
Analysis of Students’ Peer Reviews to Crowdsourced
Programming Assignments

Nea Pirttinen
University of Helsinki

Helsinki, Finland
nea.pirttinen@cs.helsinki.fi

Vilma Kangas
University of Helsinki

Helsinki, Finland
vilma.l.kangas@helsinki.fi

Henrik Nygren
University of Helsinki

Helsinki, Finland
henrik.nygren@helsinki.fi

Juho Leinonen
University of Helsinki

Helsinki, Finland
juho.leinonen@helsinki.fi

Arto Hellas
University of Helsinki

Helsinki, Finland
arto.hellas@cs.helsinki.fi

ABSTRACT
We have used a tool called CrowdSorcerer that allows students to
create programming assignments. The students are given a topic
by a teacher, after which the students design a programming as-
signment: the assignment description, the code template, a model
solution and a set of input-output -tests. The created assignments
are peer reviewed by other students on the course. We study stu-
dents’ peer reviews to these student-generated assignments, focus-
ing on examining the differences between novice and experienced
programmers. We then analyze whether the exercises created by
experienced programmers are rated better quality-wise than those
created by novices. Additionally, we investigate the differences be-
tween novices and experienced programmers as peer reviewers: can
novices review assignments as well as experienced programmers?

CCS CONCEPTS
• Information systems → Crowdsourcing; • Social and profes-
sional topics→ Computing education;

KEYWORDS
peer reviews, crowdsourcing, educational data mining

ACM Reference Format:
Nea Pirttinen, Vilma Kangas, Henrik Nygren, Juho Leinonen, and Arto Hel-
las. 2018. Analysis of Students’ Peer Reviews to Crowdsourced Programming
Assignments. In 18th Koli Calling International Conference on Computing
Education Research (Koli Calling ’18), November 22–25, 2018, Koli, Finland.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3279720.3279741

1 INTRODUCTION
Reviewing the work of others is a common practice in science.
Articles are subjected to peer review when submitted for publi-
cation, medical experiments are scrutinized by authorities before

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Koli Calling ’18, November 22–25, 2018, Koli, Finland
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6535-2/18/11. . . $15.00
https://doi.org/10.1145/3279720.3279741

studies can proceed, and funding bodies review project proposals.
While the scholarly practice of reviewing has traditionally been
conducted by experts, this is not the case when reviewing is used
as a pedagogical practice.

When reviewing is conducted as a pedagogical means to an end,
the reviewer may have little to no knowledge on the topic. The goal
of the reviewer is not only to learn more about the topic, but also to
learn to be a better reviewer. There exists a few examples of the use
of reviews in computing education. For example, self-explanations
can be used to prompt students to explain parts of code [21] and
peer assessment can be used to provide more feedback and learning
opportunities [13, 18–20].

In this work, we set out to study the differences between experts
and novices as peer reviewers. Our study takes place in the context
of an introductory programming course with students with vary-
ing programming backgrounds. As students have different prior
exposure to programming, we believe that they may also act differ-
ently as reviewers. Those with prior experience may also review
assignments better, but one could also argue that those with more
knowledge on the topic may judge their peers too harshly. For the
purposes of this study, we have used a crowdsourcing tool that
allows the generation and review of programming assignments.
The assignments are generated on a topic given by a teacher, for
example “for-loops”, and the reviews are conducted using a pre-
defined Likert-like scale, where the student analyzes factors such
as readability of the assignment code and the suitability of the
programming assignment.

We analyze if the different factors are intertwined – for example,
if the assignment is suitable for a particular student, is the code
in the handout also clear. We also study the differences between
novice and experienced programmers on the course, with regards
to both programming assignments and peer reviews. Our research
questions for this study are the following:

• RQ1. How do feedback question answers correlate with each
other over the whole population?

• RQ2. How do the assignments created by students with pro-
gramming experience differ from those created by novice
programmers?

• RQ3. How do feedback question answer correlations differ
between experienced and novice programmers?

https://doi.org/10.1145/3279720.3279741
https://doi.org/10.1145/3279720.3279741

Koli Calling ’18, November 22–25, 2018, Koli, Finland N. Pirttinen et al.

This article is organized as follows. Next, we briefly explore the
concept of crowdsourcing, focusing on the context of education,
and discuss the quality of crowdsourced feedback. In Section 3,
we describe the study context and data, which is followed by the
methodology and results in Section 4. The results and limitations
of our work are discussed in Section 5, and Section 6 concludes the
work and outlines future streams of research.

2 BACKGROUND
The term crowdsourcing has been used to describe a wide range of
collaborative activities where the purpose of a large user base is to
provide services or ideas to a party or organization of some sort,
either in real life or over the Internet [5]. Crowdsourcing has been
used, for example, in social networking, evaluation tasks such as
reviews and voting, artifact creation and idea sharing [4].

In education, crowdsourcing has been used to create various
types of content ranging from online books [16] and book supple-
ments [7] to multiple-choice questions for rehearsal [2]. Besides
generating educational material, crowdsourcing can also be used for
collecting feedback or reviews [14]. Studies show that peer feedback
can be accurate and constructive, even in large courses [8, 11].

In educational data mining and learning analytics, the vast ma-
jority of data-driven approaches rely on data that is generated by
students. This might occur either actively or passively as they take
part in a course. Such data has been used, for example, to study stu-
dents’ learning and behaviour [10], to identify at-risk students using
predictive models [10], and to improve educational materials [12].

Hamer et al. [8] assessed peer feedback quality by comparing
student-given feedback to feedback given by tutors. In a compar-
ison of peer reviewers’ total marks and tutors’ total marks, the
study found a notable correlation, and noted that students tend
to undermark the scores of their peers. At the same time, higher
performing students seem to give more appropriate scores than
lower performing students.

The quality of questions collected with PeerWise [2] is good,
as the majority of the collected questions and their explanations
were correct and deemed relevant by instructors and peers [3].
Errors in questions or answers could be weeded out during peer
review. The study is confident that students can distinguish between
good and bad exercises. Besides erroneous questions, there were
questions that were e.g. overly complicated, but could be improved
by comments from the peer review.

The effects of anonymization on crowdsourced feedback are
twofold: less dropping out of the review process, and increase in
quality when looking at specific criticism, praise or suggestion as
opposed to non-specific feedback concerning the target of review
on a very general level [9]. This is compared to communal feedback
without anonymization, where teams ask for feedback from all of
the course participants, not just from their own social networks.

3 CONTEXT AND DATA
Our study was conducted on two overlapping introductory pro-
gramming courses organized in Java, both held during spring 2018.
One of the courses was organized for local students and had tutor-
ing on campus, while the other was arranged as a MOOC that was
free for anyone to attend. Both used the samematerial, which has 14

weeks of content, starting from basics of programming and ending
with building larger programs with graphical user interfaces.

In addition to weekly programming assignments, the courses
used a crowdsourcing tool called CrowdSourcerer [15] that allows
the students to create programming assignments related to a cer-
tain topic of the course, e.g. loops. For each generated assignment,
students provide (1) the assignment handout, (2) template code, (3)
model solution, and (4) a set of input-output -tests.

The created assignments can then be reviewed by other stu-
dents on the course. The tool was embedded into the material on
eight of the fourteen weeks. The submission gathering and peer
reviewing phases were organized in pairs so that every other week
students created assignments and then those assignments were
peer reviewed on subsequent weeks.

Completing the tasks where students were expected to create
and review assignments was completely voluntary, and students
were not awarded any course points for creating the assignments,
nor for the peer reviews. The tool was not mentioned or advertised
during the lectures or tutoring sessions, only embedded as a part
of the course material.

The crowdsourcing system provides students eight feedback
statements graded from one to five using a Likert-like scale. The
feedback statements, translated from Finnish, are listed in Table 1.
From this point onwards, we refer to the first feedback statement
as FS1, second feedback statement as FS2, and so on.

Statement

1 Exercise is suitably difficult
2 Assignment handout is creative
3 Model solution is clearly separated from code template
4 Code is clean
5 Model solution corresponds to assignment
6 Assignment handout has been made according to instruc-

tions
7 Test inputs and outputs are reasonable
8 Assignment handout is clear

Table 1: Feedback statements used for peer reviews on the
course. The statements are refererred to as FS1, FS2, etc. in
the text.

For the analysis, we have combined the data from the two over-
lapping courses. In total, we have 1700 student-generated program-
ming assignments and 4500 peer reviews from approximately 3000
students. Combining the data from the two courses was done to
increase robustness – if we find similar characteristics from the
overall population, we know that the results are not specific for
only a certain group, such as online participants.

We focus on the peer review data, which consists of eight feed-
back statements graded from one to five using Likert-like scale, and
the medians of these grades, as well as the date and time of the
submission. The exercise side of the tool saves similar information
from the exercise submission itself.

4 METHODOLOGY AND RESULTS
We decided to study the correlations between all of the statements,
taking into account the programming background of each student.

Analysis of Students’ Peer Reviews to Crowdsourced Programming Assignments Koli Calling ’18, November 22–25, 2018, Koli, Finland

Our hypothesis is that inspecting correlations can give us a clear
view of how students see the review process, and whether novices
and more experienced programmers understand review topics dif-
ferently. If the scores from novices and experts correlate similarly,
then it can be argued that they behave similarly as reviewers. As
it would be more difficult to decipher the effects of previous pro-
gramming experience as the course progresses and the novice pro-
grammers gain experience and confidence in their skills, we focus
only on the first crowdsourcing assignment from the spring of 2018.
Thus, we analyze student generated programming assignments
that were completed during the second week of the course, and the
reviews given during the third week.

Students who had not provided information of their previous
programming experience at the beginning of the course or who
had not provided research consent were excluded from the data,
leaving us with a set of 613 students. To analyze the impact of
previous programming experience, we divide the students into
two groups using median split on the number of hours previously
programmed. Those who had reported twenty hours or less of
programming experience were regarded as novices, while others
were considered to have at least some knowledge on the topic. Out
of the 613, 311 were regarded as novices, and 302 as having at least
some programming background. From the 311 novices, 136 had no
prior programming experience.

To answer RQ1, How do feedback question answers correlate with
each other over the whole population?, we calculated the correlations
between all the peer review question answers using the Spearman
correlation method. We chose the Spearman correlation method
because the Likert-like scale we used is rank-based meaning the dis-
tances between the different options could differ. The correlations
shown in Table 2 show that all the answers for all the feedback
statement answers correlate positively with each other.

For RQ2, How do the assignments created by those with program-
ming experience differ from the assignments created by novice pro-
grammers?, we determined whether the different student groups
created programming assignments of different quality. We evalu-
ated the difference by applying the Kolmogorov–Smirnov test of
statistical significance to the feedback statement answers given to
the exercises created by the different groups. The results, shown in
row p of Table 5, are not statistically significant, meaning that there
is no evidence that the two groups create different quality exer-
cises. Additionally, the medians are the same for all of the answers,
regardless of the programming experience of the students.

Lastly, for RQ3, How do feedback question answer correlations
differ between experienced and novice programmers?, we explored
whether the relationships between the different feedback state-
ments given between the subjects of the two groups differ. We
calculated the same correlations for the novices and more experi-
enced programmers separately (Tables 3 and 4). These correlations
were all statistically significant.

We had to convert the correlation results presented in Tables
3 and 4 to a result of a statistical test so that we could determine
whether there was really a difference between them. The Fisher r-to-
z-transformation [6] was suitable for producing this transformation.
After the transformation, we then converted the z-values the trans-
formation yielded to p-values and applied the Šidák correction for
multiple comparisons [17]. The correction was necessary since we

are doing multiple comparisons, and thus seemingly significant
results could occur due to random chance without the correction.
We were able to use this correction because all the variables were
positively correlated with each other. None of the differences of the
correlations were statistically significant, i.e. there is no evidence
that the correlations differ between these two groups: novices and
more experienced programmers.

The feedback statements that have a moderate to high correla-
tion (≥ 0.5) over the whole population are as follows (correlations
reported in parenthesis).

• Exercise is suitably difficult and assignment handout is cre-
ative (0.6)

• Model solution corresponds to assignment and assignment
handout has been made according to instructions (0.66)

• Model solution corresponds to assignment and test inputs
and outputs are reasonable (0.58)

• Model solution corresponds to assignment and assignment
handout is clear (0.54)

• Assignment handout has been made according to instruc-
tions and test inputs and outputs are reasonable (0.62)

• Assignment handout has been made according to instruc-
tions and assignment handout is clear (0.56)

• Test inputs and outputs are reasonable and assignment hand-
out is clear (0.52)

We also calculated the p-values for each statement pair in each
case. The p-values for the correlations in Table 2 were all under
3 ∗ 10−10, meaning that all of them were statistically significant.

FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8

FS1 1.0 0.6 0.29 0.2 0.28 0.33 0.29 0.28
FS2 1.0 0.32 0.24 0.25 0.34 0.26 0.2
FS3 1.0 0.44 0.48 0.45 0.42 0.41
FS4 1.0 0.48 0.45 0.47 0.4
FS5 1.0 0.66 0.58 0.54
FS6 1.0 0.62 0.56
FS7 1.0 0.52
FS8 1.0

Table 2: Correlations for the peer review question answers.
The p-values for all of the entries are less than 10−5 and are
therefore left out of the table. Feedback statements FS1-FS8
are defined in Table 1.

5 DISCUSSION AND LIMITATIONS
The feedback statements that correlate with each other are the
same for both novice and more experienced programmers, but
the correlations between almost any two statements are higher
for the more experienced than for the novices. The novices have
higher correlations between statements “Test inputs and outputs
are reasonable” – “Model solution is clearly separated from code
template”, “Test inputs and outputs are reasonable” – “Code is clean”,
and “Test inputs and outputs are reasonable” – “Model solution
corresponds to assignment”. As it can be clearly seen, all of these
share statement FS7, “Test inputs and outputs are reasonable”. It
is possible that novice programmers rate the statement higher as

Koli Calling ’18, November 22–25, 2018, Koli, Finland N. Pirttinen et al.

FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8

FS1 1.0,
0

0.63,
<10−5

0.35,
<10−5

0.2,
0.0003

0.26,
<10−5

0.36,
<10−5

0.29,
<10−5

0.33,
<10−5

FS2 1.0,
0

0.36,
<10−5

0.26,
<10−5

0.22,
6*10−5

0.37,
<10−5

0.24,
<10−5

0.19,
0.0004

FS3 1.0,
0

0.45,
<10−5

0.49,
<10−5

0.49,
<10−5

0.39,
<10−5

0.47,
<10−5

FS4 1.0,
0

0.45,
<10−5

0.44,
<10−5

0.41,
<10−5

0.42,
<10−5

FS5 1.0,
0

0.67,
<10−5

0.48,
<10−5

0.57,
<10−5

FS6 1.0,
0

0.61,
<10−5

0.61,
<10−5

FS7 1.0,
0

0.59,
<10−5

FS8 1.0,
0

Table 3: Correlations and p-values for the peer review ques-
tion answers for those who had above median prior pro-
gramming experience. Feedback statements FS1-FS8 are de-
fined in Table 1. Each cell contains two rows, the correlation
in the first row and the p-value in the second.

FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8

FS1 1.0,
0

0.58,
<10−5

0.21,
0.0001

0.16,
0.003

0.24,
<10−5

0.24,
<10−5

0.25,
<10−5

0.23,
2*10−5

FS2 1.0,
0

0.22,
3*10−5

0.19,
0.0003

0.17,
0.001

0.22,
2*10−5

0.21,
5*10−5

0.14,
0.01

FS3 1.0,
0

0.38,
<10−5

0.44,
<10−5

0.4,
<10−5

0.42,
<10−5

0.32,
<10−5

FS4 1.0,
0

0.43,
<10−5

0.36,
<10−5

0.46,
<10−5

0.35,
<10−5

FS5 1.0,
0

0.66,
<10−5

0.64,
<10−5

0.52,
<10−5

FS6 1.0,
0

0.59,
<10−5

0.54,
<10−5

FS7 1.0,
0

0.43,
<10−5

FS8 1.0,
0

Table 4: Correlations and p-values for the peer review ques-
tion answers for those who had median or below median
prior programming experience. Feedback statements FS1-
FS8 are defined in Table 1. Each cell contains two rows, the
correlation in the first row and the p-value in the second.

they are not yet introduced to testing, and therefore may not know
what kind of test inputs and outputs are reasonable.

Feedback statements FS1-FS4 do not correlate much with other
statements, whereas statements FS5-FS8 have high correlations
with each other (see Table 1 for statements). Feedback statements
FS5-FS8 concern how well the assignment corresponds to the given
instructions. The instructions may have been, for example, “Write
an assignment that asks the programmer to use a for-loop”. Those
assignments may then receive better feedback if the assignment
clearly asks the programmer to use a for-loop, perhaps even using
those exact words. However, a clear assignment made according
to the instructions does not always mean the assignment is also

FS1 FS2 FS3 FS4 FS5 FS6 FS7 FS8

all median 4 4 5 5 5 5 5 5
all sd 0.97 1.03 1.13 0.65 0.81 0.75 0.77 0.79
high median 4 4 5 5 5 5 5 5
high sd 0.98 1.09 1.05 0.59 0.70 0.69 0.64 0.75
low median 4 4 5 5 5 5 5 5
low sd 0.95 0.99 1.04 0.63 0.82 0.75 0.82 0.83
p 1 0.88 1 1 1 1 0.88 1

Table 5: Statistics from peer review question answers, p-
value Kolmogorov–Smirnov test with Holm–Šidák correc-
tion of multiple comparison. In the first row, medians and
standard deviations are calculated for peer review question
answers for exercises made by all students. In the second
row, they are calculated for the more experienced students
(high), andfinally, in the third row, for the novices (low). The
last row contains the p-values for the Kolmogorov–Smirnov
test between the novice andmore experienced programmers.
Feedback statements FS1-FS8 are defined in Table 1.

creative, for example, which may be the reason why the correlations
between statements FS2 and FS6, or FS2 and FS8 are not high.

As stated in Section 4, the p-values of the differences of the
correlations presented in Tables 3 and 4 were not statistically sig-
nificant. This means that according to our results, novices can peer
review programming assignments as well as more experienced
programmers, which is in line with previous studies [8].

Besides the similar correlations between novices and more ex-
perienced programmers, the medians are also alike, as can be seen
in Table 5. This strengthens our belief that when peer reviewing,
novice and more experienced programmers behave in the same
way and give very similar reviews overall.

It has been suggested by Denny et al. that students may review
too difficult exercises with good grades, as they may think that
complex exercises provide a good practice for the exam, while tu-
tors reviewing the same exercises assume that complexity will only
confuse students and hinder learning [3]. Our results do not support
these findings, as we did not find any statistically significant differ-
ences in the correlations of novices and experienced programmers.
However, there is a difference in context, as the study by Denny
et al. concentrates on programming assignment answers, whereas
our study looks at whole crowdsourced assignments.

Generally, assignments receive very good peer reviews. Although
it would be meaningful for peers to want to help and to give good
grades, previous studies suggest that peers actually tend to under-
mark each others’ exercises [8]. Since the tool in which students cre-
ate the exercises automatically checks tests for compilation errors
and faulty functions when the exercise is submitted, non-functional
submissions are not accepted and thus never graded in the first
place. Additionally, creating assignments was not compulsory on
the courses, so those students who felt they were not competent
enough for the task could just skip using the system completely.

Our study comes with a number of limitations, some of which are
related to the system and some to our analysis. First, the students
are not required to actually try to complete the assignment that they
are reviewing. This can mean that the reviewing can be conducted
in a perfunctory manner. While the assignment may seem clear
enough when read through quickly, there may be inaccuracies or

Analysis of Students’ Peer Reviews to Crowdsourced Programming Assignments Koli Calling ’18, November 22–25, 2018, Koli, Finland

missing information that only becomes apparent when trying to
complete the assignment. Also, it is easier to notice if the model
solution functions as the assignment suggests when completing
the exercise and not only reading it through.

Second, we are analyzing a set of feedback questions that are
rather well-defined and given to students in a concise manner. It is
possible that simply the way the feedback is inputted, i.e. a matrix,
creates a situation where certain items are ranked more closely to
each others.

Third, we divided the students into two groups based on their
previous experience. The division was conducted using median-
split, where both groups ended upwith a similar number of students.
While such division was meaningful as our starting point, future
studies may consider more extreme ends, e.g. comparing those with
no programming experience at all with those with thousands of
hours of programming experience.

Finally, we do not know how the students perceived their identity
as the reader of the material while answering to the peer review
statements. Thus, we do not know for example if more experienced
reviewers answered the statement “Exercise was suitably difficult”
based on the course context, or based on their own programming
knowledge, which may vastly surpass the topics at hand.

6 CONCLUSIONS AND FUTUREWORK
In this work, we analyzed the differences between Likert-like peer
feedback by novice programmers and more experienced program-
mers on student-generated programming assignments. The core
result of our study is that novices can be as good at reviewing
programming assignments as more experienced participants of
introductory programming courses, which supports the previous
findings by Hamer et al. [8] in the context of reviewing students’ an-
swers. Moreover, when analyzing the feedback on the quality of the
student-generated assignments, we observed that the assignments
generated by more experienced students do not differ quality-wise
from the assignments generated by the students with little to no
previous experience.

As novices can create assignments that are as good as those
created by more experienced programmers, it is sensible to crowd-
source programming assignments from introductory programming
course students. This frees up the time of the instructors on the
course as they do not have to design all the assignments by them-
selves. In addition, a large assignment pool could be used e.g. in
student modeling [1] to provide more assignments adaptively to
students who need more practice. As novices are also able to re-
view assignments as well as their more experienced peers, the peer
review process can be argued to be efficient at separating good and
poor assignments. Altogether, the greatest implication of this study
is that using a tool such as CrowdSorcerer is sensible at least from
the point of view of creating assignments. As we can trust reviews
from both experts and novices, we can include the best crowd-
sourced assignments as future course assignments. Future work
should study whether using CrowdSorcerer also has educational
value to students.

In our ongoing research, we are extending the peer reviews
with expert reviews and interviews to further study how and why

students provide particular types of feedback. For example, do
students provide good feedback if the assignment looks similar to
assignments that the student has seen on the course material, or is
the feedback driven by some other factors such as amusement. We
are also looking into the quality of the collected assignments, as
well as their use in programming courses.

REFERENCES
[1] Konstantina Chrysafiadi and Maria Virvou. 2013. Student modeling approaches:

A literature review for the last decade. Expert Systems with Applications 40, 11
(2013), 4715–4729.

[2] Paul Denny, Andrew Luxton-Reilly, and John Hamer. 2008. Student Use of the
PeerWise System. SIGCSE Bull. 40, 3 (June 2008), 73–77.

[3] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2009. Quality of Student
Contributed Questions Using PeerWise. In Proc. of the 11th Australasian Confer-
ence on Computing Education - Volume 95 (ACE ’09). Australian Computer Society,
Inc., Darlinghurst, Australia, 55–63.

[4] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy. 2011. Crowdsourcing
Systems on the World-Wide Web. Commun. ACM 54, 4 (April 2011), 86–96.

[5] Enrique Estellés-Arolas and Fernando González-Ladrón-De-Guevara. 2012. To-
wards an Integrated Crowdsourcing Definition. J. Inf. Sci. 38, 2 (April 2012),
189–200.

[6] Ronald Aylmer Fisher. 2006. Statistical methods for research workers. Genesis
Publishing Pvt Ltd.

[7] Edward F Gehringer, Karishma Navalakha, and Reejesh Kadanjoth. 2011. A
Student-Written Wiki Textbook Supplement for a Parallel-Architecture Course.

[8] John Hamer, Helen C. Purchase, Paul Denny, and Andrew Luxton-Reilly. 2009.
Quality of Peer Assessment in CS1. In Proc. of the 5th International Workshop on
Computing Education Research Workshop (ICER ’09). ACM, New York, NY, USA,
27–36.

[9] Julie Hui, Amos Glenn, Rachel Jue, Elizabeth Gerber, and Steven Dow. 2015.
Using Anonymity and Communal Efforts to Improve Quality of Crowdsourced
Feedback. In HCOMP.

[10] Petri Ihantola, Arto Vihavainen, Alireza Ahadi, Matthew Butler, Jürgen Börstler,
Stephen H. Edwards, Essi Isohanni, Ari Korhonen, Andrew Petersen, Kelly Rivers,
Miguel Ángel Rubio, Judy Sheard, Bronius Skupas, Jaime Spacco, Claudia Szabo,
and Daniel Toll. 2015. Educational Data Mining and Learning Analytics in
Programming: Literature Review and Case Studies. In Proc. of the 2015 ITiCSE on
Working Group Reports (ITICSE-WGR ’15). ACM, New York, NY, USA, 41–63.

[11] Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia, Kathryn Papadopoulos,
Justin Cheng, Daphne Koller, and Scott R. Klemmer. 2013. Peer and Self Assess-
ment in Massive Online Classes. ACM Trans. Comput.-Hum. Interact. 20, 6, Article
33 (Dec. 2013), 31 pages.

[12] Leo Leppänen, Juho Leinonen, Petri Ihantola, and Arto Hellas. 2017. Using
and collecting fine-grained usage data to improve online learning materials. In
Proceedings of the 39th International Conference on Software Engineering: Software
Engineering and Education Track. IEEE Press, 4–12.

[13] Lan Li, Xiongyi Liu, and Allen L. Steckelberg. 2009. Assessor or assessee: How
student learning improves by giving and receiving peer feedback. 41 (06 2009),
525 – 536.

[14] Andrew Luxton-Reilly. 2009. A systematic review of tools that support peer
assessment. Computer Science Education 19, 4 (2009), 209–232.

[15] Nea Pirttinen, Vilma Kangas, Irene Nikkarinen, Henrik Nygren, Juho Leinonen,
and Arto Hellas. 2018. Crowdsourcing Programming Assignments with Crowd-
Sorcerer. In Proc. of the 23rd Annual ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE 2018). ACM, New York, NY, USA, 326–331.

[16] Clifford A Shaffer, Ville Karavirta, Ari Korhonen, and Thomas L Naps. 2011.
OpenDSA: beginning a community active-ebook project. In Proc. of the 11th Koli
Calling Int. Conference on Computing Education Research. ACM, 112–117.

[17] Zbyněk Šidák. 1967. Rectangular confidence regions for the means of multivariate
normal distributions. J. Amer. Statist. Assoc. 62, 318 (1967), 626–633.

[18] J. Sitthiworachart and M. Joy. 2003. Web-based peer assessment in learning
computer programming. In Proc. 3rd IEEE International Conference on Advanced
Technologies. 180–184.

[19] Jirarat Sitthiworachart andMike Joy. 2004. Effective Peer Assessment for Learning
Computer Programming. SIGCSE Bull. 36, 3 (June 2004), 122–126.

[20] Anne Venables and Raymond Summit. 2003. Enhancing scientific essay writing
using peer assessment. Innovations in Education and Teaching International 40, 3
(2003), 281–290.

[21] Arto Vihavainen, Craig S Miller, and Amber Settle. 2015. Benefits of Self-
explanation in Introductory Programming. In Proc. of the 46th ACM Technical
Symposium on Computer Science Education. ACM, 284–289.

	Abstract
	1 Introduction
	2 Background
	3 Context and Data
	4 Methodology and Results
	5 Discussion and Limitations
	6 Conclusions and Future Work
	References

