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1. Introduction

Since the discovery of the Higgs boson [1] the particle physics Standard Model is
complete in its particle content. The Standard model is a very successful theory
[2] that describes the elementary particles and their interactions. For the reader’s
convenience, we briefly review the SM, and motivate theories beyond the SM, namely
the complex singlet scalar extension.

The Standard Model has two types of particles, fermions and bosons. The
bosons have integer spin and the fermions half integer spin. The fermions are com-
monly divided into two subgroups, leptons and quarks. The leptons, in a doublet
representation, are written as (

e
νe

)
,

(
µ
νµ

)
,

(
τ
ντ

)
(1.1)

where, e and νe are the electron and the electron neutrino, µ and νµ are the muon and
muon neutrino, and τ and ντ are the tau and tau neutrino, respectively. Similarly
we can write the quarks in the doublet representation as(

u
d

)
,

(
c
s

)
,

(
t
b

)
(1.2)

where u, d, c, s, t and b are the up, down, charm, strange, top and bottom quarks,
respectively. The three lepton and quark doublets could also be referred to as three
generations of leptons/quarks and have increasing mass compared to the same type
of particle in the previous generation. As an example the top quark (3rd generation)
is far heavier than the charm quark (2nd generation). The neutrino masses are still
undetermined [3] but it has been shown that they have mass.

The Standard model is defined by an action. This action is a d-dimensional
spacetime integral over the Lagrangian. We only consider four dimensional theories
in this thesis. For a simple example we consider the free complex massive scalar
field

Sscalar =
∫
d4xLscalar =

∫
d4x

[
∂µφ

∗∂µφ−m2φ∗φ
]
. (1.3)

Free in this context means no interactions are present. The Lagrangian in eq.1.3
describes a spin 0 particle. The Lagrangian describing higher integer spin particles
is a bit more complicated. The free fermions are described by the Dirac equation

Lfermions = iψ̄γµ∂µψ −mψ̄ψ (1.4)

2
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where γµ are the gamma matrices. However an explicit mass term as in 1.4 is not
allowed in the Standard Model due to the Standard model gauge invariance, but we
will return to the fermion mass terms later.

Physical theories are usually invariant under certain transformations. For ex-
ample the scalar field Lagrangian in eq.1.3, describing relativistic particles, is Lorentz
invariant. It is also invariant under global phase transformation

φ→ φ′ = eiαφ. (1.5)

We therefore impose symmetries on our theory and demand the action remain in-
variant under these transforms. The Lagrangian in eq.1.3 is not invariant under the
transformation in eq.1.5 when the parameter α is position dependant, α(x), since
the derivative term in eq.1.3 leaves behind a contribution proportional to ∝ ∂µα(x).
To remain locally phase invariant we need to introduce the covariant derivative Dµ

as

Dµ = ∂µ + iqAµ (1.6)

where the newly introduced gaugefield Aµ transforms as

Aµ → A′µ = Aµ − ∂µα(x) (1.7)

to cancel the extra term produced by the derivative of the transformation parameter.
The locally phase invariant scalar field action is then

Sscalar =
∫
d4x

[
D∗µφ

∗Dµφ−m2φ∗φ
]

(1.8)

with new interactions ∝ φ∗φAµA
µ. The same line of reasoning can be used when

constructing the Standard Model Lagrangian which is symmetric under the gauge
group

SU(3)c × SU(2)L × U(1)Y (1.9)

where SU(3)c is the symmetry group of strong interactions and SU(2)L × U(1)Y is
the symmetry group of electroweak interactions.

These gauge groups have an associated representation for the particles, for
example the SU(2)L gauge group is a 2×2 complex unitary group whose generators
are 2×2 complex matrices obeying Lie algebra. Therefore particles that are SU(2)L
symmetric have a fundamental representation as a doublet, like the ones displayed in
1.1. A singlet scalar is then a field that transforms trivially under the gauge group
of the Standard Model. The model we introduce in the next chapter is a singlet
under all Standard model gauge groups.

All these gauge groups have mediator particles that convey the interaction
between particles. For QCD this particle is a gluon, for electroweak theory we have
the spin-1 massive W± and Z-bosons and the massless photon, denoted by γ.

Unlike gauge bosons, for the Higgs we also have a SU(2)L × U(1)Y invariant
potential. This potential is in the Standard model of the form

VHiggs = −1
2µ

2H†H + 1
4λ(H†H)2 (1.10)
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that has a minimum when

〈H†H〉 = µ2

λ
≡ v2 (1.11)

and is defined as the Vacuum expectation value (VEV) of the Higgs field. This
VEV spontaneously breaks the SU(2)L×U(1)Y symmetry to the U(1)EM , so at this
minimum the theory is no longer SU(2)L invariant. It is through this spontaneous
symmetry breaking and the Yukawa interaction

LY ukawa = Yf ψ̄Hψ + h.c. , (1.12)

where h.c. denotes hermitian conjugate, that the fermions acquire mass in the Stan-
dard model. This can be understood if we expand the Higgs field in its real degrees
of freedom in unitary gauge

1√
2

(
0

h+ v

)
. (1.13)

We then get a term ∝ Yfvψ̄ψ that is a fermion mass term similar to the one in 1.4
However even for the success of the Standard model there are still phenomena

that it fails to explain. One of these is the existence of dark matter. This matter
has only been observed through indirect means like gravitational lensing and the
rotation curves of galaxies. Another question is if the potential 1.10 is stable or
does it develop additional lower energy minima at some high energy. These are
all questions the complex singlet extension will attempt to answer and complement
the Standard model without needing exotic theories like Supersymmetry or String
theory.



2. The model

The complex singlet extension of the Higgs is one of the simplest extensions of
the Higgs sector. The extended sector consists of the Standard Model like Higgs
and a additional complex singlet with two real degrees of freedom. Therefore the
Lagrangian for the scalar sector is

L = (DµH)†(DµH) + (∂µS)(∂µS∗)− V (H,S), (2.1)

with H the Higgs doublet and S the Singlet. The Dµ is the covariant derivative.
The general renormalizable global U(1) symmetric potential V (H,S) is

V (H,S) =− 1
2µ

2H†H + 1
2λ1(H†H)(H†H)− 1

2M
2
S|S|2 + λSH |S|2(H†H) (2.2)

+ 1
2λS|S|

4.

If the singlet acquires a VEV the U(1)-symmetry is spontaneously broken. This
results in a massless Goldstone boson[4] being present in the particle spectrum.
Since this is a phenomenologically disfavored situation we introduce an explicit soft
U(1)-breaking term to the potential

Vsoft =− µ′2

4 S2 + h.c. (2.3)

in order to have a massive pseudo-Goldstone boson. Through a phase redefinition
of the singlet soft mass term one can always have a real mass parameter. Therefore
the potential we shall consider is henceforth

Vs = V (H,S) + Vsoft. (2.4)

In this potential the U(1)-symmetry is broken to Z2 by the VEVs we introduce
later. The CP-odd component of the complex singlet is only ever pair produced so
no decay channels exist. Later we shall put additional constraints on the theory.

For the model to correspond to measurements of the W± and Z-boson masses
we require the H-field VEV to be nonzero. Furthermore we also consider the case
when the additional scalar VEV is nonzero. We calculate the stationary points for
the potential by treating H†H and S∗S as separate variables. Taking the derivative

5
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and solving for both H†H and S∗S gives

〈H†H〉 = λSµ
2 − λSH(M2

S + µ
′2)

2λ1λS − 2λ2
SH

≡ v2, (2.5)

〈S∗S〉 = λ1(M2
S + µ

′2)− λSHµ2

2λ1λS − 2λ2
SH

≡ v2
s , (2.6)

which we define as the VEVs for the respective fields.
Using the definition in 2.6 we expand the singlet around the VEV

S → S = 1√
2

(φ+ iSDM + vs), (2.7)

to obtain the CP-even term φ and the CP-odd term SDM which will become our
dark matter candidate. The particle SDM is the pseudo-Goldstone boson. We also
need to expand the gauge eigenstate H in terms of its VEV v. We rotate the H
to the unitary gauge and expanding the H in terms of the field h and the VEV,
since we have rotated away the three additional degrees of freedom in the doublet
H. The additional degrees of freedom are in the W± and Z-bosons as longitudinal
polarizations. The H field is then written as

H = 1√
2

(
0

h+ v

)
. (2.8)

The scalar potential is now in the gauge eigenstate basis (h, φ), but these are
not the physical states, therefore we now consider the mixing of the two scalars.
The two scalars mix in terms of gauge eigenstates to form mass eigenstates. The
mixing can be inferred from the scalar potential and the masses written in matrix
form. The M2

h-matrix must therefore be diagonalized to get the physical (mass-)
eigenstates for the model.

The mass matrix can be obtained by expanding the potential 2.4 in terms of
the fields and the VEVs. The terms proportional to 1/2h2, 1/2φ2 and hφ are then
elements of the mass matrix for the CP-even fields.

The mass matrix in the gauge eigenstate basis is

M2
h =

(
λ1v

2 λSHvvs
λSHvvs λSv

2
s

)
, (2.9)

which has the off diagonal terms λSHvvs. This can then be diagonalized by the
orthogonal transformation

M2
diag = (ZH)TM2

hZ
H , (2.10)

to obtain the mass eigenstates. The orthogonal transformation matrix ZH has the
form

ZH =
(

cos θ sin θ
− sin θ cos θ

)
, (2.11)
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and the mixing angle θ satisfies

tan 2θ = 2λHSvvs
λsv2

s − λ1v2 . (2.12)

The eigenvalues of the mass matrix are

m2
h1 = 1

2

(
λ1v

2 + λSv
2
s −

λSv
2
s − λ1v

2

cos 2θ

)
, (2.13)

m2
h2 = 1

2

(
λ1v

2 + λSv
2
s + λSv

2
s − λ1v

2

cos 2θ

)
, (2.14)

corresponding to the two physical mass eigenstates h1 and h2. We also have a
third mass eigenstate in the spectrum, the SDM -state. The mass of this particle is
m2
SDM

= µ
′2 and it does not mix with the h1 and h2 states. We identify h1 with

the Standard model-like scalar with a mass mh1 = 125GeV. The physical states are
therefore mixed states of the gauge eigenstates. The mass eigenstates in terms of
the gauge eigenstates are

h1 =h cos θ − φ sin θ (2.15)
h2 =φ cos θ + h sin θ. (2.16)

At the electroweak symmetry breaking scale we impose the constraint

λ1λS − λ2
SH > 0 (2.17)

λS, λ1 > 0 (2.18)

since the mass matrix is a Hessian and we demand the determinant to be positive
definite at electroweak scale. Imposing 2.17 and from 2.5 and 2.6 we obtain that
the stationary points are local minima of the potential if

λSµ
2 − λSH(M2

S + µ
′2) > 0, (2.19)

λ1(M2
S + µ

′2)− λSHµ2 > 0. (2.20)

This local minimum exists even at loop level if radiative corrections are small.
After calculating the eigenvalues of the mass matrix we consider the free pa-

rameters of the model. In the Lagrangian we have

µ2, µ
′2, M2

S, λ1, λS, λSH (2.21)

corresponding to the masses and the gauge eigenstate couplings. Further we impose
the condition that mh1 = 125GeV to correspond to the 2012 scalar discovery [1].
Also we require v = 246GeV to have correct gauge boson masses. These constraints
leave only four free parameters, which we will choose to be

m2
h2 , vs, θ, mSDM

. (2.22)

We will use these parameters when we calculate some processes in later chapters.
However when we do computer analysis of the model to calculate relic density these
parameters will not be used since the packages only use Lagrangian parameters.



3. Couplings and select processes

We shall now consider a few select processes in order to illustrate the deviation from
the Standard Model. In general the phenomenology of the complex singlet extension
resembles that of the Standard Model. We will consider the dark matter interactions
with matter in order to show that it is naturally suppressed.

From the previous considerations it is first important to convert the Lagrangian
parameters to the new parameters introduced in the model. This will however not
work for SARAH[5] and SPheno[6] and by extension micrOmegas[7] since they work
with Lagrangian parameters. After electroweak symmetry breaking the couplings
can be expressed in terms of parameters related to the mass eigenstates instead of the
gauge eigenstate parameters we begun with. The scalar potential after electroweak
symmetry breaking in terms of mass eigenstates is too long to display here so only
relevant terms are considered in this chapter.

The couplings λ1, λS and λSH can be rewritten in terms of the chosen pa-
rameters: mh2 , θ, µ

′2, vs. From the definition of the masses and using 2.12, the
couplings can be written as

λ1 =
m2
h1

v2 cos2(θ) +
m2
h2

v2 sin2(θ) (3.1)

λS =
m2
h2

v2
s

cos2(θ) +
m2
h1

v2
s

sin2(θ) (3.2)

λSH =
m2
h2 −m

2
h1

2vvs
sin(2θ). (3.3)

with the detailed derivation in A.2.

�hj

hj

hi λhihihj �SDM

SDM

hi λDMi

Figure 3.1: The trilinear scalar interaction (left). The dark matter - scalar interaction (right).
All Feynman diagrams are drawn with FeynMF[8].

Four important vertices are the trilinear scalar interaction, scalar dark matter,
the scalar-fermion and the scalar-gauge boson interactions. First the trilinear scalar
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�f̄

f

hi

Yf cos θ/
Yf sin θ�

V̄

V

hi

gV cos θ/
gV sin θ

Figure 3.2: The scalar interaction with fermions (left). The scalar gauge boson interaction (right).

interaction has three contributions, the quartic singlet operator, the Higgs quartic
operator and the portal. The coupling of the scalars can be obtained by taking
the Lagrangian 2.3 and writing it in terms of mass eigenstates after spontaneous
symmetry breaking. After the Lagrangian is expanded in terms of mass eigenstate
we find terms proportional to h1h1h2 and h1h2h2. The obtained couplings can be
simplified using 2.12 and the masses. We parametrize the interactions as

Ltrilinear = −v2 sin θλh2h1h1h
2
1h2 −

vs
2 cos θλh2h2h1h

2
2h1, (3.4)

then coupling for h2h1h1 is found to be given by the expressions

λh2h1h1 = 1
v2vs

(
2m2

h1vs cos2 θ +m2
h2vs cos2 θ

+2m2
h1v cos θ sin θ +m2

h2v cos θ sin θ
)

(3.5)

and for h1h
2
2 it is

λh2h2h1 = 1
vv2

s

(
2m2

h2vs sin2 θ +m2
h1vs sin2 θ

−2m2
h2v cos θ sin θ −m2

h1v cos θ sin θ
)
. (3.6)

If we let the heavier scalar eigenstate to have a mass greater than two of the
lighter scalars then a new decay channel for the heavier mass eigenstate is introduced
since it is kinematically allowed. This is gives a unique signal that could be verified
experimentally in the form of four b-jet events or h2 → (h∗1h∗1) → b̄bτ+τ−-decays.
Examples of these processes are displayed in figure 3.3.

�h2 h1

h1
b− jets

b− jets�h2 h1

h1
b− jets

τ τ̄

Figure 3.3: The heavier scalar decay to four b-jets (left), b̄b and τ τ̄ (right)
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The heavy scalar to Standard model-like Higgs decay width can be calculated
from the trilinear couplings and is given by

Γ(h2 → h1h1) =
v2 sin2 θλ2

h2h1h1

√
m2
h2 − 4m2

h1

32πm2
h2

(3.7)

where the coupling λh2h1h1 is given by 3.5. The decay of the heavier scalar through
the lighter mass eigenstate to fermions is naturally dependent on the scalar-fermion
interaction. Since in this scalar extension the additional scalar gauge eigenstate
does not couple to the fermionic sector directly due to gauge invariance, the Yukawa
interaction is only rotated to the mass eigenstates by H → h1 cos θ + h2 sin θ. The
Yukawa interaction

LY ukawa = −Yf cos θf f̄h1 − Yfff̄h2 sin θ + h.c. (3.8)

then has contributions from both mass eigenstates. The additional mass eigenstate
coupling to fermions is suppressed by sin θ. The fermion masses are still at tree level
mf = Yfv but the Yukawa coupling measurements have a mixing angle dependence.
The SM-like Higgs decay to fermions is then the same as in the SM

Γ = C cos2 θ
g2m2

fmh1

16πm2
W

[
1−

4m2
f

m2
h1

]
(3.9)

but with a small suppression of cos2 θ. The constant C is the color factor, C = 1
for leptons and C = 3 for quarks. We also have a identical process for the h2 but
suppressed by sin2 θ. While at tree level the fermion masses are unchanged at loop
level the masses get corrections from both scalars [9], but this analysis is beyond
the scope of this thesis.

The gauge boson couplings follow a similar pattern and the same reasoning as
in the Yukawa couplings can be applied here. The W± couplings are

gW,h1 =1
2g

2v cos θ (3.10)

gW,h2 =1
2g

2v sin θ (3.11)

and the Z-boson couplings are

gZ,h1 =1
2v(

√
5
2g
′ sin θW + g cos θW )2 cos θ (3.12)

gZ,h2 =1
2v(

√
5
2g
′ sin θW + g cos θW )2 sin θ. (3.13)

We will calculate loop corrections from h2 to the gauge boson masses later in this
thesis.

Having introduced the coupling of the scalars to the matter sector attention
can now be given to the dark matter candidate SDM and its detectability. Since the
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�
f f

SDM

hi

SDM

Yi

λDMi
Figure 3.4: The direct detection Feynman diagram. At tree level it is a t-channel process
mediated by one of the two scalars. The Yukawa coupling and the DM coupling indices relate to
the mediated scalar.

dark matter candidate SDM does not couple directly to the visible sector but only
through the scalars h1/2 the lowest order diagram corresponding to direct detection
is the t-channel diagram3.4.

The coupling of SDM to the scalars h1/2 is obtained from the Lagrangian by
writing the gauge eigenstates in terms of the mass eigenstates. The couplings can
then be rewritten using expressions 3.1,3.2 and 3.3. We parametrize the scalar-dark
matter couplings as

LDM−scalar = 1
2vsλ

DM
1 S2

DMh1 + 1
2vsλ

DM
2 S2

DMh2, (3.14)

and the couplings are then given by

λDM1 =
m2
h1

v2
s

sin θ (3.15)

λDM2 =−
m2
h2

v2
s

cos θ. (3.16)

With these expressions the amplitude corresponding to 3.4 can be expressed by

|M|2 ∝ sin2 θ cos2 θ

(
m2

1
t−m2

1
− m2

2
t−m2

2

)2 (
−1

2t+ 2m2
f

)
(3.17)

which vanishes as t→ 0, giving a natural suppression of the direct detection rates for
this model. It can therefore be concluded that the cross section of the dark matter
candidate colliding with a nucleon is very small and therefore the direct detection
rate is highly suppressed at small transferred momentum.



4. Experimental constraints

In this section we consider the consequences of the scalars mixing on the electroweak
precision observables (EWPO) and the Higgs searches leading up to the discovery in
2012. The experiments provide constraints on the allowed parameters of the model.
We will first consider corrections to the electroweak precision observables. These
observables are measurements commonly used to constrain new models[10]. The
EWPO were used even before the Higgs was discovered to constrain the allowed
mass of the then undiscovered scalar.

We then consider constraints from the Higgs searches and the Higgs coupling
measurements. Since the LHC had been searching for a scalar particle since its
completion it is expected that some parameters are already ruled out by old experi-
ments. We will see that at low mass ranges for the second scalar the Higgs searches
and coupling measurements are the constraining factor. At high masses the EWPO
provide the most stringent bounds.

4.1 EWPO
In the portal model corrections to electroweak theory enter at one loop level and
come from modified couplings of the scalars to gauge bosons and different loop dia-
grams involving the two CP-even scalars. Some relevant loop diagrams are shown in
fig.4.1. These new loops shift the couplings and gauge boson masses and we there-
fore need to compare the prediction of the complex singlet model to the accurately
measured values of the electroweak theory in order to find the resulting bounds on
the model parameters.

�W±/Z

hi

�W±/Z

hi

Figure 4.1: Examples of the gauge boson propagator loop corrections involving the scalar fields.
Left: The quartic boson-scalar coupling loop. Right: The loop correction with trilinear couplings.

At one loop level, corrections involving the photon are zero. Calculating the

12
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loop contributions to the gauge boson propagator gives

δΠV V (p2) =m
2
V sin2 θ

4π2v2

(
m2
h2 −m

2
h1

4

(1
ε

+ 1
)

(4.1)

+
∫ 1

0
dx

[
m2
V −

∆2

2

]
log ∆2 −

∫ 1

0
dx

[
m2
V −

∆1

2

]
log ∆1

)
, (4.2)

∆i is defined by ∆i = xm2
hi

+ (1 − x)m2
V − p2x(1 − x) for the scalar hi and the

gauge boson V . In ∆i the integration is done over the Feynman parameter x. The
divergent part 1/ε cancels in all physical observables and is not important for this
study. This correction to the propagator modifies the masses of the gauge bosons
but also the effective couplings of electroweak theory. The effective electroweak
couplings can be expressed as [11], [12]:

gefffZ =

√
g2
L + g2

Y√
1− δΠ′

WW (m2
W )

(
T 3
f −Qfs

2
eff

)
, (4.3)

s2
eff = g2

Y

g2
L + g2

Y

(
1− gLδΠγZ(m2

Z)
gYm2

Z

)
, (4.4)

geffW = gL√
1− δΠ′

WW (m2
W )

(4.5)

gL and gY being the SU(2)L and U(1) gauge couplings respectively. The parameter
s2
eff is defined from

ÂLR ≡
(1

2 − s
2
eff )2 − s4

eff

(1
2 − s

2
eff )2 + s4

eff

(4.6)

ÂLR being the forward-backward asymmetry for a fermion. With the effective cou-
plings some electroweak processes can be written in compact form. In this case the
two interesting processes are the Z and W decay widths to fermions. With the
effective couplings the decay widths are

Γ(Z → f̄f) = NfmZ

24π (gefffZ )2 (4.7)

Γ(W → f
′
f) = NfmW

48π (geffW )2. (4.8)

Turning now to the coupling corrections, relying on [11] the corrections are calculated
to be

δgL = gL
g2
L − g2

Y

(
2δΠWW (0)

v2 − 2 cos2 θW
δΠZZ(m2

Z)
v2 +

g2
Y δΠ

′
γγ(0)

2

)
, (4.9)

δgY = gY
g2
L − g2

Y

(
−2g2

Y δΠWW (0)
g2
Lv

2 + 2 sin θW
δΠZZ(m2

Z)
v2 −

g2
LδΠ

′
γγ(0)
v2 −

g2
LδΠ

′
γγ(0)

2

)
,

(4.10)

δv = −2vΠWW (0)
g2
Lv

2 . (4.11)
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With these corrections the shifts in electroweak results can be calculated to see
if experimental data agrees with the extension. To simplify the calculations only
leading order terms in ΠV V are considered, also noteworthy is that in this model
δΠγγ are zero. The loop corrections are modified from the Standard model case, and
it is therefore imperative to compare the predicted EWPO to the measured ones.
If the additional contributions cause the predicted value to deviate from measured
ones the model is discarded. This is done by comparing the predicted quantity to
the measured one using a χ2-distribution

χ2((mh2), sin θi) =
∑
i

(Oex
i −Oth

i ((mh2), sin θ))2

(σexi )2 (4.12)

where Oex
i is the experimentally measured value, σexi its error and Oth

i the predicted
value. By minimizing the χ2 distribution we can exclude regions by satisfying

χ2((mh2), sin θ)−min
[
χ2((mh2), sin θ)

]
< 3.84 (4.13)

giving a 95% confidence interval for the parameters. These constraints can then be
plotted in a contour plot to show the excluded regions.

A simple method of estimating the excluded regions is by using Peskin-Takeuchi
S, T and U parameters [13]. The relevant parameters are S and T, which are given
in this model by

S = 16π cos2 θWΠ′
ZZ(0)

g2 , (4.14)

T = 4π
e2

(
δΠWW (0)
m2
W

− δΠ′
ZZ(0)
m2
Z

)
. (4.15)

If mh2 � mh1 these simplify to

S ≈ sin2 θ

6π log mh2

MS

T ≈ − 3 sin2 θ

8π cos2 θW
log mh2

MT

(4.16)

for MT ≈ 211GeV and MS ≈ 81GeV. The limits from the oblique parameters can
be calculated [14] using

(χ2
STU)i = xTC−1x, xT = (Si − Ŝ, Ti − T̂ , Ui − Û). (4.17)

Assuming U = 0 the covariance matrix C is

C =
(

8.1 5.733
5.733 4.9

)
× 10−3 ⇒ C−1 =

(
718.19 −840.28
−840.28 1187.2

)
(4.18)

and Ŝ = 0.06, T̂ = 0.10 [15]. We then require χ2
ST < 8.025 to be within 2σ of the

measured values. These parameters give a good indication for heavy scalars but
the analysis contained within [11] is more comprehensive and is valid for all scalar
mass ranges. However the S,T and U parameters are a quick way to probe large



15

Figure 4.2: Peskin–Takeuchi parameter constraints for the mixing angle θ and the second scalar
mass. We require χ2 < 8.025.

mass ranges, but should not be solely depended upon, especially in their simplified
form. Using a simple Python script we can plot the constraints from the S and
T parameters in a contour plot. In figure 4.2 the values of sin θ ∈ [0, 0.4] and
mh2 ∈ [1000GeV, 100TeV] are plotted to constrain the sin θ and second scalar mass
ranges. However for the lower mass range the condition mh1 � mh2 is suspect.
Evidently for the high mass ranges the value of the mixing angle must be below
sin θ ≤ 0.15.

The work done in [11] shows that the limits from electroweak precision mea-
surements are non trivial for scalar masses mh2 < 60GeV and mh2 > 170GeV and
only increase as the scalar mass increases. This agrees well with the Peskin–Takeuchi
parameters S and T scans since they correspond to loop corrections to electroweak
processes.

4.2 Higgs coupling measurements
Since the scalars mix together as previously discussed the scalar sector is modified
from the Standard model case. The mixing modifies the coupling of the Standard
model-like Higgs to gauge bosons and fermions. The additional scalar therefore con-
taminates the Standard model like Higgs h1 signal strengths. We only consider the
channels h1 → 4l and h1 → γγ since these processes have the best mass resolution.
The expected signal strength of the extended model can be compared to the mea-
sured value. For the Standard Model the signal strength is defined to be µ = 1. The
measured values are displayed in table 4.2

Channel µ (ATLAS) µ (CMS)
h1 → γγ 1.17+0.27

−0.27 1.12+0.24
−0.24 [16]

h1 → ZZ∗ → 4l 1.44+0.40
−0.33 1.00+0.29

−0.29 [16]
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Using recent measurements and including a 15% theoretical prediction error, the
limit

µ > 0.81, 95% CL (4.19)
is obtained for the signal strength. The constraint on sin θ when mh2 ≥ 1

2mh1 is
found to be [11]:

sin θ < 0.44, 95% CL. (4.20)
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Figure 4.3: Exclusion regions for mh2 < 65GeV from the Higgs coupling measurements (left).
From lightest to darkest the portal coupling λSH is −0.011, 0.0001, 0.011, 0.014. The excluded
region for mh2 = 20GeV (right). The white area is where the h1h2h2-coupling 3.5 is very small
[11].

When the second scalar h2 has a mass less than half of the SM-like Higgs a new
decay channel for the SM-like Higgs is kinematically allowed. This puts stronger
constraints on sin θ than before since it modifies the Higgs decay branching ratios.
These constraints are plotted in 4.3. Therefore at light h2 the portal coupling λSH
is effectively limited to values |λSH | < 0.015. However for negative λSH one can
adjust the coupling so that the decay h1 → h2h2 vanishes.
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4.3 Direct Higgs searches

Further constraints on the additional scalar can be obtained from Higgs-like searches
at LEP and LHC. The following searches are taken into account[11]:

• h2 → γγ at ATLAS [17] and CMS [18]
• Limits from h2 → ZZ and h2 → WW searches in CMS for mh2 > 145GeV

[19],
• Searches of h2 → ZZ in 4l-channel for mh2 < 145GeV in both CMS[20] and

ATLAS [21],

• h2 decays to h2 → h1h1 with b̂bγγ final states in CMS [22] and ATLAS [23],

• h2 decays to h2 → h1h1 with b̂bb̂ final states [24] in CMS,

• LEP searches for the Higgs (primarily h2 → b̂b decays)[25],
• DELPHI searches for a light Higgs by Z-decays[26],
• b-physics constraints on light Higgs [27] [28].

These experiments provide the most stringent constraints on the additional scalar
mass and the mixing angle when mh2 < 450GeV, except for a few isolated regions
where the coupling measurements are more limiting. For extremely low masses
mh2 < 5GeV the constraints from B → Kll are the dominating ones. In the mass
range 5GeV < mh2 < 12GeV the b-physics in [27] and light scalar searches in [26]
provide the dominant contributions, limiting sin θ < 0.5. In the mass ranges above
12GeV up to 115GeV the Higgs searches in [25] are the relevant experiments lim-
iting the angle to sin θ ∼ O(10−1). When the mass of the additional scalar is
120GeV < mh2 < 130GeV the constraints are loose due to the SM-like Higgs and
their shared interaction types. Just above and below these masses the diphoton
searches dominate [17][18]. Above 135GeV the electroweak decays h2 → WW and
h2 → ZZ are the most relevant. Searches in [29],[19] and [20] provide the most strin-
gent limits in this region, limiting sin θ to sin θ < 0.3−0.4 depending on the mass of
h2. At mass ranges above 450GeV the oblique corrections become the constraining
factor.

The limits discussed are modified depending on the value of the portal coupling
λSH . Especially if the decay h1 → h2h2 is kinematically allowed the Higgs signal
strength would decrease in this model. If the second scalar can decay to two SM-like
Higgs the dependence on λSH gives a suppression of the h2 → WW and h2 → ZZ
decays with the h2 → h1h1 decay becoming more prominent. These effects only
become significant for λSH > 1, and in general the direct Higgs searches and coupling
measurements provide more conservative limits on mh2 , sin θ. When the Higgs decay
to h2 is kinematically allowed this decay would dilute the signal strength in 4.2. In
the region mh2 > 2mh1 the λSH dependence on the limits become relevant since the
decay h2 → ZZ/W±W∓ become less favorable than the decay h2 → h1h1 as λSH
increases. It is however only relevant when λSH & 1 and only becomes the leading
constraint when λSH & 2.
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4.4 Summary of the constraints
We conclude this chapter by summarizing the limits by experiments and theoretical
predictions. When mh2 ∼ O(1)GeV the Higgs coupling measurements limit the
mixing angle to sin θ < 0.45 and the massless case is ruled out completely by Higgs
direct searches. In the lower mass range 10GeV ≤ mh2 ≤ 90GeV the model is
stringently constrained by the Higgs direct searches, limiting sin θ to be below sin θ '
0.15. Approaching the Standard Model like Higgs mass of 125GeV from the lower
mass region the mixing angle is limited by Higgs coupling measurements to sin θ .
0.45. At the Standard Model like Higgs mass the constraints are loose allowing for
a nearly degenerate second scalar.

At higher masses mh2 > 125GeV the Higgs direct searches variably rule out
mixing angles in the range sin θ ∼ 0.2 − 0.4 depending on the second scalar mass.
Finally at masses above 450GeV the EWPO measurements and the S,T parameters
constrain the model in a monotonically increasing way from sin θ ∼ 0.3 down to
sin θ ≤ 0.15 as the second scalar mass increases. Since in a later chapter we will
use this additional scalar and the scalar mixing to stabilize the electroweak vacuum
the higher mass ranges are especially of interest. The summary of these results is
plotted in fig 4.4.
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Figure 4.4: Left: Excluded parameter space in the range 0GeV ≤ mh2 ≤ 250GeV. The red area
is direct searches exclusion, EWPO in gray and Higgs coupling measurements in yellow. The green
region is favoured by electroweak vacuum stability when λSH = 0.01[11]. Right: The mass range
250GeV ≤ mh2 ≤ 1000GeV.



5. Dark Matter

The existence of dark matter is a well established fact in modern physics. Dark
matter is used to explain some phenomena that the Standard model cannot account
for. One of these phenomena is the discrepancy between classically predicted and
measured values for galaxy rotation curves. As an example the rotation of the
M33 galaxy[30] is too fast at the outer edges for classical models to account for.
A common explanation for this phenomenon is the existence of additional matter
that is as of today of unknown type. Dark matter interacts gravitationally and this
interaction is one of the primary channels for observing matter through gravitational
lensing. Gravitational lensing is the phenomenon where light from a distant source
is bent due to a massive object in the vicinity of the lights path. The rest of dark
matter interactions remain unknown.

Direct detection experiments work by measuring signals of particles colliding
as we move through space and therefore through a dark matter "wind"[31]. When
moving through this dark matter wind some dark matter particles would collide
with nuclei leaving a signal in these types nuclei collision experiments. These kind
of direct detection experiments usually operate in momentum exchange ranges of√
t ≈ 20−200keV [31]. In some models, as in the current model of pseudo-Goldstone

dark matter, this direct detection amplitude is suppressed leading to no expected
signals with current sensitivities.

The indirect detection experiments search for DM interactions resulting in
visible SM final states [32]. This process is the annihilation of dark matter into
Standard model final states. These kind of experiments need to distinguish between
a potential dark matter candidate and astrophysical background. In the complex
singlet extension, processes resulting in SM final states involve the CP-even scalars
as mediators that then couple to the SM.

All these detection experiments put constraints on any DM candidate. In order
to study the required phenomenology the most important quantity is relic density or
relic abundance Ωh2. By convention the parameter h is included. The parameter h
is the rate of expansion of the universe in terms of 100km/s/Mpc, i.e if h = H0, then
h ≈ 0.674[33],[34]. The critical energy density ρcrit is the required energy density
of the universe to obtain a flat universe. It can be found from the first Friedman
equation[35]

H2 = 8πG
3 + Λc2

3 −
Kc2

a2 (5.1)
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for K = 0. The critical density at present value[34] is

ρcritical = 1.878× 10−29h2 g

cm3 ≈ 8.531× 10−30 g

cm3 (5.2)

This critical density is then related to the Ω parameter as

Ωi = ρi
ρcritical

= 8πG
3H2 ρi = ρi

1.878× 10−29h2 (5.3)

making it obvious why the h2 is included in literature when reporting relic densities.
From surveys like the PLANCK mission the value for cold dark matter relic density
has been measured and is presently [34]

Ωh2 = 0.120± 0.001. (5.4)

We can then calculate the energy density for dark matter by inverting the relation
5.3, resulting in a energy density of

ρc = (2.25± 0.02)× 10−30 g

cm3 (5.5)

This energy density is the third and last requirement for our DM candidate, but we
will refer to 5.4 since it is the format of [34].

5.1 Freeze-out
To be able to interpret the dark matter calculation results we first need to familiarize
ourselves with the governing equations of dark matter evolution and the mechanisms
therein. For weakly interacting massive particles (WIMPS) the mechanism is called
freeze out or decoupling.

Take a particle that in the early universe was in thermal equilibrium, i.e the
annihilation and production of the DM candidate is initially in equilibrium. The
number density n of the DM candidate is therefore proportional to the temperature
cubed, n ∝ T 3. Approximating the particle soup as a weakly interacting gas the
particle statistics are described by the distribution function

f(E, µ, T ) = 1
eβ(E−µ) ± 1 (5.6)

with the chemical potential denoted by µ, the energy E and + sign for fermions and
− sign for bosons. The number density in thermal equilibrium is

neq =
∫ d3p

(2π)3 gf(E, µ, T ) (5.7)

the distribution function having a implicit momentum dependence in E1, g is the
number of degrees of freedom of the particle (spin, polarization etc.), also called the

1E =
√
p̂2 +m2
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degeneracy of the energy level. In the high temperature limit T � m for the particle
massm, the particle number density is proportional to the temperature cubed ∝ T 3.
When the the universe cools the number density gets suppressed by the Boltzmann
factor. Neglecting the chemical potential the particle densities are proportional to

neq ∝ T 3, T � m (5.8)
neq ∝ (mT ) 3

2 e−mβ, β = (kBT )−1, T � m (5.9)

with the second term having the suppression of the Boltzmann factor. Because the
cooling is accompanied by the expansion of the universe the statement of thermal
equilibrium is more involved than in the classical sense of time independent state.
However the expansion rate is usually slow compared to interaction rates and can
be treated as an adiabatic process.

As the universe expands and cools the DM annihilation processes become
increasingly rare. This process leads to freeze out, after which the dark matter
falls out of thermodynamic equilibrium and total dark matter particle number is
conserved. It is this process which is the most popular mechanism for explaining
the observed relic abundance today [36].

5.2 Boltzmann equation
To understand dark matter production and relic density we need to look at the
governing equation of freeze-out. Then by extension we gain some insight into
what micrOmegas does. In general the dynamics of a system is described by the
Boltzmann equation. It takes the form [37],

Lf(t, E) = C(f(t, E)) (5.10)

with the Liouville operator L and the collision term C. The general form of L is

L =
(
pν

∂

∂xν
− Γµαβpαpβ

∂

∂pµ

)
(5.11)

where the connection Γ is the Christoffel symbol. For non-relativistic cases the
Liouville operator simplifies to a total derivative

L = d

dt
=
(
∂

∂t
+ dxµ

dt

∂

∂xµ
+ dpν

dt

∂

∂pν

)
. (5.12)

By integrating 5.10 over the three momentum an equation for the number
density time evolution is obtained as[38]

dn

dt
= Ĉ(f(t, E))− 3Hn (5.13)

for the Hubble parameter H = ȧ(t)/a(t) that describes the expansion rate. The
collision part Ĉ(f(t, E)) is now integrated, as denoted by the hat. If the collision
operator is zero then the number density is n(t) ∝ a−3, which is expected. For
a general collision process a + b...i → α + β...ω the relevant part of the collision
operator is given by
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Ĉi =−
∫ gad

3pa
(2π)32Ea

gbd
3pb

(2π)32Eb
...

gαd
3pα

(2π)32Eα
gβd

3pβ
(2π)32Eβ

...(2π)4δ4(pa + pb...− pα − pβ...)

(5.14)
S
(
|Ma+b...→α+β...|2fafb...fi(1± fα)(1± fβ)...(1± fω) (5.15)

−|Mα+β...→a+b...|2fαfβ...fω(1± fa)...(1± fi)
)
. (5.16)

for the internal degrees of freedom g, the symmetry factor S and the squared matrix
element |Mi+j...→δ+∆...|2. In the equation above the plus(minus) sign corresponds to
bosons(fermions). The symmetry factor takes into account exchanges of identical
particles. Now assuming Charge conjugation - Parity (CP) is conserved we can
simplify the two latter lines, eq.5.15 and 5.16. This leads to the two processes matrix
elements are approximately equal, we can therefore denote both matrix elements as
|M|2. We also assume that the particle density for the final states are low meaning
f(t, E) � 1, simplifying f(t, E) ± 1 ≈ ±1. With these assumptions the collision
term is shortened to

Ĉi =−
∫ gad

3pa
(2π)32Ea

gbd
3pb

(2π)32Eb
...

gαd
3pα

(2π)32Eα
gβd

3pβ
(2π)32Eβ

... (5.17)

(2π)4δ4(pa + pb...− pα − pβ...)S|Ma+b..→α+β...|2 (fafb...fi − fαfβ...fω) . (5.18)
To obtain the final result for the number density time evolution in an expanding

universe we look at a specific process, in this case the collision SDM + SDM →
f + f̂ . The symmetry factor is S = 1 since we lose two DM particles which is
compensated by two identical particles in the initial state. The temperature range
we are interested in is T � mf and T . mDM . In this region the fermions and bosons
distributions can be described by Boltzmann distribution factors e−m/T instead of
their respective distribution functions (e−m/T ± 1)−1.

We can describe the dark matter distribution function with Boltzmann factors,
and we can also assume the fermions f, f̄ are in thermodynamic equilibrium. This
combined with the conservation of momentum gives

f1,eqf2,eq = e−(E1+E2)/T = ff̄ff = e−(Ef̄ +Ef )/T , (5.19)
where the distributions f1,eq and f2,eq are the dark matter distribution functions
if they were in thermal equilibrium. Taking this result and accounting for the
symmetry factor we write the collision operator as

Ĉi =−
∫ g1d

3p1

(2π)32E1

g2d
3p2

(2π)32E2
(fDM,1fDM,2 − f1,eqf2,eq) (5.20)(∫ gad

3pa
(2π)32Ea

gbd
3pb

(2π)32Eb
(2π)δ4(

∑
i

pi)|M1+2→3+4|2
)
. (5.21)

The second part 5.21 is the expression for the cross section. Simplifying the collision
term we get

Ĉi = −
∫ g1d

3p1

(2π)32E1

g2d
3p2

(2π)32E2
(fDM,1fDM,2 − f1,eqf2,eq)2E12E2(σ1+2→3+4). (5.22)
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Next we need to separate the time dependence and energy dependence in the distri-
bution functions. Full thermodynamic equilibrium involves both chemical equilib-
rium and kinetic equilibrium. Chemical equilibrium means that the number density
matches that of the equilibrium value. Kinetic equilibrium on the other hand means
that the distribution has the same energy dependence as the equilibrium value. We
therefore separate the distribution function into two independent parts,

f(t, E, µ) = g(t, µ)heq(E). (5.23)

Defining the thermal average of an operator Oi,j as

〈Oi,j〉 =
∫ 1
n2
eq

gid
3pi

(2π)3
gjd

3pj
(2π)3 fi,eqf2,eqOi,j (5.24)

and denoting

vij =
(

(pipj)2 −m2
im

2
j

(p2
i +m2

i )(p2
j +m2

j)

) 1
2

(5.25)

lets us write the collision operator in a compact form

Ĉi = −(n2
DM − n2

eq)〈σ1+2⇒3+4v〉. (5.26)

Using this result we can write the time evolution of the number density

dnDM
dt

+ 3HnDM t+ (n2
DM − n2

eq)〈σ1+2⇒3+4〉 = 0 (5.27)

which is the Lee-Weinberg equation that governs the freeze out process. In early
stages, when the temperature is high T � mSDM

the collision term dominates. In
this early era the number density will follow the equilibrium value. As the universe
cools the collision term becomes less important as it becomes suppressed by the
Boltzmann factors. The number density will follow the equilibrium value in the
beginning but as the number density becomes increasingly suppressed the Hubble
term takes over. Physically this means that the average time for a collision is of the
order of the Hubble time.

In 5.1 this process is visualized as the blue lines. As the universe expands
the temperature decreases and as the temperature goes below the mass of the dark
matter particle the annihilation continue for a short while, resulting in the number
density following the thermal equilibrium value. However in this era the collision
term becomes increasingly suppressed by the Boltzmann factors until the dominant
term in the time evolution of the number density is the Hubble term. The thermal
equilibrium corresponds to the red lines that continue to decrease even after the
dark matter has leveled off.
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Figure 5.1: Thematic plot of the Freeze-out process [39]. On the y-axis is the number density
times the expansion parameter cubed na3 and on the x-axis the temperature. In blue is the number
density for dark matter experiencing freeze-out. In red is shown the number density for a species
in thermal equilibrium.

5.3 Relevant processes
In this section we briefly consider some processes for the dark matter annihilations.
The relevant part in the annihilation processes are the dark matter-visible sector
interactions. Since our dark matter candidate does not couple directly to the visible
sector all interactions are mediated by the CP-even scalars h1 and h2. The CP-even
scalars then couple to the matter sector as outlined in 3. Some of the contributing
processes to the DM-singlet annihilation are shown in fig.5.2.

The amplitudes for the scalar annihilations can be calculated using the Feyn-
man rules and the relevant parts for some of them are

As−channel ∝
viZ

H
1iλ

DM
i λhihihj

(s−m2
hi

) + iΓimhi

(5.28)

At−channel ∝
λDMk λDMl
t−m2

SDM

(5.29)

Au−channel ∝
λDMm λDMn
u−m2

SDM

(5.30)

(5.31)

and the couplings λDMi are given by

λDM1 =
m2
h1

2vs
sin θ (5.32)

λDM2 =−
m2
h2

2vs
cos θ. (5.33)
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The trilinear couplings λhihihj
are given by the expressions 3.5 and 3.6. The ZH

kl are
elements of the rotation matrix ZH and vi is the VEV of the particle corresponding
with which particle is represented twice in the coupling λhihihj

in accordance with
our parametrization of the trilinear couplings.
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Figure 5.2: Some of the contributing Feynman diagrams to the processes SDMSDM →
hihi/f̄f/V V

From the amplitudes the matrix element squared for the annihilation process
can be calculated. Since the entire expression is lengthy we will only consider select
processes here. We need to take into account that we have three different outcomes,
the DM particles can annihilate to h1 + h1,h2 + h2 or a combination of both h1 and
h2. Neglecting to write every term separately we compactify by denoting the matrix
element as

|MS2
DM→scalars|

2 ∝
∑
i,j

v2
i (ZH

1i )2 (λDMi )2λ2
hihi,hj

(s−m2
i )2 + Γ2

im
2
i

(5.34)

but it should be understood that interference terms between the different scalars
are not necessarily proportional to the same couplings and rotation matrix elements
squared, i.e terms like ∼ sin θ cos θ arise as well. The cross section is easy to calculate
since we have no spacial angular dependence in the matrix element. The cross section



26

is then proportional to

σs−channel ∝
p∗f

16πsp∗i
∑
i,j

v2
i (ZH

1i )2

C2
i,i,j

(λDMi )2λ2
hihi,hj

(s−m2
i )2 + Γ2

im
2
i

(5.35)

In the center of mass (CM) frame the 3-momenta of the dark matter particle can
be rewritten using the triangle function

p∗ = 1
2
√
s

√
λ(s,mi,mj) (5.36)

λ(s,mi,mj) = [s− (mi −mj)2][s− (mi +mj)2] = 1
2
√
s−m2

SDM
(5.37)

since they have identical mass. For the final state particles the 3-momentum is given
by

p∗ = 1
2
√
s

√
[s− (mi −mj)2][s− (mi +mj)2]. (5.38)

In 5.35 we see that for off shell mediators the propagator has the form 1/(s−m2
i ), but

as we approach the resonance the additional term in the propagator m2
iΓi becomes

significant. This resonance is referred to as the Breit-Wigner resonance where the
cross section peaks sharply at the CM energy of the mediator particle.

The examples given in this section are only to illuminate some of the processes
and their properties. The derivation of the complete annihilation cross section for
the dark matter particle SDM is beyond the scope of this thesis. To calculate the
relic densities we will use computer packages that automate this process giving us
opportunity to explore a wide variety of parameters.

5.4 Dark matter calculations and results
To confirm that the complex singlet extension can produce the required dark matter
relic density we analyze the model with SPheno[6] and micrOmegas[7]. The model
Lagrangian is first implemented in SARAH[5][40] which calculates loops and vertices.
The output is then exported from SARAH to the SPheno-package. Using SPheno
we can calculate particle spectrums and the masses in the scalar sector. With the
spectrum file we can then calculate the relic density using micrOmegas.

We assume that the U(1) symmetry is gauged in the UV regime, i.e the the-
ory considered is an effective field theory of a underlying local U(1) symmetric
theory with a corresponding heavy gauge boson. This assumption is necessary to
avoid the cosmological domain wall problem from the singlet VEV breaking the Z2
symmetry[41].

We are not interested in a specific parameter combination but a range of values.
It is therefore necessary to automate the scanning process which in our case was done
with fortran code. The fortran code takes as input one or more parameter ranges
and randomizes input values for the model in that range. These values are then
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written to a LesHouches file that is then used as input when we compile SPheno.
The SPheno output is exported to micrOmegas which is compiled using the values
to obtain the relic density the parameter values would predict. Using this method
a wide range of parameter values and combinations can be explored.

The output data is written to a file containing couplings, masses and dark
matter relic density. This file is then analyzed using Python code. In the Python
code the values are looped over to create plots in 2-D. For two of the scans we display
the entire behavior Ωh2 ∈ [0, 1] since they have more structure, but in general we
only show the regions where Ωh2 = 0.120 ± 0.001 since those parameter region are
of interest since they comply with the PLANCK results [34]. We refer to this value
for Ωh2 as the correct relic density. The relic density for the full scans are shown
as a copper color gradient in the range Ωh2 ∈ [0, 1] for visualizing patterns in the
parameter space. In appendix A.4 the extended parameter ranges are shown and
are in general over a wider range of parameter values than the correct density plots
shown in this chapter. The plots containing relic densities Ωh2 = 0.120± 0.001 are
shown using points in the parameter space. Plotting the relic density as a function
of two parameters gives a better overview of how the relic density depends on input
parameters. The h1 mass has been kept fixed at mh1 ≈ 125GeV and the quartic
coupling has not been varied. The white regions in the right plots of 5.4 and 5.5
corresponds to parameter combinations that are not allowed and in general produce
negative m2

h2 , or violate the λ1λS > λ2
SH condition.

Varied Range 1 Range 2
λSH ,mSDM

λSH ∈ [0, 0.3] mSDM
∈ [0, 50]GeV

λSH , λS λSH ∈ [0, 0.06] λS ∈ [0, 0.3]
λS, vs λS ∈ [0, 1] vs ∈]0, 1500]GeV

mSDM
, vs mSDM

∈ [0, 1500]GeV vs ∈ [0, 2500]GeV
λSH , vs λSH ∈ [0, 0.1] mSDM

∈ [0, 1500]GeV
λS,mSDM

λS ∈ [0, 0.3] mSDM
∈ [0, 250]GeV

Figure 5.3: Left: Parameter combinations of λSH ∈ [0, 0.3] and mSDM
∈ [0, 50]GeV resulting in

correct relic density, Ωh2 = 0.120 ± 0.001. Right: the parameter combinations λS ∈ [0, 0.3] and
λSH ∈ [0, 0.06] that give the correct relic density.

In the first parameter scan, in the left of fig.5.3, for the case when the DM is
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light O(10GeV) the relic density is within experimental bounds. When we vary both
couplings λS and λSH we first note that for some values we we violate the condition
λSλ1 > λ2

SH . This is visualized with the white area to the left of the left graph A.2
bordering a sharp edge. This tells us that the parameter points beyond the edge are
not calculated due to SPheno aborting the calculation because of a negative mass
squared. When we then look at the correct relic density we see that the allowed
region is a sector λ2

SH + λ2
S ∼ constant. Also the preferred region is for low values

of the coupling λSH .

Figure 5.4: Left: The relic density as a function of λS ∈ [0, 1] and vs ∈]0, 1500]GeV. The white
regions corresponds to unphysical mass for the h2 scalar or violate the condition λ1λS > λ2

SH .
Right: The parameter combinations of λS and vs that give the correct relic density.

Figure 5.5: Left: Relic density variations under changes of mSDM
∈ [0, 1500GeV] and vs ∈

[500, 2500]GeV. The white regions have a unphysical mass for the h2 scalar or violate the condition
λ1λS > λ2

SH . Right: The points where the parameters give the correct relic density. The favoured
region is close to the origin.

The next two scans scans have more interesting structure than the two previous
ones. In the left figure of 5.4 we show relic densities in the interval Ωh2 ∈ [0, 1]. The
white region in the left plot of 5.4 is a disallowed area where we have unphysical
masses for the scalar h2. The correct relic densities in the right plot of 5.4 does have
a higher success rate near low vs and λS, but some acceptable areas in higher VEV
areas. The few successful parameter combinations in high VEV regions to the right
are probably more abundant than the plot would entail. The scarce points are likely
from a very narrow allowed region and since we are randomizing the parameters the
probability of a hit in the narrow region is low.
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The mDM -vs scan in fig.5.5 shows similar behavior as A.2 only in the opposite
direction. Near the origin we find an acceptable region but we quickly overproduce
dark matter as the parameters increase. This is expected since everything else being
kept constant if the dark matter mass is larger the freeze-out occurs earlier since we
reach the temperature T ∼ mSDM

faster.

Figure 5.6: Left: Variations of λSH ∈ [0, 0.1] and vs ∈ [0, 1300]GeV giving the correct relic
density. Right: The correct relic for variations of λS ∈ [0, 0.3] and mSDM

∈ [50, 250]GeV.

Varying λSH and vs does allow for a wide range of relic densities. The form
of the left plot in 5.6 is not easily explained by elementary functions, but it does
have a wide range of allowed regions as illustrated by the wider range scan shown in
fig.A.5 of the appendix. At higher singlet VEVs the λSH-vs dependence seems to be
λSH

vs
∼ constant. This is very similar to the behavior of the right plot in 5.6 where

the relationship appears to be linear, mSDM

λS
∼ constant. This is also supported by

the left side plot of A.6 which has a uniform gradient.
Further scans of the DM relic density can be found in [41]. These results require

the DM relic density to be Ωh2 = 0.1197±0.0022. The h1 mass is set to 125GeV and
the mixing angle is set to sin θ = 0.1. In the left plot of 5.7 the second scalar mass is
set to 300GeV. In the right plot the second scalar mass is 1TeV. The purple area is
not allowed due to the Higgs decay to invisible constraint Br(h1 → invisible) ≤ 0.11
at a 95% confidence level. The grey area is the unitarity limit where perturbation
calculations break down. The dips correspond to the resonant annihilations mh1/2
and mh2/2.
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Figure 5.7: The parameter regions that give the correct relic density (red band). Left: mh2 =
300GeV. Right: mh2 = 1TeV

The main annihilation channels are

Mass range of the DM Main annihilation channels
mSDM

≤ mW SDMSDM → b̂b; ĉc
mW ≤ mSDM

≤ mh2 SDMSDM → WW ;ZZ;h1h1
mh2 ≤ mSDM

SDMSDM → h2h2

In [41] the authors concluded that at tree level the direct detection cross section is
suppressed as also discussed in 3. At loop order this cancellation is obviously spoiled
but the effect is suppressed. By setting the loop functions to one one can estimate
the dark matter-nucleon cross section

σSDMN ∼
sin2 θ

64π5
m4
Nm

8
h2f

2
N

v2v6
sm

4
h1m

2
SDM

(5.39)

with the nucleon mass mN and fN ≈ 0.3 parametrizes the h1-nucleon coupling. The
cross section is σ ∼ 10−49cm2 for sin θ = 0.1 and mh2 = 300GeV. The DM mass is
mSDM

∼ 1TeV. The most stringent XENON1T constraint is σmin ≈ 10−46cm2[42]
which is still orders of magnitude larger than the cross section in 5.39. In the limit
mSDM

→ 0 the broken U(1) symmetry is restored, and the loop corrections vanish.
This has the consequence that for light dark matter the cross section is suppressed
by m4

SDM
/m4

h2 .

5.5 Summary of pseudo-Goldstone dark matter
One of the main arguments for the complex singlet model is to account for dark
matter. With a softly broken U(1) symmetry we can give mass to the CP-odd part
of the singlet which then becomes a promising dark matter candidate. The broken
symmetry needs to be gauged at some energy level to avoid cosmological domain
walls.

The relic density is governed by the Boltzmann equation relating the number
density of a particle to the expansion of the universe. This equation has been
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implemented in computer packages to calculate dark matter relic densities. Using a
combination of computer packages the evaluation of a wide range of parameters of
the model was performed to give a glimpse of how dark matter relic density reacts
to variations of different parameter combinations.

Using fortran and Python code a wide range of parameters have been ex-
plored and plotted to aid in the search for an optimal parameter range satisfying all
constraints. The complex singlet has plenty of parameter regions satisfying the con-
straints on dark matter relic density set by PLANCK. Further the direct detection
cross section of the dark matter particle scattering on nuclei σSDMN ∼ O(10−49cm2)
is orders of magnitude smaller than even the most stringent XENON1T bounds of
σ ∼ O(10−42cm2) for light DM. The direct detection cross section is suppressed by
a cancellation in the amplitude for small exchanged momenta.



6. EW vacuum stability

Before the discovery of the Higgs the stability of the electroweak vacuum was an
open question[43]. This is because the loop corrections to the quartic coupling
in the Higgs potential are negative for high energies. This would imply that the
vacuum of the Higgs potential has a second (or multiple, depending on beyond the
standard model physics) lower energy minimum. This scenario would be considered
the metastable case, where the current vacuum is long lived but not stable. The
instability depends on the Higgs mass, the top mass (primarily) and the strong
coupling[44].

The couplings in quantum field theories run with energy scale. In the Higgs
case the coupling gets corrections from all quarks due to the Yukawa coupling. The
biggest correction comes from loops involving the top quark, due to its high mass
mt ∼ 172GeV[45].
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Figure 6.1: Left: The running of couplings in the SM at NNLO. Right: The Higgs quartic
coupling dependence on the top mass. G. Degrassi et al.

The right figure of 6.1 shows that the Higgs quartic coupling turns negative at
E ∼ 1011GeV. This would imply the electroweak vacuum is metastable. Whether
it actually is metastable or stabilized by some undiscovered particle is still an open
question. In the left plot of 6.1 the running of Standard Model couplings is shown.

In this chapter we will discuss the necessary formalism to solve renormalization
group equations, that govern the couplings energy dependence. We will then use this
methodology to calculate the contributions to the SM like Higgs quartic coupling
using SARAH in order to see if the singlet extension can stabilize the electroweak
potential up to Planck scale.

32
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6.1 Renormalization group flow
Any quantum field theory process is a sum of infinitely many terms in the per-
turbation theory. Some of the terms involve internal loops that diverge at high
energies/small distances. These divergences need to be cancelled since they would
lead to unphysical predictions. Take for example one of the photon propagator loop
corrections which has a

∝
∫
d4k

1
k2 −m2

f

(6.1)

term at one loop order. This term corresponds to the rightmost Feynman diagram
in 6.2, and diverges as ∼ k2 at large momentum.

�
=

�
+

�
etc...

Figure 6.2: The schematic expansion of the photon propagator.

To avoid these UV-divergences, counterterms need to be introduced to cancel
the divergent parts. This process is known as the renormalization of a theory[46].
The renormalization procedure involves introducing a finite number of counterterms
to cancel all divergences.

Evidently if we integrate 6.1 up to some cutoff Λ the theory is finite but depends
on the cutoff. Calculating diagrams using the bare mass m0 and the bare coupling
λ0 and using the cutoff Λ makes the theory cutoff dependent. In the calculations of
matrix elements one also takes into account how the field strength scales with the
cutoff. One can then combine all these expressions to eliminate the bare quantities
to make the amplitude finite even if the cutoff limit Λ → ∞[47]. This process is
the renormalization procedure. By rewriting the bare quantities m0 and λ0 into the
cutoff dependent parameters m(Λ) and λ(Λ) the matrix element is finite at all cutoff
scales.

Now we need to introduce mathematical rigour to this process. We will fol-
low closely the derivation in Peskin & Schroeder, "An Introduction to Quantum
Field Theory"[47]. Consider a generic real φ4-theory in Euclidean space with the
Lagrangian

L = 1
2(∂µφ)(∂µφ) + 1

2m
2φ2 + λ

4!φ
4 (6.2)

The generating functional (without external sources) is then

Z =
∫ ∏

k

dφ(k) exp
[
−
∫
ddx

(
1
2(∂µφ)(∂µφ) + 1

2m
2φ2 + λ

4!φ
4
)]

(6.3)
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Next we separate the integration degrees of freedom in two groups. Take a fraction
b ∈ [0, 1] of some high momentum Λ, i.e bΛ. Then we call momentum in the range
bΛ ≤ |k| < Λ the high momentum degrees of freedom that we relabel to

φ̂(k) =
φ(k) when bΛ ≤ |k| < Λ;

0 otherwise.
(6.4)

We also define

φ(k) =
φ(k) when |k| < bΛ;

0 otherwise.
(6.5)

i.e φ(k) is identical to the old one for |k| < bΛ. Rewriting then the generating
functional using these redefinitions to

Z =
∫ ∏

k

dφ(k)
∫ ∏

k

dφ̂(k)exp
[
−
∫
ddx

(1
2(∂µφ+ ∂µφ̂)2 (6.6)

+1
2m

2(φ+ φ̂)2 + λ

4!(φ+ φ̂)4
)]

(6.7)

and now we need to open up the parenthesis. Fourier components of different wave-
lengths are orthogonal so any combination ∼ φφ̂ is zero. The generating functional
is then of the form

Z =
∫
Dφ(k)exp

[
−
∫
ddx

(
1
2∂µφ∂

µφ+ 1
2m

2φ2 + λ

4!φ
4
)]

(6.8)∫
Dφ̂(k)exp

[
−
∫
ddx

(1
2(∂µφ̂)2 + 1

2m
2φ̂2 + λ

[1
6φ

3φ̂+ 1
4φ

2φ̂2 + 1
6φφ̂

3 + 1
4! φ̂

4
])]
(6.9)

and we can shorten the first Lagrangian to just L0(φ) for convenience. Next we
treat everything apart from the derivative term as a perturbation. This includes the
mass term since we assume Λ2 � m2. The space-time integral can be rewritten in
terms of Fourier coefficients∫

ddx
1
2(∂µφ)2 =

∑
n

1
2V k

2
nφ
∗(kn)φ(kn). (6.10)

where V is the integration volume. Taking the functional derivative of the generating
functional gives the correlation functions. For the two point function the expression
is

φ(p)φ(k) = 1
Z0

(
−i δ

δJ(p)

)(
−i δ

δJ(k)

)
Z[0]

∣∣∣∣∣
J=0

(6.11)

and in our case Z0 = Z[J ] since J = 0. This leads to the expression for the two
point correlator for eq.6.9 which is given by

φ̂(p)φ̂(k) =
∫
Dφ̂e−

∫
L0φ̂(k)φ̂(p)∫

Dφ̂e−
∫
L0

= 1
k2 (2π)dδd(k + p)Θ(k) (6.12)
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with the step function Θ(k) defined by

Θ(k) =
1 when bΛ ≤ k ≤ Λ;

0 otherwise
(6.13)

Turning now to the perturbations. All the perturbations (i.e the rest of the
terms in 6.9) can be evaluated using Wick’s theorem[47][48]. We can take the φ2φ̂2

as an example. The result is

−
∫
ddx

λ

4φ
2φ̂φ̂ = −1

2

∫ ddk1

2π)d
λ

2

∫ Λ

bΛ≤k≤Λ

ddk

(2π)d
1
k2φ(k1)φ(−k1) (6.14)

since the propagator is 6.12. The second integral can be evaluated to
∫ Λ

bΛ≤k≤Λ

ddk

(2π)d
1
k2 = λ

(4π) d
2 Γ
(
d
2

) 1− bd−2

d− 2 Λd−2 (6.15)

We can translate 6.14 to a diagrammatic representation. In this representation φ̂2

corresponds to internal lines and φ2 to external lines. Then 6.14 corresponds to 6.3

�
Figure 6.3: The φ̂2φ2-term schematic representation

which does look like a loop correction to the mass term. At λ2 order we have
two contributing diagrams

�)2( +

�
Figure 6.4: The two contributions at λ2-order.

The first loop in 6.4 is a disconnected diagram that gives the O(λ2) term to
the perturbation. The second term is a new term that can be calculated to

= 1
4!

∫
ddx 4! 2

2!

(
λ

4

)2 ∫
bΛ≤k≤Λ

ddk

(2π)d
1

(k2)2φ
4 (6.16)
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and again we can evaluate the momentum integral obtaining the result

= 1
4!

∫
ddx

3λ2

(4π) d
2 Γ
(
d
2

) (1− bd−4)
d− 4 Λd−4 (6.17)

for any dimension d. In the limit d→ 4 6.17 reduces to

= 1
4!

∫
ddx

3λ2

16π2 log 1
b

(6.18)

which diverges as b → 0, i.e as we integrate over the whole momentum space. In
the expansion of 6.9 we also generate higher order φ terms than O(φ4). One such
example is the 3→ 3 annihilation term

�p1

p2

p3

Figure 6.5: The diagram of the 1, 2, 3→ a, b, c annihilation

which gives a contribution

∝ λ2

(p1 + p2 + p3)2 Θ(p1 + p2 + p3) (6.19)

for the incoming momenta pi. Summing all diagrams is equal to the exponent of the
sum of all connected diagrams[47]∑

(diagrams) = e
∑

(connected diagrams). (6.20)

With this the effective Lagrangian Leff is finally

Leff = 1
2∂µφ∂

µφ+ 1
2m

2φ2 1
4!λφ

4 + sum of all connected diagrams (6.21)

that we will use to understand renormalization and renormalization group flows.
We also introduce corrections from diagrams as ∆O for the terms in the Lagrangian
giving

Leff =
∫
ddx

(1
2(1 + ∆Z)(∂µφ∂µφ) + 1

2(m2 + ∆m2)φ2 + 1
4!(λ+ ∆λ)φ4 (6.22)

∆C(∂µφ∂µφ)2 + ∆Dφ6 + etc . . .
)
. (6.23)

Next we rescale distances and momentum as

k
′ = k

b
(6.24)

x
′ = xb (6.25)
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which means that the momentum k
′ is integrated over when k′

< Λ. Recalculating
Leff with the rescaled coordinates and momenta gives

Leff =
∫
ddx′ b−d

(1
2(1 + ∆Z)b2(∂′

µφ∂
µ′
φ) + 1

2(m2 + ∆m2)φ2 + 1
4!(λ+ ∆λ)φ4

(6.26)
b4∆C(∂′

µφ∂
µ′
φ)2 + ∆Dφ6 + etc . . .

)
, (6.27)

assuming b is not position dependent. From 6.9 and 6.12 we can see that we get the
same propagator if we rescale the field as

φ′ =
√
b2−d(1 + ∆Z) φ (6.28)

This transforms the effective Lagrangian to

Leff =
∫
ddx′

(1
2(∂′µφ′∂′

µ
φ′) + 1

2m
′2φ′

2 + 1
4!λ

′φ′
4 (6.29)

C ′(∂′µφ′∂′
µ
φ′)2 +D′φ′

6 + etc . . .
)
. (6.30)

with the new masses and couplings

m′
2 = (m2 + ∆m2)(1 + ∆Z)−1b−2 (6.31)
λ′ = (λ+ ∆λ)(1 + ∆Z)−2bd−4 (6.32)
C ′ = (C + ∆C)(1 + ∆Z)−2bd (6.33)
D′ = (D + ∆D)(1 + ∆Z)−3b2d−6 (6.34)

In the limit when b ∼ 1 the shells of momentum space tend to 0 making
the transformation above continuous. In the continuous limit this procedure of
rescaling and integrating out high momentum degrees of freedom can be described
as a flow in the space of possible Lagrangians. This flow is called the renormalization
group. Take the shifted parameters in 6.31 - 6.34 and consider them close to the
stationary point of

Leff = 1
2∂µφ∂

µφ (6.35)

when all perturbations in 6.8 and 6.9 are zero. The shift in 6.31 - 6.34 to leading
order is then

m′
2 ' m2b−2, λ′ ' λbd−4, C ′ ' Cbd, D′ ' Db2d−6 (6.36)

showing the scaling of the parameters close to the point we defined as stationary by
6.28 and 6.29
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6.2 Callan-Symanzik Equation and RGE
From the generating functional in the previous section we now focus on the prop-
agator. We defined the propagator for a massless φ4-theory in 6.12 when k2 = 0.
Now we consider the propagator at some arbitrary scale k2 = −M2. This means
that instead of the propagator having a coefficient of 1 at k2 = 0 it instead occurs
at some arbitrary momentum k2 = −M2. In diagram form this is

�
=)(

k
1PId2

dk2

�k
1PI = 0 when k2 = −M2

Figure 6.6: The renormalization level matching condition k2 = −M2 for the pole (left) and
propagator (right)

�
k1

k2

k3

k4

= −iλ
at (k1 + k2)2 = (k3 + k4)2 = −M2

Figure 6.7: The renormalization level matching condition for the quartic coupling when k2 =
−M2 in the massless φ4-theory.

defining our renormalized field at the scale k2 = −M2. This renormalized field
is related to the bare field 1 by the scale factor Z;

φ = Z−
1
2φ0 (6.37)

meaning in terms of bare fields φ0, the renormalized propagator is

〈Ω|φ0(k)φ0(−k) |Ω〉 = iZ

k2 , at k
2 = −M2. (6.38)

The counterterms that need to be introduced to maintain physical observables are
related to the field rescaling Z as

δZ = Z − 1 (6.39)

but the counterterms now need to be readjusted to comply with the new conditions
6.6 and 6.7. The n-point Greens functions in a renormalized theory is

Gn(x1, x2, ...xn) = 〈Ω| T φ(x1)φ(x2)...φ(xn) |Ω〉connected (6.40)

where T is the time ordering operator. If we now shift the renormalization scale by
a small amount δM we demand that the bare field Greens functions are invariant

1The bare field is the original field written in terms of bare couplings and masses, i.e before
renormalization
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since the bare Greens functions have no M -dependence. This shift in scale induces
shifts in all parameters of the theory

M →M + δM (6.41)
λ→ λ+ δλ (6.42)

φ = Zφ0 → Z ′φ = (1 + δη)φ (6.43)

and then the renormalized Greens functions shifts as

Gn → (1 + nδη)Gn. (6.44)

This transformation can then be written as
dGn

dM
= ∂Gn

∂M
δM + ∂Gn

∂λ
δλ = nδηGn. (6.45)

If we consider the n-point Greens function as a function of M and δ. Making the
substitutions

β ≡ M

δM
δλ, γ ≡ − M

δM
δη (6.46)

we write 6.45 in the form[
M

∂

∂M
+ β

∂

∂λ
+ nγ

]
Gn(x1, x2, ...xn) (6.47)

and since the Greens function is the renormalized Greens function, β and γ cannot
depend onM and they can only be functions of λ. This means that for our massless
φ4 theory the renormalized Greens function must satisfy[

M
∂

∂M
+ β(λ) ∂

∂λ
+ nγ(λ)

]
Gn(x1, x2, ...xn) = 0 (6.48)

which is the Callan-Symanzik equation for massless φ4-theory that tells us there are
two functions β and γ that compensate any shift in renormalization scale.

6.3 Complex singlet β-functions
The Callan-Symanzik equation tells us how the coupling and the field itself scales
under shifts of renormalization scale. The γ(λ) function is called the anomalous
dimension and relates renormalization scale to the field scaling. The β-function
tells us how the couplings scale with changes in renormalization scale.

From these β-functions one can solve the couplings dependence on energy scale,
the so called running of the coupling that we referred to in the beginning of this
chapter and is plotted to the left of 6.1. Take for example the one-loop β function
of a massless φ4-theory

Lφ4 = 1
2∂µφ∂

µφ− 1
2m

2
0φ

2 − 1
4!λ0φ

4. (6.49)
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with the β-function given by

β(λ) = 3λ2

16π2 +O(λ3) (6.50)

From the definition of the β-function[49],

β(λ̄) ≡ d

d log
(
k
M

) λ̄(k, λ) (6.51)

we can solve the running coupling λ̄ as a function of energy scale

λ̄(k) = λ0

1− 3λ0
16π2 log k

M

(6.52)

with the bare coupling given by λ0. Clearly when p = M the running coupling is
given by λ̄ = λ0 i.e the scale where we defined our renormalized theory. The β
functions therefore describe the rate of renormalization group flow of the couplings.

The β-functions for the complex singlet extension are calculated with SARAH[5].
This is done by implementing the complex extension in a model.m-file. The poten-
tial is given by 2.4. The calculations of the β-functions in SARAH are done by the
command CalcRGEs[]. The result is then written to a LATEX-file and also saved
separately in Mathematica. The β-functions as calculated by SARAH are displayed
in their entirety in the appendix A.3. The Higgs quartic coupling λ1 one loop β
function is calculated to

βλ1 =− 9
5g

2
1λ1 − 9g2

2λ1 + 12λ2
1 + 2λ2

SH + 12λ1Tr|Yd|2 + 4λ1Tr|Ye|2 (6.53)

+ 12λ1Tr|Yu|2 − 12Tr|Yd|4 − 4Tr|Ye|4 − 12Tr|Yu|4 (6.54)

in the complex singlet extension. The traces are over the Standard Model like
Yukawa coupling matrices. The additional term 2λ2

SH can then be used to lift the
electroweak vacuum to be completely stable. SARAH is capable of calculating β-
functions to two loop level. We can then use the two loop β-functions to see if
the λSH-coupling can stabilize the electroweak vacuum at Next-to-Next-to-Leading
order (NNLO). The additional terms in the two loop β-functions, when compared
to the Standard Model, are

β ∼ −10λ1λ
2
SH ± 8λ3

SH (6.55)

the signs corresponding to the sign of the portal coupling in the potential 2.4. Solving
and plotting the running of the couplings can be done in Mathematica. The initial
values are λ1 = 0.27, g′(mt) = 0.35 =

√
3/5 g1, g(mt) = 0.64 = g2 and gs(mt) =

1.16 = g3. The top-Yukawa is taken to be Yt = 0.93[50] at the top mass. We ignore
the rest of the quarks and leptons since their contribution is negligible.

We see in 6.8 that it is possible to have a positive-definite quartic coupling
λ1 even up to the Planck scale mP = 2.4 × 1018GeV, with both positive (left) and
negative (right) sign of λSH . At high couplings λSH & 0.26 the perturbativity puts
the constraints due to the positive contribution of λSH in both βλSH

and βλS
[11].



41

5 10 15 20

0.00

0.05

0.10

0.15

0.20

0.25

log [ Q / GeV ]

L
a
m

b
d

a
1

5 10 15 20

0.00

0.05

0.10

0.15

0.20

0.25

log [ Q / GeV ]

L
a
m

b
d

a
1

Figure 6.8: The running of the Higgs quartic coupling with positive sign (left) and negative
(right) of λSH , the portal coupling has the value λSH = 0.22 and λSH = 0.27 respectively.

6.4 Summary
One of the main motivations for the complex singlet extension was the prospect of
stabilizing the electroweak vacuum with minimal additions to the Standard model.
This effect is competing with dark matter production since both depend on the λSH
coupling, albeit in different ways. The electroweak vacuum stability favors a larger
coupling and therefore puts constraints on the other Lagrangian parameters if the
correct relic density is to be produced.

By solving the expression for the coupling in 3.3 we can put a limit on the
scalar mass difference mass and the VEV vs. If we use the conservative limit of
sin θ = 0.15 the limit is given by

1
vs

(m2
h2 −m

2
h1) > 432GeV (6.56)

and assuming m2
h1/vs � m2

h2/vs the limit simplifies to

m2
h2

vs
& 432GeV. (6.57)

We see in 6.57 that the conservative limit on the mixing angle θ is justified since
this requires the h2 mass to be of order of magnitude greater than its VEV.



7. Conclusions

We have studied the complex singlet scalar extension of the Standard model in a
softly broken U(1) symmetric model. The two CP-even states mix to form mass
eigenstates. The resulting massive pseudo-Goldstone boson in the model is a viable
dark matter candidate. We have explored direct and indirect detection prospects of
the dark matter candidate, and the possible collider signatures of the model.

The models predictions were compared to particle physics experiments since
some measurements, especially in the electroweak sector, are very accurate and
constrain allowed parameter values. We also considered the searches for the Higgs
boson. These were Higgs coupling measurements and direct Higgs searches. In the
mass range 1GeV < mh2 < 450GeV, the direct Higgs boson searches and coupling
measurements were the limiting experiments variably constraining the mixing angle
to sin θ . 0.2− 0.4 depending on the h2 mass.

At high masses mh2 > 450GeV the electroweak measurements provide the
most stringent bounds. By introducing a second scalar that mixes with the Stan-
dard model like Higgs we have new loop contributions to gauge boson processes.
The predictions were compared to measured values to constrain the model further.
The limit on the mixing angle from EWPO was found to be sin θ ∼ 0.3, monoton-
ically decreasing as the h2 mass increases. We also calculated the Peskin-Takeuchi
parameters S and T in the limit mh1 � mh2 . We found that the mixing angle must
be | sin θ| < 0.15 for this heavy scalar to comply with measurements.

In the dark matter section of the thesis we derived the Boltzmann equation
in an expanding universe and then applied the equation in the computer pack-
age micrOmegas. By randomly generating parameter points while keeping every
other parameter fixed we showed how different parameter combinations influence
the relic density of SDM . The relic density varied greatly depending on the param-
eters chosen, and in general only small regions of parameters were acceptable if one
assumes the relic density of SDM must account for all dark matter observed today,
Ωh2 = 0.120± 0.001.

The parameter space of the model is further constrained by stability require-
ments of the electroweak vacuum. For this, we derived the β-functions for the
coupling parameters by generating functionals to obtain the Callan-Symanzik equa-
tion to study the running of the couplings. For the electroweak to be stable, one
requires for the Higgs quartic coupling λ1 to be positive definite. For this condition
to be satisfied up to the Planck scale, we showed that the portal coupling should
have a value of at least λSH ≈ 0.26 at the electroweak scale when λ1 and λSH have
the same sign. If the portal coupling and Higgs quartic coupling have a relative sign
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difference, the portal coupling at electroweak scale must be at least λSH = 0.28 to
have a stable vacuum, as our calculations show.

In conclusion, the complex singlet scalar extension of the Standard Model is an
economic framework which could explain some of the shortcomings of the Standard
Model. Among these are providing a viable dark matter candidate and stability
of the electroweak vacuum up to the Planck scale. Future collider experiments,
including the upgraded LHC, might result in better measurements of the Higgs
quartic coupling and the top quark mass. It is therefore motivated to make a more
robust analysis with updated constraints on the model in future.



A. Appendices

A.1 The Lagrangian
Below the Lagrangian is displayed as written in the SARAH implementation.

Vint =− 1
4µ
′2
SS

2 − 1
2µ

2|H0|2 − 1
2µ

2|H+|2 − 1
2M

2
S|S|2

− 1
2λ1|H0|4 − 1

2λ1|H+|4 − 1
2λS|S|

4 −H+λ1|H0|2H−

− λSH |S|2|H0|2 − λSH |S|2|H+|2 − 1
4µ
′2
SS
∗2

−H0d∗L,kγY
∗
d,jkδβγdR,jβ −H+u∗L,kγY

∗
d,jkδβγdR,jβ

−H0e∗L,kY
∗
e,jkeR,j −H+ν∗L,kY

∗
e,jkeR,j −H−d∗L,kγY ∗u,jkδβγuR,jβ

+H0,∗u∗L,kγY
∗
u,jkδβγuR,jβ −H0,∗d∗R,jβδβγdL,kγYd,jk

−H0,∗e∗R,jeL,kYe,jk −H−e∗R,jνL,kYe,jk −H+u∗R,jβδβγdL,kγYu,jk

−H−d∗R,jβδβγuL,kγYd,jk +H0u∗R,jβδβγuL,kγYu,jk (A.1)

A.2 The detailed derivation of the couplings
Starting from the mixing angle

tan 2θ = 2λSHvsv
λSv2

s − λ1v2 (A.2)

we can rewrite it to

λ1 = λS
v2
s

v2 −
2λSHvs
v tan 2θ (A.3)

which we can plug into the mass squared m2
h1 to obtain

m2
h1 = 1

2

(
λSv

2
s −

2λSHvsv
tan 2θ + λSv

2
s −

2λSHvsv
tan 2θ cos 2θ

)
(A.4)

= λSv
2
s − λSHvsv

(
1 + 1

cos 2θ

) 1
tan 2θ (A.5)

= λSv
2
s − λSHvsv cot θ (A.6)
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Similarly we get for m2
h2

m2
h2 = 1

2

(
λSv

2
s −

2λSHvsv
tan 2θ + λSv

2
s + 2λSHvsv

tan 2θ cos 2θ

)
(A.7)

= λSv
2
s − λSHvsv

(
1− 1

cos 2θ

) 1
tan 2θ (A.8)

= λSv
2
s + λSHvsv tan θ (A.9)

With the masses we can rewrite λSH . Taking m2
h1 −m

2
h2

m2
h2 −m

2
h1 =λSHvsv(tan θ + cot θ) (A.10)

=2λSHvsv csc 2θ (A.11)

and simplifying

λSH =
m2
h2 −m

2
h1

2vsv csc 2θ (A.12)

=
m2
h2 −m

2
h1

2vsv
sin 2θ. (A.13)

We can now use this result to calculate λS. Starting from m2
h2

m2
h2 = λSv

2
s +

(
m2
h2 −m

2
h1

2vsv

)
sin 2θ tan θvsv (A.14)

= λSv
2
s +m2

h2 sin2 θ −m2
h1 sin2 θ (A.15)

which is equivalent to

λSv
2
s = m2

h2 −m
2
h2 sin2 θ +m2

h1 sin2 θ (A.16)
= m2

h2 cos2 θ +m2
h1 sin2 θ (A.17)

that then gives the coupling

λS = 1
v2
s

m2
h2 cos2 θ + 1

v2
s

m2
h1 sin2 θ (A.18)

A.3 The Beta functions as calculated by SARAH
The lower index signifies which coupling and the superscript loop order.

β
(1)
λ1 = + 27

100g
4
1 + 9

10g
2
1g

2
2 + 9

4g
4
2 −

9
5g

2
1λ1 − 9g2

2λ1 + 12λ2
1

+ 2λ2
SH + 12λ1Tr

(
YdY

†
d

)
+ 4λ1Tr

(
YeY

†
e

)
+ 12λ1Tr

(
YuY

†
u

)
− 12Tr

(
YdY

†
d YdY

†
d

)
− 4Tr

(
YeY

†
e YeY

†
e

)
− 12Tr

(
YuY

†
uYuY

†
u

)
(A.19)



46

β
(2)
λ1 = −3411

1000g
6
1 −

1677
200 g

4
1g

2
2 −

289
40 g

2
1g

4
2 + 305

8 g6
2 + 1887

200 g
4
1λ1 + 117

20 g
2
1g

2
2λ1

− 73
8 g

4
2λ1 + 54

5 g
2
1λ

2
1 + 54g2

2λ
2
1 − 78λ3

1 − 10λ1λ
2
SH + 8λ3

SH

+ 1
10

(
225g2

2λ1 − 45g4
2 + 80

(
10g2

3 − 9λ1

)
λ1 + 9g4

1 + g2
1

(
25λ1 + 54g2

2

))
Tr
(
YdY

†
d

)
− 3

10

(
15g4

1 + 5
(

16λ2
1 − 5g2

2λ1 + g4
2

)
− g2

1

(
22g2

2 + 25λ1

))
Tr
(
YeY

†
e

)
− 171

50 g
4
1Tr

(
YuY

†
u

)
+ 63

5 g
2
1g

2
2Tr

(
YuY

†
u

)
− 9

2g
4
2Tr

(
YuY

†
u

)
+ 17

2 g
2
1λ1Tr

(
YuY

†
u

)
+ 45

2 g
2
2λ1Tr

(
YuY

†
u

)
+ 80g2

3λ1Tr
(
YuY

†
u

)
− 72λ2

1Tr
(
YuY

†
u

)
+ 8

5g
2
1Tr

(
YdY

†
d YdY

†
d

)
− 64g2

3Tr
(
YdY

†
d YdY

†
d

)
− 3λ1Tr

(
YdY

†
d YdY

†
d

)
− 42λ1Tr

(
YdY

†
uYuY

†
d

)
− 24

5 g
2
1Tr

(
YeY

†
e YeY

†
e

)
− 16

5 g
2
1Tr

(
YuY

†
uYuY

†
u

)
− 64g2

3Tr
(
YuY

†
uYuY

†
u

)
− 3λ1Tr

(
YuY

†
uYuY

†
u

)
− 24Tr

(
YdY

†
d YdY

†
uYuY

†
d

)
+ 12Tr

(
YdY

†
uYuY

†
d YdY

†
d

)
+ 20Tr

(
YeY

†
e YeY

†
e YeY

†
e

)
+ 60Tr

(
YuY

†
uYuY

†
uYuY

†
u

)
− 12Tr

(
YdY

†
uYuY

†
uYuY

†
d

)
+ 60Tr

(
YdY

†
d YdY

†
d YdY

†
d

)
− λ1Tr

(
YeY

†
e YeY

†
e

)
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β
(1)
λS

=10λ2
S + 4λ2

SH (A.21)

β
(2)
λS

=− 60λ3
S + 24

5 g
2
1λ

2
SH + 24g2

2λ
2
SH − 20λSλ2

SH + 16λ3
SH

− 24λ2
SHTr

(
YuY

†
u

)
− 24λ2

SHTr
(
YdY

†
d

)
− 8λ2

SHTr
(
YeY

†
e

)
(A.22)

β
(1)
λSH

= 1
10λSH

(
20Tr

(
YeY

†
e

)
+ 40λS − 40λSH − 45g2

2

+ 60λ1 + 60Tr
(
YdY

†
d

)
+ 60Tr

(
YuY

†
u

)
− 9g2

1

)
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β
(2)
λSH

=1671
400 g

4
1λSH + 9

8g
2
1g

2
2λSH −

145
16 g

4
2λSH + 36

5 g
2
1λ1λSH + 36g2

2λ1λSH

− 3
5g

2
1λ

2
SH − 3g2

2λ
2
SH + 36λ1λ

2
SH + 24λSλ2

SH − 11λ3
SH

+ 1
4λSH

(
− 144λ1 + 160g2

3 + 45g2
2 + 48λSH + 5g2

1

)
Tr
(
YdY

†
d

)
+ 17

4 g
2
1λSHTr

(
YuY

†
u

)
+ 45

4 g
2
2λSHTr

(
YuY

†
u

)
+ 40g2

3λSHTr
(
YuY

†
u

)
+ 12λ2

SHTr
(
YuY

†
u

)
− 27

2 λSHTr
(
YdY

†
d YdY

†
d

)
− 21λSHTr

(
YdY

†
uYuY

†
d

)
− 27

2 λSHTr
(
YuY

†
uYuY

†
u

)
− 36λ1λSHTr

(
YuY

†
u

)
− 15λ2

1λSH − 10λ2
SλSH + 1

4λSH
(

15g2
1 + 15g2

2 + 16λSH − 48λ1

)
Tr
(
YeY

†
e

)
− 9

2λSHTr
(
YeY

†
e YeY

†
e

)
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A.4 Dark matter plots
We display here the wider range of parameters we scanned over. The ranges of
parameters are given in table A.4. For the left plots the relic density is displayed as
a copper color gradient with darker tones corresponding to lower relic densities. The
correct relic density is Ωh2 = 0.120 ± 0.001. It is however illustrative to consider
the relic density as a contour plot to better understand the interplay between the
parameters since the plots with the correct relic density give no such indication.

Varied Range 1 Range 2
λSH ,mSDM

λSH ∈ [0, 0.3] mSDM
∈ [0, 800]GeV

λSH , λS λSH ∈ [0, 0.3] λS ∈ [0, 2]
λS, vs λS ∈ [0, 1] vs ∈]0, 1500]GeV

mSDM
, vs mSDM

∈ [0, 1500]GeV vs ∈ [0, 2500]GeV
λSH , vs λSH ∈ [0, 0.1] mSDM

∈ [0, 1500]GeV
λS,mSDM

λS ∈ [0, 0.3] mSDM
∈ [0, 250]GeV
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Figure A.1: Left: Variation of λSH ∈ [0, 0.6] and mDM ∈]0, 740GeV]. Right: The parameters
which give a correct relic density Ωh2 ≈ 0.120± 0.001.

Figure A.2: Left: Variation of λSH ∈ [0, 0.6] and λS ∈ [0, 2]. The white region to the left
is due to violation of the condition λ1λS > λ2

SH . At the origin we see that the relic density is
more favorable than at high couplings. Right: Plotting the allowed parameters when we demand
Ωh2 ≈ 0.120± 0.001.
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Figure A.3: Left: The relic density corresponding to variations of λS ∈ [0, 2] and vs ∈
]0, 1500GeV]. The white area in the middle is due to violation of λ1λS > λSH or due to m2

h2
< 0.

The relic densities in this case are discrete islands. Right: Showing only the correct values
Ωh2 ≈ 0.120± 0.001 gives insight into how the coupling and VEV affect each other.

Figure A.4: Left: The relic density when we varied mSDM
∈ [0, 15TeV] and vs ∈ [0, 2500GeV].

Right: Plot of the parameters for which the relic density corresponds to measurements Ωh2 =
0.120± 0.001.
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Figure A.5: Left: The relic density due to variations of λSH ∈ [0, 0.2] and vs ∈ [0, 1500GeV].
Right: The correct values for the relic density Ωh2 = 0.120±0.001 as a function of the parameters.

Figure A.6: Left: For λS ∈ [0, 0.3] and the DM mass mSDM
∈ [75GeV, 250GeV] the relic density

appears to be linearly dependent on both parameters. Right: The parameters which give the
correct relic density values Ωh2 = 0.120± 0.001.
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