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Abstract: Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but
accumulating evidence indicates that inflammation has a critical role in its pathogenesis. In particular,
chondrocyte-mediated inflammatory responses triggered by the activation of innate immune receptors
by alarmins (also known as danger signals) are thought to be involved. Thus, toll-like receptors
(TLRs) and their signaling pathways are of particular interest. Recent reports suggest that among
the TLR-induced innate immune responses, apoptosis is one of the critical events. Apoptosis is of
particular importance, given that chondrocyte death is a dominant feature in OA. This review focuses
on the role of TLR signaling in chondrocytes and the role of TLR activation in chondrocyte apoptosis.
The functional relevance of TLR and TLR-triggered apoptosis in OA are discussed as well as their
relevance as candidates for novel disease-modifying OA drugs (DMOADs).
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1. Introduction: The Role of Immunity in OA

Clinical osteoarthritis (OA) is preceded by a preclinical stage, which, in conjunction with the
presence of risk factors and/or other pathological factors, proceeds to the radiographic OA state.
Numerous risk factors have been proposed as main pathogenic drivers associated with OA pathogenesis.
Nevertheless, risk factors alone cannot explain OA pathogenesis. An emerging view proposes that risk
factors, triggering mechanisms, and perhaps other known or unknown factors, act together, driving
the disease into the radiographic stage.

A key role for inflammation has been established in OA, with the innate immune system being
a major contributor to the inflammatory cycle of OA [1]. In OA, the immune system reacts to the
mechanical, physiological, and biological changes in the joint over time. In contrast to the adaptive
immune system, innate immunity plays an essential role not only in host defense against microbial
agents but also in modulation of tissue homeostasis by recognizing distinct pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular patterns DAMPs, respectively, by
pattern recognition receptors (PRR), such as toll-like receptors (TLR) and NOD-like receptors (NLR) [2].
Hence, traumatic injuries accumulated over time may lead to the release of cartilage DAMPs that may
then activate a local innate immune system reaction [3]. Consequently, inflammatory pathways may
be activated in resident cells and matrices leading to the upregulation of several cartilage matrices
degrading proteases such as matrix metalloproteases (MMP)-1, MMP-3, MMP-13, and ADAMTS
aggrecanases, while also downregulating aggrecan and collagen type II, a pattern generally seen in
the OA chondrocytic phenotype. This gene’s expression patterns within articular chondrocytes are
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mediated via multiple intracellular pathways, such as the MAC, MAP kinases, and nuclear factor-κB
pathways [4,5].

This interplay between mechanical traumas, environmental factors, potentiated by genetic
predisposition and other risk factors, ensued by inflammation driven by an innate immune response
and impaired cartilage repair, is one of the paradigm shifts of the OA pathogenesis theory [6].

2. Cartilage and Chondrocytes: The Hallmark of Osteoarthritis

The articular cartilage is a highly specialized tissue with unique biomechanical properties and
solely populated by only one cell type, the chondrocyte, in an avascular, alymphatic, and aneural
microenvironment [7]. Such uncommon characteristics are likely contributors for failed cartilage
natural regeneration and the main challenges of cartilage reconstruction and engineering efforts [8].

The primary threat for cartilage matrix integrity is the disruption of the collagen network and
proteoglycan by matrix-degrading proteases [9]. Cleavage and degradation of the matrix molecular
components compromise the structure of the residing supramolecular proteins, which give cartilage
tissue so unique properties. The enzymatic degradation of articular cartilage is the erosion of the
pericellular matrix and, eventually, the interterritorial matrix will ultimately compromise and alter
cartilage biomechanical properties leading to the destruction of articular cartilage [10].

The majority of proteases are localized in articular cartilage and are produced locally by
chondrocytes, the only cell type present in articular cartilage. Moreover, chondrocytes act in concert to
preserve the structural integrity of the extracellular matrix (ECM) in cartilage, making them central
players of cartilage tissue homeostasis. Chondrocytes not only play a role in matrix catabolism,
but they also actively regulate matrix anabolism. In healthy cartilage, chondrocytes synthesize new
ECM molecules to replace damaged molecules; meanwhile, in OA, their anabolic activity is impaired
and limited.

To date, extensive knowledge has been gathered about the degradation processes of the two
primary components of articular cartilage: the collagen network and the enrooted proteoglycans.
During early cartilage degeneration in OA, the most striking feature is the loss of aggrecan and bounded
cationic proteoglycans [11]. Similarly noticeable, collagen content is slightly reduced; however, its
network, in turn, is highly disrupted, making it also one of the key features of cartilage osteoarthritic
changes. Importantly, the two have reciprocal effects, i.e., collagen network degradation leads to loss
of bounded proteoglycans and proteoglycan loss alters the matrix biomechanical properties leading to
cartilage overload, which will inflict further damage to the collagen network structure.

Throughout the osteoarthritic cartilage, abnormal levels of many proteinases, including matrix
metalloproteinases (MMPs), as well as members of the ADAM (a disintegrin and metalloproteinase)
and ADAMTS (a disintegrin and metalloproteinase with thrombospondin type 1 motif) families, are
associated with the increased matrix degradation in OA cartilage [12]. These enzymes play a significant
role in cartilage degradation. However, continuous research efforts to identify the most crucial protease
have been unsuccessful [12]. This may imply that many or all of them are vital, and hence, treatment
strategies should target their upstream regulators.

Under pro-inflammatory conditions, the catabolic events are not sufficiently counterbalanced by
the anabolic events given the impaired synthesis of cartilage matrix molecules, e.g., collagen type II, V,
and aggrecan [13]. This continuing imbalance leads ultimately to the failure to compensate matrix
cartilage damage induced in the local synovial joint (Figure 1).
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Figure 1. Visual representation of some of the elements of cartilage structure and matrix turnover 
changes in healthy and osteoarthritic cartilage. Type II collagen fibrils forms an intrinsic network in 
conjunction with aggrecan aggregates with a hyaluronic acid backbone. In normal physiological 
conditions, cartilage tissue integrity is maintained by an active turnover of the extracellular matrix, 
mediated on-site by matrix metalloproteinases (MMPs). In osteoarthritis (OA), there is increased 
proteolytic damage to matrix molecules in cartilage and remote sites, which can activate receptor 
signaling pathways, coupled with downregulation of synthesis of collagen and proteoglycan 
molecules. During OA, chondrocytes also produce and release pro-inflammatory molecules, such as 
iNOS, interleukin (IL)1, -6, -17, tumor necrosis factor β (TNFβ), interferon (IFN)-alpha, among others. 

3. TLRs in Osteoarthritis 

TLRs are typical type I integral membrane receptors composed of a ligand recognition 
ectodomain, a single transmembrane helix, and a cytoplasmic signaling domain projecting from the 
inside part of the membrane [14]. Toll IL-1 receptor (TIR) domains are the signaling domain of TLR. 
The name originated since they are homologs to the IL-1R family members signaling domains [15].  

As mentioned earlier TLRs have a critical role in the activation of innate host defense, 
particularly against infections by recognizing PAMPs, and tissue remodeling generated alarmins, 
also known as DAMPs. PAMP/DAMPS-TLR ligand recognition leads to the initiation of signaling 
cascades culminating in cellular activation. Currently, 11 TLR gene members have been discovered, 
numbered from 1 to 11, of which the first 10 are also functional in humans, albeit to date no natural 
ligand to TLR10 is known. TLR1, TRL2, TLR4, TLR5, TLR6, and TLR10 recognize microbial surface 
patterns and are therefore located on the cell membrane surface to enable an immediate response. 
Some other TLRs, such as TLR3, TLR7, TLR8, and TLR9, are expressed in the endosomes or 
phagosomes inner membranes to allow contact with internal microbial structures revealed upon 
microbial degradation/lyses, such as double- and single-stranded RNA and DNA (Figure 2). 

Figure 1. Visual representation of some of the elements of cartilage structure and matrix turnover
changes in healthy and osteoarthritic cartilage. Type II collagen fibrils forms an intrinsic network
in conjunction with aggrecan aggregates with a hyaluronic acid backbone. In normal physiological
conditions, cartilage tissue integrity is maintained by an active turnover of the extracellular matrix,
mediated on-site by matrix metalloproteinases (MMPs). In osteoarthritis (OA), there is increased
proteolytic damage to matrix molecules in cartilage and remote sites, which can activate receptor
signaling pathways, coupled with downregulation of synthesis of collagen and proteoglycan molecules.
During OA, chondrocytes also produce and release pro-inflammatory molecules, such as iNOS,
interleukin (IL)1, -6, -17, tumor necrosis factor β (TNFβ), interferon (IFN)-alpha, among others.

3. TLRs in Osteoarthritis

TLRs are typical type I integral membrane receptors composed of a ligand recognition ectodomain,
a single transmembrane helix, and a cytoplasmic signaling domain projecting from the inside part
of the membrane [14]. Toll IL-1 receptor (TIR) domains are the signaling domain of TLR. The name
originated since they are homologs to the IL-1R family members signaling domains [15].

As mentioned earlier TLRs have a critical role in the activation of innate host defense, particularly
against infections by recognizing PAMPs, and tissue remodeling generated alarmins, also known
as DAMPs. PAMP/DAMPS-TLR ligand recognition leads to the initiation of signaling cascades
culminating in cellular activation. Currently, 11 TLR gene members have been discovered, numbered
from 1 to 11, of which the first 10 are also functional in humans, albeit to date no natural ligand to
TLR10 is known. TLR1, TRL2, TLR4, TLR5, TLR6, and TLR10 recognize microbial surface patterns and
are therefore located on the cell membrane surface to enable an immediate response. Some other TLRs,
such as TLR3, TLR7, TLR8, and TLR9, are expressed in the endosomes or phagosomes inner membranes
to allow contact with internal microbial structures revealed upon microbial degradation/lyses, such as
double- and single-stranded RNA and DNA (Figure 2).
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Figure 2. Diagrammatic representation of toll-like receptors (TLR) signaling pathways. AP-1, 
activator protein 1; BGN, biglycan; CpG-DNA, oligodeoxynucleotides DNA; CREB, 
cAMP-responsive element-binding protein; DCN, decorin; dsRNA, double-stranded RNA; FADD, 
FAS-associated death domain; FBN, fibronectin; HMBG1, high-mobility group box 1; IκBα, inhibitor 
of NF-κBα; IKK, inhibitor of NF-κB kinase; IRAK, interleukin-1 receptor-associated kinase; IRF, 
IFN-regulatory factor; LPS, lipopolysaccharide; LMW-HA, low molecular-weight hyaluronic acid; 
MAL, MYD88 adaptor-like protein; MD2, myeloid differentiation factor 2; MEK, mitogen-activated 
protein kinase/ERK kinase; MKK, mitogen-activated protein kinase; NF-κB, nuclear factor-κB; PI3K, 
phosphoinositide 3-kinase; RIP1, receptor-interacting protein 1; S100A8/9, S100 calcium-binding 
protein A 8 and 9; ssRNA, single-stranded RNA; TAB, TAK1-binding protein; TAK1, TGFβ-activated 
kinase 1; TN-C, tenascin-c; TRAF, tumor necrosis factor receptor-associated factor; TRAM, 
TRIF-related adaptor molecule. 

TLR activation leads to host responses in the form of de novo expression of genes, such as 
inflammatory cytokines, IL-1, IL-6, IL-8, IL-12, tumor necrosis factor (TNF)-α, and 
cell-membrane-bound co-stimulatory molecules, such as intercellular adhesion molecule-1 
(ICAM-1), and its counterpart, lymphocyte function-associated antigen-1 (LFA-1) [16].  

In recent years, TLRs expression and signaling have been associated with OA pathogenic 
mechanisms. Moreover, it is important to study the TLRs local role in joint tissues, since OA is a 
disease of the entire joint. 

Synovial inflammation (synovitis) is present in about half of the patients with OA and has been 
shown to correlate with cartilage damage severity [17]. TLR 1-7 and TLR9 expression is upregulated 
in the synovium of OA patients [18,19]. Moreover, functional studies have demonstrated that 
primary FLS from healthy and OA patients express TLRs, which actively respond to several DAMP 
ligands, such as tenascin-C or S100A8/A9 [20,21]. In the OA synovial fluid TLR4 is also present in the 
soluble form, and it is associated with the OA severity, making sTLR4 an intriguing biomarker 
[22,23]. TLRs activation and the ensuing NF-kB activation is followed by the production of 
chemokines (e.g., IL-8 and CCL5) and cytokines (e.g., IL-1, IL-6, and TNF) which participate in the 
recruitment of macrophages, granulocytes, and lymphocytes cell into the synovium of OA patients 
[24]. In the synovium, synovial fibroblasts and synovium lining FLS cells once activated lead to the 
secretion of cytokines and chemokines, which may cross-talk with cartilage and subchondral bone 
cells. 

Mechanical loading and cross-talk between cartilage and the intimately connected subchondral 
bone make it possible that the chondrocytes secrete catabolic, inflammatory, and anabolic factors 

Figure 2. Diagrammatic representation of toll-like receptors (TLR) signaling pathways. AP-1,
activator protein 1; BGN, biglycan; CpG-DNA, oligodeoxynucleotides DNA; CREB, cAMP-responsive
element-binding protein; DCN, decorin; dsRNA, double-stranded RNA; FADD, FAS-associated death
domain; FBN, fibronectin; HMBG1, high-mobility group box 1; IκBα, inhibitor of NF-κBα; IKK,
inhibitor of NF-κB kinase; IRAK, interleukin-1 receptor-associated kinase; IRF, IFN-regulatory factor;
LPS, lipopolysaccharide; LMW-HA, low molecular-weight hyaluronic acid; MAL, MYD88 adaptor-like
protein; MD2, myeloid differentiation factor 2; MEK, mitogen-activated protein kinase/ERK kinase;
MKK, mitogen-activated protein kinase; NF-κB, nuclear factor-κB; PI3K, phosphoinositide 3-kinase;
RIP1, receptor-interacting protein 1; S100A8/9, S100 calcium-binding protein A 8 and 9; ssRNA,
single-stranded RNA; TAB, TAK1-binding protein; TAK1, TGFβ-activated kinase 1; TN-C, tenascin-c;
TRAF, tumor necrosis factor receptor-associated factor; TRAM, TRIF-related adaptor molecule.

TLR activation leads to host responses in the form of de novo expression of genes, such as
inflammatory cytokines, IL-1, IL-6, IL-8, IL-12, tumor necrosis factor (TNF)-α, and cell-membrane-bound
co-stimulatory molecules, such as intercellular adhesion molecule-1 (ICAM-1), and its counterpart,
lymphocyte function-associated antigen-1 (LFA-1) [16].

In recent years, TLRs expression and signaling have been associated with OA pathogenic
mechanisms. Moreover, it is important to study the TLRs local role in joint tissues, since OA is a disease
of the entire joint.

Synovial inflammation (synovitis) is present in about half of the patients with OA and has been
shown to correlate with cartilage damage severity [17]. TLR 1-7 and TLR9 expression is upregulated in
the synovium of OA patients [18,19]. Moreover, functional studies have demonstrated that primary FLS
from healthy and OA patients express TLRs, which actively respond to several DAMP ligands, such as
tenascin-C or S100A8/A9 [20,21]. In the OA synovial fluid TLR4 is also present in the soluble form, and
it is associated with the OA severity, making sTLR4 an intriguing biomarker [22,23]. TLRs activation
and the ensuing NF-kB activation is followed by the production of chemokines (e.g., IL-8 and CCL5) and
cytokines (e.g., IL-1, IL-6, and TNF) which participate in the recruitment of macrophages, granulocytes,
and lymphocytes cell into the synovium of OA patients [24]. In the synovium, synovial fibroblasts and
synovium lining FLS cells once activated lead to the secretion of cytokines and chemokines, which
may cross-talk with cartilage and subchondral bone cells.

Mechanical loading and cross-talk between cartilage and the intimately connected subchondral
bone make it possible that the chondrocytes secrete catabolic, inflammatory, and anabolic factors
able to cross-talk with the subchondral bone microenvironment and vice versa (60,198). Interestingly,
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osteoblasts express TLR2 and TLR4 and can down-modulate cytokine secretion during chronic TLR4
challenge [25]. Besides, TLR4 activation can also modulate osteoclasts formation, survival, and
activity [26]. This is of particular importance, given that reduced bone mineral density is a risk factor
for OA development [27].

In joint trauma and OA, the synovial joint fluids and tissues contain increased concentrations of
several DAMPs capable of activating TLRs. These include danger signals such as S100/calgranulin
family (e.g., S100A4, the S100A8/A9 heterodimer, S100A11, S100A12), tenascin-C (TN-C), high- and
low-molecular-weight hyaluronan, fibronectin isoforms, and SLRPs such as biglycan and decorin [20,21,
28–35]. The majority of OA DAMPs are cartilage matrix derived, albeit some arise from cell apoptosis,
e.g., high-mobility group box protein 1 (HMGB1) [36,37].

TLRs and Chondrocytes

As cartilage biology is a central feature of OA, the local innate immunity regulation by TLRs in
chondrocytes is therefore of particular interest.

All TLRs are present in articular cartilage and are known to be upregulated in OA cartilage,
particularly in the lower limbs such as knee and hip cartilage [38]. However, a recent study indicated
that there are also joint-specific TLR expression patterns, particularly between hand and knee OA,
which might also implicate differential immune mechanisms of large and small joints in OA [23].

Several DAMPs such as low-molecular-weight hyaluronan, S100A8/9, fibronectin fragments, and
others, all with cartilage matrix origins are recognized by TLRs expressed in chondrocytes.

In line with cartilage aging contributing to OA pathogenesis, the advanced glycation end product
(AGE), a known member of the DAMPS family, increasingly accumulates in articular cartilage and
undermines collagen network mechanical properties [39]. Such an increase of accumulation, in turn,
is recognized by PRRs such as RAGE and TLR4 expressed in human chondrocytes leading to the
response of secretion of catabolic factors such as IL-6, COX-2, HMGB1, and MMP-13. Interestingly
AGE stimulation leads to upregulated TLR4 expression levels [40]. Together this suggests PRRs, and,
in particular, TLR4 to be involved in age-related cartilage degeneration in OA.

Fibronectin (FN) is a glycoprotein known to act as DAMP, which is upregulated in synovial
fluid and cartilage of OA patients [41,42]. FN domains are able to induce catabolic responses on
the cartilage [43]. Moreover, OA joint proteases participating in cartilage degradation were shown
to cleave FN into different fragments lengths similar to those found in OA cartilage [44]. With the
discovery of human TLRs, researchers were able to decipher how FN fragments are recognized. Some
FN fragments have been shown to elicit catabolic responses through TLR2 recognition, while the
domain 13-14 of 29 kDa FN fragments are recognized by TLR4 [45,46].

Serum amyloid A (SAA), a TLR4 ligand, is also found at increased concentrations as OA severity
increases. SAA is upregulated in the serum and synovium of OA patients, and SAA levels correlate
with the radiographic progression of OA. In vitro studies have demonstrated that SAA is recognized
by TLR4 in human chondrocytes and synovial fibroblast and ensuing production of cytokines and
collagenases [47].

Other known TLR DAMPs present at increased levels in the OA synovial joints are members of the
calcium-binding proteins family, specifically, S100A8 and S100A9. S100A8 and S100A9, whose levels
are also increased in OA cartilage lesions and correlate with the expression of MMPs and proteoglycan
depletion [48,49]. Chondrocytes can synthesize S100A8 and S100A9, and their synthesis is upregulated
by known OA inflammatory factors such as IL-1β, TNFα, IL-17, and IFN [48]. Furthermore, S100A8
and S100A9 are recognized by TLR4+ chondrocytes, leading to upregulated secretion of collagenases
and aggrecanases and inhibition of collagen type II and aggrecan [49]. Moreover, a similar biological
response is observed in S100A8/9-stimulated OA mouse models [50]. Interestingly, S100A8 and S100A9
levels in early symptomatic OA patients can predict osteophyte formation after two or five years [51].

Biglycan (BGN) and decorin (DCN) are two small structural proteoglycans with leucine-rich repeats
(small leucine-rich proteoglycan (SLRP)) essential to the cartilage matrix structure [52]. However,
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several studies have demonstrated the BGN and DCN upregulation in OA cartilage and increased
forms of BGN and the presence of DCN auto-antibodies in SF from OA [53,54]. Importantly, BGN
is upregulated in OA SF, and BGN and DCN activate chondrocyte pro-inflammatory response, via
TLR4, resulting in the upregulation of OA inflammatory factors such as IL-6, IL-8, MMPs, and nitric
oxide levels [55]. Moreover, BGN was shown to induce cartilage degradation in cartilage explants
models [55]. A list of the known receptors expressed in the synovial joints and their known DAMPS
and modulators present in the OA joint is summarized in Table 1.

Finally, it is interesting to note that TLR4 expression seems to be regulated by the applied shear
stress to chondrocytes, with high shear stress causing TLR4 upregulation. In contrast, prolonged
shear stress leads to the downregulation of TLR4 and a TLR4 expression dependent inflammatory
response [56].

Table 1. Toll-like receptors and their respective endogenous ligands present in osteoarthritis.

Receptor Receptor Expression DAMPs Modulators Reference

TLR1/2 FLS, chondrocytes N/A N/A [18]

TLR2 FLS, chondrocytes HMGB1, Fibronectin fragments Mechanical strain,
TNF-α [57,58]

TLR3 FLS, chondrocytes dsRNA N/A [18,59]

TLR4 FLS, chondrocytes
Fibronectin fragments,

S100A8-A9, TN-C, LMW-HA,
HMGB1, biglycan, decorin

Mechanical stress,
TNF-α, plasma

proteins
[58]

TLR5 FLS, chondrocytes,
bone

Functionally proofed but ligand
unidentified TNF-α, IL-8 [60]

TLR6/2 FLS, chondrocytes Versican N/A [61,62]
TLR7 FLS, chondrocytes ssRNA N/A [18,59]
TLR8 FLS, chondrocytes ssRNA N/A [18]
TLR9 FLS, chondrocytes dsRNA N/A [18]

ssRNA: single-stranded RNA; dsRNA: double-stranded RNA; FLS: fibroblast-like synoviocytes; TN-C: tenascin-c;
SF: synovial fluid; LMH-HA: low-molecular-weight hyaluronan; HMGB1: high-mobility group box 1; TNF-α: tumor
necrosis factor alpha; IL-6: interleukin 6; IL-8: interleukin 8; S100A9: S100 calcium-binding protein A9.

4. TLRs and Chondrocyte Apoptosis

At the core of the failed regeneration and remodeling of degenerated cartilage might be the reduced
number of chondrocytes in aged articular cartilage. As early OA progresses complex chondron start to
form, also known as chondrocytes cluster or clones, as a result of increased metabolic activity and
initial chondrocytic proliferation [11,63]. Eventually, the initial cell proliferation is counterbalanced by
the failure to prevent the catabolic degeneration and reduced anabolic secretion leading to chondrocyte
death, hypocellularity, and empty lacunas [11].

It is important to note that besides apoptosis other mechanisms of cell death, such as autophagy
and necrosis, may contribute to the chondrocyte death but these mechanisms are outside the focus of
this review.

4.1. The Interplay Between TLRs and Apoptosis of Chondrocytes in OA

4.1.1. TLRs and Apoptosis

TLR signaling is dependent on five TIR domain-containing adaptors; however, only MyD88 and
TRIF function as transducers [64]. TRAM and TIRAP are bridging adaptors, while SRAM regulates
(negatively) TRIF. TLR activation via Myd88 (TLR2, TLR7, TLR8, and TLR9), TRIF (TLR3), or both
(TLR4) can lead to apoptosis, demonstrating that Myd88 and TRIF can activate apoptosis independently
and, perhaps, the cross-talk between the two signaling pathways (TLR4) can lead to apoptosis as
well [65–67]. The Myd88-dependent pathway initiates the recruitment of MyD88 and TIRAP via the
TIRTIR homophilic interaction as a result of TLR dimerization. Myd88 then forms a complex with
IL-1R-associated kinases (IRAK4 and IRAK1) and TRAF6. TRAF6 activation is repercussioned in
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the TGF-β-activated kinase 1 (TAK1)–TAB1/2/3 complex leading to the activation of the canonical
NF-kB pathway and the MAP kinases (Figure 2). Overexpression of Myd88 induces a low level of
apoptosis [65]. However, TLR-MyD88 role in cell death is suggested to be mostly indirect, via the
signaling induction of pro-apoptotic molecules such as TNF-α or NO [68,69].

Interestingly, TLR4 may move from the plasma membrane to the endosomes in order to switch
signaling from MYD88 to TRIF. Both TLR3 and TLR4 recruit TRIF directly or through TRAM. The
C-terminal region of TRIF, in turn, recruits the receptor-interacting protein 1 (RIP1), a serine/threonine
kinase that can promote apoptosis via the recruitment of FADD and ensuing caspase-8 activation [70,71].
On the other hand, the N-terminal region of TRIF can recruit TRAF6 leading to the activation of
NF-KB and the ensuing production of pro-apoptotic molecules. TRIF N-terminal can also bind to
TRAF3, which, in turn, triggers the phosphorylation of IRF3 and the secretion of IFN-b. Interestingly,
independently of TLR activation TRIF overexpression in macrophages and fibroblasts is sufficient
to trigger apoptosis, while TRIF inhibition protects murine macrophages against poly(I:C)- and
LPS-induced apoptosis [67,72].

4.1.2. Chondrocyte Apoptosis Mediated by TLRs in Osteoarthritis

At this point, it is now evident that TLRs and apoptosis are two crucial players of the pathomolecular
mechanisms of cartilage degeneration in OA. However, much remains to be understood regarding the
evidence and role for TLR-induced chondrocyte apoptosis mechanisms in osteoarthritis.

From the biomechanical perspective, it is well known that altered joint biomechanics, such as
high fluid shear, can induce the production of pro-inflammatory mediators like IL-1β, TNFα, and IL-6
by chondrocytes [73]. Importantly, a recent study demonstrated the TLR4 signaling pathway as the
primary responsible mediator of pro-inflammatory response, where the duration of shear stress was
able to regulate TLR4 activation and consequent cells senescence, death, and apoptosis, in a lipocalin
(L)-type prostaglandin-dependent manner [56]. Importantly, an ex vivo (cartilage explant) model of
post-traumatic OA has demonstrated that mechanical strain leads to the pro-inflammatory response,
mediated by TLR 3, -7, and -9, and upregulated chondrocyte apoptosis in a dose-dependent mechanical
strain effect [74]. Interestingly, TLRs expression is increased in OA cartilage, with notably higher
expression at the cartilage surface zone where shear stress and strain forces take place [75]. Together,
these results suggest that TLR4 may be an essential mediator between mechanical overload stress and
the transduction to an inflammatory response.

A typical inducer of chondrocyte apoptosis is the pro-inflammatory environment of SF in OA.
In OA, the SF has increasing levels of several DAMPS, such as tenascin, biglycan, decorin, fibronectin,
and pro-apoptotic molecules, such as TNF-α and IFN [76]. As mentioned, TNF-α and IFN are known to
cause apoptosis via direct TLR or indirect activation of TLR signaling cascades, hence, their upregulated
production by OA joint cells may influence cell death levels observed in cartilage and other tissues.

As mentioned earlier, TLR4 downstream activation leads to an increase in the production of
nitric oxide (NO), several pro-inflammatory cytokines, and adipokines, which, together, mediate
cartilage degradation. NO, is a highly reactive gas, known to participate in the molecular mechanisms
of arthritic conditions. In chondrocytes from RA and OA joints, upregulated NO production levels
are observed in contrast to healthy chondrocytes [77,78]. Strikingly, chondrocyte production of
NO is higher than the one observed by macrophages, making chondrocyte one of the significant
sources of upregulated NO amounts in the intra-articular space [79]. The TLR-NF-kB pathway
induces downstream activation of nitric oxide synthase (NOS2) expression, which, in turn, leads
to an increase in the production of NO. Moreover, the increased amount of NO is accompanied by
increased chondrocytes apoptosis is probably due to the ability of NO to induce chondrocyte apoptosis
but also catabolic and inflammatory responses [80,81]. Interestingly, not only TLR activation leads
to NO production but also vice versa. Recent work demonstrated the ability of NO to upregulate
TLR4-mediated neutrophil gelatinase-associated lipocalin (NGAL) production, a known catabolic
adipokine implicated in cartilage degradation and associated with OA [82,83].
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Another recent study demonstrated that amyloid TTR, present in synovial fluid and deposited in
the cartilage surface of OA joints, may induce apoptotic cell death, and pro-inflammatory response in
a partly TLR4-dependent manner [84].

Obesity, a known risk factor for OA, is associated with a state of low-grade inflammation and
increased circulating levels of adipokines and free fatty acids (FFAs). Interestingly, adipokines/FFAs
such as palmitate induces a TLR4-signaling dependent activation of caspases and cell death in
IL-1β-stimulated normal chondrocytes. In an ex vivo model of cartilage tissue, a similar response was
observed, with palmitate inducing chondrocyte death, IL-6 release, and ECM degradation [85].

Interestingly, the WNT/β-catenin pathway, a known contributor for apoptosis regulation, may
be cross-regulated with the TLR/NF-κB signaling pathway [86]. Several WNT pathway components
are upregulated in human OA and murine models of exercise-induced OA [87]. Moreover, studies
have demonstrated that an imbalance in WNT signaling leads to an OA-like phenotype development
in murine models [88]. However, much controversy remains over the role of WNT antagonists,
particularly for the role of DKK1 and the expression in OA. WNT antagonists DKK-1 and FRZB mRNA
expression levels have been observed to be downregulated in OA cartilage [89]. In sharp contrast,
others have shown that DKK1 expression is upregulated during OA progression and correlated
with chondrocyte inflammatory markers and apoptosis [90–92]. To add further confusion, DKK-1
inhibition or overexpression have both shown protective effects in murine models of OA [91,92].
However, in an in vitro study using human primary chondrocytes extracted from OA patients, DKK1
treatment had a dose-dependent effect increasing chondrocyte apoptosis, mediated IL-1β promotion
of chondrocyte apoptosis, in line with the therapeutic hypothesis that attenuating DKK1 may reduce
cartilage deterioration in OA [90]. Furthermore, DKK1 KO preventive effects of murine OA model also
modulate TLR4 and -9 expression and chondrocyte apoptosis rate [90].

Critically, only a few molecules are known to exert anti-inflammatory protection over chondrocytes,
via modulation of TLR-mediated inflammation.

Lubricin, the glycoprotein product of the PRG4 gene, is responsible for boundary-lubrication
of the articular cartilage surface, but also has a chondroprotective effect [93]. Lubricin, the main
boundary-lubricant of cartilage, can maintain the coefficient of friction at minimal levels, therefore
preventing cartilage wear [93]. A vast majority of lubricin is expressed by cartilage superficial zone
chondrocytes and synoviocytes, in dimeric and monomeric forms [93]. Surprisingly, synovial fluid
resident lubricin has also been shown to down-modulate the TLR2 and TLR4 activation response
to PAMPs and OA and RA synovial fluid, leading to reduced inflammation and pain levels in
a murine model of OA [94,95]. However, in OA, lubricin synthesis and SF levels are reduced
while lubricin proteolytic cleavage is increased, which leads to the loss of lubricin lubricating and
anti-inflammatory chondroprotective properties [96]. Consequently, increased chondrocyte apoptosis
levels observed in superficial cartilage zones during OA may result from reduced levels of lubricin
and its anti-inflammatory and lubricating properties [97].

Another class of molecules associated with anti-inflammatory properties in OA are microRNAs,
such as the miRNA-146a and miRNA-146b. MicroRNAs (miRNAs) are small non-coding RNAs that
regulate a broad spectrum of physiological cell processes during development and tissue homeostasis
via RNA silencing and transcriptional regulation of gene expression. miR-146a and miR-146b
have been shown to be upregulated in chondrocytes of OA joints [98,99]. Moreover, miR-146a and
miR-146b have also been shown to target pro-inflammatory mediators, particularly those regulating TLR
downstream pathways, such as the NF-κB pathway activation in dendritic cells and monocytes [100,101].
Interestingly, a similar mechanism is observed in OA joint chondrocytes. Stimulation with synthetic
miR-146 was able to counteract pro-inflammatory molecules, such as IL-1α, by down-regulating
induced catabolic molecules [102]. Moreover, mi146a transfection into OA chondrocytes was shown to
increase their proliferation and reduce apoptosis by targeting TRAF6 through the NF-kB signaling
pathway [103].
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5. Conclusions

In osteoarthritis, TLRs have a dual capacity to launch both cell defenses and cell death. Rapid
progress during the last few years has allowed us to understand the chondrocyte signaling cascades
from TLR activation down to cell metabolism; however, the molecular pathways leading to TLR-induced
apoptosis remain to be defined. Current data suggest that the latter are as diverse as the former, varying
with the TLR type, the joint cell type, and the metabolic reprogramming of the cell. As reviewed
above, there are convincing studies on the role of TLR activation and apoptosis of chondrocytes in OA;
however, direct evidence demonstrating a causal link between chondrocyte apoptosis and OA remains
to be established. Moreover, TLR activation can lead to both pro-survival and pro-apoptotic signals
that may have a different relative impact on healthy vs. diseased cells, with an increased tendency
to death in osteoarthritic cells. The current findings could also be potentially translated to the clinic,
particularly given the potential of soluble TLR4 and others as biomarkers of OA disease severity and
progression. However, whether and how those new twists in our understanding of the cross-talk
between TLRs and apoptosis could be translated into therapeutic interventions for OA remains to be
fully elucidated.
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