
Typing Patterns and Authentication in Practical
Programming Exams

Juho Leinonen
University of Helsinki

Finland
juho.leinonen@helsinki.fi

Krista Longi
University of Helsinki

Finland
krista.longi@helsinki.fi

Arto Klami
University of Helsinki

Finland
aklami@cs.helsinki.fi

Alireza Ahadi
University of Technology

Sydney
Australia

alireza.ahadi@uts.edu.au

Arto Vihavainen
University of Helsinki

Finland
avihavai@cs.helsinki.fi

ABSTRACT
In traditional programming courses, students have usually
been at least partly graded using pen and paper exams. One
of the problems related to such exams is that they only par-
tially connect to the practice conducted within such courses.
Testing students in a more practical environment has been
constrained due to the limited resources that are needed, for
example, for authentication.

In this work, we study whether students in a programming
course can be identified in an exam setting based solely on
their typing patterns. We replicate an earlier study that in-
dicated that keystroke analysis can be used for identifying
programmers. Then, we examine how a controlled machine
examination setting affects the identification accuracy, i.e. if
students can be identified reliably in a machine exam based
on typing profiles built with data from students’ program-
ming assignments from a course. Finally, we investigate the
identification accuracy in an uncontrolled machine exam,
where students can complete the exam at any time using
any computer they want.

Our results indicate that even though the identification
accuracy deteriorates when identifying students in an exam,
the accuracy is high enough to reliably identify students
if the identification is not required to be exact, but top k
closest matches are regarded as correct.

CCS Concepts
•Information systems → Data mining; •Social and
professional topics → Computer science education;
CS1; •Computing methodologies→ Supervised learn-
ing by classification; •Security and privacy→ Biomet-
rics;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ITiCSE ’16, July 09 - 13, 2016, Arequipa, Peru
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4231-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2899415.2899472

Keywords
authentication, machine exam, programmer identification,
source code snapshots

1. INTRODUCTION
Hundreds of thousands of students around the world at-

tend an introductory programming course each year, and at
the end of the course, many of them take part in an exam.
The exam may for example be a traditional written exam,
where students answer questions using pen and paper, or, it
may be a more practical laboratory exam, where students
are expected to construct programs in a lab setting [2,20]. In
both cases, students typically take the exams at their own
educational institution, where their identity is determined
by administrators or course staff.

With the trend towards blended and online course offer-
ings, it is meaningful to consider taking at least parts of the
exam by telecommute. Naturally, when such an option is
considered, concerns related to e.g. plagiarism [5, 19] and
authentication are involved. Plagiarism detection is about
determining whether the student is the author of the pro-
posed solution, while authentication is related to determin-
ing whether the student is who he or she poses to be.

Our work explores the possibility of automatically authen-
ticating students taking an exam by telecommute using their
typing patterns as the authentication mechanism. If authen-
tication using such means is possible, it could lead to redu-
cing costs related to the facilitation of local examinations,
increase the flexibility in when the exam is given, and also
provide the students with the chance to take the exam at a
location where they feel comfortable, possibly helping them
perform better during the exam.

While authentication of students based on typing speed
and keystroke durations has been previously explored out-
side the programming domain [11, 18], the task was only
recently considered within the domain of programming by
Longi et al. [14]. They used programming course data to
learn students’ typing profiles, and then sought to identify
the students in two separate situations: during a future ses-
sion on the same course and during a future course. With
the best approach, over 90% of the students in the dataset
were correctly identified.

In this work, we (1) replicate the work previously reported
by [14] with separate data sets, (2) explore to which extent
the method can be applied to distinguish students with data
from a shorter period, i.e. an exam, and (3) study how the
accuracy of the method changes when students work using
machines that they are accustomed to when compared to
machines in a laboratory setting. The main goal of these
experiments is to study the robustness of the approach in
practical settings.

This article is organized as follows. We provide a brief
overview of identification of users using keystroke data in
Section 2, after which we outline our research methodology
and data in Section 3. The description of results and exper-
iments is given in Section 4, followed by a discussion of the
results in Section 5. Finally, in Section 6, we conclude the
article and outline future work.

2. RELATED WORK
Various characteristics can be calculated from typing data.

These characteristics include duration of keystrokes, pres-
sure of keystrokes, and keystroke latencies [11], which may
vary depending on the situation – typing patterns can be af-
fected by different keyboards, for example, or different types
of texts [8]. Out of these characteristics the keystroke laten-
cies, especially digraph latencies – the time it takes to move
between a pair of keys – have been widely used [6,7,12,17,24].
Generally, digraphs are any two adjacent characters, for ex-
ample, the word word includes three digraphs: wo, or and
rd. If the word is mistyped, additional digraphs are also
observed – it also is possible to include events such as dele-
tions.

Much of the previous work on typing analysis has been
based on transcribed or pre-determined text, such as user-
names and passwords [3, 4, 9, 10, 25], but there are studies
where the input has been free text instead [3,8,15]. The res-
ults vary significantly based on the data used. For example,
in a study by Monrose and Rubin with 46 participants,
the identification accuracy decreased significantly from 79%
with transcribed text to 21% with free text [17]. They sug-
gested that this result could be partially explained by the
writer having to think about something to write rather than
being just able to type in whatever is given.

There are positive results from using free text as well. For
example, in an experiment with 20 participants, Killourhy
and Maxion found no significant difference in classification
results when using transcribed or free text [12]. In their ex-
periment, the participants were given comparable transcrip-
tion and free composition tasks, and they used lowercase
digraph and key-hold times with two separate classification
algorithms. Although the results were not exactly the same,
they were very close and neither one was always better [12].

Typing patterns can be affected by different conditions
such as the keyboard [24]. In a study by Villani et al. [24],
where participants had either only freely typed or tran-
scribed text, identification accuracies of over 98% were achie-
ved when when the subjects only used one type of keyboard.
However, when the keyboard was switched between the ses-
sion that produced the data from which the typing profile
was learned and the session where the participant was being
identified, the identification accuracy dropped to about 60%.
However, at the same time, using both desktop and laptop
keyboards in both sessions did not noticeably decrease the
accuracy [24].

Keystroke analysis has also been successfully applied in
identifying students in online exams [16, 21]. Using data
from 30 students taking examinations in a business school,
Monaco et al. were able to correctly identify all the stu-
dents [16]. Similarly, Coursera is collecting typing samples
from students who want to acquire a verified certificate [1].

In a programming context, keystroke analysis has been
used to infer programming performance [13, 22]. Thomas
et al. [22] found that there exist some digraphs that have
a moderate negative correlation with course scores. They
argue that more knowledgeable programmers type certain
digraphs faster than novice programmers.

3. METHODOLOGY
3.1 Context

The data for the experiments has been collected from four
programming courses held at the University of Helsinki in
2015 spanning both spring and autumn semesters. Both
semesters had a beginner and an advanced course in Java.
All four courses had a machine examination. The machine
exams consisted of Java programming assignments and the
students were allowed to use the Internet, but not commu-
nicate with anyone. The machine exams in spring 2015 were
conducted at university facilities in a computer lab, where
students’ identities were verified by course personnel. In
autumn 2015, the students were allowed to complete the ex-
amination at any location using any computer they wished
to use, and their identities were only verified by the system
used to submit the solutions to the programming assign-
ments. The students had two and a half hours to complete
the exam in both the controlled and the uncontrolled ma-
chine exams.

All four courses lasted 7 weeks each. In the beginner
courses, the students practice basic programming concepts
such as variables, inputs and outputs, loops, and objects,
and in the advanced courses, the students learn to use in-
terfaces, inheritance, file handling, and user interfaces. The
students complete multiple programming exercises every week.
Keystroke data from the exercises is collected using the Test
My Code -system, which provides an IDE integration for the
purposes of data gathering as well as providing feedback to
students as they work on the course assignments [23].

For each keystroke conducted within the environment that
changes the code, timestamp, exercise information, course
information, student information and the diff-information of
the change is collected. As the system only records visible
differences in the code, the data does not include special
keys like the Shift- and Ctrl-keys. The students can also
opt-out of data collection during the weekly exercises, but
not in the machine exam.

3.2 Research Questions
Our research questions for this study are as follows:

RQ 1. How does the identification accuracy vary between data
sets?

RQ 2. How does a controlled machine examination situation
affect the identification accuracy?

RQ 3. How does an uncontrolled machine examination situ-
ation affect the identification accuracy?

To answer the first research question, we replicate the
study by Longi et al. [14] to determine how identification
accuracy varies between data sets. To answer the second
and third research questions, we study how the exam situ-
ation affects identification accuracy using two different ex-
periments.

In the first experiment, the students complete a mandat-
ory machine examination at university facilities in a com-
puter lab and their identity is verified. In the second ex-
periment, the students were allowed to complete a similar
mandatory machine examination at any location using any
computer they wish to use and their identity is not verified.

3.3 Preprocessing
In the first experiment where we replicate the study by

Longi et al. [14], we used the same filters as outlined in the
original study to achieve as reliable replication as possible
in Section 4.1. This means that students who typed less
than 2000 characters during the first week of the course were
not included in the experiments. For the machine exam
experiments we only included data from the students who
participated in the machine exam.

Following the process described in [14], we filtered out
keystroke events that added more than one character to
eliminate refactoring and copy-paste events. We used the
same limitation on the typing event time; only typing events
where the duration from the previous event was in the range
of 10ms – 750ms were included.

3.4 Feature selection
In the original study by Longi et al. [14], the typing pro-

files were constructed using three different types of features:
1. the average latency between any two keys, i.e. the typing
speed of the student, 2. single character latencies, i.e. the
average latency from any key to a specific key, and 3. di-
graph latencies, i.e. the average latency from a specific key
to a specific key. Since digraph latencies have been shown to
work better than the other two types or a combined feature
vector that includes all three types [14], we only use digraph
latencies in our experiments.

In the replication experiments, we used the 100 most com-
mon digraphs for building the typing profiles similar to Longi
et al. [14]. The most common digraphs were determined by
sorting the digraphs by the median amount of times the stu-
dents had used them in both the training and the test set.
One digraph corresponds to one feature, and for a feature
to be included from a specific student, the student had to
have at least five instances of the digraph in the data. In
the machine exam experiments, we calculated the differences
in identification accuracy if the amount of features used to
build the typing profile is varied. The results for one data
set are presented in Figure 1. The figures for other data sets
show similar diminishing returns in the increase of accuracy
after around 25 features. The 25 most common digraphs for
the same set are presented in Table 1. Since the digraphs
are from a programming context, the most common ones
include programming-related digraphs such as i -> n and n
-> t from writing int, and the digraph used in creation of
Java’s code blocks { -> }.

3.5 Identification
The identification is based on comparing typing profiles

estimated during the test context against personal typing
profiles learned for each student during the course, using Eu-

clidean distance between the profiles for finding the nearest
ones. A simple nearest-neighbor classifier would give the
best estimate for the identity of the student, but for the pur-
pose of verifying whether the student is who he or she claims
to be it is not necessary to solve this full classification prob-
lem. Instead, it is sufficient that the correct training profile
is within top k closest profiles (Longi et al. [14] called this
acceptance threshold). The parameter k controls the balance
between two types of error: Large k increases the accuracy
for recognizing the true identities, but also makes it easier
for false identities to pass the identification test. The prob-
ability for that is k/N , where N is the number of students.
In the following experiments we will vary the choice of k,
searching for the smallest k that has sufficiently high accur-
acy.

4. EXPERIMENTS AND RESULTS
In this section, we present the experiments we conducted

to answer our research questions and their results.

4.1 Replication
To answer the question ”How does the identification ac-

curacy vary between data sets?”, we test identification ac-
curacy with four data sets from different courses. Previous
work has tested identification using data sets with around
200 students [14]. We include data sets with fewer students
in our replication experiment to see how the accuracy of
identification changes when there are fewer students.

The results of our replication experiments are shown in
Table 2. There, data set 1 is from an introductory program-
ming course in spring 2015. Data set 2 is from an advanced
programming course in spring 2015. Data sets 3 and 4 are
from an introductory and an advanced programming courses
held during the autumn semester of 2015. In each data set,
we used the first six weeks of the course for building the
training set typing profiles and the last week of the course
for building the test set typing profile. We achieve sim-
ilar results having above 90% accuracy with every data set
regardless of the acceptance threshold. The results indic-
ate that identification can be conducted reliably even with
smaller data sets.

4.2 Controlled Machine Exam Identification
Accuracy

Next, we answer the question ”How does a controlled ma-
chine examination situation affect the identification accur-
acy?”. Here, we use data from the spring of 2015 courses at
the University of Helsinki, where the students had to com-
plete a mandatory machine examination in a controlled en-
vironment at university premises. The results are presented
in Table 3.

The students can be identified with quite high accuracy,
even though the identification accuracy is significantly lower
than the accuracy achieved in Section 4.1. Especially precise
identification, i.e. identifying a student with a threshold of
one, does not work as well in the exam as it does for a larger
data set that consists of one week’s worth of programming.

In addition to studying the identification accuracy in a
controlled machine examination, we study the effect of fea-
ture quantity on identification accuracy to see how the fea-
ture count influences the identification accuracy. The results
show that for identifying students precisely, i.e. with an ac-
ceptance threshold of one, 50 features seem to be enough
as the increase in accuracy with 100 features is not signi-

Table 1: The 25 most common digraphs in a programming course which were used in building the typing
profiles for that course.

from key space t n l a a = r j t { l h i s o backspace k i t v u t e u

to key = u t u r t space i a h } i i n t u backspace u s a a k space t t

Figure 1: Smoothed identification accuracy plotted against the number of features. The threshold specifies
the number of students that are considered to be correct for identification purposes. The figure shows
that using around 25 features provides a good identification accuracy with all three thresholds and that the
accuracy starts to deteriorate after around 150 features.

Table 2: Identification Accuracy with Different Data
Sets

Data
set

Students Threshold
1

Threshold
5

Threshold
10

1 69 94.03% 97.02% 97.02%

2 61 93.22% 100% 100%

3 153 91.37% 97.84% 99.28%

4 128 94.64% 100% 100%

ficant enough to warrant increased complexity. If we allow
the student to be within an acceptance threshold of 5 or 10,
25 features seem to suffice. In the advanced course, using
10 features seems to achieve a quite reliable identification
accuracy of 95% with an acceptance threshold of five.

4.3 Uncontrolled Machine Exam Identification
Accuracy

Last, we answer the question How does an uncontrolled
machine examination situation affect the identification ac-

curacy?. In this experiment, we use data from the program-
ming courses held at the University of Helsinki in the au-
tumn of 2015. The results are presented in Table 4.

The results show that identification accuracy in an uncon-
trolled machine exam is slightly worse than in a controlled
one. Regardless, the identification accuracy is still suffi-
ciently high especially if we allow for an acceptance threshold
of 10 and use at least 25 features.

Contrary to the results in 4.2, increasing the feature amount
from 25 to 50 does not improve the identification accuracy
significantly when the acceptance threshold is one. 25 fea-
tures seem to suffice with any threshold to achieve a high
identification accuracy. In the beginner course, having 50
features instead of 25 has a detrimental effect on accuracy,
which is lower with all three threshold levels when using 50
features compared to using 25.

5. DISCUSSION
Previous work by Bennedsen and Caspersen [2] argues

strongly for having machine examination on introductory

Table 3: Identification Accuracy in a Controlled Ma-
chine Exam

Beginner course with 69 students

Features Threshold 1 Threshold 5 Threshold 10

10 44.93% 78.26% 89.86%

25 75.36% 92.75% 97.10%

50 86.89% 100% 100%

100 86.89% 100% 100%

Advanced course with 61 students
Features Threshold 1 Threshold 5 Threshold 10

10 73.77% 95.08% 98.36%

25 85.25% 96.72% 98.36%

50 91.37% 97.84% 99.28%

100 94.64% 100% 100%

Table 4: Identification Accuracy in an Uncontrolled
Machine Exam

Beginner course with 153 students

Features Threshold 1 Threshold 5 Threshold 10

10 67.32% 91.50% 96.08%

25 86.28% 96.73% 96.73%

50 84.31% 93.46% 96.08%

100 86.93% 97.39% 97.39%

Advanced course with 128 students
Features Threshold 1 Threshold 5 Threshold 10

10 68.75% 86.72% 91.41%

25 86.72% 92.97% 96.09%

50 87.50% 94.53% 96.09%

100 89.06% 94.53% 96.09%

programming courses. However, a big limitation for having
machine examinations is the cost of overseeing students tak-
ing the exam. Our experiments show that it is possible to
identify students in a machine examination based on their
typing profiles, which means that the cost of machine ex-
aminations could be alleviated by having the students com-
plete the exam remotely on their own devices, since cheating
students could be identified based on their typing patterns.
However, condemning a student for cheating solely based
on their typing profile is not advisable, since there could
be other factors that affect typing such as exam stress or a
broken arm. Nevertheless, what could be done is that a flag
could be raised in situations where the student is suspected
of cheating based on their typing, and further analysis is
performed manually. A limitation of our approach is that
keystroke analysis can only identify cases where a student
has someone else complete the exam for them, but not cases
where the whole course is taken by someone else than the
student. Since we can only observe typing, a student could
cheat by having a friend help them during the exam, but do
all the typing himself. However, at the same time, such be-
havior might likely also influence the typing patterns in the
same way as changing from transcribed to free-text does [17].

In most of our experiments, an acceptance threshold of 5
seems to have about as good performance as a threshold of

10, and both perform significantly better than exact identi-
fication, i.e. using a threshold of one. There are a few excep-
tions though, which suggests that to be certain, a threshold
of 10 should be used. With only 25 features and a threshold
of 10, we can get over 95% identification accuracy with all
data sets in our experiments. This means that in a real-
world scenario, only 5% of the cases would be false posit-
ives, i.e. identifying a ”cheating” student where there is no
cheating. The acceptance threshold is still small enough to
guarantee reasonably low false negative rate; for all contexts
the probability of an impostor passing the identification test
is below 10%.

The fact that no major difference in the identification ac-
curacies between the uncontrolled examination and the con-
trolled examination could indicate that there is some cheat-
ing, since hypothetically, the results should be better if the
students are allowed to complete the exam on the same com-
puter that they have used during the exercises – previous
work has shown that changing keyboards had an adverse ef-
fect on identification [8]. However, there could be other un-
known factors that influence the results. For example, the
fairly low-dimensional typing profiles and relatively high ac-
ceptance threshold might make the identification algorithm
robust for such changes.

To achieve optimal identification accuracy, at least 25 fea-
tures should be used. This is less than used by Longi et
al. [14], who used 100 features. In our experiments the accur-
acy gain for going from 25 to 50 features was only marginal,
and that around 150 to 200 features the accuracy already
drops visibly (see Figure 1). This discrepancy compared to
the earlier study is to be expected since the training and test
context differ more in our setup; the most frequent features
are likely to be more robust against changes caused by differ-
ent keyboard or other external factors. For highly controlled
setups one could use also features that would be too fragile
for the less controlled test situations in our experiments.

6. CONCLUSIONS AND FUTURE WORK
In this work, we explored how students’ typing patterns

could be used to authenticate them in a computer-based
examination. We were able to identify programmers from
their typing patterns. This replicates the study by Longi
et al. [14] as well as shows that identification is possible
with data sets containing a smaller number of students. We
also showed that it is possible to identify students in a ma-
chine exam based on typing profiles built with exercise data.
Identification in an exam setting does not work as well as
identification of students on the last week of introductory
programming courses, but shows promise that even though
the accuracy is lower, it might be enough to catch cheaters
in computerized exams.

We also observed that in all of our data sets, the optimal
amount of features was around 25. After 25 features, identi-
fication accuracy did not improve significantly, and even de-
teriorated when more than about 150 features were included
in the typing profiles. We therefore argue that should key-
stroke analysis be used in identifying students in a machine
examination, the typing profiles should be built considering
the 25 most common digraphs to avoid considering features
that are too fragile to work in different test settings. To get
reliable identification accuracy, we furthermore suggest that
students should be identified using the acceptance threshold
method [14] and that the acceptance threshold should be 10,

i.e. a student is not considered to have cheated if his or her
profile is in the top ten closest samples in the training set.
This suggestion is valid for student populations of roughly
50-150 students; for smaller courses the threshold needs to
be lowered.

For future work, we are interested in researching in more
detail how participant and feature quantities affect identi-
fication. Here, we only showed that identification is possible
in data sets with fewer than a hundred students. We hope
to examine how identification accuracy changes when there
are hundreds or thousands of students. We are also hopeful
that keystroke analysis is included in cheating prevention in
machine exams since the results presented here indicate that
it is possible to identify students in a machine examination
situation. We are also looking for approaches to anonymize
the data so that datasets such as ours could be published
without privacy concerns.

Acknowledgements
The research was supported in part by the Academy of Fin-
land (project 1266969 and COIN Centre of Excellence) and
the Finnish Funding Agency for Innovation (under project
Re:Know).

7. REFERENCES
[1] Coursera signature track.

https://www.coursera.org/signature/. Accessed:
2015-07-31.

[2] J. Bennedsen and M. E. Caspersen. Assessing process and
product: A practical lab exam for an introductory
programming course 1. Innovation in Teaching and
Learning in Information and Computer Sciences,
6(4):183–202, 2007.

[3] F. Bergadano, D. Gunetti, and C. Picardi. User
authentication through keystroke dynamics. ACM Trans.
Inf. Syst. Secur., 5(4):367–397, Nov. 2002.

[4] S. Cho, C. Han, D. H. Han, and H.-I. Kim. Web-based
keystroke dynamics identity verification using neural
network. Journal of organizational computing and
electronic commerce, 10(4):295–307, 2000.

[5] M. Dick, J. Sheard, C. Bareiss, J. Carter, D. Joyce,
T. Harding, and C. Laxer. Addressing student cheating:
Definitions and solutions. SIGCSE Bull., 35(2):172–184,
June 2002.

[6] P. Dowland and S. Furnell. A long-term trial of keystroke
profiling using digraph, trigraph and keyword latencies. In
Y. Deswarte, F. Cuppens, S. Jajodia, and L. Wang, editors,
Security and Protection in Information Processing Systems,
volume 147 of IFIP - The International Federation for
Information Processing, pages 275–289. Springer, 2004.

[7] R. S. Gaines, W. Lisowski, S. J. Press, and N. Shapiro.
Authentication by keystroke timing: Some preliminary
results. Technical report, 1980.

[8] D. Gunetti and C. Picardi. Keystroke analysis of free text.
ACM Trans. Inf. Syst. Secur., 8(3):312–347, Aug. 2005.

[9] S. Haider, A. Abbas, and A. Zaidi. A multi-technique
approach for user identification through keystroke
dynamics. In Systems, Man, and Cybernetics, 2000 IEEE
International Conference on, volume 2, pages 1336–1341
vol.2, 2000.

[10] R. Joyce and G. Gupta. Identity authentication based on
keystroke latencies. Communications of the ACM,
33(2):168–176, 1990.

[11] M. Karnan, M. Akila, and N. Krishnaraj. Biometric
personal authentication using keystroke dynamics: A
review. Applied Soft Computing, 11(2):1565 – 1573, 2011.
The Impact of Soft Computing for the Progress of Artificial
Intelligence.

[12] K. S. Killourhy and R. A. Maxion. Free vs. transcribed text
for keystroke-dynamics evaluations. In Proceedings of the
2012 Workshop on Learning from Authoritative Security
Experiment Results, LASER ’12, pages 1–8, New York, NY,
USA, 2012. ACM.

[13] J. Leinonen, K. Longi, A. Klami, and A. Vihavainen.
Automatic inference of programming performance and
experience from typing patterns. In Proceedings of the 47th
ACM Technical Symposium on Computing Science
Education, SIGCSE ’16, pages 132–137, New York, NY,
USA, 2016. ACM.

[14] K. Longi, J. Leinonen, H. Nygren, J. Salmi, A. Klami, and
A. Vihavainen. Identification of programmers from typing
patterns. In Proceedings of the 15th Koli Calling
Conference on Computing Education Research, pages
60–67. ACM, 2015.

[15] J. Monaco, N. Bakelman, S.-H. Cha, and C. Tappert.
Recent advances in the development of a long-text-input
keystroke biometric authentication system for arbitrary text
input. In Intelligence and Security Informatics Conference
(EISIC), 2013 European, pages 60–66, Aug 2013.

[16] J. Monaco, J. Stewart, S.-H. Cha, and C. Tappert.
Behavioral biometric verification of student identity in
online course assessment and authentication of authors in
literary works. In Biometrics: Theory, Applications and
Systems (BTAS), 2013 IEEE Sixth International
Conference on, pages 1–8, Sept 2013.

[17] F. Monrose and A. Rubin. Authentication via keystroke
dynamics. In Proceedings of the 4th ACM Conference on
Computer and Communications Security, CCS ’97, pages
48–56, New York, NY, USA, 1997. ACM.

[18] A. Peacock, X. Ke, and M. Wilkerson. Typing patterns: A
key to user identification. IEEE Security & Privacy,
2(5):40–47, 2004.

[19] J. Sheard, M. Dick, S. Markham, I. Macdonald, and
M. Walsh. Cheating and plagiarism: perceptions and
practices of first year it students. In ACM SIGCSE
Bulletin, volume 34, pages 183–187. ACM, 2002.

[20] J. Sheard, Simon, A. Carbone, D. D’Souza, and
M. Hamilton. Assessment of programming: Pedagogical
foundations of exams. In Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer
Science Education, ITiCSE ’13, pages 141–146, New York,
NY, USA, 2013. ACM.

[21] J. Stewart, J. Monaco, S.-H. Cha, and C. Tappert. An
investigation of keystroke and stylometry traits for
authenticating online test takers. In Biometrics (IJCB),
2011 International Joint Conference on, pages 1–7, Oct
2011.

[22] R. C. Thomas, A. Karahasanovic, and G. E. Kennedy. An
investigation into keystroke latency metrics as an indicator
of programming performance. In Proceedings of the 7th
Australasian Conference on Computing Education -
Volume 42, ACE ’05, pages 127–134, Darlinghurst,
Australia, Australia, 2005. Australian Computer Society,
Inc.

[23] A. Vihavainen, T. Vikberg, M. Luukkainen, and M. Pärtel.
Scaffolding students’ learning using test my code. In
Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE
’13, pages 117–122, New York, NY, USA, 2013. ACM.

[24] M. Villani, C. Tappert, G. Ngo, J. Simone, H. Fort, and
S.-H. Cha. Keystroke biometric recognition studies on
long-text input under ideal and application-oriented
conditions. In Computer Vision and Pattern Recognition
Workshop, 2006. CVPRW ’06. Conference on, pages
39–39, June 2006.

[25] E. Yu and S. Cho. Ga-svm wrapper approach for feature
subset selection in keystroke dynamics identity verification.
In Neural Networks, 2003. Proceedings of the International
Joint Conference on, volume 3, pages 2253–2257, July 2003.

