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1 Introduction

The semantic fluency task, where the participants need to produce as many words

as possible in a certain semantic sub-category in a specific time frame, is widely

used in clinical settings to identify difficulties in speech production, executive func-

tioning and semantic memory performance (Lezak, Howieson, Loring, & Fischer,

2004). In the task, participants are asked to name as many words as possible in a

given semantic category (typically animals). Participants may use different strate-

gies to map the semantic space and therefore the task provides rich information on

cognitive functioning and semantic processes. This study has two aims. Firstly, I

examine, whether words produced in a single semantic category (i.e., animals) can

reliably be divided into sub-categories which would provide more detailed informa-

tion on how individuals move in the semantic space. Secondly, I examine whether

moving in and between these sub-categories can be used to provide more under-

standing of the semantic fluency task as a tool for early detection of Alzheimer’s

disease (AD).

Difficulty in the semantic fluency task is a viable predictor of early AD (Henry,

Crawford, & Phillips, 2004). This is since the task requires many cognitive pro-

cesses such as accessing and retrieving information from the semantic memory

(Birn et al., 2010). It has been shown in behavioural studies that patients with

early AD produce fewer words in this task compared to healthy controls, especially

if they are asked to name living things (Krumm et al., 2019). Troyer, Moscovitch,

and Winocur (1997) have suggested that the strategies individuals use in produc-

ing as many words as possible in the semantic fluency task involve producing clus-

ters (”sub-categories”) of objects (e.g., naming dog, cat and rabbit) and switching

(”crossing”) from one sub-category to another (e.g., moving to cow and horse).

There is evidence from previous literature that in addition to AD patients nam-

ing less objects, they also produce smaller sub-categories and perform less cross-

ings between the sub-categories (Troyer, Moscovitch, Winocur, Leach, & Freed-

1



man, 1998). However, previously these sub-categories have been estimated with a

subjective evaluation protocol such as the one proposed by Troyer and colleagues

(1997). To our knowledge, there are few studies that have used on a quantitative

estimation method in attempting to extensively study the sub-categories that con-

stitute the semantic space inside the specific task, such as naming animals. Fur-

thermore, it is still unclear whether there are differences between healthy controls

and AD patients in the way they move from one sub-category to another inside the

semantic space in the naming task, when the number of words produced is taken

into account.

The present study analysed the longitudinal, originally normative sample from

the Ambizione study, collected in the Memory Clinic FELIX PLATTER in Basel,

Switzerland. The data consists of neurologically screened healthy controls and

highly functional AD and amnestic mild cognitive impairment (aMCI) patients, as

indicated by the very high average scores of the patients in the Mini-Mental-State

Examination (MMSE). Our aim was to examine whether there are differences in

the way that very early and prodromal AD patients move in the semantic space

compared to healthy participants in the semantic fluency task, more specifically

in the animal fluency task. To do this, we divide the semantic space into smaller

sub-categories with a dimensionality reduction algorithm. More specifically, the

aim was to investigate whether the patient groups have difficulties in producing se-

mantically similar words. We define this difficulty as not being able to stay within

a sub-category but instead exhibiting more crossings from one sub-category to an-

other compared to healthy controls. Furthermore, we want to describe whether the

healthy participants exhibit different strategies in how they name objects in the se-

mantic fluency task. Finally, our objective is to analyse whether using the category

and crossing dimensions in addition to the number of the words brings additional

information into the diagnostics of the early and prodromal AD.
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1.1 Semantic processing

Internal, conceptual knowledge of the meanings of words is called a semantic rep-

resentation (Ellis & Young, 2013). These meanings can be modal such as visual or

auditory characteristics (e.g., ’has a nose’), functional properties (e.g., ’barks’) or

encyclopaedic information (e.g., ’is a pet’). Same features can also describe other

words, but an object can be recognised by an individual property, that is, individ-

uals can produce an image of a dog in their mind just by hearings its bark. Next,

we will present some mechanisms that try to explain how semantic information is

represented in neural networks and how it is possible to unite these fragments of

information into one object.

Most contemporary theories on semantic processing support the idea that semantic

processes involve brain regions responsible for perception and action (Patterson,

Nestor, & Rogers, 2007). Semantic information often consists of visual, auditory,

tactile, gustatory and olfactory information combined with the object’s motor af-

fordances (i.e., how an object can be used) and the language used to describe the

object (Patterson et al., 2007). Therefore, the basis of semantic processing lies in

the co-activation of sensorimotor tracts in order to produce concepts such as a dog.

This view abandons the previously held theoretic assumption that there are single

neurons responsible for producing individual objects (such as the Jennifer Aniston

neuron, see, e.g., Quiroga, 2012).

Contemporary theories on what brain regions are responsible for semantic process-

ing can be divided by whether they assume that distributed networks are sufficient

for semantic processes or whether the existence of a semantic hub is needed. Pat-

terson and colleagues (2007) have suggested that networks themselves are insuf-

ficient to explain how objects with conceptual overlap can be distinguished. For

instance, it is unclear how individuals are able to separate different insects from

each other, when these objects share so many similar features. This suggests that
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the differences between objects cannot be established purely by the co-activation

of perceptual features. In their model, Patterson and colleagues have added a se-

mantic hub, which represents a high-level process that is able to generalize over

semantic sub-categories. They assume that in order to achieve the higher-order

generalizations which our semantic system relies on, the existence of a hub is vital.

Based on clinical and neuroimaging studies, they suggest that the hub is located

in the anterior temporal lobe. This assumption is supported by research which has

revealed that many primary sensory and motor areas are connected to the anterior

temporal lobe (see, e.g., Bonner & Price, 2013).

Taylor and colleagues present an alternative view to Patterson’s hub-based theory:

the Conceptual Structure Account (CSA; Taylor, Devereux, & Tyler, 2011). The

CSA assumes that semantic processing is structured according to the statistical

properties of the object’s features, and processing of semantic concepts corresponds

to the co-activation of the concept’s features. The properties that structure the se-

mantic space are called feature distinctiveness and feature correlation (Taylor et

al., 2011). The former refers to the extent which a feature is shared by other con-

cepts, and the latter stands for feature co-occurrence. For instance, the features

’has eyes’ and ’has a tail’ are high in feature correlation, that is, they can simulta-

neously describe many objects. Features such as ’has a trunk’ are distinctive and

can uniquely distinguish between objects. Taylor and colleagues (2011) claim that

”feature co-occurrence and distinctiveness interact to determine conceptual pro-

cessing as a function [of] task demands, i.e., the information required to perform

the task at hand”.

According to the CSA theory, differences in feature co-occurrence and distinctive-

ness explain why some objects are easier to discern from each other (Taylor et al.,

2011). If an object is low on feature distinctiveness, that is, has many ambiguous

features, and those features are shared with other objects, this makes it hard to

distinguish the object from others within its category. As living things, such as
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animals, are often high in feature correlational strength and have fewer distinc-

tive features less correlated with other features compared to non-living things, this

makes them more prone to difficulties in distinction (Randall, Moss, Rodd, Greer,

& Tyler, 2004). Therefore, the CSA suggests that objects belonging to the living

or non-living categories differ in their internal structures. Living objects (such as

animals, or fruits and vegetables) form larger categories that have highly shared

features, such as ’has legs’ and ’has eyes’. (Taylor et al., 2011). However, since liv-

ing things are not high in distinctive features, distinguishing living things from

each other tends to be impaired. Based on clinical studies, there is evidence that

impaired naming of living objects is connected to lesions in bilateral antero-medial

structures and inferior temporal lobes (Gainotti, Silveri, Daniel, & Giustolisi, 1995;

Krumm et al., 2019).

Feature statistics are combined with a neurocognitive approach in the CSA (Tay-

lor et al., 2011). From non-human primate studies, there is evidence that visual

objects are processed based on their features in a hierarchical system extending

from posterior occipital to anteromedial cortex (see, e.g., Mishkin, Ungerleider, &

Macko, 1983). Similar functions are proposed for the object processing system in

humans (Damasio, 1989). Since semantic processing involves the combination of

multi-modal sensory inputs, the CSA suggest that conceptual processing relies on

hierarchically organized sensory streams (Taylor et al., 2011). At the apex of all

of these streams lies the perirhinal cortex (PRC) (Suzuki & Amaral, 1994). In the

CSA framework, the PRC has a critical role in processing the most fine-grained

feature conjunctions and combining unimodal information into multimodal object

representation, though this function may not be limited to the PRC (Taylor et al.,

2011).

In the anterior medial temporal lobe, the PRC is located inside the collateral sul-

cus in the fusiform gyrus, and its medial portion (mPRC) corresponds to the transen-

torhinal cortex (Kivisaari, Probst, & Taylor, 2013). MPRC has a key role in ob-
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ject recognition memory (Hirni, Kivisaari, Monsch, & Taylor, 2013), and there-

fore for a long time, it was only studied in the context of amnesia and the wider

medial temporal lobe “memory system” (see, e.g., Squire, Stark, & Clark, 2004).

More recently, the mPRC has been suggested to have a key role in recognizing fine

differences between visual objects (Buckley, Booth, Rolls, & Gaffan, 2001), but

also differences of semantic nature (Connolly et al., 2012) and processing object-

specific information (Clarke & Tyler, 2014). One explanation for the importance

of the mPRC to semantic object processing has been suggested by Libby, Ekstrom,

Ragland, and Ranganath (2012), who considered the connections from the PRC to

multi-modal sensory areas important. Kivisaari, Tyler, Monsch, and Taylor (2012)

demonstrated that damage in the PRC disproportionately hinders the processing

of visually and semantically ambiguous objects as compared with objects which

have more distinctive features. Therefore, atrophy in the PRC, and more specifi-

cally in the mPRC, could affect identifying and naming objects that are semanti-

cally similar to each other.

To conclude, semantic information is processed in wide networks of sensory-motor

and executive areas, but the processes involving multimodal object representations

and distinguishing between fine-grained differences of objects seem to involve the

participation of the medial temporal lobe, and more specifically the mPRC. Based

on the previously presented literature, we suggest that if individuals that have at-

rophy in the medial temporal lobes have difficulties in distinguishing similar ob-

jects, these difficulties may be reflected in how they move in the semantic space. In

the semantic fluency task, we can assume that healthy participants utilize a strat-

egy in which they are able to name similar words (such as dog and cat) and then

move to another set of similar words (such as cow and pig). However, patients

who have atrophy in the medial temporal lobes or more specifically, in the mPRC,

might display a strategy in which they are less likely to name similar objects but

rather more likely to move all around the semantic space (naming objects such as

dog, elephant and eagle).
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1.2 Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disease which is the

main cause of dementia (see, e.g., Terry & Katzman, 1983). If we extrapolate lin-

early from the results of Brookmeyer, Johnson, Ziegler-Graham, and Arrighi (2007),

approximately 40 million people have AD worldwide at the present moment, and

that the prevalence of AD grows to 106.8 million by the year 2050. Therefore, AD

will become an even more pressing problem concerning public health and a great

cost to healthcare and social welfare systems all over the world (Wimo, Jonsson,

& Winblad, 2006). Further, there is evidence that the pathological process of AD

begins years or even decades before the diagnosis of clinical AD (Amieva et al.,

2008), which indicates a long preclinical stage of the disease (Sperling et al., 2011).

Thus, there is a distinct need for tools that help clinicians distinguish AD at the

earliest stage possible.

Mild cognitive impairment (MCI) is considered a transitional stage between healthy

cognitive functions and clinically probable AD according to the Winbald’s and col-

leagues’ (2004) criteria and is sometimes referred to as prodromal AD. Especially

when MCI is amnestic (aMCI), patients have a high probability of being diagnosed

with AD later on, compared to patients with non-amnestic MCI (Fischer et al.,

2007). It has been suggested that some risk factors, such as anxiety, predict the

progression from aMCI to AD (Palmer et al., 2007). The criteria for aMCI include

memory complaints usually by an informant, objective memory impairment rela-

tive to age, but preserved general cognitive function without the individual being

demented, and normal daily living activities (Petersen, 2004). Therefore, aMCI

patients may exhibit some decline in memory functions but overall are more high

functioning compared to AD patients at even very early stages. Based on these

findings, we will examine aMCI and very early AD patients as separate groups in

the present study.
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1.2.1 Neuropathology of AD

The neuropathology of AD is related to accumulation of amyloid plaques (Hardy

& Higgins, 1992) and changes in intracellular neurofibrillary tangles and neuropil

threads (Braak & Braak, 1997). Braak and Braak (1991) have divided the neu-

ropathological changes in AD into six different stages, which are characterized by

patterns in neurofibrillary tangles and neuropil threads. Stages I–II are character-

ized by alterations in the transentorhinal layer, which corresponds to the mPRC

(Taylor & Probst, 2008). Stages III–IV involve the limbic areas, the entorhinal and

transentorhinal layer. Finally, at stages IV–V the alterations progress to the iso-

cortical areas (Braak & Braak, 1991).

There is evidence that the neuropathological stages correspond to the clinical pro-

gression of AD (Fewster, Griffin-Brooks, MacGregor, Ojalvo-Rose, & Ball, 1991).

In their review, Almkvist (1996) presents a model which matches the neuropatho-

logical progression to preclinical and clinical stages of AD. In the transentorhinal

stage, episodic memory is affected. In the limbic stage, impairment in verbal abili-

ties, visuospatial functions, attention, and executive functions are possible. In the

isocortical stage, where AD is fully developed, there is severe impairment in pri-

mary memory functions and episodic and verbal skills as well as visuospatial and

executive functions. However, later evidence has shown that prior to the changes

in the episodic memory as proposed by Almkvist (1996), decline in semantic mem-

ory and conceptual formation may appear up to 14 years prior to clinically defined

dementia (Amieva et al., 2008). Based on the previously presented literature on

the mPRC, we consider this decline in semantic processing to reflect the transen-

torhinal stage of AD. Thus, tasks measuring semantic memory, such as the se-

mantic fluency task, could be utilized to expose AD at its very early stages. Since

the mPRC is affected in the early stages of AD, we suggest that in the semantic

fluency task especially separating similar things may be diminished in the early

stages of AD.
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1.3 Semantic fluency task performance in AD

The semantic fluency task, which has been widely used to measure semantic mem-

ory in AD, is considered to measure not only basic language capacity but also the

executive functions related to naming objects, for example self-monitoring, flexible

thinking and working memory (Lezak et al., 2004). The semantic animal fluency

task is instructed to the participant by asking them to name as many animals as

possible within a minute. The category provides structure for the task and the

participant must find a suitable strategy to efficiently produce words in the task

(Lezak et al., 2004).

Troyer and colleagues (1997) have suggested that the strategies in the semantic flu-

ency task can be divided to two: 1) producing objects inside a sub-category and

2) crossing, that is, moving to a new sub-category. Both of these strategies are

needed to efficiently produce objects in the task. Healthy participants are able to

navigate in the semantic space systematically and utilize different sub-categories of

objects in the task. For instance, a commonly used strategy for healthy individuals

is to start producing sub-categories (e.g., farm animals) and cross to another (e.g.,

birds) when one sub-category is exhausted.

There is ample evidence that AD patients perform differently from healthy control

participants in the semantic fluency task, especially regarding the category produc-

tion and crossing aspects of the task. Not only do AD patients name fewer words

compared to healthy controls (Fagundo et al., 2008; Price et al., 2012; Raoux et

al., 2008; Troyer et al., 1998), but they also create smaller sub-categories (Fagundo

et al., 2008; Troyer et al., 1998), cross less between sub-categories (Fagundo et al.,

2008; Raoux et al., 2008) and create fewer sub-categories (Pekkala, 2004). How-

ever, there have also been studies that have not found differences between sub-

category sizes (Epker, Lacritz, & Munro Cullum, 1999; Pekkala, 2004; Raoux et

al., 2008) and crossing behaviour (Price et al., 2012). These inconsistencies have
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been explained by the severity of the dementia, demographic variables, sampling

differences and study design differences (Raoux et al., 2008). Further, there are

studies that have found that already aMCI patients differ from healthy controls

in the number of words (Lonie et al., 2009) and sub-category sizes (Price et al.,

2012), which supports the idea that semantic processing becomes gradually more

limited in the succession of the disease. However, there are only a few studies that

have researched whether the sub-category production and crossing performance

can be used to differentiate healthy controls from amnestic patients. Epker et al.

(1999) performed hierarchical clustering analyses to test whether there were differ-

ences in how well the number of words, sub-category size and crossings would dif-

ferentiate between healthy controls, both amnestic and non-amnestic Parkinson’s

disease patients and AD patients in semantic and phonemic fluency task. They

found that in the semantic fluency task, the number of words classified correctly

60% of the AD patients and crossing 62%, while sub-category size only classified

8% of AD-patients correctly. However, they also did not control for the total num-

ber of words in assessing differences in crossing or sub-category size, so it might be

that a major part of the classification effect of the crossing sub-category could be

explained simply with the number of words the participants produce in the task.

Fagundo et al. (2008) have examined the overall effects of producing sub-categories

and crossings. In their study, they combined the number of words, sub-category

size and the number of crossings into one model to see which of these variables

predicted the development of AD. They found that when comparing individu-

als with memory complaints, some of which developed an AD diagnosis, only the

mean sub-category size was significant in predicting the development of AD. They

suggested that in the progression of AD, the participants produce smaller sub-

categories. However, in the model, the coefficients for the number of words and

number of crossings were non-significant but positive, which indicates that the

number of words and crossings should increase rather than decrease in the progres-

sion of AD, which is in conflict with the previous literature. Intuitively, the per-
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formance in producing sub-categories can have a very strong positive relationship

with the number of words produced in the task and the number of crossings. The

more words are produced within a sub-category and the more crossings are made

between sub-categories, the more words are produced overall. Therefore, we sug-

gest that these results can be interpreted as possible multicollinearity problems in

the model, which in turn limits confidence in the results presented by the authors

on the differentiating power of the sub-category size.

To our knowledge there are no studies that would have investigated the indepen-

dent effects of the production of sub-categories and crossings in the semantic flu-

ency task in addition to the well-established effect in the decline of the number of

words in the progression of AD. We aim to examine the individual effects of pro-

ducing sub-categories and crossing from a sub-category to another, and analyse

whether they have clinical significance in diagnosing early AD.

1.4 Sub-categories in the semantic space

Previously presented behavioural studies on the semantic fluency task have all

used the Troyer et al. (1997) method, where the categories have been divided into

sub-categories based on subjective evaluation. Even though this method entails

clear instructions, some studies have questioned the method’s validity (Epker et

al., 1999). Other subjective measures have also been presented, but they too suffer

from issues such as low inter-rater reliability or test-retest reliability (Abwender,

Swan, Bowerman, & Connolly, 2001). Therefore, the results from studies that use

these methods may be difficult to replicate.

In the neurocognitive framework, research has mostly focused on comparing gen-

eral higher level categories, such as living versus non-living (Kivisaari et al., 2012;

Krumm et al., 2019; Tyler et al., 2013) and animals, fruits, tools and vehicles (Clarke

& Tyler, 2014; Kivisaari et al., 2019). However, few studies have investigated finer-
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grained performance within single semantic categories. Especially the animal cate-

gory has been considered to be more dense compared to for instance tools and ve-

hicles, meaning that the animals are more similar among one another than tools or

vehicles which in turn contain more distinctive features (Randall et al., 2004). Ex-

amining performance within such a dense category seems a fruitful approach in ex-

amining the cognitive decline in AD as difficulties in fine-grained semantic and per-

ceptual discrimination are putatively the very early signs of the disease (Barense,

Henson, Lee, & Graham, 2010; Kivisaari et al., 2012; Taylor, Moss, Stamatakis, &

Tyler, 2006). In the present study, we aim to investigate whether the difficulties

in semantic discrimination can be found already in prodromal and very early AD

patients using the dense semantic space constructed of animals that participants

name in the semantic fluency task. To achieve this objective, we use a modern

corpus-based method for producing feature-vectors and a dimensionality reduction

model that allow us to accurately and efficiently model the semantic space and the

sub-categories within.

1.5 Research questions and hypotheses

Neurocognitive and behavioural frameworks provide two alternative assumptions

for the performance of the participants in the semantic fluency task. In the present

study, we wanted to examine whether the diagnostic status, driven by putative me-

dial temporal lobe pathology, is related to naming similar things in early onset and

prodromal AD. Based on the evidence from neurocognitive studies, we assumed

that aMCI and AD patients have difficulty in naming semantically similar objects

inside a sub-category (i.e., birds or forest animals within the animal category) and

therefore exhibit more crossing behaviour from one sub-category to another, when

the number of words is controlled for. Furthermore, we wanted to examine whether

using the category and crossing dimensions in addition to the number of the words

brings additional information into the diagnostics of very early and prodromal AD.
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Finally, we aimed to describe how the participants move in the semantic space,

and whether the healthy participants exhibit different strategies in how they move

in the semantic space in the semantic fluency task.

2 Methods

2.1 Participants

In total, 181 native Swiss-German or German speaking adults were recruited in

the original Ambizione study. All participants with the available data to match

the aims and research questions of the present study (42 patients and 42 match-

ing healthy controls) were chosen from the original Ambizione study to form the

final sample of 84 participants. 42 participants (21 identified as male; mean age

74.4 yrs; SD 7.3 years) belonged to the control group and confirmed cognitively

healthy through medical and neuropsychological screening. In the patient group,

there were 42 participants (20 identified as male; mean age 74.3 yrs; SD 6.8 yrs)

that were matched to the control group according to age, gender and education.

In the patient group, 24 participants were diagnosed with aMCI due to AD (Al-

bert et al., 2011) according to DSM-IV (American Psychiatric Association, 1994)

and Winblad et al. (2004) criteria. Eighteen participants were diagnosed with very

early Alzheimer’s dementia according to DSM-IV (American Psychiatric Associa-

tion, 1994) and NINCDS-ADRDA (McKhann et al., 2011) criteria. The diagnoses

were based on a consensus between an interdisciplinary team of experienced clin-

icians. Demographic information of the different groups can be found in Table 1.

Since the groups differed in age and there is evidence that age affects the perfor-

mance in the semantic fluency task (Troyer et al., 1997), we used age as a covari-

ate in later analyses. As expected, the participants differed in the MMSE scores

but both the aMCI and AD groups scored very high points in the test, which indi-
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cates a very early stage of AD. The data for the original study was collected in the

Memory Clinic FELIX PLATTER, University Department of Geriatric Medicine

FELIX PLATTER, Basel, Switzerland. All participants provided an informed con-

sent prior to participating in the study. The study was approved by the local ethi-

cal committee of Both Basels.

Table 1. Demographic information.

Healthy (n=42) aMCI (n=24) AD (n=18) χ2 p

Sex 21 males 10 males 10 males 0.84 .657

Variable Mean (SD) F

Education 12.86 (3.14) 13.08 (3.16) 12.22 (3.14) 0.41 .667

Age (yrs.) 74.38 (7.32) 71.34 (6.59) 78.32 (4.76) 5.68 .005

MMSE 29.31 (1.00) 28.67 (1.46) 26.61 (1.79) 25.83 < .001

aMCI = amnestic Mild Cognitive Impairment, AD = Alzheimer’s disease, MMSE = Mini-Mental

State Examination

2.2 Task

In the semantic fluency task, participants were asked to name as many objects in-

side a certain semantic category as they could within a minute. The object cat-

egories were animals, fruits, tools and vehicles. In this thesis, we focused on the

animal category, due to the research on the difficulties AD patients have distin-

guishing living things in particular (Krumm et al., 2019). As instructed by Troyer

et al. (1997), we utilised all words produced in the task in the further analyses,

and did not differentiate between correct and non-correct (indicated by repetitions

or perseveration) words.
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2.3 Data analyses

In the present study, we described semantic space as a set of distance-based clus-

ters rather than continuous distance metrics. This is since the information related

to the semantic distance of the objects is meaningful only when the objects are rel-

atively close in semantic space. For example, dog and cat are intuitively seman-

tically quite similar and close, but is there a difference in the distance between

object-pairs such as dog-whale and dog-worm? Therefore, we describe semantic

proximity as belonging to the same cluster or sub-category. We first estimated se-

mantic distance, that is similarity, with cosine distance to best model it, and then

created distinct sub-categories based on this distance metric.

We estimated the semantic similarity of the named objects using a text corpus,

that is, the 3B-token Google News dataset (Mikolov, Sutskever, Chen, Corrado, &

Dean, 2013). The words were first translated from Swiss-German to English. We

used a pre-trained word2vec skip-gram model to find vector representations that

predict surrounding words of the given object in a sentence. With the method,

dense vector representations of words were comprised from unstructured text data,

that is, corpus (Mikolov et al., 2013). The code can be found online at https://

code.google.com/archive/p/word2vec. The text corpus was used to estimate

semantic similarity via measuring the cosine distance between all concept-feature

vectors. Each row in the acquired matrix described how semantically similar the

object is to all other objects within that category, estimated from zero to one,

where values close to zero indicate very similar representations and values close

to one very distant representations.

2.3.1 Dimensionality reduction

For the classification of the semantic distance, we used an unsupervised, non-linear

dimensionality reduction technique known as t-Distributed Stochastic Neighbor
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Embedding (t-SNE) developed by Maaten and Hinton (2008) which can be used to

visualise the structure of high-dimensional (HD) data with low-dimensional (LD)

maps such as two-dimensional scatter plots (Maaten & Hinton, 2008). T-SNE aims

to retain local structures of the data by preserving the distances between points

and their nearest neighbours from the original HD data to the LD map. This is

done by plotting Gaussian distributions for each point in the HD data and measur-

ing the density of the other points under the Gaussian. The acquired probability

functions are compared to similarly acquired t-distributed similarity functions in

the LD data and are measured by the Kullback-Leibler divergence, which t-SNE

tries to minimize. Student’s t-distribution is used because it allows for better mod-

eling of far apart distances, since it does not give as much emphasis on values at

the extreme ends of the distribution (Maaten & Hinton, 2008).

It has been suggested by Maaten and Hinton (2008) to use some other dimen-

sionality reduction technique for the data prior to using t-SNE to improve t-SNE

performance in data sets with a high number of features. In the present study, we

used Multidimensional scaling (MDS) prior the t-SNE. MDS is a technique for vi-

sual representation of distances or dissimilarities between sets of objects and can

be used as a dimensionality reduction technique (Buja et al., 2008). We used MDS

to reduce the number of the dimensions from 224 (the number of the unique words

in the data) to 50 (as suggested by Maaten & Hinton, 2008) which was the number

of dimensions that explained 96 percent of the variance in the data. Finally, t-SNE

was implemented on the 50 acquired dimensions from the MDS. Based on the vi-

sual inspection of the two-dimensional plot that was acquired as the t-SNE result,

we divided the 224 unique objects into sub-categories, so that each object belonged

to one sub-category.

The dimensionality reduction model was executed with Python 3.7 using the pack-

age sklearn.manifold (Pedregosa et al., 2011). Multiple model solutions with differ-

ent perplexity parameter values were executed. The perplexity parameter defines
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the number of points falling under the probability distribution, thus perplexity

can be considered to set the number of effective nearest neighbors estimated for

each point, and is suggested to be somewhere between 5 to 50 in a t-SNE model

(Maaten & Hinton, 2008). As we were interested in the local clusters, we used a

perplexity value small enough which was 20 in the final model. However, differ-

ent perplexity values did not greatly affect the overall output of the model (see

Appendix). A number of 1500 iterations was found to establish a stable model. T-

SNE was run multiple times, as suggested by Maaten and Hinton (2008) to achieve

the lowest Kullback-Leibler divergence, which was 0.88 in the final model.

2.3.2 Statistical analyses

Statistical analyses were executed with IBM SPSS Statistics 25. To examine the

participants’ performance in the semantic fluency task, we calculated the sum of

objects in each sub-category per participant (i.e., how many pets or birds the par-

ticipant named) and summed all these objects to get the total number of words

produced in the task (’Number of words’). We also examined the number of words

in each sub-category and divided it by the number of words produced in the task

to get proportional information of each sub-category. In addition, we recorded the

number of sub-categories visited in the task (’Sub-categories named’). We defined

crossings (’Crossings’) as moving from one sub-category to another, calculated the

sum of crossings for each participant and divided that by the number of words

each participant produced (’Adjusted crossings’). As we tried to examine move-

ment in the semantic space as thoroughly as possible, we also decided to inspect

a novel variable that would capture not only unidirectional movement from clus-

ter to cluster but also describe revisiting previously utilised areas in the semantic

space. For this purpose, we examined the number of times a participant returned

to a sub-category which they had previously visited (’Returns’) and adjusted that

number with the total number of words produced (’Adjusted returns’).
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Normality of the data was evaluated with Q-Q plots. The effect of belonging to a

diagnostic group on the number of words produced in the task was examined with

one-way analysis of variance (ANOVA). To examine the effects of belonging to a

diagnostic group (healthy, aMCI and AD) on moving in the semantic space, the

number of sub-category, crossings, adjusted crossings, and adjusted returns vari-

ables were used as dependent variables in one-way multivariate analysis of variance

(MANOVA), which was conducted to minimize the likelihood of type 1 error. Dif-

ferent sub-categories were also examined with one-way MANOVA with diagnostic

group as an independent variable. Since some of the variables were not normally

distributed, we used bootstrapped parameter estimates with bias-corrected and

accelerated bootstrap interval in all pairwise comparisons. Separate linear multi-

nomial logistic regression models were used to predict diagnostic group with the

number of categories, adjusted crossings and adjusted returns as independent vari-

ables. Since there is evidence that age affects the performance in the semantic flu-

ency task (Troyer et al., 1997), we used it as a control variable in addition to the

number of words in each model. We did not combine the independent variables

into one model, due to multicollinearity issues between some variables.

3 Results

3.1 Corpus data

The results from the t-SNE analysis based on the 50 components produced by

MDS can be seen in Figure 1. Based on visual inspection, we formed eight sub-

categories based on the t-SNE result: pets, birds, forest animals, jungle animals,

aversive animals (consisted of reptiles and insects), farm animals and sea life. T-

SNE was able to produce some very tight categories (such as sealife in the left bot-

tom corner) and some sub-categories that are more loose (such as birds in the bot-
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tom centre). However, the visualization of the semantic space appears to produce

sensible categories that were meaningful for further analyses.

Figure 1. Two-dimensional visualisation of the animals produced in the semantic

fluency task by the t-SNE model on the 50 dimensions of multidimensional scaling.

In the figure, different sub-category labels are presented based on visual inspection

as different colours.
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3.2 Behavioural data

We found that there was a significant difference between groups in the number

of words produced in one-way ANOVA [F(2,81) = 23.49, p < .001, partial η2 =

0.37]. As expected, healthy participants named more animals compared to both

aMCI and AD patients, and aMCI patients named more compared with AD pa-

tients (Figure 2). The sub-categories produced by each participant are presented in

Figure 3. Overall, farm animals, jungle animals, pets and birds were the most of-

ten named sub-categories. Interestingly, there were many participants in all groups

that named multiple birds in the task. Fish and sea life were sub-categories that

were used less often, as many participants named zero to one objects from these

sub-categories. There were few outliers in the data.

Figure 2. The number of words produced in the task by groups. Healthy partici-

pants name more words compared to both patient groups and aMCI patients name

more compared to AD patients. In the boxplot, minimum, first quartile, median,

third quartile and maximum are shown. The circle represent an outlier.

*p < .05, ** p < .01, *** p < .001.
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Figure 4. The means and standard errors of the proportional share of each sub-

category (i.e., number of objects in sub-category divided by the total number of

words) by groups. *p < .05

There was a statistically significant difference in the number of words in each sub-

category based on the group in one-way MANOVA [F (16,148) = 4.17, p < .001,

Wilk’s Λ = 0.48, partial η2 = .31]. We found differences between groups in for-

est animals [F (2,81) = 4.61, p = .013, partial η2 = .10], jungle animals [F (2,81)

= 7.26, p = .001, partial η2 = .15] and farm animals [F (2,81) = 3.71, p = .029,

partial η2 = .08]. Healthy controls named more jungle animals compared to aMCI

(p = .004, bootstrapped 95% CI: -3.26 – -0.62) and AD group (p = .002, boot-

strapped 95% CI: -3.84 – -1.07), and produced more farm animals compared to

AD patients (p = .011, bootstrapped 95% CI: 0.37 – 3.18). Further, aMCI patients

named more forest animals compared to AD patients (p = .008, bootstrapped 95%
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CI: 0.42 – 2.01). To examine whether these effects were only related to the num-

ber of words the participants produced, we ran a one way MANOVA on forest,

jungle and farm animals when the number of words was controlled for (Figure 4).

There was a statistically significant effect in the adjusted number of words in the

sub-categories based on participant group [F (6,158) = 2.17, p = .048, Wilk’s Λ =

0.85, partial η2 = .08]. We found statistically significant differences between groups

in forest animals [F (2,81) = 4.85, p = .010, partial η2 = .11]. AMCI group named

more forest animals compared to both healthy (p = .020, bootstrapped 95% CI:

-0.09 – -0.01) and AD patients (p = .022, bootstrapped 95% CI: -0.092 – -0.004).

Table 2. Spearman correlations between semantic fluency variables and age.

Variables 1 2 3 4 5 6

Number of words

Sub-categories named .46***

Crossings .65*** .68***

Adjusted crossings -.01 .44*** .61***

Returns .59*** .39** .93*** .59**

Adjusted returns .24* .25* .78*** .80*** .90***

Age -.16 -.21 -.33** -.25* -.28** -.22*

* p < .05, ** p < .01, *** p < .001.

The number of words had a strong positive correlation with the number of cross-

ings and sub-categories the participants produced (Table 2). When the total num-

ber of words was controlled for, the adjusted crossings did not have a significant

relationship with the number of words. Since the crossings were highly positively

correlated with the number of words produced in the task (Figure 5), we used ad-

justed crossings with the number of words in the logistic model. Further, returns

had a very strong correlation with crossings, so we used only adjusted returns in

later analyses. When adjusted, this variable had a small positive correlation with

the number of words. Age did not correlate with the number of words or the num-
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ber of sub-categories, but had significant negative correlations with all crossing and

return variables. Thus, older participants tended to cross sub-categories less often.

Figure 5. The correlations between the number of words and both a) non-

adjusted and b) adjusted crossings as a scatterplot.

When we inspected the associations between the fluency variables within each

group separately, we found that the relationship between the number of words

and crossings was especially strong in aMCI patients (Spearman r = 0.60, p =

.002; healthy: r = 0.47, p = .002; AD: r = 0.51, p = .030). Therefore, especially

in aMCI patients, when the number of crossings increased, the number of produced

words increased. Moreover, the linear relationship between named sub-categories

and crossings was the strongest in AD patients (r = 0.84, p < .001) when com-

pared with aMCI (r = 0.61, p = .002) and healthy controls (r = 0.62, p < .001).

In AD patients, the participants that visited only a few sub-categories also crossed

them less. Interestingly, in healthy participants, there was a negative correlation

between the number of sub-categories and returns that were adjusted with the

number of crossings (r = -0.33, p = .034). The relationship was non-significant

and positive in the patient groups. Therefore, if healthy participants named more

sub-categories, they were less likely to return to them, and vice versa.
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Figure 6. a) Number of sub-categories named, b) crossings, c) adjusted crossings

and d) adjusted returns as means and standard errors by groups. In the boxplots,

minimum, first quartile, median, third quartile and maximum are shown. The cir-

cles represent outliers. *p < .05, ** p < .01, *** p < .001.

In line with our hypotheses, we found that there were differences between groups

in how they moved in the semantic space in one way MANOVA [F(8,156) = 6.31,

p < .001, Wilk’s Λ = 0.57, partial η2 = .25]. We found differences in how many

sub-categories each group visited during the task in one way ANOVA [F(2,81) =

5.45, p = .006, partial η2 = .12]. AD patients named fewer sub-categories com-

pared to both aMCI patients and healthy controls (Figure 6). In our data, no AD

patient was able to visit all of the eight sub-categories. Consistent with previous

literature, the groups also differed from each other in crossing from a sub-category

to another [F(2,81) = 16.80, p = < .001, partial η2 = .29], where the AD group

crossed sub-categories less often than aMCI patients and healthy controls (Figure

6). Contrary to our hypothesis, we did not find a statistically significant differ-

ence between groups in the adjusted crossings [F(2,81) = 2.24, p = .113, partial

η2 = .05]. However, when we examined the adjusted returns variable, we found
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a highly significant difference between the groups [F(2,81) = 8.69, p < .001, par-

tial η2 = .18]. In the pairwise analyses, we found that both healthy participants

and aMCI patients returned to the sub-categories they had previously visited more

often compared to AD patients even when the number of words produced was con-

trolled (Figure 6).

Table 3. Multinomial logistic regression models.

Model χ̃2 Pseudo R2+ BIC P -value

Model 1 46.74 0.49 153.65 <.001

Number of words 35.94 <.001

Age 9.24 .010

Model 2 51.74 0.53 157.52 <.001

Number of words 38.77 <.001

Age 8.37 .015

Adjusted crossings 5.00 .082

Model 3 47.23 0.49 162.03 <.001

Number of words 29.34 <.001

Age 8.33 .016

Sub-categories 0.49 .783

Model 4 54.78 0.55 154.48 <.001

Number of words 30.49 <.001

Age 10.27 .006

Adjusted returns 8.03 .018

+ Nagelkerke’s Pseudo R2 is used.

The results from the multinomial logistic models are presented in Table 3. Model

1, which consisted of only the number of words and age, was statistically signifi-

cant and explained half of the variation in the data. To Models 2 and 3 we added

the adjusted crossings and the number of sub-categories, respectively. Even though

both models themselves were statistically significant, neither the adjusted crossings

or the number of sub-categories were statistically significant in the models. There-

fore, these variables did not improve the models’ fit to the data. Neither adjusted

crossings or the number of sub-categories had a significant, independent effect in
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the models when the number of words and age were controlled. However, in Model

4, adjusted returns was a statistically significant predictor even when the number

of words and age were controlled. Adding adjusted returns into Model 1 improved

the explanatory power by six percent.

Pairwise comparisons between groups from Model 4 are seen in Table 4. As ex-

pected, the number of words differentiated AD patients from both aMCI patients

and healthy controls. When the number of words increased with one, the odds ra-

tio for Healthy and aMCI grew 1.54 and 1.27, respectively, compared to the AD

group. Age differentiated aMCI patients from AD, so that when age increased with

one year, the odds ratio for being in the AD group grew 1.27. Finally, the adjusted

returns differentiated healthy and aMCI from AD patients. When adjusted returns

increased by one percent, the odds ratio for healthy controls and aMCI patients

grew 1.13 and 1.10, respectively, compared to the AD group.

Table 4. Model 4. Multinomial logistic regression analysis on belonging to a

group with adjusted returns, the number of words, and age as independent vari-

ables.

Healthy vs. AD aMCI vs AD

B S.E Wald Exp(B) 95% C.I B S.E Wald Exp(B) 95% C.I

L U L U

Intercept -4.38 5.01 0.76 6.98 4.70 2.21

Adjusted returns 0.12 0.05 6.72** 1.13 1.03 1.23 0.09 0.05 4.24* 1.10 1.00 1.20

Number of words 0.43 0.11 16.78*** 1.54 1.25 1.90 0.24 0.19 5.86* 1.27 1.54 1.91

Age -0.07 0.06 1.47 0.93 0.82 1.05 -0.17 0.06 7.25** 1.10 1.00 1.20

Reference category is the AD group. Adjusted returns was multiplied by hundred for easier interpretation.

∗p<.05, **p<.01, ***p<.001

Finally, we inspected the classification rates of the Models 1 and 4 (Table 5). Adding

the adjusted returns to Model 1 did not drastically improve the overall classifica-

tion power of the model (one percent), but it did greatly improve the classification

of AD patients by 16 percent. However, Model 4 was not as accurate in classifying
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healthy controls and it classified more healthy controls to the aMCI patient sub-

category. Yet, Model 1 mistook more AD patients as healthy controls compared

to Model 4 and the AD patients were overall better classified in Model 4. Neither

of the models were able to classify aMCI patients above the 0.5 random cut-off

point. Therefore, we conclude that based on the present data, neither the num-

ber of words or returns were useful in categorising aMCI patients in the semantic

fluency task. However, accounting for the number of adjusted returns in the task

provided additional information for the distinction of the groups, and especially in

distinguishing AD patients.

Table 5. Classification amounts and rates (%) for Models 1 and 4 presented as a

confusion matrix.

Model 1

Predicted

Observed Healthy aMCI AD Correct (%)

Healthy 33 7 2 78.6

aMCI 9 10 5 41.7

AD 7 0 11 61.1

Overall (%) 58.3 20.2 21.4 64.3

Model 4

Predicted

Observed Healthy aMCI AD Correct (%)

Healthy 31 10 1 73.8

aMCI 11 10 3 41.7

AD 4 0 14 77.8

Overall (%) 54.8 23.8 21.4 65.5

4 Discussion

The present study used a novel dimensionality reduction method t-SNE to classify

words produced inside the animal category of the semantic fluency task. This en-

abled us to identify eight distinct sub-categories of animals. Thus, we were able to

extensively describe how both healthy controls and very early and prodromal AD

patients utilised the semantic space in the animal fluency task. We found that in

addition to healthy controls naming more words compared to aMCI and AD pa-

tients, the aMCI patients also produced more forest animals when the number of

words was controlled. After controlling for age and number of words, the number

of categories and adjusted crossings did not differentiate the patient groups from
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healthy participants. However, we discovered that returning to a sub-category pro-

vided additional information besides total words named in the classification of the

AD patients. Our results provide more insight in how both healthy and amnestic

individuals move in the semantic space and what strategies they use in produc-

ing as many words as possible in the semantic fluency task. Further, these findings

may have clinical implications in diagnosing very early AD.

4.1 Findings from the behavioural data

In line with previous behavioural studies, we found that healthy participants named

more words in the semantic fluency task than aMCI and AD patients. Further-

more, healthy participants named more sub-categories and performed more cross-

ings compared to AD patients. AMCI patients also performed better than AD pa-

tients in producing more words, sub-categories and crossings. This supports the

notion that the overall performance in the semantic fluency task seems to deterio-

rate in the progression of the AD. However, these differences may have been due to

the deterioration in the capability to produce as many words as possible.

We found that in all diagnostic groups most sub-categories were well represented

in the answers, with the exception of fish and sea life. Of these sub-categories, par-

ticipants often named no words or a single word. Interestingly, there were many

different bird species in our data. This can be explained by the fact that in the

Swiss-German area, there is a well-known children’s song that lists birds, which

may have affected our results. In tasks that rely on the production of words, it

is important to take into account that the words produced in the task are con-

nected to the language of the area where the study is conducted. For instance,

previous studies that have found musical memory such as remembering melodies

and lyrics can remain relatively intact in the progression of AD (Cuddy & Duffin,

2005), which may have affected the number of birds in our data.
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When we compared the groups based on what sub-categories they named, we found

that healthy participants named more jungle animals compared to aMCI and AD

patients and more farm animals compared to AD patients. Further, aMCI patients

named more forest animals compared to AD patients. However, after controlling

for the number of words, the only significant effect between groups was that aMCI

patients named more forest animals compared to both healthy and AD groups.

This is a novel finding, but needs to be replicated by future studies, since it could

also be a demonstration of this particular data set’s features.

There was a strong positive connection between the number of words and cross-

ings. Therefore, the more words the participant names, the more crossings they

make. This supports our claim that the number of crossings mostly reflects the

overall number of the produced words. Thus, studying a non-adjusted crossing

variable may conceal valuable information on the crossing behaviour that is not

dependent on how many words the participants produce. Similar connections were

inspected between the named sub-categories and the number of words: the more

words the participant produced, the more likely it was for them to name more sub-

categories. Returns to a sub-category also had a strong positive connection to the

number of words produced and this relationship remained statistically significant

even after controlling for the number of words. However, the results of multino-

mial logistic model suggest that returning to a sub-category provides an individual

effect over and above to the effect of number of words produced.

There were differences between groups in how the fluency variables were related

to each other. The connection between the number of words and crossings was es-

pecially strong in aMCI patients, even though with both the healthy and the AD

group the relationship was also positive. These findings might indicate that aMCI

patients might rely more on crossing sub-categories in trying to produce as many

words as possible. This could imply that according to our hypothesis, aMCI pa-

tients might be more prone to crossing sub-categories instead of naming similar
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objects.

Interestingly, the number of sub-categories and the returns divided by all crossings

were negatively correlated in healthy controls, but not other groups. These results

suggest that healthy participants may utilize two parallel strategies in naming as

many words as possible: 1) naming as many objects inside one sub-category and

then moving to the next one, and 2) naming few sub-categories but crossing be-

tween these sub-categories. Since this differentiation of strategies was not apparent

in patient groups, we suggest that it could be that these groups are not able to

choose between strategies, but the participants that name more objects also cross

sub-categories more often.

Contrary to our hypothesis, when we inspected the adjusted crossings variable,

there were no statistically significant differences between groups in crossings. How-

ever, when inspecting Figure 6, the aMCI group seemed to make more crossings

when the number of words was controlled for compared to the healthy participants

even though this effect was not statistically significant. On the contrary, AD pa-

tients seem to name less objects compared to healthy participants. It could be that

the differences between patient groups reflect differences in the stage of cortical

damage in aMCI and AD. Despite the fact that the AD patients in the present

study are at a very early stage of the disease, they may already present symptoms

of more limited cognitive processes such as perseveration (i.e., becoming stuck on

repeating words), which may outweigh the effect of having difficulties in naming

semantically similar words. Therefore, we suggest that the aMCI patients might

provide a more useful subgroup for studying the difficulties in naming semantically

similar words.

As a novel finding, we found that AD patients returned to already visited sub-

categories less compared to both aMCI patients and healthy participants. In ad-

dition, we found that only the adjusted returns provided additional information

in discriminating between groups in addition to the number of words produced
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and age (Table 3). Adding returns to the model enhanced the classification of the

whole model, particularly in discriminating AD patients from healthy participants.

Adjusted crossings and sub-categories were not significant in the models. These

findings suggest that in addition to the number of words produced in the semantic

fluency task, the number of sub-categories and the adjusted number of crossings do

not provide additional information in discriminating AD and aMCI patients from

healthy controls. However, the use of adjusted returns might aid clinicians in diag-

nosing early AD.

Contrary to our hypothesis, we found significant effects only in returning to a cate-

gory but not crossings. These variables were highly correlated and the returns were

formed as being the percentage of returns from all crossings. This suggests that

crossing between sub-categories might consist of two differing aspects: 1) cross-

ing to a new sub-category and 2) returning to a previously visited sub-category. It

may be that in early AD, only the ability to return to a sub-category is declined,

and not moving to new sub-categories, which is kept intact. However, when using

algorithms like word2vec and t-SNE in estimating sub-categories in the seman-

tic space, one semantic structure is imposed on all participants. Our results could

also be explained by the fact that healthy participants may have more rich con-

nections between different objects, which is why they exhibit more of the return-

ing behaviour. Healthy participants may be able of utilising different strategies

in naming objects besides just naming objects inside one biological category. For

instance, moving from duck (bird) to pig (farm animal) to pigeon (bird) may be

logical (all something you might eat) even though the individual seems to return to

a sub-category. Our results may imply that the capability of using various types of

connections between objects to move in the semantic space is damaged in already

very early AD.

Contrary to the findings presented by Troyer et al., we did not find differences be-

tween groups in the number of sub-categories and the adjusted crossings, when
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the number of words was taken into account. However, we did find differences in

the adjusted returns, which is in line with overall semantic difficulties in the pro-

gression of AD previously studied. In addition, we did not find statistically signif-

icant effects indicating decline in the processing of semantically similar objects in

very early AD. Yet, there was a non-significant visually inspected effect that the

aMCI patients would present more adjusted crossings compared to healthy partici-

pants, while the AD patients seemed to present less adjusted crossings compared

to the control group. Further, the relationship between crossings and the num-

ber of words was the strongest in aMCI patients. These factors may indicate that

among aMCI patients, the amount of words is especially dependant on how many

crossings the individual makes. Therefore, aMCI patients might rely more on the

strategy of moving from one sub-category to another in producing as many words

as possible, which may be an indicator of decline in processing similar objects, as

suggested by previous neurocognitive literature (Krumm et al., 2019). For future

studies, we suggest that especially the aMCI patients should be of interest in re-

searching the processing of similar objects.

4.2 Findings from the corpus data

From the corpus data, we were able to visualise feature-based vectors of animals

in a two-dimensional space with the t-SNE dimensionality reduction algorithm

and form sub-categories of the animal category. The results of the t-SNE model

were stable and did not change drastically with different perplexity parameters

(see Appendix). Since the sub-categories created were based on the condensed fea-

ture vectors of words, they were not purely biological sub-categories. For instance,

words fox and squirrel are here categorized as birds, which can be explained by

their closeness to words owl and crow as these animals also often occur together

in fairy tales, for example. There were some other outliers that did not clearly be-

long to one specific sub-category but were always situated near them. For instance,
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swallow, pecker, weasel and badger seemed to cluster together and close to pets in

all of the models, so they were put into the Pet sub-category in the final model.

Overall, the sub-categories were remarkably logical and t-SNE seemed to work very

effectively with corpus data as previously has been suggested (Maaten & Hinton,

2008).

Based on the results in the current study, we consider the t-SNE method based on

the concept-feature vectors very effective on classifying objects in sub-categories

in the semantic fluency task. Thus, t-SNE should be considered an alternative

method to the subjective evaluation method proposed by Troyer et al. (1997). T-

SNE can be used for more consistent categorization of named objects in the flu-

ency task. Further, t-SNE provides a uniform category solution for the data of the

specific task, and therefore allows us to compare crossings and the number of ob-

jects in the sub-categories. Finally, since semantic space is formed of categories

based on multi-dimensional feature vectors, these categories do not follow only

one logic (e.g., a fox belongs to birds). Dimensionality reduction algorithms such

as t-SNE are able to capture the multidimensional nature of the semantic space

and visualise it into two-dimensional space, which is not possible with a traditional

subjective evaluation measure.

To our knowledge, there have not been studies that have delved into the sub-categories

of the semantic fluency task in a similar scope as the present study. The results of

this Master’s thesis demonstrate that in addition to classic higher-level categories,

such as living versus non-living, or animals, fruits, vehicles and tools, it is also pos-

sible to examine the sub-categories within the category. In the present study, this

was made possible with the use of an internet-based corpus, feature vectors, and

a dimensionality reduction algorithm. These results give new insights in zooming

inside the higher-level categories and thus we encourage these methods to be used

to gain more knowledge on how individuals utilise the semantic space in tasks such

as the semantic fluency task.

34



4.3 Limitations

For the classification of the data, we used the t-SNE dimensionality reduction

method to be able to compare crossings and the number of objects in the sub-

categories. However, the method has some limitations that need to be accounted

for. Since t-SNE is data-driven, its results might be difficult to replicate in other

data sets. However, with large enough data sets, we can assume that most of the

sub-categories we have presented in the present study are likely to replicate, if

the category size is kept relatively big and not divided into small subgroups. In

choosing to use bigger categories, we may lose information on individual cate-

gorisation strategies. For instance, in our data, mouse and rat belong to different

sub-categories (pets and aversive animals, respectively), which could also be cate-

gorised to the same sub-category using another logic. However, our approach pro-

vides a possibility to examine how individuals move in the semantic space abiding

by overall semantic structure. Another issue is that the categories produced by t-

SNE require manual labeling based on visual inspection, since it is not advisable

to use an actual clustering algorithm on the t-SNE results because t-SNE does not

preserve distances between sub-categories or alternatively regards them meaning-

less (Maaten & Hinton, 2008). However, we consider that in the present study, the

visual inspection was faithful to the t-SNE solution since the sub-categories were

relatively well-defined.

4.4 Conclusions

In the present study, we aimed to extensively describe how patients with very early

and prodromal AD perform in the semantic fluency task compared with healthy

controls. Our results did not directly support the idea that there is decline in the

processing of semantically similar objects in early and prodromal AD. Based on

our findings, we propose that the number of sub-categories and crossings produced
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by participants in the task are not meaningful in attempting to differentiate be-

tween patients and healthy controls in a clinical context, since these variables do

not provide additional information over and above that information provided by

the number of words the participants produce in the task. However, inspecting re-

turns to a sub-category might provide to be useful for clinicians in diagnosing early

AD. Furthermore, t-SNE provides a valuable tool for visualising the semantic space

and its sub-categories which individuals seem to utilise efficiently in the semantic

fluency task. We hope that these results provide insight for clinicians for the be-

haviour of very early and prodromal AD patients in the semantic fluency task to

promote discovering these diseases at as initial a stage as possible.
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Appendix: Alternative t-SNE Models

Figure A1. Perplexity = 10
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Figure A2. Perplexity = 25
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Figure A3. Perplexity = 40
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