker, 250 rpm. 

 

Plasmids were purified with NucleoBond® Xtra plasmid purification kit midi according 

to the instructions (reference number 740410.10/.50/.100, Macherey-Nagel, Düren, 

Germany). DNA density was measured with NanoDrop 1000 -spectrophotometer 

(Thermo Scientific). Then, the plasmids were diluted with sterile H2O to the desired 

concentration and stored at + 4 ᵒC. 
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4.6.3 Plasmid transfections 

 

Each transfection group per experiment was designed so that the total amount of DNA 

was equal between groups. In practice, this meant altering the amount of the empty pMT2 

plasmid in ratio with plasmids pMT2-GATA4 and pCS-FOG2. NP-112 was not changed 

between groups and was adjusted to the amount pMT2-GATA4 so that NP-112:pMT2-

GATA4 ratio was 4:1 or 5:1. FuGENE6 was added at a reagent:DNA ratio of 3:1. DMEM 

supplemented with 10% FBS and 1% PS was aspirated from COS-1 cells and replaced 

with 80 µl/well of serum-free DMEM. Then, 20 µl/well of DNA-FuGENE6 mixture was 

added to the cells. The plate was incubated at +37 ᵒC, saturated air humidity, 5% CO2 for 

24 h. 

 

4.6.4 Luciferase measurement 

 

Luciferase was activated with neolite assay kit as described in the instructions by the 

manufacturer (reference number 6016716, PerkinElmer). The bottom of the plate was 

covered with a white plastic sticker, and luminescence signal was measured with Victor2 

1420 Multilabel Counter (PerkinElmer). 

 

4.7. Statistical analysis 

 

Statistical analyses were carried out with SPSS statistics 25 software (SPSS, Chicago, 

Illinois, USA). LNA GapmeR and exposure results were analyzed with one-way ANOVA 

and Tukey HSD post-hoc test. All groups were compared to each other and to the negative 

control group. Results were considered statistically significant when p<0.05. 
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5 RESULTS 

 

5.1 Silencing long non-coding RNAs in neonatal mouse ventricular cardiomyocytes  

 

5.1.1 Effects of silencing the long non-coding RNAs on hypertrophic response 

 

In the first experiments, high content screening was used to analyze hypertrophic markers 

in cardiomyocytes and to see if the GapmeR transfections affect these markers. DAPI was 

used to identify nuclei and the amount of nuclei per cell, whereas α-actinin and F-actin 

were the screened hypertrophic phenotype markers. Representative images from the 

hypertrophy assay are shown in Fig 12. 

 

 

Figure 12: Representative images of neonatal mouse ventricular cardiomyocytes from the 

hypertrophy assay, with and without exposure to 100 nM endothelin-1 (ET-1). The 

cardiomyocytes were stained for α-actinin with a specific antibody, F-actin with 

phalloidin and the nuclei with DAPI. On the top row, cardiomyocytes had not been 

exposed to ET-1 and the bottom row shows cardiomyocytes exposed to ET-1 for 24 h. In 

the composite image DAPI is blue, α-actinin staining is green and phalloidin is magenta. 

 

First, DAPI intensity was measured to identify nuclei. In GapmeR C-3 experiments ET-

1 had no effect on DAPI intensity, whereas in lncRNA F GapmeR experiments an 

increase of 10–20% could be seen with the exposure (Fig 13A, 13B). In lncRNA J 

GapmeR experiments ET-1 decreased the intensity with a few percentages (Fig 13C). 
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These differences were, however, very moderate and not statistically significant. The 

GapmeR transfections did not affect DAPI intensities. 

 

Figure 13: Effects of GapmeR C-3 against lncRNA C (A), GapmeRs F-3, F-6 against 

lncRNA F (B) and GapmeRs J-1, J-2 and J-3 against lncRNA J (C) and endothelin-1 (ET-

1) exposure on nuclear DNA staining intensities in neonatal cardiomyocytes. The results 

are shown as mean intensity values normalized to negative control A without ET-1 

exposure from 3 (A) or 4 (B and C) independent experiments ± standard error of the mean 

(SEM). 

 

Intensities of α-actinin and F-actin staining were quantified to measure hypertrophy in 

the cardiomyocytes. In all experiments ET-1-exposed cardiomyocytes had an 

approximately 5–10% higher α-actinin intensity than their unexposed controls (Fig 14). 

The only statistical differences with ET-1 were in GapmeRs J-2 (p=0.016) and J-3 

(p=0.01) compared to their unexposed controls. The GapmeRs had no effect on α-actinin 

intensity. 
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In lncRNA F and J GapmeR experiments ET-1 exposure increased F-actin staining 

intensity approximately 20–30% but the differences were not statistically significant (Fig 

15). In GapmeR C-3 experiments the increase with ET-1 was not present at all. The 

GapmeRs had no effect on F-actin staining intensity (Fig 15).  

 

Figure 14: Effects of GapmeR C-3 against lncRNA C (A), GapmeRs F-3, F-6 against 

lncRNA F (B) and GapmeRs J-1, J-2 and J-3 against lncRNA J (C) and endothelin-1 (ET-

1) exposure on α-actinin average intensities in neonatal mouse ventricular 

cardiomyocytes. *p<0.05 vs. no exposure, **p<0.01 vs.  no exposure (one-way ANOVA, 

Tukey HSD). The results are shown as mean intensity values normalized to negative 

control A without ET-1 exposure from 3 (A) or 4 (B and C) independent experiments ± 

standard error of the mean (SEM). 
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Figure 15: Effects of GapmeR C-3 against lncRNA C (A), GapmeRs F-3, F-6 against 

lncRNA F (B) and GapmeRs J-1, J-2 and J-3 against lncRNA J (C) and endothelin-1 (ET-

1) exposure on F-actin staining total intensities in neonatal mouse ventricular 

cardiomyocytes. The results are shown as mean intensity values normalized to negative 

control A without ET-1 exposure from 3 (A) or 4 (B and C) independent experiments ± 

standard error of the mean (SEM). 

 

In addition to intensities, α-actinin and F-actin fiber alignments were measured to study 

how hypertrophy and the GapmeRs affect fiber organization. In lncRNA J GapmeR 

experiments ET-1 decreased F-actin alignment value 5–10% and a few percentages of α-

actinin, too, but the differences were not statistically significant (Fig 16–17). 

Nevertheless, DMEM/F-12 had approximately 10% higher value in α-actinin and F-actin 
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alignments with ET-1 exposure, which is contradictory to the other groups and DMEM/F-

12 controls. The GapmeRs had no effect on fiber alignments. 

 

 

Figure 16: Effects of GapmeR C-3 against lncRNA C (A), GapmeRs F-3, F-6 against 

lncRNA F (B) and GapmeRs J-1, J-2 and J-3 against lncRNA J (C) and endothelin-1 (ET-

1) exposure on nuclear α-actinin fiber alignment in neonatal mouse ventricular 

cardiomyocytes. The results are shown as mean intensity values normalized to negative 

control A without ET-1 exposure from 3 (A) or 4 (B and C) independent experiments ± 

standard error of the mean (SEM). 
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Figure 17: Effects of GapmeR C-3 against lncRNA C (A), GapmeRs F-3, F-6 against 

lncRNA F (B) and GapmeRs J-1, J-2 and J-3 against lncRNA J (C) and endothelin-1 (ET-

1) exposure on nuclear F-actin fiber alignment in neonatal mouse ventricular 

cardiomyocytes. The results are shown as mean intensity values normalized to negative 

control A without ET-1 exposure from 3 (A) or 4 (B and C) independent experiments ± 

standard error of the mean (SEM). 

 

Another way to measure hypertrophic effects on α-actinin and F-actin fibers was the fiber 

average area. In all transfection groups the average area of α-actinin fibers increased 

approximately 5–10% with ET-1 treatment compared unexposed cardiomyocytes in 

lncRNA F and J GapmeR experiments, but these differences were not statistically 

significant (Fig 18). ET-1 had no effect in lncRNA C GapmeR experiments. In lncRNA 

F GapmeR experiments ET-1 increased F-actin fiber average area 10–20%. However, in 
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the case on DMEM/F-12  control in lncRNA F GapmeR experiments the increase was up 

to 50 % (Fig 19B). There were no statistically significant differences in F-actin fiber areas 

between individual groups, but the increase in lncRNA F experiments was significant 

when comparing ET-1 to DMEM-1% BSA alone (p=0.004). In lncRNA C and J GapmeR 

experiments this ET-1-induced increase was not present. The GapmeRs did not affect α-

actinin or F-actin fiber area (Fig 18–19). 

 

 

Figure 18: Effects of GapmeR C-3 against lncRNA C (A), GapmeRs F-3, F-6 against 

lncRNA F (B) and GapmeRs J-1, J-2 and J-3 against lncRNA J (C) and endothelin-1 (ET-

1) exposure on nuclear α-actinin fiber average area. The results are shown as mean 

intensity values normalized to negative control A without ET-1 exposure from 3 (A) or 4 

(B and C) independent experiments ± standard error of the mean (SEM). 
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Figure 19: Effects of GapmeR C-3 against lncRNA C (A), GapmeRs F-3, F-6 against 

lncRNA F (B) and GapmeRs J-1, J-2 and J-3 against lncRNA J (C) and endothelin-1 (ET-

1) exposure on nuclear F-actin fiber average area in neonatal mouse ventricular 

cardiomyocytes. The results are shown as mean intensity values normalized to negative 

control A without ET-1 exposure from 3 (A) or 4 (B and C) independent experiments ± 

standard error of the mean (SEM). 

 

To recap the results from the hypertrophy assays, silencing lncRNAs C, F and J with these 

chosen LNA GapmeRs had no effect on α-actinin and F-actin in neonatal mouse 

ventricular cardiomyocytes with or without ET-1 exposure. Some marginal differences 

between groups could be seen but they were not statistically significant. ET-1 stimulation 
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affected the measured parameters, but the effect was mostly insignificant and sometimes 

contradictory between groups. 

 

5.1.2 Effects of silencing the long non-coding RNAs on cardiomyocyte apoptosis 

 

In the apoptosis assays the GapmeRs were studied for effects on DAPI, caspase-3/7 

reporter and α-actinin first comparing to DOX and then combining with DOX. These 

experiments gave insight on whether the GapmeRs increase or decrease cardiomyocyte 

apoptosis and if they are capable of protecting cardiomyocytes from DOX-induced 

apoptosis. Representative images of cardiomyocytes from the apoptosis assay are shown 

in Figure 20. 

 

 

Figure 20: Representative images of neonatal cardiomyocytes from the apoptosis assay, 

with and without exposure to 1 µM doxorubicin (DOX) for 23 h. The cardiomyocytes 

were stained with a specific fluorescent antibody for α-actinin, caspase-3/7 reporter and 

the with DAPI. The top row shows cardiomyocytes without exposure to DOX and the 

bottom row with the exposure. In the composite image DAPI is blue, caspase-3/7 reporter 

is green and α-actinin is red. 

 

There was no sign of increased cardiomyocyte apoptosis after silencing lncRNAs C, F or 

J. DOX-exposed cardiomyocytes had a significantly lower DAPI intensity than those 

transfected with the GapmeRs (Fig 21). This is due to one of the mechanisms of actions 
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of DOX; degradation of the DNA double helix structure. When cardiomyocytes were 

transfected with the GapmeRs together with DOX exposure, the obtained results were 

similar. In all experiments exposure to 1 µM DOX for 23 hours reduced the intensity of 

DAPI approximately 60% compared to corresponding control groups in DMSO, which 

was statistically significant in lncRNA J GapmeR experiments (p<0.001) (Fig 21). The 

GapmeRs did not affect DAPI intensity. 

 

Figure 21: Effects of GapmeR C-3 against lncRNA C (A), GapmeRs F-3, F-6 against 

lncRNA F (B) and GapmeRs J-1, J-2 and J-3 against lncRNA J (C) and doxorubicin 

(DOX) on nuclear DNA staining intensity in neonatal mouse ventricular cardiomyocytes. 

***p<0.001 vs. DMSO (one-way ANOVA, Tukey HSD). The results are shown as mean 

intensity values normalized to negative control A without DOX exposure from 2 (A and 

B) or 3 (C) independent experiments ± standard error of the mean (SEM). 
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Caspase reporter intensity was significantly increased in DOX treated cardiomyocytes. In 

the first experiments, where DOX and lncRNA J GapmeRs were applied individually, the 

cells were divided into caspase positive and negative groups by setting a threshold in the 

intensity range. Then, the percentage of caspase positive cells was measured. The results 

showed nearly no apoptotic cells at all in the LNA GapmeR transfected groups (<5%), 

while in DOX treated cardiomyocytes the rate more than 95% (Fig 22). To further 

highlight the effect of DOX, cardiomyocytes exposed to 3 µM had a nearly 20-fold higher 

caspase intensity compared to DMSO controls (Fig 23). There was a clear dose-dependent 

effect, as 1 µM increased the intensity only 5-fold. 

 

The difference between DOX and DMSO was also seen when cardiomyocytes were 

transfected with the GapmeRs together with DOX exposure (Fig 24). In lncRNA J 

GapmeR experiments the effect of DOX was significant with J-3 and DMEM/F-12 

(p=0.021). The GapmeRs had no effect on caspase reporter intensity (Fig 23–24). 

 

Figure 22: Effects of GapmeRs J-1, J-2 and J-3 against lncRNA J and doxorubicin (DOX) 

exposure on the percentage of neonatal mouse ventricular cardiomyocytes with caspase-

3/7 activity. DOX exposed cardiomyocytes were > 95% caspase positive, whereas in the 

other groups the value was < 5%. The results are shown as percentages of caspase positive 

cardiomyocytes from one individual experiment. 
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Figure 23: Effects of GapmeRs J-1, J-2 and J-3 against lncRNA J and doxorubicin (DOX) 

exposure on nuclear caspase-3/7 intensity in neonatal mouse ventricular cardiomyocytes. 

The results are shown as intensity values normalized to negative control A from two 

individual experiments ± standard error of the mean (SEM). 
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Figure 24: Effects of GapmeR C-3 against lncRNA C (A), GapmeRs F-3, F-6 against 

lncRNA F (B) and GapmeRs J-1, J-2 and J-3 against lncRNA J (C) on nuclear caspase-

3/7 reporter intensity in neonatal mouse ventricular cardiomyocytes with and without 

doxorubicin (DOX) exposure. *p<0.05 vs. DMSO (one-way ANOVA, Tukey HSD). The 

results are shown as mean intensity values normalized to negative control A without DOX 

exposure from 2 (A and B) or 3 (C) independent experiments ± standard error of the mean 

(SEM). 
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DOX exposure also increased nuclear α-actinin intensity. This moderate rise could first 

be seen in the experiments where lncRNA J GapmeRs and DOX were studied 

independently, although the effect was not statistically significant (Fig 25). In the 

following studies that combined GapmeR transfections and DOX exposure the difference 

was shown again. In lncRNA J and F GapmeR experiments DOX increased the α-actinin 

intensity approximately 10–35 % (Fig 26). In GapmeR C-3 experiments the increase was  

less than 10% but overall, none of the differences between individual groups were 

statistically significant. The tested GapmeRs had no effect on α-actinin intensities (Fig 

25–26). 

 

Figure 25: Effects of GapmeRs J-1, J-2 and J-3 against lncRNA J and doxorubicin (DOX) 

exposure in nuclear α-actinin intensity in neonatal mouse ventricular cardiomyocytes. 

The results are shown as intensity values normalized to negative control A from two 

individual experiments ± standard error of the mean (SEM). 
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Figure 26: Effects of GapmeR C-3 against lncRNA C (A), GapmeRs F-3, F-6 against 

lncRNA F (B) and GapmeRs J-1, J-2 and J-3 against lncRNA J (C) on nuclear α-actinin 

intensity in neonatal cardiomyocytes with or without doxorubicin (DOX) exposure. The 

results are shown as mean intensity values normalized to negative control A without DOX 

exposure from 2 (A and B) or 3 (C) independent experiments ± standard error of the mean 

(SEM). 

 

 

Overall, these results showed that the tested LNA GapmeRs did not increase apoptosis in 

neonatal mouse ventricular cardiomyocytes compared to or combined with DOX 

exposure. On the other hand, they neither had any protective effect on cardiomyocytes in 
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DOX-induced apoptosis. Treating cardiomyocytes with 1 or 3 µM DOX significantly 

reduced the intensity of DAPI, which indicated degradation of DNA, and increased the 

intensity of caspase-3/7 activity reporter. In addition, an increase in α-actinin increase 

could be seen because of apoptosis-induced degradation of the cytoskeleton in 

cardiomyocytes. 

 

5.2 Setting up and optimizing a compound screening assay for GATA4-FOG2 

interaction 

 

The second experimental part of the project aimed at setting up a luciferase assay to screen 

for compounds that affect the protein-protein interaction between GATA4 and FOG2. 

This begun by finding a suitable ratio between the two transfection factors combined with 

the GATA4-dependent reporter plasmid NP-112. In the first experiments, the amount of 

pMT2-GATA4 was fixed to a solid 25 ng/well together with 100 ng/well of NP-112 and 

testing concentrations between 10 and 45 ng/well of pCS2-FOG2. There was not much 

variation between these groups, but control group with only pMT2-GATA4 gave a seven-

fold signal compared to those wells transfected with both pMT2-GATA4 and pCS2-

FOG2, suggesting the GATA4-inhibitory effect of FOG2 is indeed strong in this in vitro 

culture (Fig 27). In addition, the average signal from wells transfected with pMT2-

GATA4 and pCS2-FOG2 was not higher than that from empty plasmid pMT2 control 

group. 
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Figure 27: Luciferase signals from different ratios of combinations of pMT2-GATA4 and 

pCS2-FOG2 in COS-1 cells. The numbers in each group stand for nanograms of the 

plasmid in question per well. These groups had 100 ng/well of luciferase reporter vector 

NP-112. The results are shown as mean luciferase signal values from one experiment 

normalized to the empty plasmid group. 

 

Because of these results, in order to see a clear signal from the combination groups as 

well, the amounts of pMT2-GATA4 had to be increased. Obviously, the amount of pCS2-

FOG2 had to be very small compared to pMT2-GATA4 but decreasing that amount from 

the previous trial would have been impossible to pipet. For the next experiments three 

groups of pMT2-GATA4 were added – 30 ng, 60 ng and 100 ng per well – to see if at 

some of these levels saturation point would be reached and would therefore be useless for 

screening. In the same experiment, all these three levels of pMT2-GATA4 were combined 

with a one tenth, one third or an equal amount of pCS2-FOG2. Additionally, 30 and 60 

ng/well of pCS2-FOG2 were tested alone. Each group had 150 ng/well of NP-112. 

Luciferase signals were still significantly higher when pMT2-GATA4 was not disturbed 

with the inhibitory pCS2-FOG2 (Fig 28). Because 30 ng/well of pMT2-GATA4 resulted 

in a higher signal than 60 or 100 ng/well, it was safest to opt for the combinations with 

30 ng/well, too, in order to avoid saturation of NP-112. The highest signal from 30 ng/well 

of GATA4 combined with pCS2-FOG2 was the group with 3 ng/well of the latter one. 

Therefore this ratio was for compound screening (Fig 28). 
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Figure 28: Luciferase signals from a variety of rational combinations of pMT2-GATA4, 

pCS2-FOG2 and empty pMT2 plasmids in COS-1 cells. The numbers in each group stand 

for nanograms of the plasmid in question per well. These groups had 150 ng/well of 

luciferase reporter vector NP-112. The results are shown as mean luciferase signal values 

from three independent experiments normalized to the empty plasmid group ± standard 

error of the mean (SEM). 

 

Test compounds 3i-1000, 3i-777, 3i-1027, 3i-1157 and 3i-1083 were chosen for this 

assay, and COS-1 cells were exposed to them for 24 hours at concentrations of 3 µM and 

10 µM. The results shows again that pMT2-GATA4 alone produces by far the strongest 

signal (Fig 29A). The highest signal of test compounds resulted 10 µM of 3i-777 but it 

was not remarkably higher than control group with 30 ng of pMT2-GATA4 + 3 ng of 

pCS2-FOG2 without compound exposure (Fig 29B). All the other compounds and 

concentrations reduced the signal. Most compounds yielded dose-dependent results; a 

higher signal with a higher concentration. However, the results were in opposite order for 

3i-1027. 
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Figure 29: Luciferase signals from COS-1 cells transfected with pMT2-GATA4 and 

pCS2-FOG2 and exposed to protein-protein interaction affecting compounds. Capital G 

stands for pMT2-GATA4 and capital F for pCS2-FOG2. The number after letters stands 

for nanograms of the plasmid in question per well. (A) Luciferase signals from all test 

and control groups revealed a 100-fold higher signal from G30F0 compared to G30F3. 

(B) Luciferase signals from only the test groups and their non-exposed control group 

G30F3 showed the effects of the compounds. These groups had 150 ng/well of luciferase 

reporter vector NP-112. The results are shown as mean luciferase signal values from one 

experiment normalized to G30-F3 group. 

 

6 DISCUSSION 

 

Studies all over the world have identified cardiac-selective lncRNA sequences, and as 

lncRNAs broadly regulate genetic expression and thus the diverse functions of cell they 

carry a remarkable potential for medical treatments to be developed. In addition, they are 

highly tissue selective, which can be beneficial in applying them to therapeutic use. The 

aim of this study was first of all to identify if our three lncRNAs from our group’s 

selection have an effect on hypertrophic responses in neonatal mouse cardiomyocyte in 

vitro cultures and to examine if they increase apoptosis.  
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Looking at the results from the hypertrophy assays, most differences are between ET-1 

and DMEM-1% BSA. This project did not aim at studying the effects of ET-1 as they are 

already well established (Archer et al. 2017). ET-1 is a vasoconstrictive peptide, which 

increases blood pressure both independently and by stimulating RAS (Haque et al. 2013). 

Therefore the increase in α-actinin and F-actin intensities and fiber areas was predictable. 

Because hypertrophy degrades the organization of sarcomere units, it would be 

predictable that fiber alignment decreases with ET-1 exposure. In these results, however, 

ET-1 increased α-actinin and F-actin fiber alignment for the most part albeit the 

differences were only 1–8 % and not statistically significant. On the other hand, it is 

impossible to conclude the effect of ET-1 on F-actin fibers alignment in particular from 

these results as they were contradictory between different sets of experiments. 

 

Overall, it is noteworthy to look into the variation between control groups from different 

sets of experiments. Basically, negative control and DMEM/F-12 groups were similar in 

all three experimental sets. The only ones differing were lncRNA J GapmeR experiments 

as they had a separate time point. LncRNAs C and F GapmeR experiments, on the other 

hand, should have had similar control groups. However, their results did not align in most 

cases, indicating that something else than ET-1 the GapmeRs only was also affecting the 

cardiomyocytes. Assuming that is the case, this factor would also have had an impact on 

ET-1 and GapmeR results. On the other hands, some experiments were only carried out 

twice, so carrying out more repetitions could possibly level out the control groups. 

 

The GapmeRs had very little if any impact on the hypertrophic factors investigated, 

suggesting that silencing the lncRNAs of interest have little effect on hypertrophy. The 

chosen lncRNAs were selected based on findings by Pohjolainen et al. (unpublished), 

which indicated these lncRNAs were cardiomyocyte-selective and go through significant 

changes in their expression patterns in neonatal mouse cardiomyocytes during the first 

postnatal days. Based on the results of this project, their role in the cardiomyocytes may 

cover other duties than stress response and growth or contributing to them via other 

pathways. On the other hand, it is also possible that the GapmeRs were inefficient in 

silencing their target lncRNAs. In that case the lncRNAs may contribute to hypertrophy 

but the changes were not detected due to defective GapmeRs. Therefore, further studies 
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with more LNA GapmeRs can produce different results, and lncRNAs C, F and J are still 

worth investigating.  

 

In this project, high content screening was used to detect α-actinin and F-actin. Despite 

their relevance in hypertrophy, no previous data shows these lncRNAs would regulate 

their expression in particular. Assuming the GapmeRs were functional, it could be that 

their target lncRNAs do not explicitly affect α-actinin and F-actin, which in these 

experiments were biomarkers for phenotypic change. Another approach to the subject 

could be analyzing how the lncRNAs effect cardiac genes on chromatin level. Han et al. 

(2014), for example, took this approach with their newly discovered cardiac lncRNA. 

First, they discovered that their newly found cluster of lncRNAs interacts the gene locus 

Myh7 and only after that started analyzing the proteins they affect. On the other hand, as 

α-actinin and F-actin were biomarkers for phenotypic change instead of proteins we 

aimed at quantifying, more parameters could have been measured from their intensities. 

In addition to only fiber area, the area of the cardiomyocytes could have been measured, 

for example. 

 

Understanding how lncRNAs affect hypertrophic factors and the expression of 

hypertrophic genes is a key point in investigating their functions. Another way to detect 

if the lncRNAs in question have to do with hypertrophy is to see if their natural expression 

is affected by hypertrophic stimuli – such as ET-1 or ATII. ET-1 and ATII are known to 

induce hypertrophic proteins, such as ANP and BNP, and the expression of hypertrophic 

genes (Hu et al. 1988; Magga et al. 1998) and would therefore likely be reliable markers 

in lncRNA research too. 

 

What was alarming, LNA GapmeR negative control A, which should not cause any kind 

of effect, was often the most active one when compared to DMEM/F-12 medium controls 

although the differences were not statistically significant. The high importance of a 

functional negative control was thoroughly explained by Lipsitch et al. (2010), who 

described the fundamental role of negative controls: “The essential purpose of a negative 

control is to reproduce a condition that cannot involve the hypothesized causal 

mechanism but is very likely to involve the same sources of bias that may have been 
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present in the original association”. In this case, negative control A must be re-evaluated 

with other assays and studied for possible gene-regulatory effects. If the positive result 

from negative control was only present in one set of experiments, the reason behind would 

likely be an error in pipetting or cell conditions among other factors, but the same 

phenomenon appears in all lncRNA GapmeR assays and even in both hypertrophy and 

apoptosis assays. On the other hand, like discussed previously in the differences between 

similar control groups, if one experiments with GapmeRs against one lncRNA showed 

different levels between negative control A and DMEM/F-12, the same difference was 

likely not present in experiments with GapmeRs against another one – comparing 

lncRNA F and J experiments on the same parameter, for example. In that case, repeating 

the experiments could level out the differences. 

 

Results from the apoptosis assays imply the used GapmeRs definitely do not increase 

apoptosis in cardiomyocytes. That suggests further that silencing the lncRNAs of interest 

does not increase it either. The positive control for apoptosis assays, DOX, also works as 

supposed, increasing the reliability of the results. DAPI intensities were significantly 

lower in DOX exposed cardiomyocytes, whereas caspase-3/7 was highly active in those 

wells. In addition to caspase-3/7, there was also a higher α-actinin intensity in the nuclei 

of DOX exposed cardiomyocytes. This is likely not because of a sudden higher expression 

of α-actinin, but accumulation of it around the nucleus as the cytoskeleton of the 

cardiomyocyte collapses and they become rounded (Kang et al. 2000). The GapmeRs 

were also studied in DOX-induced apoptosis, in which they appear not to have inhibitory 

but neither protective effects. 

 

Working with neonatal mammal cardiomyocytes includes plenty of risks that can alter 

the results, too. From detaching the hearts to plating the cardiomyocytes there are various 

steps during which wrong conditions could kill a part of them. Cardiomyocytes are highly 

sensitive to changes in the temperature or using too much force during pipetting, among 

others. Several well plates had to be discarded during the project as the cardiomyocytes 

looked visibly ill under the microscope. This had to do with improper gelatin coating of 

well plates, wrong temperatures during the isolation process and uneven cell densities on. 

Despite attempting to only choose viable- and healthy-looking cardiomyocytes for high 
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content screening, there is more than what meets the eye: it is impossible to detect all the 

tiny effects changes in the environment may have caused to the cells. 

 

The second part of this project was to set up a compound screening assay for GATA4-

FOG2 interaction in COS-1 cells utilizing a GATA4-dependent luciferase reporter 

plasmid NP-112. This required optimizing the transfection ratio between GATA4- and 

FOG2-transcripting plasmids in order to see the effect of the interaction yet get a clear 

luciferase signal to be able to use the reporter assay for compound screening. Unlike 

cardiomyocytes, COS-1 are quick to attach and divide rapidly. The search for the optimal 

ratio started with using a fixed 25 ng/well of pMT2-GATA4 plasmid and from 10 to 45 

ng/well of pCS2-FOG2. It was immediately clear that FOG2 strongly inhibits GATA4 in 

COS-1 cells as the luciferase signal dropped to approximately one seventh when even the 

smallest amount of FOG2 was added. This was neither a surprise nor really presupposed, 

as previous studies have found that FOG2 can both inhibit and enhance the effects of 

GATA4 (Lu et al. 1999; Svensson et al. 1999). Next, pMT2-GATA4 was upscaled, pCS2-

FOG2 was tested in ratios between 1:10 to 1:1 in relation pMT2-GATA4, and NP-112 

was increased to 150 ng/well. From these results a suitable option for compound 

screening was found. Compound screening was carried out with a NP-112:pMT2-

GATA4 ratio of 5:1 (150 and 30 ng/well) and pMT2-GATA4-pCS2-FOG2 ratio of 10:1 

(30 ng and 3 ng) (Fig 30). 

 

Figure 30: Optimizing the ratios of luciferase reporter and transcription factor plasmids. 

The first results indicated transfecting reporter and GATA4 plasmids 4:1 was a suitable 

combination for a clear luciferase signal. Different ratios of FOG2-plasmid in relation to 

GATA4 were tested in the second experiments. The best response was achieved with 

reporter:GATA4 ratio 5:1 and GATA4:FOG ratio 10:1. 
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In previous studies by our group 3i-1000 has been shown to inhibit and 3i-777 to enhance 

the interaction of GATA4 with its other known cofactor, NKX2-5 (Välimäki et al. 2017). 

Later on, as more compounds were developed, a new analog 3i-1157 was found to be the 

most potent synergy inhibitor when using a very similar luciferase assay as in this project 

(Jumppanen et al. 2019). Instead, 3i-1183 did not affect GATA4-NKX2-5 interaction. In 

addition to synergy inhibition, 3i-777 and 3i-1157 significantly decreased the expression 

of BNP in cardiomyocytes. In the GATA4-FOG2 compound screening in this project, 10 

µM 3i-777 was only compound inhibiting GATA4-FOG2 interaction, although the 

difference was rather marginal. Apart from that compound and concentration, all other 

test groups moderately enhanced the interaction or had no effect at all. However, these 

results were from a single experiment only. Repetitions need to be carried out before 

drawing any conclusion on how the compounds affect GATA4-FOG2 interaction. 

 

Despite COS-1 cells being easier to handle than cardiomyocytes, the transfection 

procedure in particular was prone to errors. It required pipetting very small amounts (<0.5 

µl), which is demanding to do precisely. This could explain why there was a relatively 

large range of variation in these experiments. One way to tackle this problem would be 

upscaling the amount of plasmids even more, but in this case the empty plasmid pMT2 

would need to be upscaled, too, and the total amount of DNA would become quite high. 

Despite not coding for any protein, the overall amount of empty pMT2 can result in a 

small luciferase signal as well. If the total amount of DNA per well continuously grew, 

this fault signal, would grow in the same ratio and interfere with the results. Another 

reason why upscaling cannot be endlessly used is saturation: at some point, pMT2-

GATA4 will yield in such high amounts of GATA4 that the binding sites at NP-112 

luciferase become saturated and so the increased GATA4 no longer increases the signal. 

 

Previous experiments with a luciferase reporter and GATA4-FOG2 interaction have been 

carried out in studying how the transcription factor complex affects certain genes (e.g. Lu 

et al. 1999, Jia and Takimoto 2003). These studies have also shown how much the results 

can vary between cell types and promoters, making it difficult to generalize any obtained 

results. Targeting GATA4-FOG2 interaction has plenty of potential as it plays an 

important role in the development of cardiomyocytes and other cells types as well. 
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However, organs are formed of more than one cell type, and based on the results by Lu 

et al. (1999) or Jia and Takimoto (2003), for instance, a beneficial effect in one cell type 

could potentially be harmful in the neighboring one. The results obtained from this study 

show that in COS-1 cells FOG2 inhibits GATA4 from binding to the rBNP promoter in 

NP-112 luciferase reporter, but this could be very different in cardiomyocytes and 

different promoter regions, for example. Hypothesizing 3i-1000, for instance, was shown 

to be both an efficient inhibitor of GATA4-NKX2-5 interaction and an enhancer of 

GATA4-FOG2 interaction, it could become a groundbreaking drug in cardiac 

regeneration: LVH could be decreased and cardiomyocyte proliferation increased. 

Nevertheless, if the enhancement of GATA4-FOG2 was strong in other cardiac cells, such 

as endothelial cells and fibroblasts, the final outcome could be less ideal. Therefore, the 

next step should be optimizing a similar assay in cardiomyocytes and see what FOG2 and 

the compounds do to GATA4 in them. 

 

7 SUMMARY AND CONCLUSIONS 

 

LVH is a noteworthy heart condition both economically and considering the quality of 

life of the patients. It increases the risk of various other cardiovascular diseases, such as 

MI or cardiac failure. LVH is caused by pathologically growing cardiomyocytes in the 

left ventricular wall, which results in thickening of the wall. At the same time, fibrosis 

increases. Scar tissue lacks the ability to contract, and the malign growth of the 

cardiomyocytes breaks the organization of their sarcomere structures, resulting in 

decreased efficacy. Elevated blood pressure is the most common factor behind LVH, and 

the current treatment is focused on antihypertensive medication. They do not, however, 

repair the damage. If the condition has already developed into cardiac failure, there 

prognosis is particularly weak. Current medication options only alleviate symptoms, but 

the patients often depend on them for the rest of their lives. 

 

The main reason why these types of damages cannot be repaired is that cardiomyocytes 

have a nearly nonexistent regeneration capability. Science has attempted to overcome this 

obstacle with a variety of strategies, but so far none of them have made it to actually 

benefitting patients. The aim of this project was for one thing to determine if a group of 
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cardiac-selective lncRNAs previously discovered by our group could affect the way 

neonatal mouse cardiomyocytes responded to ET-1-induced stress, particularly focusing 

on their α-actinin and F-actin filaments. The second goal was to set up and optimize a 

compound screening assay for GATA4-FOG2 interaction. 

 

These results showed that at least in this set-up, the lncRNA GapmeRs did not affect the 

hypertrophic response to stress in neonatal cardiomyocytes. This could either mean that 

the lncRNAs of interest are not involved in cardiomyocyte hypertrophy, or the silencing 

with the GapmeRs was inefficient. In addition, these experiments used only two structural 

proteins as biomarkers for phenotypic changes in hypertrophy. Further studies and 

different experimental designs could reveal results that were not seen here. The negative 

control A GapmeR must also be re-evaluated and studied more closely, as in certain cases 

it appeared to induce the strongest positive result despite not statistically significant. 

 

In the GATA4-FOG2 interaction experiments, the hardship of transfecting these two 

turned out to be the extremely strong GATA4-inhibitory effect of FOG2. According to 

the results, transfection ratios NP-112:pMT2-GATA4 5:1 and pMT2-GATA4:pCS2-

FOG2 10:1 produce a signal high enough to see if a test compound affects it. Based on 

the compound screen conducted in this project the compounds have tendency to enhance 

GATA4-FOG2 interaction but considering that only a single experiment was carried out, 

further research is needed to draw conclusions. 
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