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ABSTRACT
We have constructed a tool, CrowdSorcerer, in which students cre-
ate programming assignments, their model solutions and associated
test cases using a simple input-output format. We have used the
tool as a part of an introductory programming course with nor-
mal course activities such as programming assignments and a final
exam.

In our work, we focus on whether creating programming assign-
ments and associated tests correlate with students’ performance in
a testing-related exam question. We study this through an analysis
of the quality of student-written tests within the tool, measured
using the number of test cases, line coverage and mutation cover-
age, and students’ performance in testing related exam question,
measured using exam points. Finally, we study whether previous
programming experience correlates with how students act within
the tool and within the testing related exam question.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Information systems→Crowdsourcing; •Human-
centered computing → Collaborative content creation; • Social
and professional topics→ Computing education;

KEYWORDS
testing, crowdsourcing, assignment creation, educational data min-
ing
ACM Reference Format:
Vilma Kangas, Nea Pirttinen, Henrik Nygren, Juho Leinonen, and Arto
Hellas. 2019. Does Creating Programming Assignments with Tests Lead to
Improved Performance in Writing Unit Tests?. In ACM Global Computing
Education Conference 2019 (CompEd ’19), May 17–19, 2019, Chengdu, Sichuan,
China. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3300115.
3309516

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6259-7/19/05. . . $15.00
https://doi.org/10.1145/3300115.3309516

1 INTRODUCTION
Testing “is not a glamorous topic within software engineering” [7].
There seems to be a consensus on this in the field – testing is tra-
ditionally treated as the boring and unpleasant part of a software
project, and there are often not enough time nor resources provided
to do it well, let alone comprehensively [3, 18]. There is no gen-
eral agreement in software engineering education and computer
science education on to what extent one should integrate testing
into introductory programming courses, even though the topic is
considered important.

For example, Lappalainen et al. [14] suggest writing input-output
test cases into method comments, Edwards [10] suggests having stu-
dents write unit tests and providing students’ feedback on the tests
that they wrote, including test coverage, and Pirttinen et al. [19]
suggest having students create problems with input-output test
cases. At the same time, successful integration of testing practices
into introductory programming courses is not trivial. For exam-
ple, when integrating unit testing into first-semester programming
classes, Barriocanal et al. found that only approximately 10% of the
students actually wrote unit tests [1]. Interest and motivation also
plays a role – Carrington suggests that students find writing tests
for programs developed by other people more constructive than
finding faults in their own programs [4].

In this study, we look at an approach where software testing –
without mentioning software testing – is introduced to students
in a first-semester introductory programming course through the
use of CrowdSorcerer, a tool in which students come up with pro-
gramming assignments and their associated tests. Using the tool,
first described by Pirttinen et al. [19], we ask the students to create
programming assignments to other students in the class and to
generate simple input-output test cases for the assignments that
they are creating. While the course does not initially discuss testing
at all, the final course week provides a worked example on unit
testing, and refers students back to the programming assignments
and test cases that the students themselves have written.

We are interested if the use of the simple assignment generation
tool in which students both write the assignment and the tests helps
students learn testing. That is, whether experience gained from
assignment and test generation transfers to other testing related
activities. To evaluate this, we study students’ performance in a
computer-based exam where students are expected to implement
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unit tests for a given class, measured using manually graded exam
points. We study how automatically extractable metrics such as test
count, line coverage and mutation coverage correlate with students’
performance in the testing related exam question, and also study
whether students’ previous programming background contributes
to their behavior in the tool and the exam.

This article is organized as follows. First, in Section 2, we dis-
cuss related work. Then, in Section 3, we introduce the research
questions and describe the methodology of the study. We present
the results in Section 4 and discuss their implications and the lim-
itations of the study in Section 5. Finally, conclusions and future
work are presented in Section 6.

2 BACKGROUND
We first discuss research on ways of teaching testing and how
to assess the quality of students’ tests. Then, we briefly discuss
how testing could be incorporated into introductory programming
courses. Finally, we discuss research on influence of previous pro-
gramming experience on performance in programming courses.

Testing is an important concept to teach, even if students do
not like the increased workload and time spent on creating test
cases. One way to make the learning process more fun and engag-
ing is using tools or games for teaching testing. Mutation testing
game Code Defenders by Clegg et al. [6] teaches software testing
concepts such as statement or branch coverage through gameplay.
CodeWrite [9] teaches students testing by first letting them write
their own programming exercises and then a set of test cases for
those exercises. Similarly, CrowdSorcerer [19] can be used to crowd-
source programming assignments while teaching testing practices
and encouraging students to read each others’ code through a peer
review functionality. Studies have shown that these kinds of ex-
ercise generation activities in programming courses can improve
exam performance and help learning programming [8, 15, 16].

When investigating ways to teach testing, a question of how to
evaluate the quality of student-written tests arises. CodeWrite and
CrowdSorcerer both rely on peer-assessment [9, 19], but automated
measures also exist. Edwards et al. [11] conducted an experiment
with three test quality measures for assessing programs written
by students in a data structures course: composite code coverage
(counts how many of the methods, statements and branches of the
code are executed), all-pairs scores (students’ tests are run against
the programs of others) and mutant kill ratios (creates mutants,
where artificial defects are inserted into the program, and then runs
student’s test suite to see if it can distinguish the mutated version
from the original program). The all-pairs score correlated the best
with how well students’ tests could reveal a bug.

A study by Marrero and Settle [17] investigated benefits of plac-
ing greater emphasis on testing in programming assignments in
introductory programming courses. Their study did not find any
uniform improvement in student performance, and concluded that
especially novice programmers can struggle with the idea of han-
dling assignments in several parts (program itself and its tests).
Students in the group with more emphasis on testing seemed to
struggle less with the abstraction that involved designing and im-
plementing classes. Emphasis on testing also forced the students to
concentrate on good software engineering practices even beyond

testing, such as interaction with colleagues and peers, and apprecia-
tion of clear requirements. Jansen and Saiedian [13] concluded their
study with similarly inconclusive results, stating that while test-
driven learning in introductory programming courses does have
its benefits in adopting good testing practices early on, especially
student responses highly favoured test-last approach because of
apparent increased workload of test-first approach.

Teachers often integrate at least some testing practices into intro-
ductory programming, though the level of emphasis varies greatly.
At best, students can be very accepting to including for example
unit testing practices to programming assignments, and think that
the effort spent on them is worthwhile and has a positive impact on
the quality of their code [1]. A study by Edwards [10] suggests that
teaching test-driven development in introductory programming
courses can improve both the programming and testing skills of the
students. Whether one should start with test-driven development
or gradually increase testing remains an open question.

Prior programming experience seems to have a positive impact
on students’ learning and performance in programming courses
[12]. The more programming languages a student has learned be-
fore taking an introductory programming course, the greater the
effect. These observations on the impact of prior experience are
supported by several researchers, for example Wiedenbeck et al.
[22] noted that factors related to programming experience had a
weak but significant correlation with introductory programming
course scores. The experience does not necessarily need to be even
related to programming, but to computer use in general. For exam-
ple, Wilson and Shrock [23] note that even factors such as the use
of internet, time spent on gaming, and the use of productivity soft-
ware explain some of the variance in the score of an introductory
programming exam [23]; this suggests that mere experience from
the use of a computer can be beneficial for learning programming.

However, some studies have noted contradicting results. For ex-
ample, Watson et al. [21] found that while previous programming
experience had significant positive impact on introductory program-
ming course scores when compared to those with no experience at
all, there was a weak but statistically insignificant negative corre-
lation with course points and programming years – that is, prior
experience may contribute negatively to students’ effort. Similarly,
Bergin and Reilly [2] found no statistically significant difference
between students with or without previous programming experi-
ence, and that students with no previous experience had marginally
higher mean overall score on an introductory programming course.

3 METHODOLOGY
3.1 Context and tool description
Our study was conducted in spring 2018 in an introductory pro-
gramming course organized in Java at University of Helsinki. The
course offered help in walk-in laboratories with the option of do-
ing the course fully online. The material consists of 7 weeks of
content and programming exercises that go through the basics of
Java programming, starting from basic procedural programming
and ending with building programs that use several classes with
different responsibilities ranging from a textual user interface to
methods for storing data.



The course also lets the students write their own programming
assignments using CrowdSorcerer [19]. Within CrowdSorcerer, stu-
dents are instructed to create programming assignments in the
following manner: First, create an assignment handout that is re-
lated to the given topic, for example if-else-statements. Then, write
a model solution for the assignment and adjust it to create a code
template that can be given to others. Finally, write a set of test
cases for the assignment. The test cases are written as pairs of
inputs and outputs: for a given input, the output of the program
is expected to be the given output or to contain parts of the given
output. The students were required to write at least one test case
for each programming assignment they created. In our context,
creating assignments with the tool was voluntary. The assignments
created by students were peer reviewed by other students on the
course in subsequent weeks of the course (see [20] for more details);
students had three opportunities to create new assignments, during
week 2, week 4 and week 6 of the 7 week course.

Creating assignments with CrowdSorcerer has many potential
benefits in addition to having the students think about how their
program needs to be tested. When students peer review other stu-
dents’ assignments, they get to look at source codewritten by others.
This can have benefits such as students possibly understanding why
clean code is important for code maintenance, as well as learning
alternative ways to approach a programming problem. Additionally,
some of the assignments created by students can be integrated into
subsequent course iterations.

The last week of the course material discussed testing and pro-
vided a worked example of creating a set of unit tests, which the
students were expected to follow. The material referred back to the
assignment generation problems with CrowdSorcerer.

3.2 Research questions
We study whether the tool has benefit to students’ skills in testing
their programs. The research questions for this study are as follows:
RQ1. Are students who use the tool more likely to answer testing-

related exam questions?
RQ2. Does the quality of the tests the students create with the

tool predict the quality of their answer to testing-related exam
questions?

RQ3. How does students’ previous programming experience influ-
ence their willingness to use the tool?

RQ4. Does students’ previous programming experience contribute
to the quality of written tests?
The first research question is answered through a statistical

analysis of the usage of the tool and students’ performance in a
testing-related question in our course exam. The second question
is answered through an analysis of student-generated test quantity,
line coverage, and mutation coverage, and their correlation with the
test-related exam question. The third and fourth research questions
look into whether students’ previous programming background
contribute to students’ tool usage or the quality of the written tests.

3.3 Data
CrowdSorcerer collects student identifiers, created programming
assignments and tests, and time stamps of events within the tool.
Besides this data, we use exam results, focusing on a question

# Assignments # Students % Answered Avg. points (sd)

None 168 97.6% 2.78 (1.54)
1-2 80 97.5% 2.92 (1.54)
3 22 100% 3.47 (1.08)

Table 1: Testing exam question performance categorized
based on the number of generated programming assign-
ments. # Assignments column indicates the number of gen-
erated assignments, # Students column the number of stu-
dents in that category, % Answered the percentage of stu-
dents in that category who answered to the exam question
on testing, andAvg. points (sd) represents the average points
and standard deviation from the testing-related exam ques-
tion (on a scale from 0 to 4).

where the students were expected to implement unit tests for a
given program. The exam question is provided in Appendix A.

The data consists of students who participated in the exam and
gave a permission to use their data for research purposes (n = 270).
When calculating particular values, for example the average points
received from the testing-related exam question, only students who
answered the question were included. If a student retook the exam,
for example to raise their course grade, only the first exam attempt
was investigated. Finally, when calculating correlations between
performance of the tests written in the tool and the points received
from the testing-related exam question, only those who had created
at least one assignment and answered the testing-related exam
question were studied.

4 RESULTS
4.1 Usage and exam question performance
In total, 270 students gave permission for the collection and usage
of their data. From these students, 22 used CrowdSorcerer to create
assignments every time it was visible in the material, 80 used it 1
to 2 times, and 168 did not use it at any point of the course. When
calculating usage, we count only the times when a student created
a new programming assignment for a different problem – repeated
returns for the same problem are excluded from analysis. From the
270 students, 264 answered the testing-related exam question, 100
of whom had used the tool to create an assignment and 164 had
not. 97.5% of the students who used the tool 1 to 2 times attempted
the testing exercise in the exam, whereas 97.6% of those who did
not use the tool answered to the testing exercise.

On average, those who did not use CrowdSorcerer received 2.78
points from the testing-related exercise. Those who used the tool
once or twice received an average of 2.92 points, and the average
was 3.47 points for those who used it every time. The standard
deviations were 1.54, 1.54 and 1.08 for these groups respectively.
These results can also be seen in Table 1.

We studied if the number of assignments created using Crowd-
Sorcerer correlated with the points that the student received from
the testing-related exam question. Using Kolmogorov–Smirnov
test, we compared the exam results of the groups: no assignments
created; 1–2 assignments created; and 3 assignments created. The
test, when corrected for multiple comparisons using Bonferroni
correction, showed no statistically significant difference between
the groups.



4.2 Time and exam performance
Time spent using CrowdSorcerer was estimated based on the time
stamps collected by the tool. The students were divided into three
groups of approximately equal sizes based on the time spent with
the tool. The first group contains those who used the tool for less
than half a minute, since most students did not use the tool at all.
The rest were divided into two groups based on the median of the
usage times, which was around 17 minutes, so that the first group
contains the students who spent 0.5 to 17 minutes using the tool,
and the students in the last group spent more than 17 minutes.

In the first group, 95.1% had answered the testing-related exam
question. In the second group, the response rate was 100%, and in
the last group, it was 99%. The average points received from the
question were 2.68 for the first group, 2.81 for the second group,
and 3.12 for the last group, with the standard deviations 1.52, 1.58
and 1.44, respectively. These results can be seen in Table 2.

Time # Students % Answered Avg. points (sd)

< 0.5 minutes 102 95.10% 2.68 (1.52)
0.5 - 17 minutes 68 100% 2.81 (1.58)
> 17 minutes 100 99% 3.12 (1.44)

Table 2: Testing exam question performance categorized
based on the amount of time spent in the tool. Time column
indicates the time spent on generating the assignments, #
Students column the number of students in that category, %
Answered the percentage of students in that category who
answered to the exam question on testing, and Avg. points
(sd) represents the average points and standard deviation
from the testing-related exercise (on a scale from 0 to 4).

We studied whether the time spent on CrowdSorcerer correlated
with the points that the student received from the testing-related
exam question. Using Kolmogorov–Smirnov test, we compared the
exam results of the groups: less than 0.5 minutes in the tool; 0.5–17
minutes in the tool; and over 17 minutes in the tool. Kolmogorov–
Smirnov test, when corrected for multiple comparisons using Bon-
ferroni correction, showed no statistically significant difference
between the groups – the test comparing the less than 0.5 minutes
in the tool and the over 17 minutes in the tool groups had p = 0.017.

4.3 Testing effort and exam performance
Next, we calculated the correlations between the points received
from the testing-related question in the exam and the test perfor-
mance when using the tool. Three metrics were used to evaluate
the testing effort: (1) number of test cases, (2) line coverage, and (3)
mutation coverage.

We used Spearman’s rank correlations, as the relationship be-
tween test performance and exam question points is not necessarily
linear. For example, it could be that the increase from 0% coverage
to 50% is more meaningful than the increase from 50% coverage to
100% coverage. The correlations and p-values can be seen in Table
3. All of the correlations are weak and not statistically significant.

4.4 Influence of programming experience
At the beginning of the course, students were asked about their
previous programming experience. Out of the 270 students who had

Course exam points

# Test cases r = 0.093, p = 0.372
Line coverage (pct) r = −0.086, p = 0.400
Mutation coverage (pct) r = 0.143, p = 0.162
Time spent on the tool r = 0.184, p = 0.072

Table 3: Spearman correlations and p-values between the
testing effort –measured using the number of test cases, line
coverage, mutation coverage and time spent – and points re-
ceived from the testing-related question in the exam.

given consent for the study, 141 provided details on their program-
ming background. From these 141 students, 28 had no previous
experience at all, 50 had programmed for 6 to 49 hours, and 63
for over 50 hours. We organized these students into four groups:
“did not report programming experience”, “no programming experi-
ence”, “some programming experience” and “a lot of programming
experience”, respectively.

From those who did not report programming experience, 40.6%
completed at least one assignment with CrowdSorcerer. The rates
were 39.3% (novices), 36.0% (some programming experience) and
33.3% (a lot of programming experience). The average time spent
on the tool was 23.2 minutes with a standard deviation of 42.8
(did not report programming experience), 20.8 minutes with the
standard deviation of 37.2 (novices), 38.5 minutes with the standard
deviation of 114.1 (some experience), and 25.9 minutes with the
standard deviation of 50.1 (a lot of programming experience).

The average amounts of completed assignments were: 1.60 (no
reported programming experience), 1.27 (no experience), 1.39 (some
experience), and 1.86 (a lot of experience). Standard deviations were
1.79, 1.41, 1.55 and 2.08, respectively.

100% of those with at least some programming experience had
answered the testing-related question in the course exam, whereas
96.4% of those with no experience and 96.9% of those who did not
report programming experience answered the question. Averages
of points received from the question were 2.55 (did not report pro-
gramming experience), 2.93 (no experience), 2.86 (some experience),
and 3.05 (a lot of experience), and the standard deviations were
3.12, 3.37, 3.28 and 3.45, respectively. The difference between these
populations is shown in Table 4.

We studied whether those with more programming experience
were more likely to use the tool. Using Kolmogorov–Smirnov test,
we compared the time spent on the tool as well as the number of
created assignments with it for the three groups: those who had no
programming experience, those with some experience, and those
with a lot of experience. The test showed no statistically significant
difference between the groups.

5 DISCUSSION
5.1 Tool usage and student performance
When analyzing the usage of the tool, most of the participants (62%)
chose not to use the tool at all, while only 8% of the population used
it every time it was in the material. This reflects previous results
in teaching testing to novices, for example Borriocanal et al. [1]
observed that only 10% of their students wrote unit tests.



Did not report program-
ming experience

No programming experi-
ence

Some programming expe-
rience

A lot of programming ex-
perience

Participated in the course
exam

129 28 50 63

Created at least one assign-
ment with the tool

40.6% 39.3% 36.0% 33.3%

Average and SD of time
spent on the tool (in min-
utes)

Average: 23.2
SD: 42.8

Average: 20.8
SD: 37.2

Average: 38.5
SD: 114.1

Average: 25.9
SD: 50.1

Average and SD of the
number of completed as-
signments with the tool

Average: 1.60
SD: 1.79

Average: 1.27
SD: 1.41

Average: 1.39
SD: 1.55

Average: 1.86
SD: 2.08

Answered the testing-
related exam question

96.9% 96.4% 100% 100%

Average and SD of the
points from the testing-
related exam question

Average: 2.55
SD: 3.12

Average: 2.93
SD: 3.37

Average: 2.86
SD: 3.28

Average: 3.05
SD: 3.45

Table 4: Influence of previous programming experience for those who participated in the course exam. Points from the testing-
related question are scaled from0 to 4. In the columns, “no programming experience”means that the student reported less than
five hours of previous programming experience, “some”means 6-49 hours of experience, and “a lot”more than 50 hours. Usage
of the tool is counted on separate occurrences, not from repeated attempts of the same task. The average time is calculated
based on all students in the group, not only those who used the tool. SD means standard deviation.

Our results do not indicate that students who use the tool more
would be more likely to correctly answer the testing-related ques-
tion in the course exam. However, it still seems that the more time
the students spend using CrowdSorcerer and the more assignments
they created, the better they performed in the testing-related exam
question. Not creating assignments led to an average of 2.78 points
from the exam question, while always using the tool to create an
assignment led to an average of 3.47 points. Similarly, those who
used the tool for less than half a minute got an average of 2.68
points from the exam question, while those who spent more than
17 minutes using it received an average of 3.12 points. None of the
differences were statistically significant after adjusting the statis-
tical significance level using the Bonferroni correction. This was
done in order to avoid the problem of multiple comparisons.

When contrasting the time spent on creating the assignments,
we notice that the population that did not spend almost any time
on the task is smaller than the population that did not complete any
assignments. Thus, there is a population who have attempted to use
the tool, but have not completed an assignment due to reasons cur-
rently unknown to us. Approximately one third of the population
spent more than 17 minutes on creating the assignments.

Similarly, when analyzing the student-written tests for the as-
signments in more detail, no statistically significant correlation
between the exam points from the testing-related exam question
and test cases, line coverage, and mutation coverage was identi-
fied. This suggests that the quantity or the quality of the test cases
that the students implement do not tell much about their exam
performance, which also means that the studied context should
consider the use of the tool further. It is possible, for example, that
the generation of an assignment takes too much focus, and the tests
that students create are rather simple. On the other hand, as the
testing question in the exam also expects syntactically correct unit
tests, which the students do not practice in the tool, it is possible

that the exam performance and the tool usage measure different
underlying constructs.

5.2 Course material and previous
programming experience

The course material also included a worked example on unit testing
that the students were expected to follow. It is possible that, as
worked examples are a good way for teaching a topic [5], the direct
instruction – in a single worked example – worked better than
teaching testing with CrowdSorcerer. We must note, however, that
in a preliminary investigation in which the tool was isolated from
the programming course and shown to a handful of students, our
observations indicated that the use of the tool could be a viable
approach for easing students into learning testing.

Finally, when analyzing previous programming experience, we
note that programming experience has more to do with answering
the testing-related exam question than the number of programming
assignments created with the tool. On the other hand, creating as-
signments with the tool might have helped thosewith no experience
in programming to learn testing more than those with some ex-
perience. As stated in Table 4, the average score received by the
novices is marginally higher than that of those with some program-
ming experience, but the difference is not statistically significant.
Interestingly, while novices may be more likely to create an assign-
ment with CrowdSorcerer, they use less time in the tool on average
when compared to more experienced programmers. This means
that when the more experienced programmers use CrowdSorcerer,
they spend more time, possibly creating more thorough or complex
assignments.

5.3 Limitations of work
This study comes with a number of limitations, which we address
next. First, measuring performance is always hard, and it is possi-
ble that the proxies that we chose (exam performance, tool usage,



test quality) are poor approximations of the students’ knowledge.
Second, the studied exam question was the last question on the
exam. While almost everybody answered the exam question, it is
possible that some did not have sufficient time to answer the ques-
tion properly. It is also possible that if students are uncertain of
their testing-related skill set, as it is a topic that is not as widely
studied on the course, they focus on other exam questions first and
try to scramble together an answer at the very end of the exam,
which results in lower score. On the other hand, the overall average
score from the exam question was 72%, which was close to the
average score from the exam overall; it is possible that some of the
results are also influenced by a ceiling effect. Third, as we limited
our analysis to the population who had attended the exam, there is
bound to be selection bias in the data. This is visible also in those
who used CrowdSorcerer; the students used the tool voluntarily,
and it is possible that we have solely captured the more active
population and consequently the use of the tool is secondary. It is
possible that this more active population would have performed
better regardless. Finally, the way CrowdSorcerer was introduced
into the course may have influenced outcomes: the tool was not
advertised as a testing learning tool, but it emphasized the benefit of
creating a programming assignment and thinking about the process
of programming from another perspective, and the students also
had a worked example emphasizing unit testing in the material. It
is possible that a different kind of focus in the material could have
influenced students’ focus when working with the tool.

6 CONCLUSIONS
We studied the use of CrowdSorcerer, a tool that can be used for
creating and programming assignments with tests. When using
it, students first create the problem description, then the model
solution, and then the tests for the problem. The tests are written
using a simple input-output format, where each input-output test
pair provides the input and the expected output. Our hypothesis
was that the use of the tool would contribute to students ability to
test programs.

The hypothesis was studied using statistical tests between the
usage of the tool and a testing-related question in a course exam.We
studiedwhether the number of tests written, the line coverage or the
mutation coverage of the students’ tests in the student-generated
assignments explain students’ performance in the testing-related
exam question.

To summarize, our answers to the research questions are:

RQ1. Are students who use the tool more likely to answer testing-
related exam questions? Answer:When analyzing the tool us-
age and the tendency to answer the testing-related exam ques-
tion, we found no statistically significant differences between
the populations (see Tables 1 and 2).

RQ2. Does the quality of the tests the students create with the
tool predict the quality of their answer to testing-related exam
questions? Answer: None of the correlations (Table 3) between
the quality metrics for student-generated assignment tests and
exam performance were statistically significant.

RQ3. How does students’ previous programming experience influ-
ence their willingness to use the tool? Answer: Those with no
programming experience used the tool marginally more than

those with some or a lot of experience (see Table 4). Students
with no programming experience also got marginally more
points on average in the testing-related question of the course
exam than those with at least some experience, but the difference
is not statistically significant.

RQ4. Does students’ previous programming experience contribute
to the quality of written tests? Answer: Students with no pro-
gramming experience got marginally more points on average in
the testing-related question of the course exam than those with
at least some experience, but the difference is not statistically
significant.

Our analysis showed that there was no statistically significant
connection between the used metrics and the course outcomes. This
highlights a number of issues with learning to write tests, some of
which generalize to the broader domain of learning programming.
First, it is possible that asking students to generate a full program-
ming assignment is too complex for learning testing, and as such,
the methodology should be changed to focus more specifically on
tests. It is also possible that the performance metrics chosen here
are not optimal, as students were supposed to write syntactically
correct tests in the exam, while the tool provided students scaffold-
ing in the form of being able to limit to input-output tests. Similarly,
as students were also given a focused worked example on unit test-
ing in the course material, it is possible that it influenced students’
behavior and thus reduced the visible effect of the tool.

As a part of our future work, we are looking into elaborating the
influence of creating the problem statement and the model solution
on students’ learning. Do they move students’ focus away from
the testing task, or do they help students write the tests as they
have designed the assignment as well? We are also looking into
gamifying the system, as well as diversifying the ways how testing
is taught with the tool, for example asking students to create test
cases for assignments instead of creating the full assignments.

A APPENDIX - QUESTION: TESTING
You have been given a class Grading that reportedly offers the
possibility to add course grades, to search for a grade by entering
a student ID, and to search for all students who have received a
certain grade.

Add a test classGradingTest to the code template and write the
following unit tests.

• Check that a student with a grade added to the Grading
object can be found using the object’s getGrade method.

• Check that when calling the getGrade method for a
student ID that has not been added, -1 is returned.

• Check that adds a student with a grade to the Grading
object and then verifies that that student is found
using the getStudentsWithGrade method.

• Check that when there are no students, the method
getStudentsWithGrade returns an empty list.

Note: Each of the items were graded manually and for each fully
working test case, students received 1 point. Deductions were made
based on unnecessarily complex code, bad naming of variables and
so on.
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