
Student Modeling Based on Fine-Grained
Programming Process Snapshots

Juho Leinonen
University of Helsinki

Helsinki, Finland
juho.leinonen@helsinki.�

ABSTRACT
I am studying the use of �ne-grained programming process data
for student modeling. The initial plan is to construct di�erent types
of program state representations such as Abstract Syntax Trees
(ASTs) from the data. These program state representations could be
used for both automatically inferring knowledge components that
the students are trying to learn as well as for modeling students’
knowledge on those speci�c components.

KEYWORDS
student modeling; programming snapshots; programming process
data; educational data mining

1 PROGRAM CONTEXT
At the University of Helsinki, we collect �ne-grained data from
the students’ programming process [11]. On each key-press within
the programming environment, information on time, assignment,
student and the source code modi�cation is stored. In previous
research, we have observed that students’ programming experience
can be partially inferred based on this �ne-grained data [6]. My
plan is to investigate whether more �ne-grained knowledge could
be also inferred from the data, such as the mastery of speci�c
knowledge components. Studies along this topic have previously
been conducted by, for example, Rivers et al. [8], Hosseini et al. [3],
and Yudelson et al. [13]

Essentially, what is remaining in my PhD is 1) to de�ne knowl-
edge components based on the process states either automatically
or manually and then 2) use these knowledge components and
information on students’ success (e.g. whether the code compiles
or the assignment is proceeding to a desired direction) as an in-
put for student modeling algorithms such as Bayesian Knowledge
Tracing [2, 14] and Performance Factors Analysis [7], and possibly
implement novel student modeling techniques that better utilize
the high granularity of the data. It is likely, however, that this will
be an iterative process.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICER’17, August 18-20, 2017, Tacoma, WA, USA.
© 2017 Copyright held by the owner/author(s). 978-1-4503-4968-0/17/08.
DOI: http://dx.doi.org/10.1145/3105726.3105732

2 CONTEXT AND MOTIVATION
Our research group organizes the CS1 courses at the University of
Helsinki and facilitates introductory programming courses through-
out Finland in high schools and other universities and colleges. We
also o�er a MOOC with thousands of participants each year. For
the time being, the courses are not too adaptive. All the students
regardless of whether they study at the University or at a high-
school have the same exercises, the same material, and the same
support on the course. As the students’ backgrounds vary a lot, es-
pecially in our MOOCs, the di�erences between the learners should
be taken into account, and the material and the assignments should
be adapted based on the students’ knowledge and learning rate.

The data used in my PhD comes from these courses. In addition
to the �ne-grained programming process data that is being collected
using a tool called Test My Code [12], we collect material usage data
and voluntary demographic data such as students’ gender, level of
education, and age.

The current Test My Code -plugin evaluates only the functional-
ity of the program. However, the correctness of the functionality
is only a proxy for learning: it is possible that a knowledgeable
student and a struggling student end up with the same solution,
but took drastically di�erent paths to achieve the solution. As we
have the process data, we would like to be able to better utilize the
information of the process by which the solution is constructed in
addition to the end solution. This would allow us to e.g. give extra
assignments to struggling students, while knowledgeable students
would not need to complete assignments about a topic they already
master.

3 BACKGROUND & RELATEDWORK
A recent literature review that analyzed data collection in the con-
text of computing education found that only 76 out of over 3500
articles included automatic programming process data gathering [5].
Rivers and Koedinger have developed a programming tutor that
automatically generates hints based on abstract syntax trees which
are built based on programming code [9]. Similarly, abstract syntax
trees could be built based on students’ programming snapshots and
used for knowledge estimations as automatic hint generation and
knowledge estimation are inherently examining the same problem
– is the student struggling with a concept or not. More recently,
Rivers et al. [8] studied learning curve analysis for estimating stu-
dents’ knowledge of KCs. They note that a lot of previous research
has focused on compilation errors, and suggest that research on
estimating students’ knowledge based on their code (and not com-
pilation status) should be conducted. A similar observation was
made by Hosseini et al. when they studied the programming paths
of students in our data [3].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/325952472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Preliminary results that have been achieved in a research collabo-
ration between University of Helsinki, University of Pittsburgh, and
Carnegie Mellon University have shown that domain models can
be extracted from our data and that the programming process data
can be used for student modeling [13]. In my PhD, I am building
on those results.

4 PROBLEM STATEMENT,
RESEARCH GOALS & METHODS,
AND EXPECTED CONTRIBUTIONS

In my PhD work, I hope to facilitate adaptiveness on our courses.
To make the courses adaptive, we need to be able to model students’
knowledge, as one of the main objectives of adaptiveness is to
provide the students material and exercises that are suitable to
them in regards to their current knowledge. On one hand, we want
that the exercises and materials are not too hard for the student, so
that they are able to learn the concepts. However, we also do not
want to give out exercises or materials that the students already
master as it is possibly demotivational.

While similar research has been conducted previously, research
into how to model students’ knowledge based on the whole pro-
gramming process is still in its infancy. I have the following research
objectives for my PhD thesis: 1) Construct a domain model (set of
knowledge components) that describes the content the students
are supposed to learn based on snapshot level data; 2) Estimate stu-
dents’ knowledge of course concepts based on their programming
process.

To achieve these objectives, I will use the study by Yudelson et
al. [13] as a starting point, and build on their work by examining
other student modeling methods in addition to the Rasch model [10]
and the Additive Factors Model [1]. In order to use the snapshots as
input for student modeling algorithms, they need to be aggregated.
Our plan is to build ASTs out of the snapshots and de�ne KCs based
on these ASTs. We could then examine sub-ASTs and see which
constructs / KCs the students are struggling with by e.g. examining
whether sub-ASTs compile or are correct by some other evaluation
metrics.

The main contribution of my PhD is that students’ learning is
improved on courses where �ne-grained programming snapshots
are being collected. Other people in our research group are develop-
ing systems that could use the knowledge estimations for making
the course contents adaptive.

5 DISSERTATION STATUS
Although I am o�cially a �rst-year PhD student, I have been work-
ing with the snapshot data already during my BSc and MSc studies
on multiple publications. Additionally, I have studied relevant re-
search which has allowed me to formulate the research objectives of
my thesis. I have not yet started working on the AST construction
or student modeling aspects; however, our group has an existing
codebase for the purpose from previous work on CFAST [4]. I have
an outline of my PhD thesis completed. My expected graduation is
in late 2018 or early 2019.

6 EXPECTATIONS FROM THE DC
The data I have is very �ne-grained as it contains every keystroke
the students type when completing the programming assignments.
I wish to discuss possible aspects that this kind of �ne-grained data
might have that could be used for estimating students’ knowledge.
For example, what parts of the programming process would be
most relevant for estimating knowledge of speci�c knowledge com-
ponents and skills. Additionally, I would appreciate ideas on what
would be the best way to aggregate the data into suitable input
for existing student modeling algorithms such as BKT [2, 14] or
PFA [7]. For example, we want to retain the �ne-grained aspects of
the data, but individual programming process snapshots are hard
to classify to just successes and failures as required by PFA. As I
am in my �rst-year of PhD studies, I have plenty of time to revise
and improve my plans for my PhD thesis. Furthermore, in addi-
tion to student modeling, �ne-grained data could be used to infer
other information about the students that could be used to facilitate
learning, e.g. metacognitive strategies.

Lastly, I want to get acquainted with the ICER community as I
will be attending many CSEd conferences in the next four years.

REFERENCES
[1] H. Cen, K. Koedinger, and B. Junker. Comparing two irt models for conjunctive

skills. In Intelligent tutoring systems, pages 796–798. Springer, 2008.
[2] A. T. Corbett and J. R. Anderson. Knowledge tracing: Modeling the acquisition of

procedural knowledge. User modeling and user-adapted interaction, 4(4):253–278,
1994.

[3] R. Hosseini, A. Vihavainen, and P. Brusilovsky. Exploring problem solving paths
in a java programming course. 2014.

[4] D. Hovemeyer, A. Hellas, A. Petersen, and J. Spacco. Control-�ow-only abstract
syntax trees for analyzing students’ programming progress. In Proc. of the 2016
ACM Conference on International Computing Education Research, pages 63–72.
ACM, 2016.

[5] P. Ihantola, A. Vihavainen, A. Ahadi, M. Butler, J. Börstler, S. H. Edwards, E. Iso-
hanni, A. Korhonen, A. Petersen, K. Rivers, M. A. Rubio, J. Sheard, B. Skupas,
J. Spacco, C. Szabo, and D. Toll. Educational data mining and learning analytics
in programming: Literature review and case studies. In Proc. of the 2015 ITiCSE
on Working Group Reports, ITICSE-WGR ’15, pages 41–63, New York, NY, USA,
2015. ACM.

[6] J. Leinonen, K. Longi, A. Klami, and A. Vihavainen. Automatic inference of
programming performance and experience from typing patterns. In Proc. of the
47th ACM Technical Symposium on Computing Science Education, SIGCSE ’16,
pages 132–137, New York, NY, USA, 2016. ACM.

[7] P. I. Pavlik Jr, H. Cen, and K. R. Koedinger. Performance factors analysis–a new
alternative to knowledge tracing. Online Submission, 2009.

[8] K. Rivers, E. Harpstead, and K. Koedinger. Learning curve analysis for program-
ming: Which concepts do students struggle with? In Proc. of the 2016 ACM
Conference on International Computing Education Research, pages 143–151. ACM,
2016.

[9] K. Rivers and K. R. Koedinger. Automating hint generation with solution space
path construction. In International Conference on Intelligent Tutoring Systems,
pages 329–339. Springer, 2014.

[10] W. J. van der Linden and R. K. Hambleton. Handbook of modern item response
theory. Springer Science & Business Media, 2013.

[11] A. Vihavainen, M. Luukkainen, and P. Ihantola. Analysis of source code snapshot
granularity levels. In Proc. of the 15th Annual Conference on Information technology
education, pages 21–26. ACM, 2014.

[12] A. Vihavainen, T. Vikberg, M. Luukkainen, and M. Pärtel. Sca�olding students’
learning using test my code. In Proc. of the 18th ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE ’13, pages 117–122, New
York, NY, USA, 2013. ACM.

[13] M. Yudelson, R. Hosseini, A. Vihavainen, and P. Brusilovsky. Investigating
automated student modeling in a java mooc. In Educational Data Mining 2014,
2014.

[14] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon. Individualized bayesian
knowledge tracing models. In International Conference on Arti�cial Intelligence
in Education, pages 171–180. Springer, 2013.


	Abstract
	1 PROGRAM CONTEXT
	2 CONTEXT AND MOTIVATION
	3 BACKGROUND & RELATED WORK
	4 PROBLEM STATEMENT, RESEARCH GOALS & METHODS, AND EXPECTED CONTRIBUTIONS
	5 DISSERTATION STATUS
	6 Expectations from the DC
	References

