Exploring the Applicability of Simple Syntax Writing Practice
for Learning Programming

Antti Leinonen
University of Helsinki
Helsinki, Finland
antti.leinonen@helsinki.fi

Arto Hellas
University of Helsinki
Helsinki, Finland
arto.hellas@cs.helsinki.fi

ABSTRACT

When learning programming, students learn the syntax of a pro-
gramming language, the semantics underlying the syntax, and prac-
tice applying the language in solving programming problems. Re-
search has suggested that simply the syntax may be hard to learn. In
this article, we study difficulty of learning the syntax of a program-
ming language. We have constructed a tool that provides students
code that they write character-by-character. When writing, the tool
automatically highlights each character in code that is incorrectly
typed, and through the highlight-based feedback directs students
into writing correct syntax. We conducted a randomized controlled
trial in an introductory programming course organized in Java. One
half of the population had the tool in the course material imme-
diately before programming exercises where the practiced syntax
was used, while the other half of the course population did not have
the tool, thus approaching the exercises in a traditional way. Our
results imply that isolated syntax writing practice may not be a
meaningful addition to the arsenal used for teaching programming,
at least when the programming course utilizes a large set of small
programming exercises. We encourage researchers to replicate our
work in contexts where syntax seems to be an issue.

CCS CONCEPTS

« Social and professional topics — Computing education; -
Applied computing — Interactive learning environments;

KEYWORDS
syntax practice, writing code, embedded tool
ACM Reference Format:

Antti Leinonen, Henrik Nygren, Nea Pirttinen, Arto Hellas, and Juho Leinonen.
2019. Exploring the Applicability of Simple Syntax Writing Practice for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5890-3/19/02...$15.00
https://doi.org/10.1145/3287324.3287378

Henrik Nygren
University of Helsinki
Helsinki, Finland
henrik.nygren@helsinki.fi

Nea Pirttinen
University of Helsinki
Helsinki, Finland
nea.pirttinen@cs.helsinki.fi

Juho Leinonen
University of Helsinki
Helsinki, Finland
juho.leinonen@helsinki.fi

Learning Programming. In Proceedings of the 50th ACM Technical Sympo-
sium on Computer Science Education (SIGCSE ’19), February 27-March 2,
2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3287324.3287378

1 INTRODUCTION

When learning to program, students work in an interlocked domain
where challenges in one area contribute to challenges in other areas.
For example, du Boulay [9] proposes five overlapping domains: un-
derstanding what programs are; forming an understanding of how
computers execute programs; learning the notation and syntax
of a language; learning structures that are used for solving pro-
gramming problems; and learning the pragmatic skills needed for
example in testing and debugging programs. When interviewing
students, Lahtinen et al. [12] observed that difficulties with syn-
tax are intertwined with other difficulties such as understanding
program structures, understanding how to design programs, and
dividing functionality of a program into smaller components.

Being able to write syntactically correct programs is a funda-
mental part of being able to program. Ng and Bereiter [16] suggest
that learning to program starts with learning the syntax, which is
followed by learning the structure and style. Here, making errors
such as adding a semicolon after a conditional or a loop by mistake
can take plenty of time to identify and fix [1]. Syntax errors are not
problematic for only the struggling students as noted by Denny et
al [8]: “all students spent a similar amount of time solving the most
common errors no matter what quartile they were in”.

Intuitively, if students practice writing syntax through mimick-
ing small code samples, and the writing practice is designed so that
the students receive character-by-character feedback on whether
what they wrote is correct, students should be able to learn to
avoid the major pitfalls related to typing the practiced syntactic
constructs. Previously, the importance of training syntax has been
highlighted in SyntaxTrain [15], which is a tool that shows students
a syntax diagram - effectively a flow diagram - and information
on possible errors on a line.

In order to study whether simple syntax writing practice reduces
syntax errors and improves students’ performance in related pro-
gramming problems, we have constructed a tool that is used for
practicing code writing. For each character that the student types
in the tool, the tool shows whether the character corresponds to
the expected input and consequently highlights errors in syntax.

https://doi.org/10.1145/3287324.3287378
https://doi.org/10.1145/3287324.3287378
https://doi.org/10.1145/3287324.3287378

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

Our tool differs from SyntaxTrain in three ways. First, there are no
flow diagrams as the students have not yet learned how to interpret
them, second, the feedback is given on a character-by-character
level, and third, our tool is directly embedded within the material.

We have conducted a randomized controlled trial where a part
of the course population was presented with the tool before pro-
gramming exercises where the practiced syntax was first used, and
the other part of the course population worked on the program-
ming exercises without separate syntax practice. We study whether
there are differences in the populations in terms of effort — when
measured through programming exercise -specific events such as
keystrokes within the programming environment — and time used
for the programming exercises.

This article is organized as follows. The next section outlines
existing research on errors that students encounter when writing
programs and considers the meaningfulness of isolated practice.
Then, in Section 3, we outline our methodology, which includes the
research questions, the context of the study, and the tool. The results
of the study are presented in Section 4, and the implications of the
results are discussed in Section 5, which also includes limitations
of our study. Finally, Section 6 concludes the article and outlines
possible future work.

2 BACKGROUND

When learning to program, a big part of the issues that novice
programmers face is related to syntax. Robins et al. studied problem
distributions in a CS1 course [19]. They studied the different types
of issues for which students seek help during their programming
laboratory sessions. The majority of the issues that students faced
were categorized as “trivial mechanics”, which were defined as “triv-
ial problems with little mechanical details”. These included issues
with braces, brackets, semicolons, typos and spelling, Java and file
naming conventions, forgotten import statements, formatting out-
put, tidiness, indenting, and comments. All of the trivial mechanics
issues are syntax related.

Jadud [11] studied novice programmers’ “compilation behavior”,
i.e. the way how novices behave when encountering a syntax error.
Jadud observed that the efforts related to fixing syntax errors were
related to course outcomes and that the capability of handling
syntax errors — Error Quotient — could be used to predict exercise
and exam grades. This signifies the importance of teaching students
to tackle syntactic issues or avoiding them altogether by separating
syntax practice from concept practice. His article reports also an
interesting vignette that followed a student’s behavior during a part
of a compilation session: it might take over an hour to fix a simple
misplacement of a beginning brace due to the student not being
able to understand the error messages provided by the compiler.

The environment in which Jadud’s work was conducted in,
Blue]J [20], was later augmented with data collection facilities by
Brown et al. [5]. In an analysis of 37 million compilation events
from Blue], Altamdri et al. [1] identified a set of frequently observed
syntax errors. These included:

(1) Unbalanced parentheses, brackets, braces or quotation marks,
or trying to enclose one with another.

(2) Confusing an assignment operator with a comparison oper-
ator.

Leinonen et al.

(3) Including parameter types in method calls.

When comparing the results of Altamdri et al. with other studies
on compilation errors, there are discrepancies which may be re-
lated to the potpourri of backgrounds and teaching approaches. For
example, in the work of Denny et al. [8], the most frequent syntax
errors were “Cannot resolve identifier”, type mismatch, and missing
semicolon — none of which are highlighted as very frequent in the
study by Altamdri et al.

Even seemingly very simple things like writing the print com-
mand in Java can cause problems to students. The way how students
write their first programs was studied by Vihavainen et al. [25] who
identified four distinct mistake categories related to writing the
print command. These were as follows:

(1) mixing up upper- and lowercase letters, for example writing
System in System.out.println with a lowercase s,

(2) using other characters instead of periods to separate words,
for example writing System-out-println,

(3) various mistakes with string literals, such as forgetting quo-
tation marks or the word out when trying to print something,
and

(4) general typing mistakes without clear misconceptions.

One of the suggestions that Vihavainen et al. propose is that
the root of many problems seems to lie within the syntax of pro-
gramming languages, which is usually very different from natural
languages. They also noted that modern programming environ-
ments provide students with plenty of support as they are writing
their programs. They noticed that many of the students used copy
and paste in the exercises during the first week, but most of them
utilized the “sout” shortcut instead during the second week of the
course. In addition, in their context, only a very small portion of
the students submitted code with syntax errors. In the case of an
error, students fixed it locally before submitting to the server.

As syntax seems to be an issue in programming, as evidenced
by the preceding research, one could suggest practicing it. Many
support dividing learned content into smaller pieces that are first
practiced separately and then integrated together [14, 21-23, 26].
Such practice can be done, for example, under the guidance of a
tutor or a peer who provides the learner with more challenging
tasks as they are progressing, within a tutoring system, or within
an e-book that interleaves theory and practice. Isolated practice
can be beneficial for the learner as it can be used to reduce the
cognitive load that is associated with the actual task [3].

As being able to write correct syntax is a cornerstone in writ-
ing programs, doing small syntax practice before programming
tasks could be beneficial. For example, Ng and Bereiter [16] have
suggested that learning the style and structure of programs are
preceded by learning the syntax. Once students have internalized
syntax, they should be able to ignore the details of the syntax during
program design and construction, allowing them to direct attention
to more relevant parts of the program [18].

3 RESEARCH DESIGN

Here, we first describe the context of the study and the syntax
practice tool in more detail and then outline our research questions
and methodology.

Simple Syntax Writing Practice for Learning Programming

3.1 Context

The data for this study comes from a seven-week introductory
programming course organized at the University of Helsinki during
the fall of 2017. The programming course is the first course that
freshmen who major in computer science take. Approximately one
third of the course participants study computer science as their
major, while the rest come from various backgrounds ranging from
pedagogy to medicine.

The course follows an online textbook with theory, quiz, and pro-
gramming exercise parts. The quizzes are done within the course
material, while the programming exercises are completed in a sepa-
rate programming environment that collects snapshots of students’
programming process. The course also includes weekly lectures.
The lectures are in the beginning of the week and the exercise
deadlines at the end of the week. In this study, we focus on the first
two weeks of the course, which cover the principles of procedural
programming with Java. The topics include input/output, variables,
conditionals, loops, and lists.

The course material has been written to follow the principles of
the Extreme Apprenticeship method [26], which emphasizes that
most of the students’ time in the course should be spent on solving
programming exercises. The majority of the exercises are small,
and sequential programming exercises form larger programs as
they are completed. The first two weeks under study have almost
sixty programming exercises altogether.

3.2 Tool description

The tool consists of two main elements. The first element is used
to show the code that the student has to write, and the second
element is used to provide the input field into which the students are
expected to write the code. The input field has three functionalities:
first, the input field highlights wrongly written syntax, second,
the input field blocks copying and pasting - that is, students must
write the code —, and third, the input field records whatever the
user writes for future analysis, given the online learning material
provides a server for the tool where the data should be stored.

The syntax to highlight is generated from a template, which is
also used to generate the code that the student must write. The
code that the students are expected to write can be restricted, for
example, to only a single statement. For example, in the example
illustrated in Figure 1, the students do not need to write the class
and method body. They are only expected to write the for-statement,
i.e. the following:
for (int i =0; 1 <10; i++) {

System.out.println(i * i);

Figure 1 also highlights what happens if the syntax is written
incorrectly. In the example, the user has mistakenly added a semi-
colon after the for-loop statement. In the Figure, the highlight has
been emphasized with an arrow for readability purposes. Once the
code is correctly written, the red cross in the lower right corner of
the input field changes into a green check mark.

The tool was embedded in the online learning material on the
first and second week of the course. It was placed so that students
would use it to practice the same syntactic keywords that were
present in the following exercises. For example, the first iteration of

SIGCSE 19, February 27-March 2, 2019, Minneapolis, MN, USA

public class Squared {
public static void main(String[] args) {
for (int i = 0; i < 10; i++) {
System.out.println(i * i);

}

Write the code above to the field below:

public class Squared {
public static void main(String[] args) {
for (int i = 0; i < 10; i++);{

y X

Figure 1: Illustration of the code that the student is expected
to write and the input prompt of the tool. In the figure,
the student has mistakenly added a semicolon after the for-
statement, which is highlighted and must be fixed.

the tool practiced Java’s print statement, and it was placed right be-
fore the first programming exercises such as writing the traditional
program that outputs “Hello World!”.

3.3 Data collection

Students encountered the tool in the material in the first two weeks
for a total of five times. The tool was included when key syntax
was introduced. The syntax in our study were the print statement
(exercise 1), reading input (exercise 2), if-clause (exercise 3), while-
clause (exercise 4), and method body (exercise 5), later referred to
as Ex. 1 to 5. We examined data from the five instances where the
tool was embedded in the material and each programming exercise
that was given immediately after each syntax practice.

In order to determine the amount of time and the number of
events required to complete the exercises, we used a NetBeans
[4] programming environment plugin called Test My Code (TMC)
[17], which collects students’ keystrokes and events within the
programming environment. The data also includes timestamps,
which we used to study how much time students spent on the
exercises.

For this study, we focused on character insertion and deletion
events in order to analyze code written by the students themselves
(and not for example copy-pasted). Similar insertion and deletion
keystroke data with timestamps was collected from the tool.

3.4 Research questions
Our research questions for this study are as follows:
e RQ1. Do students who see the syntax practice tool have

fewer events for the exercises when compared to those who
did not see the tool?

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

e RQ2. Do students who see the syntax practice tool use less
time for programming exercises when compared to those
who did not see the tool?

e RQ3. Do students who see the syntax practice tool use less
time in total for the syntax practice and programming exer-
cises when compared to those who did not see the tool?

The study was conducted as a randomized controlled trial. The
participants of the course were divided randomly into two groups
A and B: group A (control) did not see the syntax practice tool
in the material, while group B (treatment) did. In randomly as-
signed groups external factors such as initial skill levels should be
approximately equal between the groups.

3.5 Group formation

As our study is an A/B-study, where group A consists of students
who did not see the tool, and B of students who saw the tool, we
compare these two groups in our analysis. Since the tool is voluntary
to use and students in our study did not receive course points or
other incentives for using the tool, some of the students in group B
chose not to use the tool.

Thus, in addition to the A/B study, we further study group B
(students who saw the tool) separately based on whether students in
the group actually used the tool or not. In the analysis, the students
from group B who did not use the tool were assigned into group
C, while the students who used the tool were assigned into group
D. Here, using the tool means that the student completed a syntax
writing task in the tool correctly.

The division to groups C and D was done per exercise, depending
on whether the student had completed the tool previous to the
analyzed exercise. Exercise specific division was done so that the
exercise data would better reflect the effects of the tool on the
students’ coding process for the said exercise as the completion of
the tool later on in the material would not have helped on the earlier
exercises. All participants had the same programming exercises.

3.6 Analysis

The purpose of the study was to analyze whether the syntax prac-
tice tool influences students’ behavior in programming exercises.
We study this both through the amount of individual events that
students produce within the syntax practice tool for each partic-
ular syntax construct and within the programming environment
in the programming exercises immediately following the syntax
practices. In addition to the events, we also study the time that stu-
dents used in the syntax practice tool and within the programming
environment.

To answer the first research question, Do students who see the
syntax practice tool have fewer events for the exercises when compared
to those who did not see the tool?, we studied whether the students
in group B had fewer keystroke events in the exercise data than the
students in group A on average. We only included inserting and
removing code as the number of times the students ran, tested or
submitted their progress is irrelevant to the purpose of the tool.

To answer the second research question, Do students who see the
syntax practice tool use less time for programming exercises when
compared to those who did not see the tool?, we analyzed the time
used for the exercise. We calculated the time between the first

Leinonen et al.

and last keystroke. We removed gaps in the snapshot timestamps
that were over five minutes long as we did not want to include
any pauses that students took. For this, we again compared the
performance of group B against group A.

To answer the third research question, Do students who see the
syntax practice tool use less time in total for the syntax practice and
programming exercises when compared to those who did not see the
tool?, we included the time spent on the tool for the students in
group B when comparing time usage for the following exercise.
This was done as it could be argued that even if students may
complete exercises faster after using the tool, the tool is only useful
if the total time in both the exercise and the tool is smaller for those
students who saw the tool.

For all three comparisons, we used the Kolmogorov-Smirnov
test [13] for examining whether the groups’ differences were statis-
tically significantly different, and corrected the results for multiple
tests using the Holm-Sidak correction method [10].

4 RESULTS

4.1 Descriptive Statistics

A total of 249 students in the course consented for their data to
be used in this research. From these 249 students, 17 had to be
excluded as they did not provide the needed snapshot data. From the
remaining 232 students, 125 students were in group A, meaning that
they did not see the tool in the course material. Group B consisted
of 107 students, which was split into groups C and D, that is, the
students who saw the tool but ignored it (group C) and students
who completed the tool (group D). The division to groups C and
D was done per exercise, where group D consisted of the students
who completed the tool previous to the analyzed exercise. Table 1a
shows the number of students in groups A, B, C, and D per exercise.

4.2 Events and tool usage

Our first research question asks if the students who saw the tool
had fewer typing events in the exercises after the tool than those
who did not see the tool. Our hypothesis was that the students who
saw the tool would have fewer events as they would make fewer
typos while writing the syntax. However, it would seem that the
tool did not help, that is, the students who saw the tool did not make
fewer typos. Table 1b shows the median of the number of typing
events between the groups. The differences between the number
of typing events of the students who did not see the tool (group
A) and those who saw it (group B) are not statistically significant
based on the Kolmogorov-Smirnov test [13] in any of the exercises.

4.3 Time and tool usage

Our second research question focuses on whether the students who
saw the tool used less time answering the programming exercises
than those who did not see the tool. We studied the amount of
time the students used on answering the programming exercises
by calculating the time between their first and last keystrokes. We
removed over five minute breaks between keystrokes to reduce the
effect of taking breaks on the results. Table 1c shows the medians
of the amount of time the group used per exercise. The differences
in the time usage between groups are not statistically significant
based on the Kolmogorov-Smirnov test.

Simple Syntax Writing Practice for Learning Programming

‘EX.]‘EX.Z‘EX.?)‘EX.‘I‘EX.S

No tool (A) 125 125 125 125 125
Tool (B) 107 | 107 | 107 | 107 | 107
Ignored tool (C) | 50 36 50 47 59
Used tool (D) 57 71 57 60 43

(a) Number of students per group.

‘Ex.l‘ Ex. 2 ‘ Ex. 3 ‘ Ex. 4 ‘EX.S

No tool (A) 52.68 | 141.56 | 146.96 | 164.69 | 60.74
Tool (B) 55.30 | 172.77 | 158.93 | 179.13 | 51.62
Ignored tool (C) | 57.56 | 127.68 | 156.76 | 162.67 | 45.69
Used tool (D) | 53.49 | 191.80 | 160.49 | 189.00 | 59.47

(b) Event counts (median) for completing the exercise following
the syntax practice tool.

‘EX.]‘EX.Z‘EX.?)‘EX.‘I‘EX.S

No tool (A) 1.90 3.80 291 3.99 | 0.84
Tool (B) 1.81 554 | 298 | 4.35 0.88
Ignored tool (C) | 1.66 | 3.19 | 2.87 | 3.53 | 0.86
Used tool (D) 1.92 6.53 3.05 | 4.84 | 0.90

(c) Time in minutes (median) for completing the exercise follow-
ing syntax practice tool.

‘EX.I‘EX.Z‘EX.3‘EX.4‘EX.5

No tool (A) 1.90 | 3.80 | 291 | 3.99 | 0.84
Tool (B) 2.19 6.22 4.65 5.07 1.51
Ignored tool (C) | 1.73 | 3.68 | 3.55 | 3.76 | 1.11
Used tool (D) 2.56 7.29 5.43 5.86 2.05

(d) Time in minutes (median) when syntax practice and exercise
time has been combined.

Table 1: Descriptive statistics of groups. Group A refers to
students who did not have the tool in the material and B
to students who did have the tool in the material. Group
B is also split into two subgroups: Group C refers to those
who saw the tool but did not use it and D to those who saw
the tool and used it at least once. None of the differences
between A and B are statistically significant based on the
Kolmogorov-Smirnov test.

Our third research question is near identical to our second re-
search question with the exception that we include the time used
on the tool for the students who saw it. When comparing the time
usages between the students who saw the tool (group B) and those
who did not (group A), the results were not statistically significant
based on the Kolmogorov-Smirnov test. The medians of time usage
for groups A, B, C and D can be seen in table 1d.

Finally, we also compared the total time spent on exercises and
the tools from groups C and D who both saw the tool. The compar-
ison result from the Kolmogorov-Smirnov test was initially statisti-
cally significant showing difference between the groups, but after

SIGCSE 19, February 27-March 2, 2019, Minneapolis, MN, USA

correcting our analysis for multiple comparisons using the Holm-
Sidak correction method [10] the differences were not statistically
significant.

5 DISCUSSION

5.1 Revisiting the research questions

In this study, we conducted a randomized controlled trial in order
to determine whether light syntax practice would reduce the effort
needed to complete related programming exercises in an introduc-
tory programming course. The effort that students invest into the
exercises was studied from three perspectives: (1) the number of
edit events in the exercises, (2) the amount of time that students
spend on the exercise, and (3) the combined time in the practice
system and the programming exercises.

The results, as outlined in the previous section, suggest that
simple syntax practice does not improve students’ performance in
the subsequent programming exercises. No statistically significant
differences were observed between the control group who did not
have the syntax practice tool embedded to their learning material,
and the treatment group who had the syntax practice tool imme-
diately before the programming exercises where the syntax was
used.

The results we observed suggest that the tool is not helpful,
at least as it is. All of the results were statistically insignificant,
which means that the people who saw the tool did not perform
considerably better than those who did not see the tool. Next, we
explore some of the possible explanations for our findings.

5.2 Separate syntax practice

The way how exercises are integrated into the learning environment
plays a role in students’ learning. If the exercises are placed in
different locations or systems, it is possible that students must split
their attention which increases extraneous cognitive load [6]. In
our context, the syntax practice was conducted within the online
learning material into which the syntax practice tool was embedded.
The decision to embed the component into the learning material
was partially driven by making a system that would be easy to share
with others. In hindsight, however, it is possible that this decision
also decreased the efficiency of the practice system.

From the perspective of reducing unnecessary cognitive load,
supporting systems should be integrated into the environments in
which students work [24]. For example, when programming exer-
cises are worked on within a programming environment, having
programming-related feedback such as syntax practice integrated
into the environment would likely be a meaningful choice. On the
other hand, if programming exercises are embedded to the online
learning materials using tools such as Python Classroom Response
System [28], it is possible that syntax practice within the online
learning materials would be more beneficial as well.

Another way to address the issue, i.e. split-attention effect, was
recently proposed by Altadmri et al [2]. They have developed a
frame-based editing approach where syntactic commands, such
as “if”, once finished, are “glued” into place similar to block-based
programming languages. While the system does not specifically
focus on syntax practice, the approach shows promise in reducing
problems with syntax.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

In addition to the location of the syntax practice tool, another fac-
tor in its effectiveness could be its frequency in the course material.
As the tool appeared only once per practiced syntactic keyword,
simply having more syntax practice could have been beneficial.

5.3 Course organization

Course organization and management can influence students’ learn-
ing. In the studied context, the course pedagogy focuses heavily on
students working with small programming exercises that together
combine into larger programs. The smallest exercises can effectively
be seen as typing practice within the programming environment as
the material provides examples that are very similar to the smallest
exercises. It is possible that the use of small exercises within the
course influences the need for syntax practice. There is some evi-
dence that the use of such exercises can lead to students starting
their work earlier, and thus also performing better [7].

We determined, in a post hoc fashion, whether some of the errors
highlighted in related studies such as [1] were an issue in the studied
context. We analyzed the keystroke data to identify conditionals
and loops with functionality disabled with a semicolon, that is:

if (condition); {

// code

}

while (condition); {
// code

}

From the population of 232 students, none had encountered
the above issues within the studied data set, which consisted of
two weeks of an introductory programming course. While this is
anecdotal and by no means representative of all syntax errors, it
is possible that the course pedagogy and the way how the course
is organized influences the errors that students encounter. Con-
sequently, it could be meaningful to attempt to use our tool in
contexts where students are more prone to struggle with syntax
errors.

Furthermore, similar to the study reported in [25], many of the
students used shortcuts when completing the course exercises. For
example, some copied and pasted statements from the material and
only changed the content, while others used shortcuts and autocom-
plete features. It is possible that the course format plays a role here
too: the course has a two-hour weekly lecture where the teacher
primarily focuses on live coding and worked examples. However,
attendance is not mandatory and not all students attended the lec-
ture. While we have no exact data on attendance, the responsible
lecturer stated that approximately half of the students in the course
attended the first two lectures relevant to this study.

5.4 Exercise complexity and syntax errors

Continuing with the above observation, that is, none of the students
in the studied context had particular syntax errors, it is possible
that the complexity of the studied programming exercises was too
low. Due to the way the course is organized, the exercises that
students are given after a new topic are initially small and then
grow into larger problems. As syntax practice was conducted when
a new topic was introduced, the exercises may have simply been
too trivial for the students.

Leinonen et al.

The complexity of problems and syntax errors have been linked
in research. For example, as noted by Winslow [27],°Given a new,
unfamiliar language, the syntax is not the problem, learning how
to use and combine the statements to achieve the desired effect is
difficult”. The influence of the program complexity on syntax errors
should be studied further in the future.

6 CONCLUSIONS

In this article, we reported a randomized controlled trial that evalu-
ated the applicability of isolated syntax practice for learning pro-
gramming. The isolated syntax practice was implemented as a
component that was embedded in the learning materials immedi-
ately before the programming exercises where the students were
expected to use the practiced syntax. The study was motivated
through the research that points out that some struggle with syn-
tax [1], and that the struggles with syntax errors are not only limited
to the students who perform more poorly in courses [8].

Our results show that isolated syntax practice does not help
student performance in subsequent programming exercises when
measured in terms of total events or time needed to complete the
exercises. Similarly, when comparing the total time used for the
programming exercise combined with the typing practice, there was
no statistically significant difference between the populations in
the randomized controlled trial. At the same time, our experimental
setup made it possible to not use the tool even if students were
placed in the typing practice group.

In the discussion, we explored possibilities for why the result
turned out as it did. A few of the possibilities include the pedagogy
of the studied course: the participants in the course practice pro-
gramming with tens of weekly exercises, some of which are used to
highlight syntactic constructs that students are expected to learn.
It is possible that the first exercises where syntax is practiced are
sufficient and no separate practice is needed. It is also possible that
the context in which the syntax practice was performed (that is,
the online learning material) is too different from the programming
environment where the programming exercises were worked on.

Currently, we are looking for other variables that could influence
the outcomes such as previous programming background and other
factors. Given, for example, information on previous programming
background, we could look into whether the tool could be beneficial
for students who have not previously programmed. We are also
looking for researchers and educators whose students work with
large programming exercises or whose students complete their
programming exercises within online learning materials. Having
someone replicate our study, with possibly contradictory results,
would provide further insight into why syntax may be hard for
some students.

REFERENCES

[1] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating
novice programming mistakes in large-scale student data. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education. ACM, 522-527.
Amjad Altadmri, Michael Kolling, and Neil CC Brown. 2016. The cost of syntax
and how to avoid it: Text versus frame-based editing. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC). IEEE, 748-753.
Paul Ayres. 2013. Can the isolated-elements strategy be improved by targeting
points of high cognitive load for additional practice? Learning and Instruction 23
(2013), 115-124.

[2

B3

Simple Syntax Writing Practice for Learning Programming

=

[10]

(1

[12]

[13]

[14]

Tim Boudreau, Jesse Glick, Simeon Greene, Vaughn Spurlin, and Jack] Woehr.
2002. NetBeans: the definitive guide: developing, debugging, and deploying Java
code. " O’Reilly Media, Inc".

Neil Christopher Charles Brown, Michael Kélling, Davin McCall, and Ian Utting.
2014. Blackbox: a large scale repository of novice programmers’ activity. In
Proceedings of the 45th ACM technical symposium on Computer science education.
ACM, 223-228.

Paul Chandler and John Sweller. 1992. The split-attention effect as a factor in
the design of instruction. British Journal of Educational Psychology 62, 2 (1992),
233-246.

Paul Denny, Andrew Luxton-Reilly, Michelle Craig, and Andrew Petersen. 2018.
Improving Complex Task Performance Using a Sequence of Simple Practice Tasks.
In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology
in Computer Science Education (ITiCSE 2018). ACM, New York, NY, USA, 4-9.
https://doi.org/10.1145/3197091.3197141

Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All Syntax Errors
Are Not Equal. In Proceedings of the 17th ACM Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE °12). ACM, New York, NY,
USA, 75-80. https://doi.org/10.1145/2325296.2325318

Benedict Du Boulay. 1986. Some difficulties of learning to program. Journal of
Educational Computing Research 2, 1 (1986), 57-73.

Sture Holm. 1979. A simple sequentially rejective multiple test procedure. Scan-
dinavian journal of statistics (1979), 65-70.

Matthew C Jadud. 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the second international workshop on Computing
education research. ACM, 73-84.

Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Jirvinen. 2005. A Study of
the Difficulties of Novice Programmers. In Proceedings of the 10th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’05). ACM, New York, NY, USA, 14-18. https://doi.org/10.1145/1067445.1067453
Raul HC Lopes. 2011. Kolmogorov-smirnov test. In International encyclopedia of
statistical science. Springer, 718-720.

Andrew Luxton-Reilly, Brett A. Becker, Yingjun Cao, Roger McDermott, Claudio
Mirolo, Andreas Miihling, Andrew Petersen, Kate Sanders, Simon, and Jacqueline
Whalley. 2017. Developing Assessments to Determine Mastery of Programming
Fundamentals. In Proceedings of the 2017 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE ’17). ACM, New York, NY, USA,
388-388. https://doi.org/10.1145/3059009.3081327

Andreas Leon Aagaard Moth, Joergen Villadsen, and Mordechai Ben-Ari. 2011.
SyntaxTrain: relieving the pain of learning syntax. In Proceedings of the 16th
annual joint conference on Innovation and technology in computer science education.

[16

[18

[19

[21

[25

[26

[27] Leon E. Winslow. 1996.

[28

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

ACM, 387-387.
Evelyn Ng and Carl Bereiter. 1991. Three levels of goal orientation in learning.
Journal of the Learning Sciences 1, 3-4 (1991), 243-271.

[17] Martin Partel, Matti Luukkainen, Arto Vihavainen, and Thomas Vikberg. 2013.

Test my code. International Journal of Technology Enhanced Learning 2 5, 3-4
(2013), 271-283.

] Robert S Rist. 1989. Schema creation in programming. Cognitive Science 13, 3
(1989), 389-414.
] Anthony Robins, Patricia Haden, and Sandy Garner. 2006. Problem distributions

in a CS1 course. In Proceedings of the 8th Australasian Conference on Computing
Education-Volume 52. Australian Computer Society, Inc., 165-173.

[20] Dean Sanders, Phillip Heeler, and Carol Spradling. 2001. Introduction to BlueJ:

a Java development environment. In Journal of Computing Sciences in Colleges,
Vol. 16. Consortium for Computing Sciences in Colleges, 257-258.

R Keith Sawyer. 2005. The Cambridge handbook of the learning sciences. Cambridge
University Press.

[22] Juha Sorva and Otto Seppala. 2014. Research-based Design of the First Weeks of

CS1. In Proceedings of the 14th Koli Calling International Conference on Computing
Education Research (Koli Calling '14). ACM, New York, NY, USA, 71-80. https:
//doi.org/10.1145/2674683.2674690

[23] Jeroen JG Van Merriénboer, Richard E Clark, and Marcel BM De Croock. 2002.

Blueprints for complex learning: The 4C/ID-model. Educational technology re-
search and development 50, 2 (2002), 39-61.

[24] Jeroen JG Van Merriénboer, Paul A Kirschner, and Liesbeth Kester. 2003. Tak-

ing the load off a learner’s mind: Instructional design for complex learning.
Educational psychologist 38, 1 (2003), 5-13.

Arto Vihavainen, Juha Helminen, and Petri Thantola. 2014. How Novices Tackle
Their First Lines of Code in an IDE: Analysis of Programming Session Traces.
In Proceedings of the 14th Koli Calling International Conference on Computing
Education Research (Koli Calling ’14). ACM, New York, NY, USA, 109-116. https:
//doi.org/10.1145/2674683.2674692

Arto Vihavainen, Matti Paksula, and Matti Luukkainen. 2011. Extreme Appren-
ticeship Method in Teaching Programming for Beginners. In Proceedings of the
42Nd ACM Technical Symposium on Computer Science Education (SIGCSE ’11).
ACM, New York, NY, USA, 93-98. https://doi.org/10.1145/1953163.1953196
Programming Pedagogy&Mdash;a Psychological
20§lfglryziew. SIGCSE Bull. 28, 3 (Sept. 1996), 17-22. https://doi.org/10.1145/234867.

Daniel Zingaro, Yuliya Cherenkova, Olessia Karpova, and Andrew Petersen. 2013.
Facilitating code-writing in PI classes. In Proceeding of the 44th ACM technical
symposium on Computer science education. ACM, 585-590.

https://doi.org/10.1145/3197091.3197141
https://doi.org/10.1145/2325296.2325318
https://doi.org/10.1145/1067445.1067453
https://doi.org/10.1145/3059009.3081327
https://doi.org/10.1145/2674683.2674690
https://doi.org/10.1145/2674683.2674690
https://doi.org/10.1145/2674683.2674692
https://doi.org/10.1145/2674683.2674692
https://doi.org/10.1145/1953163.1953196
https://doi.org/10.1145/234867.234872
https://doi.org/10.1145/234867.234872

	Abstract
	1 Introduction
	2 Background
	3 Research Design
	3.1 Context
	3.2 Tool description
	3.3 Data collection
	3.4 Research questions
	3.5 Group formation
	3.6 Analysis

	4 Results
	4.1 Descriptive Statistics
	4.2 Events and tool usage
	4.3 Time and tool usage

	5 Discussion
	5.1 Revisiting the research questions
	5.2 Separate syntax practice
	5.3 Course organization
	5.4 Exercise complexity and syntax errors

	6 Conclusions
	References

