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ABSTRACT

We describe an experiment from an introductory programming
course where we provided students an opportunity to access model
solutions of programming assignments they have not yet completed.
Access to model solutions was controlled with coins, which students
collected by completing programming assignments. The quantity of
coins was limited so that students could buy solutions to at most one
tenth of the course assignments. When compared to the traditional
approach where access to model solutions is limited to only after
the assignment is completed or the assignment deadline has passed,
students seemed to enjoy the opportunity more and collecting coins
motivated some students to complete more assignments. Collected
coins were mostly used close to deadlines and on more difficult
assignments. Overall, the use of coins and model solutions may be
a viable option to providing students additional support. Data from
the use of coins and model solutions could also be used to identify
students who could benefit from additional guidance.
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1 INTRODUCTION

Research from the last decade suggests that almost one third of
students who attend an introductory programming course fail the
course [3, 39]. Any approach that could be used to mitigate the
challenges related to learning programming would be beneficial. A
range of pedagogical practices that can be used to alleviate the issue
exist [36], and introductory programming courses in general have
been studied extensively [23]. However, many of the pedagogical
practices outlined, e.g. in [36], require plenty of effort from the
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course teachers as well as considerable changes to the way how
courses are organized.

Introductory programming courses and computer science courses
in general use model solutions in two dominant ways: model so-
lutions are used as worked examples that students study, and as
a way to provide feedback and reflection. In the first case, model
solutions are given to students so that they can study the problem
in combination with the solution and see how a particular problem
should be solved. In the second case, where model solutions are
used for feedback and reflection, model solutions are typically made
available after a student has solved the problem or the deadline of
the problem has passed.

In this article, we describe an experiment from an introductory
programming course where we set out to explore giving access
to model solutions to students dynamically, and how students use
the opportunity to view model solutions. The experiment blurred
the distinction between worked examples and model solutions by
giving students an opportunity to view model solutions of program-
ming assignments before completing them, offering an opportunity
to study how a particular problem should be solved. The experiment
reported here is a continuation of an earlier experiment, described
in [26], where students were able to view model solutions without
any restrictions. In this work, access to model solutions was limited
and model solutions could be bought using coins that students gath-
ered from completed course assignments. The quantity of coins was
limited so that students could view the model solutions of at most
one tenth of the programming assignments in the course before
completion. Students could still view the model solutions after they
had completed the exercise or after the deadline of the exercise had
passed without spending a coin.

Given the existing failure rates in programming that could be im-
proved, any approach that could improve the situation is worth look-
ing into. Providing access to model solutions can be seen as an ad-
ditional support mechanism, which has both its upsides and down-
sides — students may use model solutions for support when needed,
but some may also use the opportunity to avoid studying [26]. Stu-
dents’ approaches to learning, including mastery and performance
goals, influence how students approach their tasks [42], which
could also explain some of the model solution use. Moreover, coins
that could be collected in the course by completing programming
assignments gamifies learning, which may motivate students [6].

This article is organized as follows. In Section 2, we outline the
background relevant to our experiment, discussing model solutions
and examples, achievement goals, the use of tokens and hints as
well as gamification. In Section 3, we explain the context, data and
research questions of our work, and in Section 4 we outline the
results of the experiment. The results are discussed in Section 5,
and Section 6 concludes the work and outlines future directions.
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2 BACKGROUND

2.1 Model solutions and examples

A model solution is a solution to a problem that students can com-
pare with their own solution. Benefits of model solutions include
verifying results and the thought process, and they can be used
to increase reflection. If a student compares and contrasts their
solution with the one provided by the teacher, they can, for exam-
ple, find flaws in their thought process or more optimized ways of
implementing the solution.

Examples, on the other hand, provide similar content as the
problems the students are working on without being a solution to
the problem. Instead, students are expected to internalize and use
the examples to solve the given problems. Learning materials and
examples that are too challenging may hinder students’ learning
progress [7], and the quality of examples influences the quality of
students’ solutions [10].

If students are given examples, they should be relevant to the task
at hand. Studying an example and completing an assignment related
to the example can lead to better performance, and working on
additional assignments helps learning over viewing examples [34].
Even if students are given examples of work that they are expected
to do, students’ background influences how they work with the ex-
amples. Students with little knowledge on the topic or poor learning
approaches may copy content verbatim, while advanced students
may try to solve the problems themselves referring to examples
only when stuck, wanting to check a step, or wanting to avoid a
more complex task such as detailed calculation [35].

One of the possible types of examples is worked examples [33],
which outline the required work needed to solve the problem. An-
other common type of example — used in instruction — is modeling
[4, 5], where a teacher shows the process needed to reach a solution.
How well these work depends on students’ attention, effort, and
prior knowledge. For example, intricate guidance that is beneficial
for novices may be extraneous for more advanced students, leading
to negative outcomes [18], and thus, guidance and examples should
not be given to all but only to those who need them.

2.2 Achievement goals

As mentioned previously, students’ background influences how
they work with examples. Achievement goal theory (AGT), devel-
oped by Dweck [8] and later revised by Harackiewics et al. [14],
characterizes mastery and performance goals of students. Students
may have a variety of goals or desirable outcomes from their learn-
ing experience, such as grade, interest or self-efficacy [30]. Students
with mastery goals emphasize learning and mastering the course
material for personal improvement, which has a positive effect on
various outcomes such as deep learning, interest and self-efficacy
[29, 30]. However, mastery goals do not necessarily correlate posi-
tively with grades [29].

Students with performance goals, on the other hand, emphasize
the outward appearance. Performance goals can be broadly divided
into two categories: appearance and normative. Students with ap-
pearance goals strive to appear knowledgeable in general, while
students with normative goals strive to outperform their peers. Ap-
pearance goals tend to negatively correlate with the course grades,
while normative goals may correlate positively with grades [16]. In

computer science education, studies have shown that mastery goals
have a positive correlation with course grades, while normative and
appearance goals have may have a negative correlation with course
grades [41, 43], but context also influences the observations [42].

Students with different achievement goals also have differing
views on the use of work from others (plagiarism). A survey by
Koul et al. [19] found that students with performance goals can
be very strict in judgment towards “rationales” for plagiarizing
(e.g. heavy workload, sickness, stress, embarrassment of failure),
as well as sources of plagiarism (e.g. getting answers from a friend,
copying directly from a textbook or the Internet). Koul et al. reason
that since education can be seen as a way to “move up the social
ladder”, especially performance goal oriented students have an
interest in keeping the competition equal and not letting anyone
gain a position of privilege through fraud or a short-cut.

2.3 Gamification, tokens and hints

Gamification refers to the use of game-like elements such as points,
experience or levels, or receiving achievements or tokens for com-
pleting certain goals, in non-game contexts such as educational
situations [6]. Literature review data of gamification in education
by Nah et al. [25] inspects gamified courses or learning materi-
als from various contexts. They summarize learner outcomes into
a few categories, the most notable ones being increased engage-
ment [1, 2, 9, 11, 12, 20, 27] and enjoyment [1, 9]. Less common
goals or learner outcomes include for example motivation, sense of
achievement or accomplishment, performance, and status.

Gamification experiments have been reported also in computer
science education; for example, Haaranen et al. [13] have sought
to introduce badges to a data structures course, while Leppédnen
et al. [22] noted that even a simple progress bar with no attached
rewards or grading increases students’ engagement with the con-
tent. Another way to gamify learning is to introduce tokens to the
learning process — for example, Spacco et al. [31] implemented a
token system for their automatic assessment system Marmoset,
where students had a limited set of (automatically refreshing) to-
kens that could be spent on testing the students’ projects. Such a
token system may cause students to start their work earlier.

Giving hints to students while they progress in their assign-
ments can help students proceed towards a correct solution, but
the benefits of hints are not always clear. For example, in a ran-
domized controlled experiment, Stephen-Martinez and Fox [32]
observed no benefits in a post-test when comparing test and control
groups. Hints can even affect performance negatively; for example,
O’Rourke et al. [28] studied hints in an educational video game en-
vironment, and found that each of the tried hint systems impacted
students’ performance negatively.

One of the challenges may be the way how hints are presented to
students. If students do not see the overall picture but just the next
step, students may not realize the full process needed to reach the
solution. Providing worked examples instead could lead to better
outcomes. For example, Mostafavi et al. [24] found that students
who were provided worked examples in a tutoring system advanced
slightly faster on their assignments than students using the same
tutoring system without worked examples — furthermore, students
who were provided worked examples also showed higher retention
on the tutor.



3 METHODOLOGY

3.1 Experiment context

The experiment was conducted within a seven-week 5 ECTS! intro-
ductory programming course at the University of Helsinki. Students
in the course learn the principles of procedural and object-oriented
programming using Java. The course has a total of seven program-
ming assignment sets, each corresponding to a specific week in
the course. Each set has 10 to 40 programming assignments that
students are expected to complete by a weekly deadline; in the
beginning of the course, students have more assignments that are
smaller, and towards the end of the course, the assignments grow
in size and complexity.

The course uses a blended learning approach with custom on-
line course material similar to many online course materials with
embedded assignment handouts, questionnaires, program visual-
izations and so on. Students work on the course assignments using
their own computers or the computer labs at the university, and
then submit their solutions to an automated assessment service.
There are no lectures in the course. Instead, students are supported
in daily walk-in labs with hands-on guidance. For further details
on the pedagogy, see [37, 38].

The course has an end of course exam, which is completed on a
computer. The exam consists of a set of conceptual and code-reading
multiple choice questions and a set of programming questions.
The grading of the course is based on the completed assignments
(50%) and the end of course exam (50%). Each week corresponds to
approximately 7% of the total course points, and full points from a
week could be gained by completing 90% of that week’s assignments.
The highest mark in the course can be gained by receiving over
90% of the overall marks, and students must receive at least 50% of
the exam points and the overall course points to pass the course.

3.2 Experimenting with viewing model
solutions

Traditionally, students in the course have been able to view model
solutions to programming assignments once they have either com-
pleted the programming assignment or once the deadline has passed.
An assignment is considered completed when it passess all the as-
sociated tests and is returned to the automated assessment service
used in the course. In the experiment, students gained coins from
completing programming assignments, which then could be used to
buy model solutions for assignments that were not yet completed.
In the experiment, each student received one coin for each 16 com-
pleted assignments, which corresponds to students being able to
view the solutions of approximately 10% of the course assignments.
Access to model solutions was controlled using the automated
assessment service, which kept record of the assignments that
students had returned and consequently also the coins that each
student had gathered. Whenever a student viewed a model solution,
the service stored the student’s id, an identifier of the program-
ming assignment for which the model solution was viewed, and a
timestamp. The service also kept track of the available coins.

!European Credit Transfer System: One ECTS credit corresponds to approximately
25-30 hours of work.

In the experiment, all completed assignments counted towards
the grade, including the assignments for which students viewed the
model solutions before completing the assignment. The students
were expected to submit a solution also to any assignments for
which they viewed the model solution. They were allowed to submit
the model solution as their own.

3.3 Questionnaire and assignment information

At the beginning of the experiment, students were given an online
survey that they were asked to answer. The survey included demo-
graphic factors (age, gender), previous programming experience
measured in hours programmed, and a goal orientation question-
naire outlined in [42]. We used the questions on Mastery, Perfor-
mance (appearance) and Performance (normative). Each question
was answered using a 7-item Likert scale ranging from completely
disagree to completely agree.

Students also answered an online research consent service where
they provided consent to the use of their course data for research
purposes. In addition to the questionnaire and the separate research
consent, after each assignment, students were shown a voluntary
prompt asking about the difficulty of the programming assignment:
On a scale from 1 to 5, how difficult was the programming assignment?
(1 = very easy, 5 = very hard).

3.4 Research questions

Our research questions for this study are as follows: RQ1. To what
extent does students’ background and goal orientations correlate with
model solution use?; RQ2. When and to what do students use the
opportunity to view model solutions?; RQ3. How does the use of model
solutions correlate with students’ course outcomes?

For the analysis, we use information on model solution views,
available coins, questionnaire answers, and course outcomes. For
course outcomes, we focus on students’ overall performance in
the programming questions of the exam. In all of the analyses, if a
student has viewed the solution to a single assignment more than
once, we still consider this as a single view. Furthermore, we focus
on students’ viewing the model solutions before completing the
programming assignments.

To answer RQ1, we study to what extent students’ age, gender,
previous programming experience or goal orientations (mastery;
performance, appearance; performance, normative) explain the use
of model solutions. To answer RQ2, we contrast the timestamps
of the model solution views of the two experiments and study
whether students’ use of model solutions differ depending on the
setup. Furthermore, focusing on assignment difficulty, we study
to what types of assignments students view the model solutions.
To answer RQ3, we contrast students’ use of model solutions with
course exam outcomes.

4 RESULTS

4.1 Descriptive statistics

147 students attended the exam, provided their background details
and provided consent to the use of their data for this study (approx.
57% of the initial population). This forms the set that was used for
the analysis. Out of the 147 students, 96 were male, 47 were female,
and 4 chose to not disclose their gender. The median age of the



Table 1: Model solution views

min max mean median stdev
Overall 0 11 3.7 3 3.6
Normalized 0 1 0.37 0.27 0.37

students is 26 years, while the average age of the students is 29.
The majority of the students in the course are studying computer
science as a minor, which partly explains the relatively high average
age of students.

Out of the 147 students, 61 had no previous programming ex-
perience, 52 had programmed less than 100 hours, and 34 had
programmed 100 hours or more. The course exam, which was con-
ducted using computers and contained content similar to that which
the students practice during the course, went well overall. Students
received on average 84.6% of the exam points with a median of
93.3% and a standard deviation of 22.6%. There was a ceiling effect
in the exam.

Descriptive statistics of model solution views are presented in
Table 1, which shows both the absolute number of views and the
normalized number of views. The normalized number of model
solution views is normalized based on the coins that the student
gathered overall, i.e. (views/coins).

In all of the subsequent analyses, unless otherwise noted, the
analysis is performed on the normalized model solution views. This
way, the possibility of accessing model solutions (i.e. availability of
coins) is taken into account.

4.2 Background data and model solution usage

RQ1. To what extent does students’ background and goal orientations
correlate with model solution use?

First, we studied whether students’ demographics and back-
ground are linked with the use of model solutions. Using Pearson’s
correlation with age and model solutions viewed, a weak negative
correlation was identified (r = —0.25,p = 0.002) — that is, older
students are more inclined to limit their use of model solutions.
Next, using the Kolmogorov-Smirnov test, we studied whether gen-
der influences how model solutions are viewed. No statistically
significant correlation between gender and model solution usage
was identified. Then, studying the self-reported hours programmed
and model solution usage, a statistically significant weak negative
correlation was observed using Pearson’s correlation. Students with
previous programming experience were less likely to use model
solutions (r = —0.20,p = 0.01).

Finally, we analyzed the connection between achievement goals
and model solutions. Using Spearman’s rho, we did not identify a
statistically significant correlation when comparing any of the vari-
ables (1) mastery, (2) performance appearance, and (3) performance
normative controlling with the number of model solution views.

4.3 Course timeline and model solution usage
RQ2. When and to what do students use the opportunity to view model
solutions?

We studied the course timeline and model solution usage in
two ways. First, we analyzed when the model solutions are used,

1,000 500

900 _— Moz.iel solutions viewed 450
'| == Assignments completed
" 800 'r\l ,,{ | Deadline 400’2
= ] =3
[} i I &
= 700 '| “ 4 ’, |I ‘| 3502‘
S0 N | 3003
o ALY NG I i =
gsool Ay i 2508:
S 400 AR NN | AR 2003
= W \/ ~ I |
g 9] v \J i | S
& 300 \ \/ Lol i3 1508
= A |\ v ‘ I
£ 200 o 1008,
LA
100 L7} 50

Jan 20 Jan 27 Feb 03 Feb 10 Feb 17 Feb 24 Mar 03
Course timeline

Figure 1: Completed assignments and model solution views
over time. The green dashed line corresponds to completed
assignments, with tick marks on the left. The blue line cor-
responds to viewed model solutions, tick marks on the right.
The vertical red lines indicate weekly deadlines.

and then, we studied the time between a model solution view and
assignment completion.

From Figure 1, we can see that students are more likely to view
model solutions close to the deadline than at the beginning of each
course week. Moreover, fewer model solutions are used early in
the course; on the deadline day of the first course week, students
complete in total approximately 800 assignments, while model
solutions are viewed approximately 15 times, corresponding to
using a model solution for approximately 2% of the assignments. On
the other hand, on the deadline day of the final week of the course,
students complete approximately 200 assignments, while model
solutions are viewed approximately 60 times. This corresponds to
approximately 30% of the assignments.

We looked into time between model solution views and assign-
ment completion. Our intuition was that the time between a model
solution view and assignment completion could be used to distin-
guish students who simply copied a model solution and students
who studied the model solution. The time between model solution
views and assignment completion was then correlated with exam
outcomes. No statistically significant correlation was identified.

Following the analysis of the course timeline and model solution
usage, we studied in what types of assignments model solutions
are used. For this purpose, we used student feedback on the diffi-
culty of the course assignments: whenever a student completes an
assignment, the system asks about the difficulty of the assignment.

Using Spearman’s rho to study the correlation between the aver-
age difficulty of each programming assignment and the absolute
number of model solution views of each assignment, we identified
a statistically significant strong correlation (r = 0.77,p < 0.0001).
That is, the more difficult the assignment is, the more students view
the model solution of the assignment before completing it. The
difficulty of the programming assignment explains over 59% of the
variance in the number of model solution views.



ot

OO OMOmO

0.7
2z
g 0.6+
I
2 0.5- ) 8
g o 8 &
g 0.4¢ & 8
3] X g
0.3 g 8
0.2 8
g
0.1+ o
0.0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ \
00 01 02 03 04 05 06 07 08 09 1.0

Model solutions viewed before completion

Figure 2: Exam points vs model solutions viewed. Model so-
lution views have been normalized, accounting for the coins
that students have had.

4.4 Model solution usage and course outcomes

RQ3. How does the use of model solutions correlate with students’
course outcomes?

We studied the connection between model solution usage and
course outcomes. Model solution use and normalized exam points
are shown in Figure 2. In Figure 2, the x-axis values are normalized,
meaning that the x-axis represents how many of the available coins
students spent. A ratio of 0 would mean that the student did not
use coins at all, while a ratio of 0.5 would mean that they spent half
of their available coins.

When studying the model solution usage and course outcomes,
i.e. the outcomes of the programming tasks in the exam, we identi-
fied a moderate negative correlation between model solution views
and exam outcomes (r = —0.46,p < 0.0001). Effectively, model
solution usage explains 21% of the variance in exam outcomes.

5 DISCUSSION

5.1 Background and model solutions

When studying students’ background variables (age, gender, previ-
ous programming experience, goal orientations) and model solution
usage, we found that (1) students with previous programming ex-
perience were more likely to use fewer model solutions, and that
(2) older students are more likely to use fewer model solutions.

The observation that those with previous programming expe-
rience use fewer model solutions is in line with previous studies
which suggest that students with previous programming experience
may perform better in programming courses and thus may also
require less help [15, 40]. The same observation was also present in
the experiment where students had non-restricted access to model
solutions [26]. The observation that older students are less likely
to use model solutions can potentially be explained by study ex-
perience, leading them to having better study habits. On the other
hand, older students may also have more exposure to programming
than the younger students.

We did not identify a correlation between goal orientations and
model solution usage. This was against our expectation that per-
formance oriented students would be more likely to use model
solutions than mastery oriented students as the use of model so-
lutions can lead to more points in the course. This would have
been in line with performance oriented students being more in-
terested in showing others that they perform well. On the other
hand, performance oriented students may be stricter towards pla-
giarism [19], which could balance the scales — we do not, however,
know whether students saw using model solutions as plagiarism. Fi-
nally, the course assessment weighs the assignments and the exam
evenly which likely influences how model solutions were used.

5.2 Assignment difficulty and deadlines

When analyzing course assignment difficulty and model solution
usage, we found a strong correlation (r = 0.77) between model
solution usage and assignment difficulty. Students were more likely
to use model solutions in difficult assignments. This makes plenty
of sense as using model solutions (a limited resource) would be
wasteful for easy assignments. It is possible that some of the course
assignments were too difficult for some students, which could par-
tially explain the observation. On the other hand, assignment dif-
ficulty is linked with the time that students spend on solving the
assignment [17, 21]. As such, it is possible that some students used
the model solutions to get rid of laborious assignments.

When comparing the quantity of assignment submissions with
model solution usage over the course, we observed that model
solution usage was significantly more common close to the deadline.
While students in general have a tendency to submit their work
close to the deadline, the ratio of used model solutions did not
correspond with the quantity of submissions over time. Using more
model solutions close to the deadline could be explained by the
more difficult assignments being placed at the end of each week
— on the other hand, some students might simply use the model
solutions to gain course points if they were running out of time.
Model solution usage also increased over the course - students used
more coins in the latter weeks — as with our previous experiment
with unlimited access to model solutions [26]. The increased usage
of model solutions towards the end of the course could be explained
by students having more coins due to more completed assignments.

5.3 Exam outcomes

When looking at the correlation between the use of model solutions
before completing assignments and performance in the course exam,
we found a moderate negative correlation (r = —0.46). This means
that those who viewed more model solutions before solving the
assignment performed, on average, more poorly in the exam. One
interpretation of this result is that our experiment where coins
can be used to buy model solutions is bad for learning. We did not
perform a randomized controlled trial in the course however, and
as such, we do not know the actual impact of the experiment on
course outcomes.

In our previous experiment reported in [26], we found a stronger
negative correlation (r = —0.71) with the use of model solutions
and exam outcomes. In the experiment reported here, students had
a limited amount of model solution views, while in the previous



experiment students had non-restricted access to model solutions.
It is possible that both negative correlations are explained by poor-
performing students needing more help and thus having to look at
more model solutions. It may be that in the experiment reported
here, students who would have needed more help dropped out when
they ran out of coins, whereas in the previous experiment they
persisted until the exam with the help of model solutions, which
could explain the difference in the magnitude of the correlations.

Another interpretation of the negative correlation between model
solution usage and exam performance is that the use of coins re-
flects students existing study processes, providing data that could
be used to identify struggling students. There exists a large body
of research on the topic [15], and to our knowledge data similar to
ours has not previously been used to identify struggling students.
At the same time, as the use of model solutions increases over time
and is at the greatest at the end of the course, using the coins as an
early warning system might not be a viable option.

5.4 Student and instructor feedback

Finally, we gathered feedback on the experiment from students and
instructors. Overall, the experiment was seen positive, and three
main benefits were identified: 1) the ability to proceed if stuck, 2)
additional incentives to complete assignments, and 3) being able to
get help without asking for help.

Coins provided students the opportunity to proceed in the as-
signments if they got stuck. Being stuck in an assignment can be
caused by a range of factors, ranging from simple syntactic issues
to issues with how the problem should be approached. Using a coin
provided students a peek to one way of solving the assignment,
which could help realize conceptual mistakes and issues with the
problem solving process.

Moreover, the gamification aspect of the experiment, i.e. students
gaining coins from completed assignments, provided students ad-
ditional incentives to complete more assignments. In the course,
full points from each week could be gained by completing 90%
of the weekly assignments, and the possibility of gathering coins
encouraged students to work on additional assignments that did
not count towards the grade.

Finally, we have observed that there exists a handful of students
who struggle with asking for help. There are a multitude of causes
for this, including shyness and being worried that asking for help
somehow defines the student as a person who cannot succeed. The
coins provided students an opportunity to get help, without actually
asking for help.

In our previous experiment with non-restricted access to model
solutions [26], we observed that students stopped coming to the
walk-in labs — this may have been caused by students relying solely
on the model solutions. During the experiment reported in this
work, where access to model solutions was limited, the walk-in labs
were again used by students.

5.5 Limitations of work

Next, we outline main limitations of this work. First, as mentioned
in Section 5.3, we did not run the experiment as a randomized con-
trolled trial with a test and control population, and as such, we can
only hypothesize on causation. The results outlined in the article

come from a single experiment conducted in a single course at a
single institution, which means that we cannot draw conclusions
on the generalizability of the results. The way how the course is
organized likely affects results greatly. For example, our course
had many small assignments, while there are introductory pro-
gramming courses with bigger project-like assignments — such a
difference could significantly influence the outcomes. Similarly,
we only studied students who attended the exam and explicitly
provided research consent: this, in combination with the missing
randomized controlled trial, means that the study has clear selection
bias. Finally, we have not explicitly looked at individual students,
but limited the analysis to the population level - it is for exam-
ple possible, similar to experiments with badges [13], that some
students are put off by the experiment.

6 CONCLUSIONS

In this article, we described results from an experiment in an in-
troductory programming course where students gained coins from
completing programming assignments. These coins could be used
to access model solutions of assignments that students had not yet
completed. Our answers to the research questions are as follows:

RQ1 To what extent does students’ background and goal orienta-
tions correlate with model solution use? We found that older students
are somewhat less inclined to use the model solutions. Moreover,
students who had programmed previously were somewhat less
likely to use the model solutions. RQ2 When and to what do students
use the opportunity to view model solutions? We found that coins
were more often used close to the deadline. Furthermore, there was
a strong correlation between model solution views and assignment
difficulty - students were more likely to view the model solutions
of difficult assignments. RQ3 How does the use of model solutions
correlate with students’ course outcomes? We found that the use of
model solutions is negatively correlated with exam results. This
suggests that the use of model solutions could be viewed as an
indicator of students needing help, or that using model solutions
may decrease learning.

Further, when discussing with students and instructors about
the experiment, we identified three benefits in the use of coins:
(1) coins that could be used to buy access to model solutions gave
students an opportunity to proceed in the course even if they got
stuck at an assignment; (2) the ability to collect coins encouraged
students to complete more assignments; (3) the ability to use coins
gave students who may not wish to ask for help from instructors an
opportunity to get help without asking for help. This suggests that
coins may lead to some students continuing in the course, even if
they would have dropped out of the course otherwise.

As a part of our future work, we are working on a system where
using a coin would - still — show the student a model solution,
but also provide a new similar assignment. This might lead to a
situation where students would get the benefits of studying the
model solution, but, could not free themselves from the needed
studying. Additionally, we are in the process of studying how pro-
viding students model solutions affects plagiarism - students might
plagiarize less when they have access to model solutions. We are
also looking into rewarding students based on unused coins, and
looking for approaches to incentivize students to start working on
the assignments early.
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