
Plagiarism in Take-home Exams: Help-seeking,
Collaboration, and Systematic Cheating

Arto Hellas
University of Helsinki

Department of Computer Science
Helsinki, Finland

arto.hellas@cs.helsinki.fi

Juho Leinonen
University of Helsinki

Department of Computer Science
Helsinki, Finland

juho.leinonen@helsinki.fi

Petri Ihantola
Tampere University of Technology
Department of Pervasive Computing

Tampere, Finland
petri.ihantola@tut.fi

ABSTRACT
Due to the increased enrollments in Computer Science education
programs, institutions have sought ways to automate and stream-
line parts of course assessment in order to be able to invest more
time in guiding students’ work.

This article presents a study of plagiarism behavior in an intro-
ductory programming course, where a traditional pen-and-paper
exam was replaced with multiple take-home exams. The students
who took the take-home exam enabled a software plugin that
recorded their programming process. During an analysis of the
students’ submissions, potential plagiarism cases were highlighted,
and students were invited to interviews.

The interviews with the candidates for plagiarism highlighted
three types of plagiarism behaviors: help-seeking, collaboration,
and systematic cheating. Analysis of programming process traces
indicates that parts of such behavior are detectable directly from
programming process data.

KEYWORDS
plagiarism, programming process data, educational data mining

ACM Reference format:
Arto Hellas, Juho Leinonen, and Petri Ihantola. 2017. Plagiarism in Take-
home Exams: Help-seeking, Collaboration, and Systematic Cheating. In
Proceedings of ITiCSE’17, July 03-05, 2017, Bologna, Italy., , 6 pages.
DOI: http://dx.doi.org/10.1145/3059009.3059065

1 INTRODUCTION
Universities and other institutions are facing increased enrollments
into their Computing programs. It is no surprise that teaching and
learning is moving online at increased speed: there has been a
push towards improving the feedback cycle that is associated with
coursework and examinations. First, feedback should be available
faster, and second, the costs should reduce. This is partially due
to the instructional quality, but also due to the price of traditional

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITiCSE’17, July 03-05, 2017, Bologna, Italy.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4704-4/17/07. . . $15.00.
DOI: http://dx.doi.org/10.1145/3059009.3059065

education. As a downside of this online learning movement, aca-
demic dishonesty such as plagiarism has become easier and even
more common [11].

Merriam-Webster online dictionary defines plagiarism as an
act of copying the ideas or words of another person without giving
credit to that person [15]. This is a significant problem especially in
computing education [5, 6], where students actually see copying
and pasting source code somehow more acceptable than doing the
same with natural language and essays [1].

Because of the wide impact and importance of the topic, source
code plagiarism has been studied for nearly three decades [12].
Much of the research has revolved around tools for detecting pla-
giarism (e.g., JPlag [17] or MOSS [4]) or students’ attitudes to-
wards plagiarism [23]. Tools and methods for detecting plagiarism
are typically based on comparing similarities between code seg-
ments [14, 19]. Although modern learning environments provide
rich log information on how students solve programming assign-
ments [10], this knowledge is rarely applied in plagiarism detection.

In this work, we study plagiarism in take-home exams of an
introductory programming course. As a part of take-home exams,
students were expected to use a custom tool for downloading the
take-home exam questions and answer templates so that the exam
questions could be answered on a schedule that best fits the student.
In addition, the tool recorded and sent the typing level changes
made to the downloaded answer templates.

Our research questions for this study are as follows:
(1) What types of plagiarism happen in take-home exams?
(2) How can these different plagiarism types be identified from

programming process data?
We answer these questions by using a mixed method approach.

First, we checked all the exam answers using JPlag1 and manu-
ally reviewed the results to identify suspicious cases. Next, we
interviewed all the related students from where different motiva-
tions and trends explaining students’ behavior emerged. Finally, we
compared programming traces to these verified plagiarism cases
in order to find whether different behaviors could be identified
directly from the traces.

The rest of the article is structured as follows. Next, in Section 2,
we outline the related research on source code plagiarism. This
is followed by a description of our data and context in Section 3.
Section 4 outlines the study methodology and the results, which
are then discussed in Section 5. Section 6 concludes the article and
provides directions for future work.

1The tool was selected based on the comparison of multiple plagiarism detection tools
supporting Java [7]

ITiCSE’17, , July 03-05, 2017, Bologna, Italy. Arto Hellas, Juho Leinonen, and Petri Ihantola

2 PLAGIARISM IN PROGRAMMING
Many studies have been conducted on plagiarism in program-
ming [1, 5, 11, 22, 23]. Especially, the attitudes of students [1, 11, 22]
and academics [5] on what constitutes plagiarism in programming,
which is quite different from traditional plagiarism as reusing code
is often encouraged on introductory courses [5]. This can lead
into a situation where the fine line between plagiarism and normal
course practice becomes unclear to students [11]. Cosma and Joy [5]
propose a definition of plagiarism based on survey answers from
computer science educators based in the U.K. Based on the survey
results, they define plagiarism as reusing code segments without
properly citing the original author of the code. They also include
obtaining the source code in their definition. They suggest that the
main reason behind plagiarism in programming assignments might
be that students are confused as to what constitutes plagiarism.

Joy et al. [11] studied students’ understanding of plagiarism in a
programming context. Similar to Cosma and Joy [5], they believe
that students’ confusion about plagiarism can lead to accidental
plagiarism. They found that students are especially confused about
reusing code from previous assignments, how accurately references
should be cited, to what extent can the students collaborate on
assignments, and that existing code should also be referenced when
it is converted from one programming language to another.

Students may also perceive some forms of cheating as less se-
vere than others [22]. For example, students view collaborating
on assignments to not be as serious an offense as cheating in the
exam. Students can be reluctant to report the cheating of fellow
students if they observe it, which suggests that automatic ways of
identifying cheating would be beneficial [22].

From the technical point of view, source code clone detection
methods can be divided between text based (e.g. hashing of code
lines), token based (i.e. similar to tokenization in compilers), tree
based (e.g. normalized AST comparison), metrics based (i.e. com-
bining multiple simple characteristics), graph based (e.g. depency
graphs), and mixed approaches [19]. Although all approaches aim
at coping with simple refactoring such as editing names or chang-
ing the order interchangeable code blocks, many tools are still
insensitive to such edits – especially if multiple refactorings are
combined to hide the origin of the work [7]. To alleviate these chal-
lenges, it has been recently proposed to incorporate edit history
more closely into plagiarism detection process [8, 21]. These previ-
ous experiments on utilizing the history, however, deal with more
coarse-grained edit data than what is available to us.

3 CONTEXT AND DATA
This study took place in an introductory programming course or-
ganized during fall 2016 at University of Helsinki, a research uni-
versity in Europe. The course is organized in Java, and the contents
of the course are similar to many other introductory programming
courses offered at universities: variables, input/output, selection,
objects, lists, maps, inheritance and so on.

Students who enroll to the BSc program as CS majors take the
course during their first semester. Students with other majors take
the course when it fits their schedule, given that they wish to take it.
It is only mandatory to the CS majors. From the course population,

roughly one third are CSmajors, and two thirds potentially consider
CS as a minor subject.

The grading of the course was based on a set of individual pro-
gramming assignments and pair-programming assignments that
correspond to 55% of the overall course mark, and three take-home
programming exams that correspond to 45% of the overall course
mark. The students had to gain at least half of the available points
from the final take-home programming exam that covered the
whole course in order to pass. The students in the course also had
the option of participating in a traditional exam at the University
facilities instead of the take-home exams.

All the programming assignments were administered using Test
My Code [25]. Test My Code (TMC) provides a plugin for program-
ming environments that makes it convenient to download, assess
and return assignments. Over 95% of the participants used TMC
with NetBeans, but some opted for Eclipse and IntelliJ IDEA.

Each take-home exam had three to five separate questions, and
the students had four hours to complete the exam. Any kind of col-
laboration or help-seeking was strictly forbidden in the take-home
exams, but the students were allowed to use the course materials
and their own solutions to the course assignments while working
on the take-home exam. Each take-home exam handout reminded
the students of the rules. The university takes strict policy on pla-
giarism: plagiarism leads to a failed course mark and recurring
offense leads to temporary expulsion from the university.

When a take-home exam was administered, the students could
pick a suitable time from a set of days for the exam. In order to
participate in the take-home exam, the students were expected to
enable the logging of programming process in TMC and to down-
load the assignment templates used in the exam. Downloading
the templates, which also included the handouts, started the exam.
The logs that TMC gathers includes every subsequent source code
state as well as typical programming environment events such as
running, debugging and testing the program.

In the course, 233 students participated in at least one take-home
exam, and 204 participated in the final take-home exam from which
the students had to gather at least half of the points to pass the
course. For the analysis, data from all the students was used.

4 METHODOLOGY AND RESULTS
4.1 Identifying candidates
A preliminary list of candidates who potentially plagiarized in the
take-home exams were identified using four separate methods:

(1) The JPlag-system [17] and a custom edit-distance metric
was used to assess the similarity of students’ solutions to
the take-home exam questions. Students with very similar
solutions to other students were suspect.

(2) Students’ course mark from the programming assignments
were contrasted with the take-home exam scores. Outliers,
i.e. students with poor assignment scores and high take-
home exam scores, were suspect.

(3) Pair-wise comparison of take-home exam start and end
times as well as the submission times of the take-home
exam questions. Students with similar start times, end
times, and submission times were suspect.

Plagiarism in Take-home Exams: Help-seeking, Collaboration, and Systematic Cheating ITiCSE’17, , July 03-05, 2017, Bologna, Italy.

(4) Pair-wise comparison of IP address spaces and IP addresses
fromwhich the submissions weremade. Students with very
similar IP addresses (outside known campus networks with
roaming) were suspect.

The preliminary list was manually studied in order to remove
false positives. False positives came mainly from JPlag and the
custom edit-distance metric as some of the exam questions were
highly structured.

After constructing a list of candidates approximately 15% of the
participants were contacted for further interviews.

4.2 Contacting and interviewing the candidates
The students were contacted through email that informed them that
they had been highlighted by a system that is used to detect plagia-
rism. The students were asked whether the information provided
by the system makes any sense to them, and if they could recall of
instances where they may have acted against the university policy.
Finally, interview times were scheduled.

The interviews were scheduled so that students who were likely
to have worked together were interviewed in successive time slots.
The interview process was planned to consist of multiple steps,
first showing the student a similarity matrix with one of the num-
bers being highlighted and telling them that their submission was
similar to another student (or other students), then proceeding by
showing the actual source codes, and finally asking for a poten-
tial explanation. Depending on the flow of the discussion, similar
but not identical problems to those in the take-home exam were
prepared for analysis.

As the students were contacted, a first type of plagiarism be-
havior – help-seeking – emerged. Multiple students responded
to the initial email that another student in the course that they
knew, typically a friend, had insisted for help, and that they could
eventually no longer say no. These students were typically doing
the exam in the same shared study space nearly at the same time,
or, the student who was seeking help deliberately sought the other
student out. In these cases, the students who were asked for help
were typically performing well in the course, and the student who
was asking for help knew of their performance. Students who had
asked for help admitted their behavior.

The second plagiarism behavior – collaboration – emerged
both through the data and through student interviews. Likely col-
laboration partners were identified through submission and pro-
gramming process similarity, take-home exam start and end times,
as well as possible previous collaboration in e.g. pair programming
assignments. After contacting the students, some asked if they could
come to talk either alone or together already before the assigned
slot. Most of the students who were suspected for collaboration
admitted doing so during the discussion, a typical approach was
working on the exam in the same study space and discussing the
problem with one another. Some initially denied any collaboration,
but confessed afterwards.

The third plagiarism behavior – systematic cheating – emerged
through individuals who did not respond to the contact request
at all, and through students who did not have a clear colleague
from whom they would have copied the solution. These typically
emerged from abnormal correlations between the programming

assignment scores and the take-home exam scores, as well as the
analysis of the sources from which the exam questions were down-
loaded and from which the submissions were made to the assess-
ment system. Here, typically, the students had acquired the exam
questions before taking the exam, and had practiced the tasks be-
forehand. Such behavior was rather rare, and students who were
suspected of such behavior admitted to their behavior.

Finally, a number of the students were acquitted during the
interview. Such students were often high-performing, and could
either easily explain the design decisions in the program, or explain
how they would solve another problem, or both.

4.3 Analysis of Log Traces
To understand how these different plagiarism behaviors could be
identified from the data, two methods were applied. First, we used
an edit distance algorithm [24] to study how each student’s distance
to their final solution changed during the programming process.
Then, we used a global alignment algorithm [16] to align each
student’s programming process with the programming process of
other students.

The alignment algorithm creates a matrix of sizem ∗ n for each
student pair, wherem is the event count for one student, and n is
the event count for another student, and calculates the edit distance
between all possible states. It then proceeds to identify the best
alignment by constructing a path in them ∗n matrix that minimizes
the path cost (edit distance) over the subsequent events from start
to end. When the best alignment has been identified, the path cost is
normalized by the number of events in the programming process to
account for solutions of different length. Finally, the best alignment
(here, average edit distance) for each student-pair is reported.

Note that as the calculation of the alignment is time-consuming
when conducted on fine-grained data that contains each keystroke,
only a subset of the events was used for constructing the alignments.

4.3.1 Help-seeking behavior and Systematic cheating. Two ab-
normal behaviors emerged during the analysis of the changes to the
students’ edit distances to their final solutions. There were students
who had copy-pasted content to reach a solution, see Fig. 1, and
there were programming processes that were very linear, see Fig. 2.

The first case (Fig. 1) is an example of a student who first at-
tempted to construct a solution to the question alone, but could not
do it. The student then proceeded to ask for help from an another
student, who eventually provided code that the help-seeker could
use. The second case (Fig. 2) is an example of a student who had
struggled with the course beforehand, and had acquired a solution
to the question. The student does not copy-paste the code, but it is
obvious that the student is copying it from another source.

The first case is typical to help-seeking behavior, and the second
case was seen in both behaviors (those students who had sought
out for help, and those students who had acquired the question and
worked out a solution beforehand). Figure 3 shows a pattern which
was more typical to those students who worked on the assignment
in a normal fashion – we will look into this in further detail next.

4.3.2 Collaboration. The alignment of students’ programming
process data resulted in pair-wise alignment scores for each student.

ITiCSE’17, , July 03-05, 2017, Bologna, Italy. Arto Hellas, Juho Leinonen, and Petri Ihantola

Figure 1: A student who first worked on a problem alone
(events 0-1250). After being stuck for a while, the student
asked for a solution from a peer. Parts of the received so-
lution was pasted into the student’s project to reach a final
solution.

Figure 2: A student had previously asked and received a solu-
tion for the problem from a peer. The student mimicked the
solution, but did not copy-paste it. At the end, the student
modified the variable and method names, and somewhat re-
organized the project.

Upon analysis, it became evident that the alignment of those stu-
dents who have collaborated to reach a solution was significantly
better than the alignment of random students. Such students could
be detected using an outlier test [18].

A visual analysis of the alignments supported the finding. Fig-
ure 4 illustrates the average edit distance of two sample students
to all other students in the class. In the Figure, the whiskers ex-
tend from each end of the box for a range equal to 1.5 times the
interquartile range, and the box spans the range of values from the

Figure 3: A student who had worked on the problem and
eventually reached a solution. The behavior did not indicate
copy-pasting or mimicking.

first quartile to the third quartile of the data. Outliers (detected by
Gnuplot) are marked as dots.

The student on the left hand side, i.e. “Candidate”, had collabo-
rated with another student; the collaboration partner was the one
with the smallest average edit distance. The student on the right
hand side, i.e. “Random”, is a randomly picked student who was
not suspected of plagiarism, no outliers were detected for the stu-
dent. Rosner’s Extreme Studentized Deviate test [18] confirmed
the existence of two outliers for the candidate when the strictness
(probability) was set as p = 0.05. When the strictness was increased
(p = 0.00001), one outlier was identified. After removing the outlier,
Kolmogorov-Smirnov test indicated that the data was normally
distributed (p > 0.15).

5 DISCUSSION
5.1 Behavior traits
Multiple behavior traits were detected during the analysis. Help-
seeking students were typically struggling in the course and sought
to pass by begging for answers from their peers. These students did
not always simply copy and paste the solutions that they received,
but for example, mimicked the solutions by typing them in keypress
by keypress; it was also typical to modify the variable names and
method names in order to mask obvious copy-pasting.

Collaborators had planned out meeting together with other stu-
dents to work on the take-home exams. They worked together to
reach a solution. The programming process often contains missteps
and rethinking the solution, and copy-paste behavior or mimicking
code received from others is almost absent. Collaboration can be
detected from the process logs if the student is collaborating with
a peer who is also taking the exam. Their solutions and problem
solving processes were typically very similar, and they had started
the exam nearly at the same time.

Systematic cheatingwas related to e.g. harvesting solutions using
a separate account. However, the students typically stated that it

Plagiarism in Take-home Exams: Help-seeking, Collaboration, and Systematic Cheating ITiCSE’17, , July 03-05, 2017, Bologna, Italy.

Figure 4: Two sample students and their alignment scores
with every other student who worked on the assignment
plotted using a box plot. The student labeled “Candidate”
had collaborated with another student (the lowest point),
whilst the student labeled “Random” had not.

was a “bad idea that they had in the middle of the night”. Such
behavior where students create multiple accounts in order to gain
access to course content that is used for assessment purposes has
recently been also identified in MOOCs [20].

When considering these behaviors, distinguishing between them
is not easy, and it is possible that the same student shows multiple
behaviors. For example, if a student had asked for a solution for
a problem from a peer long before he or she started to work on
the exam, it is a good question whether it should be considered
systematic cheating. Similarly, collaboration was always planned
and in that sense systematic.

5.2 Process data and course assignments
There has been an increase in the use of students’ programming
process data in research [10]. Such data shows plenty of promise
in e.g. learning how students learn. However, as we have observed
here, it is possible that the data that we gather is not an accurate
representation of the students’ knowledge.

When analyzing the students’ programming process data, we ob-
served that systems such as JPlag [17] are rather poor in detecting
plagiarism from problems that are highly structured. If the assign-
ment outline contains cues on class names, method names, variable
names, etc., the solutions that students create are very similar. On
the other hand, more variance is included in open-ended assign-
ments. Both have also benefits and downsides in how easy they are
to assess, and what types of tests one can write for them [9].

The use of process data as a part of the assessment and detection
of plagiarism has multiple benefits. We could, for example, detect
copy-paste events as well as programming behavior that shows
that a student is mimicking a previously acquired solution.

5.3 Take-home exams
Our observations come from a set of take-home exams that have
been used to assess students’ programming competence. Take-home
exams in the Computer Science education context have been previ-
ously studied by Leinonen et al. [13], who had access to data that
was recorded from both the exam and normal course assigments.
Their work has been more focused on identifying who is typing
the code, whilst our work focuses on whether the student is doing
the work on his or her own without help from others.

The take-home exam setup is an alternative version of the lab
exam by Bennedsen and Caspersen, who note that such an exam
provides a valid and accurate evaluation of the student’s programming
capabilities, evaluates the process as well as the product, and encour-
ages the students to practice programming throughout the course [3].
Whilst in their context the students come to a specific time slot and
lab for the exam, the approach is limited in terms of the number of
students who can attend the exam. As a benefit, plagiarism is harder.
In our context, on the other hand, there is no upper bound to the
number of participants, and less resources and TAs are needed, but
there are also more opportunities for plagiarism.

In an ideal setup, however, there would be no need for an exam.
Currently, the line that separates the take-home exams and the
course assignments from each other is the way that we expect the
students work on them. Course assignments can be worked on
with peers, but take-home exams should be completed individually.
In addition, each take-home exam must be completed within four
hours from the start of the exam, while the students have one week
to complete each course assignment set.

One way to reduce the need for the take-home exam could – for
example – be making it mandatory for the students to allow record-
ing their programming process in the course. As a consequence, one
could use algorithms such as the ones proposed by Ahadi et al. [2]
to identify students who handle the course content well, and focus
on only those students who struggle. This would have downsides
though; some could plagiarize, and it is a good question whether
the students would see such an approach as fair or ethical.

5.4 Limitations of study
Our study has multiple limitations, which we acknowledge next.
First, as the exams were taken at home and other premises that the
students chose to use, we do not know if we were able to reach all
the students who did plagiarize. It is possible that, for example, a
student had help from someone who is not on the course. It is also
possible that we only caught those students who did not mask their
plagiarism well enough.

Second, our setup has likely increased the tendency to plagiarize.
It is likely that some of the students who participated in the take-
home exam would not have attended a normal pen-and-paper exam
at all. That is, the take-home exam opportunity can increase the
tendency to plagiarize. Such behavior has been previously observed,
for example, in business studies [26].

Third, a part of the students who we invited to the interviews
were acquitted, and the final set of students who did plagiarize in the
course is smaller than the interviewed population –we cannot claim
that the behaviors that were identified during the interviews are

ITiCSE’17, , July 03-05, 2017, Bologna, Italy. Arto Hellas, Juho Leinonen, and Petri Ihantola

a representative sample. Further studies, also from other contexts,
are needed.

Fourth, we do not know whether the students plagiarized during
the normal programming assignments as recording the program-
ming process from the normal assignments was not mandatory. It is
likely that information from such behavior would bring additional
insight to those students who chose to plagiarize during the exams.

6 CONCLUSIONS AND FUTUREWORK
In this workwe studied how students plagiarize in take-home exams.
During the interview process with students who were suspected
of plagiarism, three behavior types stood out: (1) help-seeking,
(2) collaboration, and (3) systematic cheating. Students who were
seeking for help were typically struggling on the course or in the
exam, and insisted on help from their peers. Students who were
collaborating worked on the exam together, and the students who
were systematically cheating had e.g. created fake accounts to gain
access to the exam questions in the submission system.

Furthermore, we analyzed the logs that were recorded as the stu-
dents were working on the take-home exams, and found patterns
that have the potential for identifying students who have plagia-
rized. A linear solution process in an assignment that is known to be
challenging for students indicates plagiarism as does pasting parts
of the solution. Collaboration where students in the same course
are working together to solve the exam can potentially be detected
through alignment of the programming process. At the same time,
our approach is not a panacea, as we cannot – for example – identify
students who have collaborated with external parties.

These results provide further means to detect plagiarism for in-
structors and researchers, and can be used as a discussion starter
if an institution is considering the use of take-home exams. Fur-
thermore, the recent ITiCSE working group on Educational Data
Mining and Learning Analytics in Programming [10] indicated that
more and more institutions are starting to gather such data. Re-
searchers who are interested in, for example, building models of
the student as a learner [27] or automatically identifying students
who are struggling [2, 10] are likely to benefit from introducing
plagiarism-related metrics to their models.

As a part of our future work, we are looking into incorporating
data gathering into the whole introductory programming course
in order to see to what extent the students plagiarize within the
course assignments, and whether that behavior is linked with the
plagiarism behavior in the take-home exams. We are also looking
into additional means of reducing plagiarism on the courses, and
considering the opportunity of removing exams completely.

REFERENCES
[1] Cheryl L Aasheim, Paige S Rutner, Lixin Li, and Susan R Williams. 2012. Plagia-

rism and programming: A survey of student attitudes. Journal of Information
Systems Education 23, 3 (2012), 297.

[2] Alireza Ahadi, Raymond Lister, Heikki Haapala, and Arto Vihavainen. 2015.
Exploring machine learning methods to automatically identify students in need
of assistance. In Proceedings of the eleventh annual International Conference on
International Computing Education Research. ACM, 121–130.

[3] Jens Bennedsen and Michael E. Caspersen. 2007. Assessing Process and Product.
Innovation in Teaching and Learning in Information and Computer Sciences 6, 4
(2007), 183–202. DOI:http://dx.doi.org/10.11120/ital.2007.06040183

[4] Kevin W Bowyer and Lawrence O Hall. 1999. Experience using" MOSS" to detect
cheating on programming assignments. In Frontiers in Education Conference,
1999. FIE’99. 29th Annual, Vol. 3. IEEE, 13B3–18.

[5] Georgina Cosma and Mike Joy. 2008. Towards a definition of source-code plagia-
rism. IEEE Transactions on Education 51, 2 (2008), 195–200.

[6] Fintan Culwin, Anna MacLeod, and Thomas Lancaster. 2001. Source code pla-
giarism in UK HE computing schools. Issues, Attitudes and Tools, South Bank
University Technical Report SBU-CISM-01-02 (2001).

[7] Jurriaan Hage, Peter Rademaker, and Nikè van Vugt. 2011. Plagiarism Detection
for Java: A Tool Comparison. In Computer Science Education Research Conference
(CSERC ’11). Open Universiteit, Heerlen, Open Univ., Heerlen, The Netherlands,
The Netherlands, 33–46.

[8] Frederik Hattingh, Albertus AK Buitendag, and Jacobus S Van Der Walt. 2013.
Presenting an alternative source code plagiarism detection framework for im-
proving the teaching and learning of programming. Journal of Information
Technology Education 12 (2013), 45–58.

[9] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto Seppälä. 2010. Re-
view of recent systems for automatic assessment of programming assignments.
In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research. ACM, 86–93.

[10] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
and others. 2015. Educational datamining and learning analytics in programming:
Literature review and case studies. In Proceedings of the 2015 ITiCSE on Working
Group Reports. ACM, 41–63.

[11] Mike Joy, Georgina Cosma, Jane Yin-Kim Yau, and Jane Sinclair. 2011. Source
code plagiarism—a student perspective. IEEE Transactions on Education 54, 1
(2011), 125–132.

[12] Thomas Lancaster and Fintan Culwin. 2004. A comparison of source code
plagiarism detection engines. Computer Science Education 14, 2 (2004), 101–112.

[13] Juho Leinonen, Krista Longi, Arto Klami, Alireza Ahadi, and Arto Vihavainen.
2016. Typing Patterns and Authentication in Practical Programming Exams.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’16). ACM, New York, NY, USA, 160–165.
DOI:http://dx.doi.org/10.1145/2899415.2899472

[14] Vítor T Martins, Daniela Fonte, Pedro Rangel Henriques, and Daniela da Cruz.
2014. Plagiarism detection: A tool survey and comparison. In OASIcs-OpenAccess
Series in Informatics, Vol. 38. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[15] Merriam-Webster Online. 2016. Merriam-Webster Online Dictionary. (2016).
http://www.merriam-webster.com

[16] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal
of molecular biology 48, 3 (1970), 443–453.

[17] Lutz Prechelt, Guido Malpohl, and Michael Philippsen. 2002. Finding plagiarisms
among a set of programs with JPlag. J. UCS 8, 11 (2002), 1016.

[18] Bernard Rosner. 1975. On the detection of many outliers. Technometrics 17, 2
(1975), 221–227.

[19] Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming 74, 7 (2009), 470–495.

[20] Jose A. Ruiperez-Valiente, Giora Alexandron, Zhongzhou Chen, and David E.
Pritchard. 2016. Using Multiple Accounts for Harvesting Solutions in MOOCs.
In Proceedings of the Third (2016) ACM Conference on Learning @ Scale (L@S
’16). ACM, New York, NY, USA, 63–70. DOI:http://dx.doi.org/10.1145/2876034.
2876037

[21] Johannes Schneider, Avi Bernstein, Jan Vom Brocke, Kostadin Damevski, and
David C Shepherd. 2016. Detecting Plagiarism based on the Creation Process.
arXiv preprint arXiv:1612.09183 (2016).

[22] Judy Sheard, Martin Dick, Selby Markham, Ian Macdonald, and Meaghan Walsh.
2002. Cheating and Plagiarism: Perceptions and Practices of First Year IT Students.
In Proceedings of the 7th Annual Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’02). ACM, New York, NY, USA, 183–187.
DOI:http://dx.doi.org/10.1145/544414.544468

[23] Simon and Judy Sheard. 2016. Academic Integrity and Computing Assessments.
In Proceedings of the Australasian Computer Science Week Multiconference (ACSW
’16). ACM, New York, NY, USA, Article 3, 8 pages. DOI:http://dx.doi.org/10.1145/
2843043.2843060

[24] Esko Ukkonen. 1985. Algorithms for approximate string matching. Information
and control 64, 1-3 (1985), 100–118.

[25] Arto Vihavainen, Thomas Vikberg, Matti Luukkainen, and Martin Pärtel. 2013.
Scaffolding Students’ Learning Using Test My Code. In Proceedings of the 18th
ACM Conference on Innovation and Technology in Computer Science Education
(ITiCSE ’13). ACM, New York, NY, USA, 117–122. DOI:http://dx.doi.org/10.1145/
2462476.2462501

[26] Tim West, Sue Ravenscroft, and Charles Shrader. 2004. Cheating and moral
judgment in the college classroom: A natural experiment. Journal of Business
Ethics 54, 2 (2004), 173–183.

[27] Michael Yudelson, Roya Hosseini, Arto Vihavainen, and Peter Brusilovsky. 2014.
Investigating automated student modeling in a Java MOOC. In Educational Data
Mining 2014.

http://dx.doi.org/10.11120/ital.2007.06040183
http://dx.doi.org/10.1145/2899415.2899472
http://www.merriam-webster.com
http://dx.doi.org/10.1145/2876034.2876037
http://dx.doi.org/10.1145/2876034.2876037
http://dx.doi.org/10.1145/544414.544468
http://dx.doi.org/10.1145/2843043.2843060
http://dx.doi.org/10.1145/2843043.2843060
http://dx.doi.org/10.1145/2462476.2462501
http://dx.doi.org/10.1145/2462476.2462501

	Abstract
	1 Introduction
	2 Plagiarism in Programming
	3 Context and Data
	4 Methodology and Results
	4.1 Identifying candidates
	4.2 Contacting and interviewing the candidates
	4.3 Analysis of Log Traces

	5 Discussion
	5.1 Behavior traits
	5.2 Process data and course assignments
	5.3 Take-home exams
	5.4 Limitations of study

	6 Conclusions and Future work
	References

