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ABSTRACT
The recent emergence of the small cloud (SC), both in concept and

in practice, has been driven mainly by issues related to service

cost and complexity of commercial cloud providers (e.g., Amazon)

employing massive data centers. However, the resource inelasticity

problem [29] faced by the SCs due to their relatively scarce re-

sources might lead to a potential degradation of customer QoS and

loss of revenue. A proposed solution to this problem recommends

the sharing of resources between competing SCs to alleviate the

resource inelasticity issues that might arise. Based on this idea, a

recent effort ([18]) proposed SC-Share, a performance-driven static

market model for competitive small cloud environments that results

in an efficient market equilibrium jointly optimizing customer QoS

satisfaction and SC revenue generation. However, an important

question with a non-obvious answer still remains to be answered,

without which SC sharing markets may not be guaranteed to sus-

tain in the long-run - is it still possible to achieve a stable market
efficient state when the supply of SC resources is dynamic in nature?.
In this paper, we take a first step to addressing the problem of

efficient market design for single SC resource sharing in dynamic

environments. We answer our previous question in the affirmative

through the use of Arrow and Hurwicz’s disequilibrium process
[9, 10] in economics, and the gradient play technique in game the-

ory that allows us to iteratively converge upon efficient and stable

market equilibria.
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1 INTRODUCTION
Cloud computing is becoming increasingly popular and pervasive in

the information technology (IT) marketplace due to its on-demand

resource provisioning, high availability, and elasticity. These fea-

tures allow cloud end users (e.g., individuals, small-scale compa-

nies, world-wide enterprises) to access resources in a pay-as-you-go

manner and to meet varying demands sans upfront resource com-

mitments [8]. Cloud service providers (Amazon AWS [1], Google
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Compute Engine [4], and Microsoft Azure [6]) allow customers to

quickly deploy their services without a large initial infrastructure

investment.

1.1 The Rise of Small-Scale Data Centers
There are some non-trivial concerns in obtaining service from large-

scale public clouds, including cost and complexity. Massive cloud

environments can be costly and inefficient for some customers (e.g.,

Blippex [3]), thus resulting in more and more customers building

their own smaller data centers [2] for better control of resource

usage; for example, it is hard to guarantee network performance in

large-scale public clouds due to their multi-tenant environments

[21]. Moreover, smaller data center providers exhibit greater flex-

ibility in customizing services for their users, while large-scale

public providers minimize their management overhead by simplify-

ing their services; e.g., Linode [5] distinguishes itself by providing

clients with easier and more flexible service customization. The
use of small-scale clouds (SCs) is one approach to solving cost and
complexity issues.

Despite the potential emergence of small-scale clouds, due to

their moderate sizes, they are likely to suffer from resource under-

provisioning, thus failing to meet peak demand at times. This leads

to a resource provisioning dilemma where the SCs have to make

the tradeoff between request loss and the cost of over-provisioning.

One way out of this dilemma is for such small clouds to cooper-

ate with each other to help meet each others’ user demand via

resource sharing at low costs, thereby increasing their individual

resources when in need without having to significantly invest in

more. Such cooperation is analogous to Business Clusters described
in mainstream economics which emerge due to, among other fac-

tors, shared interests and geographical proximity [28].

1.2 Research Motivation
In this section, we briefly describe the problem setting followed by

the challenges that motivate us to alleviate them.

Problem Setting. The effective sharing or borrowing resources
by an SC from its peers involves mutually satisfying the interests

of the stakeholders in context. In this paper, we consider three

different stakeholders: (i) the SC customers, (ii) profit maximizing

autonomous SCs, and (iii) a regulatory agency overseeing certain

functioning aspects of the autonomous SCs (e.g., ensuring customer

data privacy). The SC customers are interested in achieving cer-

tain performance measures for their jobs (e.g., low job response

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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time, cheap storage); the SCs are interested in maximizing revenues

obtained from serving customers; and a regulatory agency (e.g.,

the local government, a federated agency [24][23]) is interested in

ensuring a proper manner by which the autonomous SCs conduct

their business of lending resources to peer SCs (e.g., many European

countries are now concerned about preserving data privacy and

disallowing their data leaving European borders [20]). We term the
above setting as an SC market.

The Challenges. Ideally, an SC would want to service all its

customers solely using its own resources. However, the primary

barrier to this goal is its individual resource capacity which might

not be enough to service peak customer demand. In such a case, the

SC can either resort to peer SCs for additional resources, thereby

incurring borrowing costs, and/or buy the services of a big public

cloud (e.g., Amazon). The latter option is generally more expensive

than the former and also likely to bemore privacy threatening. Thus,

from an SC’s viewpoint, its challenge is to satisfy two conflicting

objectives: (i) to generate as much revenue by serving its customer

demands, and (ii) to incur as low as possible, borrowing and/or

buying costs from other clouds. For simplicity purposes, we assume

that buying resources from big clouds (e.g., Google, Amazon) is the

last resort for an SC in events of low resource availability, and in

such events it would try its best to get resources from peer SCs.

Another challenge is to ensure that at market equilibrium (see

below), the SCs and their customers ideally operate on parameters

(see Section 2) that allow the market to be efficient, a condition

commonly characterized in microeconomics by certain popular

functions (see Section 2.3) of market stakeholder utilities, and one

that entails optimal social welfare allocation amongst the SCs and

their customers. This is a non-trivial and challenging task as the

existence of a market equilibrium does not necessarily implymarket

efficiency [19]. In this regard, the authors in [18] show the existence
of SC market equilibrium through numerical simulations, and do
not provide a general theory for equilibrium existence. In addition

to the above mentioned challenges, the SC market is dynamic in

nature due to the non-static nature of the supply of SC resources,

as well as due to the variations in customer demand over time,

and failures.This dynamic nature of the SC market is likely to lead

to frequent market equilibrium perturbations and potentially a

state of market disequilibrium. Conditioned on the achievability of

a market efficient equilibrium, a state of eventual disequilibrium

will threaten the long-term sustainability of SC markets. Here,

the term ‘market equilibrium’ refers to a situation in which all

market stakeholders mutually satisfy their interests, in which case

an important challenge is to design a stable market that is robust

to perturbations and eventually returns to its equilibrium point(s).

Our Goal. In this paper, our goal is to formulate the joint ‘stake-
holder satisfaction problem’ in dynamic SC environments as an effi-
cient, stable, and sustainable dynamic market/ecosystem design task,
and propose an effective solution for it.

1.3 Research Contributions
We make the following research contributions in this paper.

• We propose a utility theory based small cloud competitive

market model comprising of SC customers, profit maximiz-

ing autonomous SCs, and a regulatory agency overseeing

some functionality aspects of the SCs, as the market stake-

holders. Themodelmathematically expresses the stakeholder

interests in terms of utility functions and paves the path for

analyzing SC markets for market equilibrium properties (see

Section 2).

• Using the notion of a disequilibrium process proposed by

Arrow and Hurwicz [9, 10], we apply the gradient play tech-

nique in game theory [26] that is based on the theory of

differential equations, to investigate the dynamic market set-

ting where a static market equilibrium (conditioned on their

existence) is potentially subject to perturbations that might

lead to market disequilibrium. In this regard, we show (in

theory) that static market equilibria achieved in small cloud

markets (see Appendix for details on static markets, as it is

not the main focus of our paper) is asymptotically stable in
dynamic market settings. Our use of the gradient play tech-

nique is motivated by the fact that in many practical market

environments stakeholders (i) find it behaviorally difficult

or computationally expensive to play their best responses
[14], (ii) have zero or incomplete knowledge of the utilities

of other stakeholders in the market, and (iii) cannot even

observe the actions of other stakeholders in the worst case.

In such environments, gradient play is a suitable technique

to achieve static market equilibrium stability iteratively [15],

from a state of disequilibrium. More specifically, for our

market setting the occurrence of (i)-(iii) is quite likely. The

gradient play technique also works to achieve static market

equilibrium when issues (i)-(iii) do not arise (see Section 2.3).

Differences and Drawbacks w.r.t. [18] - Related literature on

cloud sharing frameworks and their economics are detailed in the

very recent paper by Lin et.al., [18]. Here, we state the differences

and drawbacks of our contributions in this paper with respect to

the work in [18].

Our work is a necessarily important theoretical extension of [18]

that was the first of its kind in the analysis of small cloud markets.

There, the authors considered consequences of performance (i.e.,

queueing theory) driven non-cooperative game-theoretic (with no

SC willing to share its utility and capacity information with others,

i.e., an incomplete information game-theoretic setting) resource

sharing on the resulting performance delivered to customers at

static market equilibrium, something not considered by any of the
above-mentioned efforts. However, [18] does not consider the im-

portant problem of analyzing equilibrium stability under variations

in SC resource availability, in a non-cooperative game-theoretic SC

environment.Without showing the existence of a stable SC market,
one, based on the existing results showing the existence of a market
equilibrium, cannot not say much regarding the sustainability of SC
markets in the future. A characterization of this scenario is an im-

portant contribution of this work. A major difference of our work

with the one in [18], is the lack of a queuing-driven performance

model to reduce the equilibrium search space. However, our work

is orthogonal in the sense that, given the existence of (efficient)

market equilibria, we investigate whether such a state is sustainable

in the long run.
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2 COMPETITIVE MARKET MODEL
In this section, we propose a utility theory based small cloud Wal-
rasian competitive market model comprising of profit maximizing

autonomous SCs, their customers, and a regulatory agency oversee-

ing some functionality aspects of the SCs. A Walrasian competitive

market [19] represents a pure exchange economy without produc-

tion, where there are a finite number of agents, i.e., SCs in our

work, endowed with a finite number of commodities, i.e., comput-

ing resources in our work, that are traded with SC customers and

peer SCs. The aim behind proposing the model is to pave the path
for mathematically analyzing SC markets for market equilibrium
properties, and derive their practical implications.

In this paper, we consider each SC customer to deal with three

job types, where each job comprises multiple tasks: (i) Type I jobs

that need to be serviced wholly/entirely when they arrive (e.g., a

user could invoke a regular MapReduce batch job that defines a

set of Mappers and Reducers to be executed for the job to com-

plete in its entirety.), (ii) Type II jobs that can be curtailed to fewer

tasks (e.g., an approximate computation job as in [7]), where the

curtailment decision primarily arising from (a) the nature of VM

instance prices, (b) the unnecessity of the job to continue executing

beyond a certain accuracy already achieved, and (c) the unnecessity

of the job to continue executing beyond a certain deadline, and (iii)

Type III jobs where certain tasks can be shifted over time for future

processing, the remaining job tasks requiring service as they arrive

(e.g., analyzing a DNA sequence, re-running partially/entirely a

current job later when it gets killed in a spot cloud environment

due to momentary unavailability of resources.). Next, we model the

stakeholders in the SC market.

2.1 Modeling the SCs
Let there be n autonomous profit maximizing SCs. Each SC can be

geographically distributed. Customer demand for SC i is a set of
processing tasks from its customers (both end-users and peer SCs)

that require the use of virtual machines. We assume that each SC

i reserves (allocates) a total of vmr
i virtual machines (VMs) in its

data center to service demand from its customers. We term such

VMs as reserved VMs. The value of vmr
i is pre-determined by SC i

based on the statistics of customer demand patterns observed over

a period of time. For simplicity, we will focus on VMs representing a
single resource type in this paper. The case for multi-resources will be
dealt in future work. In the event thatvmr

i machines are insufficient

to satisfy consumer demand, SC i borrowsvmb
i VMs from peer SCs.

Here, vmb
i is the number of borrowed VMs available to SC i from

its peers. In the event that both reserved and borrowed VMs are

insufficient to meet customer demand, SC i resorts to a public cloud
forvm

pc
i VM instances. We assume here that a public cloud is large

enough to provide any required number of VM instances to SCs.

We do not consider communication network bandwidth issues to

be a bottleneck to customer service satisfaction in this paper.

Let c(vmr
i ) be the associated operating cost to SC i for reserving

vmr
i virtual machines to serve its customers. We define c(vmr

i ) via

a separable equation of the following form.

c(vmr
i ) = f1(vm

r
i ) + f2(vm

r
i ), (1)

where f1(·) (a linear function) and f1(·) (a non-linear function) are
functions such that the marginal operating cost for SC i is a gen-
eral decreasing linear function of the number of VM instances, i.e.,

the additional operating cost,
dc

dvmr
i
, due to a unit increase in the

number of VMs required to service customer demand varies in a

negative linear fashion with the number of VMs. Such marginal

cost functions are also popular in economics to model diminish-

ing costs/returns [19]. We approximate the number of VMs as a

non-discrete quantity. Specifically, for the purpose of analysis, we

assume the cost function c(·) to be concave, quadratic, and twice
continuously differentiable, i.e., the marginal costs become decreas-

ing linear functions of the number of VM instances. We can define

one such c(vmr
i ) function as follows.

c(vmr
i ) = α

i
rvm

r
i +

βir
2

(vmr
i )

2, (2)

where α ir (a positive value) and βir (a negative value) are SC i’s
cost coefficients for its reserved resources, i.e., virtual machines,

such that the marginal operating cost for SC i is a negative linear
function. The above quadratic form of the cost function, apart

from satisfying the property of negative linear marginals, not only

allows for tractable analysis, but also serves as a good second-order

approximation for the broader class of concave payoffs [13]. We

define π ri to be the profit that SC i makes through its reserved VMs

for servicing customers, and define the maximum profit that SC i
can make, via the following optimization problem.

max

vmr
i

π ri = max

vmr
i

[ρivm
r
i − c(vmr

i )]

subject to

vmr
mini

≤ vmr
i ≤ vmr

maxi
,

where ρi is the per-unit VM instance price charged by SC i to its
customers, andvmr

mini
andvmr

maxi
are the lower and upper bounds

for the number of VM instances reserved by SC i for its customers.

We assume that each SC i is small enough not to be able to exert

market power over its peer SCs and strategically influence the prices

they charge their customers. i.e., each SC is a price taker [19]. The
prices that individual SCs charge their customers are determined by

individual SCs in price competition with one another in the process

of maximizing their own net utilities.

Let c(vmb
i ) be the associated operating cost to SC i for borrowing

vmb
i virtual machines from peer SCs to serve customers, when the

reserved VMs are not enough to satisfy customer service demands.

Like in the case of formulating c(vmr
i ), we formulate c(vmb

i ) in

a manner such that the associated marginal operating costs for

borrowing an additional VM instance decreases in a negative linear

fashion with the number of VMs. Mathematically, we represent

c(vmb
i ) by the following equation:

c(vmb
i ) = α

i
bvm

b
i +

βib
2

(vmb
i )

2, (3)

where α ib (a positive quantity) and βib ( a negative quantity) are SC

i’s coefficients for its borrowed virtual machines. We denote by πbi
the profit that SC i makes when borrowing VMs from peer SCs for

servicing customers, and define the maximum profit that SC i can
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make, via the following optimization problem:

max

vmb
i

πbi = max

vmb
i

[ρivm
b
i − c(vmb

i ) − c(vm
pc
i )]

subject to

vmb
mini

≤ vmb
i ≤ vmb

maxi
.

Here, (i) vmb
mini

and vmb
maxi

are the lower and upper bounds for

the number of VM instances borrowed by SC i for its customers,

from peer SCs, (ii) c(vm
pc
i ) is the cost to SC i to offload vm

pc
i

VM instances worth of customer demand to a public cloud in the

event that vmr
i and vmb

i VM instances together are not enough

to service i’s total customer demand. We represent c(vm
pc
i ) in the

samemanner as c(vmr
i ) and c(vm

b
i ), and express it via the following

equation:

c(vm
pc
i ) = α ipcvm

pc
i +

βipc

2

(vm
pc
i )2, (4)

where α ipc (a positive quantity) and β
i
pc (a negative quantity) are

SC i’s coefficients for the resources the public cloud uses to ser-

vice i’s offloaded customer demand portions. We do not assume

any constraints on the resources available to the public cloud for

servicing offloading requests by SCs.

2.2 Modeling SC Customers
For a customer j who has a Type I job, we express this customer’s

utility for that job as a concave, quadratic, and twice continuously

differentiable separable function,Uj (·), defined as follows.

Uj (vm
e
j ) = α

e
j vm

e
j +

βej

2

(vme
j )

2, (5)

where vme
j is the amount of VM instances required to process j’s

entire job. Similar to the motivation and rationale behind the con-

cave quadratic cost functions for SCs, the utility function of an SC

customer is designed such that the marginal utility for the customer

is a decreasing linear function of the number of VM instances, i.e.,

the additional utility increase due to a unit increase in the number

of VMs varies in a negative linear fashion with the number of VMs.

αej (a positive quantity) and βej (a negative quantity) in the above

equation are j’s utility coefficients.

As in the case of a customer with a Type I job, for a customer

j who has a Type II job, we express his utility for that job as a

quadratic twice continuously differentiable function,Uj (·), defined

as follows:

Uj (vm
c
j ) = α

e
j vm

c
j +

βej

2

(vmc
j )

2, (6)

where vmc
j is the amount of VM instances required to process j’s

curtailed job, and is expressed as

vmc
j = κ

1

jvm
e
j + κ

2

jvm
e
j , κ

1

j ,κ
2

j ∈ (0, 1).

Here, αej (a positive value) and βej (a negative value) are j’s utility

coefficients for Type I jobs. The interpretation of vmc
j is as follows:

κ1

jvm
e
j is the number of VMs required to accomplish j’s curtailed

task, whereas κ2

jvm
e
j is the additional number of unused VMs that

contribute to j’s extra utility when its job is curtailed, and provides

it with an overall perceived satisfaction greater than that obtained

from the utility derived solely using κ1

jvm
e
j used VMs for the cur-

tailed job.

For a customer j who has a Type III job, similar to the case of

Type I and Type II jobs, we express his utility for those tasks as a

quadratic twice continuously differentiable function,Uj (·), defined

as follows:

Uj (vm
s
j ) = α

s
j vm

s
j +

βsj

2

(vms
j )

2, (7)

where vms
j is the amount of VM instances required to process j’s

time-shiftable tasks, and αsj ( a positive value) and β
s
j (a negative

value) are j’s utility coefficients for time-shiftable jobs.

A customer j can have jobs of all three types. Thus, his aggregate

tasks are worthvm
aд
j = vm

e
j +vm

c
j +vm

s
j VM instances. Therefore,

customer j’s aggregate utility takes a similar form to his utility for

a specific job type, and is given by

Uj (vm
aд
j ) = α

aд
j vm

aд
j +

β
aд
j

2

(vm
aд
j )2, (8)

where α
aд
j (a positive quantity) and β

aд
j (a negative quantity) are

j’s utility coefficients for his job aggregate.

We denote π
type
j to be the net utility that customer j generates

through getting service for a given job type = {e, c, s} from its

contracted SC, and define the maximum net utility that customer j
can generate, via the following optimization problem:

max

vmtype
j

π
type
j = max

vmtype
j

[Uj (vm
type
j ) − ρ jvm

type
j ]

subject to

vm
min

type
j

≤ vm
type
j ≤ vm

max
type
j
.

Here, vm
min

type
j

and vm
max

type
j

are the lower and upper bounds

for the number of VM instances used up by customer j’s job type
(be it whole, curtailed, shifted, or aggregate). ρ j is the price paid by
customer j to his chosen SC per VM instance used for his job.

2.3 Modeling the Regulator
The role of the regulator (e.g., the government, a federated agency)

as applicable to our work is to ensure (i) good privacy practices

between SCs, (ii) the design of policies/mechanisms that enable

autonomous SCs to price customers appropriately without making

excessive profits through market exploitation, and (iii) an optimum

level of social welfare allocation amongst the autonomous SCs

at market equilibrium. (i) is specific to our problem setting and

is one of the most important motivations for the presence of a

regulator (see Section 1) in the first place
1
. However, the presence

of a regulator brings in other important benefits through (ii) and (iii).

(ii) is necessary to prevent any SC from exploiting its customers

on service costs. In this work we do not focus on the design of

such mechanisms, and assume the existence of one
2
, whereas (iii)

is important from an economic perspective as maximizing social

1
In practice, using mechanism design theory, the regulator can devise efficient eco-

nomic mechanisms that enable SCs to find it incentive compatible in protecting the

privacy of their customers. However, we do not focus on the design of suchmechanisms

in this paper.

2
Economists Laffont and Tirole have proposed principal-agent models in this regard

[17] which will enable autonomous SCs to charge appropriate prices to customers

purely out of self-interest.
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welfare is a key objective in welfare economics because it leads

to (a) a certain level of equitability of allocations (in resources

or in net utility) amongst the stakeholders, (b) might guarantee

Pareto efficiency at market equilibrium [19], and (c) an optimal

social welfare state denotes the best possible operating point of an

economic system. A Pareto efficient allocation of utilities amongst

a set of stakeholders ensures that at market equilibrium none of

the stakeholders can increase their net utility without decreasing

any other stakeholder’s net utility. The notion of equitability is

important in the context of autonomous SC markets because they

often operate in a decentralized fashion, and ideally, we would

want a social welfare allocation at market equilibrium that does not

result in considerable disparity amongst the players’ allocations

(despite being Pareto efficient).

In this paper, we define the social welfare function of the regula-

tor to be the sum of the net utilities of the SCs and their customers

at market equilibrium. We denote this function by SW, and express

it as

SW =
∑
j ∈C

Uj (vm
aд
j ) −

∑
i ∈SC

(
c(vmr

i ) + c(vm
b
i ) + c(vm

pc
i )

)
, (9)

where C is the set of consumers, SC is the set of small clouds, the

first term is the sum of the utilities of the consumers, and the second

term is the sum of the costs faced by the SCs in SC for servicing

customer demands. The aforementioned social welfare expression is

the standard Bergson-Samuelson utilitarian social welfare function
in economics [19] whose optimality does not focus on equality

of resource or utility allocations amongst stakeholders, i.e., the

SCs and the customers, but only on Pareto efficiency of resource

allocations amongst the stakeholders, and equality of marginal

utility allocations amongst the stakeholders. Note that due to our

autonomous SC setting, the regulator in practice might not have

enough say in welfare maximizing resource allocation, and can only

expect to have the social welfare function maximized in the best

case because it cannot directly enforce optimal strategy choices on

the SCs like in a centralized control setting. The important question
here is whether the utilitarian social welfare function is indeed the
most appropriate choice for this work.

We choose to work with the utilitarian function over two other

popular Bergson-Samuelson social welfare functions used in eco-

nomic applications: the egalitarian function, and the Rawl’s function,
for the following reasons:

• The parameters corresponding to the unique optimal so-

lution of the maximum utilitarian social welfare problem

coincide with those obtained at the unique equilibrium of

a purely distributed market comprising autonomous SC’s

without the presence of a regulator, and are Pareto optimal.

This result is due to Arrow-Debreu’s first and second fun-

damental theorems of welfare economics [19]. In addition,

at market equilibrium, there is equitability in the marginal

utilities of all the autonomous SCs (in case of SCs, the utility

is represented by cost and is thus a negative utility) and their

customers. The parameter coincidence property does not

necessarily hold for non-utilitarian social welfare functions.

• The Rawl’s social welfare function focusses on maximizing

the minimum resource/utility allocation to any stakeholder

(e.g., SC) within the class of market stakeholders. A major

drawback of adopting this social welfare function is that it

will in general discourage SCs from sharing their resources

(even at Pareto optimal system settings) with other SCs (con-

sequently affecting customer QoS satisfaction), thereby chal-

lenging the core philosophy behind an SC market, and will

not likely be popular with either the SCs or the regulator. A

maximin utility allocation among SCs would favor, for ex-

ample, a regime that reduces every SC to complete “misery”

if it promotes the well-being of the most “miserable" SC by

even a very small amount.

• The egalitarian social welfare function focusses on equaliz-

ing the utilities of all market stakeholders in the absolute

sense. Similar to the case of Rawl’s function, it suffers from

the major drawback that it will in general discourage SCs

from sharing their resources (even at Pareto optimal system

settings) with other SCs. Likewise, it is unlikely to be popular

amongst either the regulator or autonomous SCs. For exam-

ple, if we had to choose between two allocation policies, one

under which all SCs would have a cardinal utility of 100, but

one SC would have a utility of 99; the second policy under

which every SC is “miserable” and will have a cardinal utility

of 1 unit. The egalitarian regulator would prefer the latter

as every SC has exactly the same utility level.

3 DYNAMIC SC MARKETS
On Dynamic SC Markets - In practice, an SC market can be dy-

namic in nature due to the non-static nature of the supply of SC

resources and variability over time of customer demand. This dy-

namic nature of the SC market is likely to lead to frequent static

market equilibrium (see Appendix for the analysis of static market
equilibria) perturbations, which in turn might (not always) lead to

a state of market disequilibrium. Here, the term ‘disequilibrium’

refers to a state when market supply does not equal market demand

due to perturbations in market parameters (e.g., customer prices),

and as a result all stakeholders do not mutually satisfy their inter-

ests. In such a case, an important challenge is to design a stable market
that is robust to perturbations and always returns to its equilibrium
point(s) when market disequilibrium results. Inspired by the notion

of disequilibrium process [10], we propose a dynamic market mecha-
nism for SCs. The concept of disequilibrium pertains to a situation

where a static market equilibrium is perturbed, potentially to a dis-

equilibrium state, and the underlying players (stakeholders) work

together to re-attain the equilibrium. The main idea behind the dise-
quilibrium process is an iterative sequence of action and state profiles
(see below), i.e., information exchange between the dominant market
stakeholders, of VM instance supply and demand levels, and per-unit
VM instance prices, to arrive at a desired static equilibrium. Such an

iterative process essentially implies an overall dynamic model with

feedback. Our proposed dynamic market mechanism can also be

used to re-attain a specific preferred equilibrium point from a given

equilibrium point. We first present our dynamic market model and

then follow it up with its stability analysis.

3.1 Dynamic Model
Our dynamic model of SC markets consist of a state space, X ⊂ Rn ,
where each state, {ρi } ∈ X , is the profile of per-unit VM instance
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prices at each SC i . The state dependent payoff, i.e., profit function
for each SC from its reserved resources is given by

π ri = ρivm
r
i − c(vmr

i ).

The state dependent payoff for each SC from its borrowed resources

is given by

πbi = ρivm
b
i − c(vmb

i ).

Similarly, state dependent payoff for each SC from resources bor-

rowed from a public cloud is given by

π
pc
i = ρivm

pc
i − c(vm

pc
i ).

The payoff function for the SC customers for a given job type

∈ {e, c, s}, is given by

Uj (vm
type
j ) − ρ jvm

type
j .

Each SC is assigned a state dependent action that permits the SCs

and their customers to change their VM instance generation and

consumption levels respectively. We assume a perfect competition
[14] of VM instance prices amongst the SCs in competition, and

following that the action for each SC i consists of committing a

certain amount of VM instances that influences the market-clearing

process. In this paper, we use the gradient play technique in game

theory [26] to derive the state dependent actions of the SCs and their

customers. Our use of the gradient play technique is motivated by

the fact that in many practical market environments stakeholders

(i) find it behaviorally difficult or computationally expensive to play

their best responses [14], (ii) have zero or incomplete knowledge of

the utilities of other stakeholders in themarket, and (iii) cannot even

observe the actions of other stakeholders in the worst case. In such

environments, gradient play is a suitable technique to achieve static

market equilibrium stability iteratively [15]. More specifically, for

our market setting the occurrence of (i)-(iii) is quite likely. Gradient

play also works when issues (i)-(iii) do not arise. The main idea
behind the gradient play technique is the use of ordinary differential
equations (ODEs) to describe the path of a perturbed system state to
the static market equilibrium state. Using gradient play, the action
for the the ith SC is given by

τ ri
Ûvmr
i = ρi − βri vm

r
i − α

r
i . (10a)

τbi
Ûvmb
i = ρi − βbi vm

b
i − αbi . (10b)

τ
pc
i

Û
vm

pc
i = ρi − β

pc
i vm

pc
i − α

pc
i . (10c)

Here, the parameters τ ri , τ
b
i , and τ

pc
i are time constants that de-

scribe the speed with which the action of VM instance commitment

by SC i can be adjusted, and are free parameters to be determined.

The goal of SC i’s action is to drive the solution vmr
i , vm

b
i , and

vm
pc
i to vmr∗

i , vmb∗
i , and vm

pc∗
i , the solution to Equations 22a-22c

(see Appendix) at static market equilibrium. It can be seen that the

RHSs of 22a-22c are proportional to the gradient ∇vmr
i
L, ∇vmb

i
L,

and ∇vmpc
i
L respectively, where L is the Lagrangian of OPT. The

suite of equations 22a-22c can be solved independently by SC i . In
a similar fashion, using gradient play, the state dependent action

for any SC customer i ∈ C is given by

τ
aд
i

Ûvm
aд
i = β

aд
i vm

aд
i + α

aд
i − ρi . (11)

τ
aд
i is a free parameter to be determined that denotes the speed with

which the consumption action of SC customer i can be adjusted. The
goal of the SC customer action here is to drive the solution vm

aд
i

to vm
aд∗
i , the solution to Equation 22d at static market equilibrium.

It can be seen that the RHS of 12 is proportional to the gradient

∇vmaд
i
L, i ∈ C , where L is the Lagrangian of OPT. Equation 12 can

be solved independently by each SC customer i .
The dynamics of the pricing mechanism can be expressed via

the following equation.

τρi Ûρi =
∑
j ∈Ci

vm
aд
j (1 − κ1

j − κ
2

j ) − (vmr
i +vm

b
i +vm

pc
i ), (12)

where the goal is to drive the solution ρi , ∀i ∈ SC to ρ∗i , the solution
of 22e at static market equilibrium. Here, τρi is the free parameter

denoting the speed with which ρi can be adjusted. Equations 10-12

represent a dynamic model of the overall SC market. It resembles a

repeated negotiation process where SC i responds with a commit-

ment of vmx
i , x ∈ {r ,b,pc} to suggested prices ρi received from

the regulator; SC customer i responds with a consumption amount

ofvm
type
j , type ∈ {e, c, s}, to the same prices. The regulator in turn

adjusts its prices to these actions by the SCs and their customers,

and returns new prices, {ρi }, and the process continues till conver-

gence to the static market equilibrium. A compact representation
of the above-mentioned dynamic SC market is presented in Section 2
of the Appendix. This representation paves the way for analytically
analyzing the stability of such markets.

3.1.1 A Compact Representation. We need to compactly rep-

resent the above dynamic SC market model to pave the way for

analyzing the stability of such markets via the Arrow-Hurwicz crite-
rion that is based on the theory of Lyapunov stability (see Section

3.2). Using Equations 10-12, our proposed dynamic market mech-

anism can be compactly represented in the matrix form via the

following equation:[
Ûx1(t)
Ûx2(t)

]
=

[
A1 + ∆A1 A2

0 0

] [
x1(t)
x2(t)

]
+

[
ᾱ

f2(x1x2).

]
(13)

Definiton of Equation Parameters. We now describe the parameters

of Equation 13. We have

x1(t) = [VMr
SC VMb

SC VM
pc
SC VMe

C VMc
C VMs

C ∆ ρ]T

that is a vector of dimension (|SC | + |C | + 2|SC | − 1) × 1. Here,

|SC | = n. We also have

x2(t) = [0]n−1×1,

and

A1 =


−M1 0 0 M2

0 M3 0 −M4

0 0 0 −M5

−M6 M7 M8 0


,

A2 = [0 0 −M9 0].

We define matricesM1 toM9 as follows:M1 = Diaд( 1

τ typei
β
type
i ),

type ∈ {r ,b,pc}. We assume that all for a given type, τ
type
i ’s are

equal for all i ∈ SC . M2 = Diaд( 1

τ typei
ATSC ), type ∈ {r ,b,pc},

where ASC = Diaд(1). M3 = Diaд( 1

τ typei
β
type
i ), type ∈ {e, c, s}.
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M4 = Diaд( 1

τ typei
ATC ), type ∈ {e, c, s}, where AC = Diaд(1). M5 =

Diaд(A′T BA), where A′
is an (n) × (n − 1) matrix of 1’s except for

the 0 diagonal elements, B is an n × n matrix with all entries 1

except for entries of the form Bii that take a value of zero, and

A is an n × n − 1 matrix. M6 = Diaд( 1

τ typeρi
ASC ), type ∈ {r ,b,pc}.

M7 = Diaд( 1

τ typeρi
AC ), type ∈ {e, c, s}. M8 = Diaд( 1

τ typeρi
AT BA′),

where A is an (n − 1) × n matrix.M9 = [1]n×n .

The expression f2(x1,x2) is a projection function onto the non-

negative orthant, and is given by

f2(x1,x2) = [cx1 −VMmax]+x2

, (14)

where c = BA′R, R being a rotating matrix. of dimensionality

((|SC | − 1) × |SC | + |C | + 2|SC | − 1) × 1, and VMmax
denotes a

vector of maximum VM instances committed by each individual

SC. The nth row of the projection [cx1 −VMmax]+x2

is denoted as[
[cx1 −VMmax]+x2

]
n =

{
max(0, [cx1]n −VMmax

n , if [x2]n = 0

[cx1]n −VMmax

n , if[x2]n > 0

(15)

∆A1 in Equation 13 represents the resource availability pertur-

bations due to dynamics of the SC market. The value lies in a

perturbation set E, where E is given by

E = {∆A = ∆SC − ∆C |∆SC ∈ ESC ; ∆C ∈ EC .} (16)

Here,

∆SC =


M10 0 0 0

0 0 0 0

0 0 0 0

M11 0 0 0

 ,
where matrix M10 is given by Diaд

(
1

τ typei
β
type
i (∆SC )

2

)
, type ∈

{r ,b,pc}, and ∆SC = Diaд(∆
type
SC ). Matrix M11 is given by

Diaд

(
1

τ typeρi
ATSC (I − ∆

type
SC )

)
, and ASC = Diaд(1). We also have

ESC expressed via the following:

ESC = {∆SC | | |∆SC | | =
√
λmax(∆

T
SC∆SC ) ≤ πSC },

where πSC is a finite constant. Similar to the expression for ∆SC ,
we have

∆C =


0 0 0 0

0 0 0 0

0 0 0 0

0 M12 0 0

 ,
where the matrixM12 is given byDiaд

(
1

τ typeρi
ATC (I − κ

1

j − κ
2

j )

)
. We

also have

EC = {∆C | | |∆C | | =
√
λmax(∆

T
C∆C ) ≤ πC },

where πC is a finite constant. Finally, we express
¯b as

¯b =

[
Diaд(

1

τ xi
α typei ) + Diaд(

1

τ xi
αxi )∆

type
SC Diaд(

1

τyi
α typei ) 0

]T
,

where x ∈ {r ,b,pc}, and y ∈ {e, c, s}. We assume that for given

x ,y, the values of αxi and α
y
i are equal for all i .

3.2 Stability Analysis of Dynamic Markets
In this section, we derive results regarding the stability of static

market equilibria in a dynamic SC market setting. Specifically, (i)

we derive the dynamic market equilibria obtained through gradient

play mechanics and compare it with the socially efficient static

market equilibria, and (ii) study the region of attraction around

dynamic market equilibria to derive stability connotations.

Case - 1:We first consider stability aspects when κ1

j ,κ
2

j equals

zero, i.e., there are no curtailed jobs. In this case, the equilibria of

the dynamic SC market described through Equations 22a - 22c (via

the use of the gradient play technique), lies in the set

E = {(x1,x2)|A1x1 +A2x2 + ᾱ = 0 ∩ f2(x1,x2) = 0}.

Let (x∗
1
,x∗

2
) be an equilibrium point in set E. We then have the

following theorem stating the relationship between (x∗
1
,x∗

2
) and the

unique static SC market equilibrium obtained through Equations

22a - 22e. The proof of the theorem is in the Appendix.

Theorem 3.1. The equilibrium (x∗
1
,x∗

2
) is identical to the unique

static market equilibrium obtained from the solution of OPT.

Theorem Implications. The theorem suggests that in the absence

of curtailed jobs, the equilibrium in a dynamic market setting is

unique, and converges to the static market equilibrium in which

the market existed initially before it was perturbed. Intuitively,

when the SC market is perturbed from its equilibrium setting, a

disequilibrium state might result, which will get resolved due to

our proposed gradient-play based approach that rolls back the dise-

quilibrium state to the original socially optimal static equilibrium

state. In this paper, we are able to roll back to the original state in

theory because of our assumptions regarding the nature of utility

functions. In practice, gradient play will guarantee a roll back of a
disequilibrium market state to an equilibrium state not necessarily
the original equilibrium state from which it was perturbed.

We now investigate the stability of the dynamic market equilib-

rium to find the region of attraction around itself. We introduce a

few definitions in this regard. Lety1 = x1−x
∗
1
,y2 = x2−x

∗
2
. Denote

byV (y1,y2) a scalar, positive definite Lyapunov function expressed

as

V (y1,y2) = y
T
1
y1 + y

T
2
P2y2, (17)

where P1 and P2 are diagonal matrices. We use Lyapunov functions
from control theory [11] as a standard to prove the stability of

an equilibrium of a system represented via ordinary differential

equations (ODEs). Let d be expressed as

d =
2λmin (P2)ψminλmin(Q)

β2
, (18)

where λmin(·) denotes the minimum eigenvalue of Q ,

β ≥ ||P1A2 + R
T [1]n×nP2 | |2,

where R is a rotating matrix, andψmin = min(ψi ),ψi being the coef-
ficient of the orthogonal vectorwi to expressVM

max
as

∑n
i=1

ψiwi .

We now have the following theorem characterizing stability of the

dynamic market equilibrium. The proof of the theorem is in the

Appendix.

Theorem 3.2. Let A1 be Hurwitz. Then the equilibrium (x∗
1
,x∗

2
)

is asymptotically stable for all initial conditions in

Ωcmax = {(y1,y2)| |V (y1,y2) ≤ cmax } for cmax > 0,
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such that
Ωcmax ⊊ D = {y2 ≥ 0| | |y2 | |2 ≤ d}

.

Theorem Implications. Intuitively, the theorem states that irrespec-

tive of any initial state the market is in, on being perturbed, it will

always come back to an equilibrium state from a disequilibrium

state. The Hurwitz (not the same as Hurwicz) nature of matrix A1

is determined from the time constants in Equations 10-12. Most

real systems satisfy the Hurwitz criterion in that A1 will be a real
square matrix constructed with coefficients of a real polynomial.

Case 2:We now consider stability aspects when κ1

j ,κ
2

j does not
equal zero. In this case, the equilibria of the dynamic SC market

described through Equations 10a - 10c, also lies in the set E. We

define y1,y2, and V (y1,y2) as before but define d∆ as

d∆ = d − d∆SC + d∆C , (19)

where d is the same as in Equation 18, ∆SC and ∆SC represent the

supply demand perturbation matrices, and d∆SC and d∆C are given

by

d∆SC =
4λmin (P2)ψmin | |P1 | |2πi |i ∈ SC

β2
. (20a)

d∆C =
4λmin (P2)ψmin | |P1 | |2πj |j ∈ C

β2
. (20b)

We now have the following theorem characterizing market stability.

The proof of the theorem is in the Appendix.

Theorem 3.3. Let A1 be Hurwitz, and let

πSC − πC <
λmin(Q)

2| |P1 | |2
(21)

Then the equilibrium (x∗
1
,x∗

2
) is asymptotically stable for all initial

conditions in

Ωcmax = {(y1,y2)| |V (y1,y2) ≤ cmax } f or cmax > 0,

such that Ωcmax ⊊ D = {y2 ≥ 0| | |y2 | |2 ≤ d∆}.

Theorem Implications. Similar to the implications of Theorem 3.2,

this theorem states that irrespective of any initial state the market

is in, on being perturbed, it will always come back to an equilibrium

state from a disequilibrium state.

4 CONCLUSION AND FUTUREWORK
In this paper, we addressed the problem of effective resource sharing

between small clouds (SCs). We modeled the problem as an efficient

supply-demand market design task consisting of (i) autonomous

SCs, (ii) their customers, and (iii) a regulator, as the market stake-

holders. The optimal market equilibrium point is prone to pertur-

bations due to the dynamic nature of the SC market, thereby poten-

tially leading to market disequilibrium. In this context, we designed

a dynamic market mechanism based on Arrow and Hurwicz’s dise-

quilibrium process that uses the gradient play technique in game

theory to converge upon the optimal static market efficient equi-

librium from a disequilibrium state caused due to supply-demand

perturbations, and results in market stability.

As part of future work, we plan to design provably fast dis-

tributed algorithms to allow markets to roll back to efficient equilib-

ria when perturbed from an equilibrium state, and study dynamic

SC markets under (i) a setting of imperfect (multi-resource) compe-

tition between SCs using general equilibrium theory[19], (ii) under
heterogeneous VM profiles, and (iii) a coalitional market setting

where SCs have the capability to collude with one another.
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5 APPENDIX
5.1 Static Market Analysis
In this section 5.1 we derive and analyze perfectly competitive SC

market equilibria. We assume perfect competition amongst SCs due

to their lack of economic power in influencing other SCs based on

their quantity of VM availability. Since prices in perfect competition

are strategic complements (in the terminology of Bulow, Geanako-

plos and Klemperer [12]), i.e., the decrease in an SC’s customer

price results in the decrease of customer prices charged by other

SCs in competition, we are going to eventually converge to a stage

where a single uniform customer price will prevail in the SC market

[12]. We are interested to know whether such a price results in

social welfare optimality. Equivalently, if a federated agency were

to centrally impose a customer charging price on all SCs (thereby

breaking their autonomy) that would maximize social welfare, what

would be the relationship between such a price (quantity) and the

market equilibrium price (quantity) outcome of the price-quantity

competition game? In this regard, we (a) formulate and solve an

optimization problem for a regulator who wishes to achieve socially

optimal market equilibria that maximizes utilitarian social welfare

amongst the market stakeholders, (b) characterize market equilibria

in the absence of a regulator and draw comparative relationships

between the equilibria obtained, with socially optimal market equi-

libria. In practice, the competition between SC firms is likely to be

imperfect in nature, and Laffont and Tirole have addressed models

[16] under such settings which result in market efficiency.

Optimization Problem Formulation - Here, we formulate a

regulator’s optimization problem so as to achieve socially optimal

market equilibria. The primary goal of the formulation is to maxi-

mize the net utilities for the SC customers, and minimize the net

cost of operation of SCs to reach a net maximum social welfare situ-

ation amongst the SCs and their customers. We define this problem

mathematically as follows:

OPT: max SW

subject to∑
j ∈Ci

vm
aд
j − (vmr

i +vm
b
i +vm

pc
i ) = 0, ∀i ∈ SC,

where the objective function is to maximize social welfare SW (see

Equation 9 above) and the constraint is the supply-demand balance

equation, with

∑
j ∈Ci vm

aд
j representing total customer demand,

and (vmr
i +vm

b
i +vm

pc
i ) representing total SC i supply. Ci is the

set of customers served by SC i . A potential solution to the above

optimization problem indicates the parameters at which the SC

market can ideally operate and (i) make all stakeholders satisfied to

a point that no one has an incentive to deviate, and (ii) maximize

the total satisfaction of all the stakeholders together. We denote

such an ideal state of market operation as a static socially efficient
market equilibrium.
Dual ProblemFormulation -Wewill solve OPT using the primal-
dual approach [25]. The advantage of using the primal-dual ap-

proach is that the dual optimization problem of the primal is always

convex [25], and its solution results in global optima which can

be related back to the optimal solution of the primal problem. Be-

fore deriving the dual optimization problem, we first define the

Lagrangian function of OPT as follows:

L =
∑
i ∈SC

(
c(vmr

i ) + c(vm
b
i ) + c(vm

pc
i )

)
−
∑
j ∈C

Uj (vm
aд
j )

+
∑
i ∈SC

ρi
©­«
∑
j ∈Ci

vm
aд
j − ρi (vm

r
i +vm

b
i +vm

pc
i
ª®¬ ,

where ρ = (ρ1, ...., ρn ) is the vector of Lagrange multipliers for the

constraint in OPT. The dual optimization problem, DOPT, is then

defined as follows.

DOPT: max inf

t :={vme ,vmc ,vms ,vmr ,vmb ,vmpc ,ρ }
L,

where vme ,vmc
, and vms

are vectors of customer VM types and

vmr ,vmb
, and vmpc

are vectors of SC VM types. Note that vm
aд
i

for any customer i equals vme
i + vm

c
i + vm

s
i . Thus, the goal here

is to find an optimal tuple t , that is an optimal solution to both OPT
and its dual.
Solving the Dual -The dual optimization problem is convex and

its optimal solution is found by applying the Karush-Kuhn-Tucker
(KKT) conditions [25] that are stated through equations 22a-22g.

Solving these equations, we obtain the optimal solution to DOPT.

The optimal solution to DOPT is the static market equilibrium. We

denote this solution by the tuple {vme∗,vmc∗,vms∗,vmr∗,vmb∗,vmpc∗, ρ∗}.
We now state the KKT conditions in the form of equations (22a)-

(22e) as follows.

d(c(vmr
i ))

dvmr
i

|vmr∗
i − ρ∗i = 0, ∀i ∈ SC . (22a)

d(c(vmb
i ))

dvmb
i

|vmb∗
i − ρ∗i = 0, ∀i ∈ SC . (22b)

d(c(vm
pc
i ))

dvm
pc
i

|vm
pc∗
i − ρ∗i = 0, ∀i ∈ SC . (22c)

ρ∗i −
∂(Ui (vm

e
i ))

∂vme
i

|vme∗
i = 0, ∀i ∈ C . (22d)

ρ∗i −
∂(Ui (vm

c
i ))

∂vmc
i

|vmc∗
i = 0, ∀i ∈ C . (22e)

ρ∗i −
∂(Ui (vm

s
i ))

∂vms
i

|vms∗
i = 0, ∀i ∈ C . (22f)∑

j ∈Ci

vm
aд
j (1 − κ1

j − κ
2

j ) = (vmr
i +vm

b
i +vm

pc
i ), ∀i ∈ SC . (22g)

Equilibrium inAutonomous Settings - The key question is whether
the solution to DOPT can be realized as a market equilibria in a
distributed autonomous setting. Based on the general equilibrium

theory in microeconomics [19], market equilibria in a perfectly

competitive autonomous setting of firms is known as Walrasian
equilibria. It turns out from general equilibrium results in [19] that

the unique optimal solution to DOPT (i) is a competitive Walrasian

equilibrium that is Pareto efficient, (ii) satisfies Arrow-Debreu’s first
and second fundamental theorems of welfare economics that es-

tablishes the if and only if relation between the existence of a

Walrasian equilibrium and its Pareto efficiency [19], (iii) maximizes

utilitarian social welfare (again derived from Arrow-Debreu’s first

and second fundamental theorems), and (iv) clears the market by



ACM SIGMETRICS Performance Evaluation Review, 2019 Pal et al.

balancing total SC resource supply with consumer and SC resource

demand. Thus, in view of points (i) - (iv), a regulator’s social welfare

maximization objective coincides with the welfare state obtained

at market equilibrium in a distributed autonomous firm setting.We
consider this unique equilibrium state to be the benchmark at which
the SC market would be willing to always operate. However, in prac-

tice, for a perfectly competitive market with non-utilitarian social

welfare functions, there may be multiple Pareto efficient Walrasian

market equilbria that are not socially efficient.

Computing Socially Optimal Equilibrium - The optimal solu-

tion to the dual optimization problem, DOPT, can be obtained in an

iterative manner using a gradient approach, the principle behind

which is the Primal-Dual Interior Point Method [25]. We adopt the

Primal-Dual Interior Point method in our work because it has a

polynomial-time complexity to arrive at the optimal solution to

convex programs [22]. The basis of the method is to progressively
change the argument vector of DOPT so that minimal-Lagrange

multiplier ρ satisfies the KKT conditions.

Denote by v , DOPT’s argument vector sans the Lagrange mul-

tiplier ρ, {vme ,vmc ,vms ,vmr ,vmb ,vmpc }. Applying the Interior

Point method to DOPT gives us the the following equations:

v(t + ϵ) = v(t) − kv∇xL · ϵ . (23a)

ρ(t + ϵ) = ρ(t) + kρ∇xL · ϵ . (23b)

Here, kv and kρ are positive scaling parameters which control the

amount of change in the direction of the gradient. Letting ϵ → 0,

we get

τv Ûv(t) = −∇vL, (24a)

τv Ûρ(t) = −∇ρL, (24b)

where τy =
1

ky
for y = v, ρ. The Interior Point Method converges

in polynomial time when the duality gap approaches zero, due to

the linear and super-linear convergence rate of the method [25].

5.2 Theorem Proofs
Proof of Theorem 3.1. The equilibrium (x∗

1
,x∗

2
) when setting κ1

j ,κ
2

j
to zero, is a solution of the following.

ρ∗i − βri vm
r∗
i − αri = 0, ∀i ∈ SDC . (25a)

ρ∗i − βbi vm
b∗
i − αbi = 0, ∀i ∈ SDC . (25b)

ρ∗i − β
pc
i vm

pc∗
i − α

pc
i = 0, ∀i ∈ SDC . (25c)

β
type
i vm

type
i + α

type
i − ρ∗i = 0, ∀i ∈ C, type ∈ {e, c, s,aд}.

(25d)∑
j ∈Ci

vm
aд
j (1 − κ1

j − κ
2

j ) = (vmr
i +vm

b
i +vm

pc
i ), ∀i ∈ SDC .

(25e)

Using Theorem 3.3 in [27], strong duality implies that equilibrium

(x∗
1
,x∗

2
exists is identical to the solution of the KKT conditions in

22a-22e. It can be seen that (25a) follows by replacing the cost

function for SDCs in (2)-(4) in (22a). Similarly, (25b) follows by

replacing the utility function of SDC customers in (5)-(8) in (22d).

Furthermore (25c) is identical to (22e). Thus, (x∗
1
,x∗

2
is identical to

the equilibrium in (22a)-(22e). Thus, we proved Theorem 3.1. ■

Proof of Theorem 3.2. Since strong duality holds, it follows from

Theorem 3.1 that equilibrium (x∗
1
,x∗

2
∈ E exists. We first prove the

stability of this equilibrium point and then proceed to its asymptotic

stability. Differentiating the positive definite Lyapunov function

V (y1,y2) = yT
1
P1y1 + y

T
2
P2y2, with respect to time where y1 =

x1 − x∗
1
and y2 = x2 − x∗

2
, and by using the non-expansive property

of the projection operation, we have

¯V (y1, y2) ≤ yT
1
(P1A1 + AT1 P1)y1 + yT1 P1A2y2 + y2AT2 P1y1 (26)

If A1 is Hurwitz, for any Q > 0, there exists a positive definite

matrix P1 such that P1A1 + AT
1
P1 = −Q . Let λmin(Q) denote the

minimum eigenvalue ofQ . Since P2 is a symmetric positive definite

matrix with a set n orthogonal, real, and non-zero eigenvectors

x1, ....,xn , can be written as

P2 =

n∑
i=1

λixix
T
i ,

where λi > 0 is the eigenvalue corresponding to xi . We can expand

the vector VMmax
using the orthogonal vectorwi as

VMmaxT [1]n×nP2y2 ≥ λmin(P2)ψmin | |y2 | |2, (27)

whereψmin = min(ψi ),∀i = 1, ...,n. Now let

β ≥ ||P1A2 + R
T [1]n×nP2 | |2.

Using (26) and (27), we obtain

¯V (y1,y2) ≤ −λ(Q)

(
| |y1 | |2 −

β

λmin(Q)
| |y2 | |2

)
2

− ||y2 | |

(
2λmin(P2ψmin −

β2

λmin(Q)
| |y2 | |

)
.

For all Ωmax ⊊ D, it follows that for all solutions beginning in

Ωmax , V ≤ 0. Hence, the equilibrium is stable and Ωmax is the

region of attraction.

Since the initial conditions start in Ω∆ and the latter is a strict

subset of D∆, y2 cannot be equal to 2λmin(P2)ψmin

λmin(Q )

β 2
. This

in turn implies that (| |y1 | |, | |y2 | | = (0, 0) is the only invariant set.

Hence, all solutions starting in Ω∆ converge to the equilibrium

point (x1,x2) = (x∗
1
,x∗

2
). Thus, we proved Theorem 3.2. ■

Proof of Theorem 3.3. Differentiating the Lyapunov function

V (y1,y2) along the trajectories of (13), we get

¯V (y1, y2) ≤ −a∆

(
| |y1 | | −

β
a∆

| |y2 | |

)
2

− | |y2 | |

(
e −

β 2

a∆
| |y2 | |

)
, (28)

wherea∆ = λmin(Q)−2| |P1 | |πSDC+2| |P1 | |πC , and e = 2λmin(P2)ψmin.

From (21) it follows that a∆ > 0. Therefore, (25) implies that

for all Ωcmax ⊊ D∆, for all solutions beginning in Ω∆, V̄ ≤ 0.

Hence, the market equilibrium state is stable, and Ω∆ is the region

of attraction.

The asymptotic stability of the perturbed market can be shown

via the following argument: since the initial conditions start in

Ω∆ and the latter is a strict subset of D∆, y2 cannot be equal to

2λmin(P2)ψmin

λmin(Q )

β 2
. This in turn implies that (| |y1 | |, | |y2 | | = (0, 0)

is the only invariant set. Hence, all solutions starting inΩ∆ converge

to the equilibrium point (x1,x2) = (x∗
1
,x∗

2
). Thus, we have proved

Theorem 3.3. ■
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