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Abstract  

Wheat (Triticum aestivum L.) is one of the major crops in the world and an important agricultural commodity in 

Finland with various uses. Fusarium head blight (FHB) is a deadly disease of cereal crops and with the gradual 

increase in temperature and precipitation, it is becoming alarming to Finnish agriculture.  Deoxynivalenol (DON) 

is a vomitoxin produced by Fusarium graminearum species during the FHB infection and is hazardous to health 

if taken in larger quantities by humans and animals. European Union has legalized the maximum allowed DON 

content in wheat flour for human consumption at 1.75 ppm. Various types of resistance against FHB are known 

till date, including tolerance and escape from the disease. Anther extrusion (AE) is a highly heritable trait in 

wheat and is mechanistically involved in resistance against FHB by preventing the availability of nutrients for 

the fungus. Other traits such as heading, maturity, and height have shown correlations with FHB incidence and 

severity in previous studies. Genomic information is crucial to identify markers to accelerate wheat breeding 

programs against FHB. This experiment was conducted at Boreal Plant Breeding Ltd. Finland using 198 spring 

wheat breeding lines in a row-and-column design with three replications in an artificially spawn-inoculated F. 

graminearum field. The goal of the project was to evaluate the genetic diversity for various agronomic and FHB-

resistance traits and to estimate correlations among them. A genome-wide association study was also performed 

by using 11,987 SNP markers to investigate any marker-trait association(s) in the spring wheat breeding 

germplasm. Larger phenotypic variability was observed in both agronomic and FHB-resistance related traits. 

Many spurious associations were found with general linear models (Naïve and Q model). No marker-trait 

associations were observed among the traits in mixed linear model (K) after including kinship as a covariate. 

Cryptic relatedness among breeding lines has shown a significant role during association mapping. An 

unexpected negative correlation was found between DON and Fusarium severity indicating inaccuracies in 

phenotyping. A negative phenotypic and genotypic correlation was found between AE and DON. Future studies 

on the validation of AE as a phenotypic marker against DON accumulation is recommended. Repeating the 

experiment with the inclusion of more lines with Fhb1 gene in homozygous state might be helpful in finding 

reliable associations for FHB-resistance related traits.     
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1. Introduction 

Fusarium head blight (FHB) is considered as a widely spread problem for global grain production 

that poses threats from field scale to the dining table. Fusarium graminearum Schwabe is one of the 

common fungus causing blight in small grain cereals such as oats, barley and wheat grown around 

the globe (Hietaniemi et al., 2016). The fungus produces a naturally occurring harmful mycotoxin 

called as deoxynivalenol (DON) (Kushiro, 2008). DON is a type B trichothecene, an epoxy-

sesquiterpenoid (Cope, 2018) and have ability to cause acute toxicity in human foods leading to 

diarrhea, vomiting, nausea, headache and fever (Pestka, 2010).  F. graminearum is an emerging 

problem for small grains and have been recently reported in many European countries. Spread of this 

fungus has been observed in Netherlands, UK, Sweden, Norway, Finland and north-west Russia 

(Hietaniemi et al., 2016). Climatic conditions have a direct influence on the content of mycotoxins 

accumulated during the growing season. It has been reported that extended humid conditions from 

flowering till harvesting significantly increases the infection and in turn mycotoxin levels in grains 

(Brennan et al., 2005; Lacey et al., 1999; van der Burgt et al., 2011).  

Wheat is one of the major food crops in Finland whereas contamination with DON is a serious 

concern to the food and feed security in the area. The EU legislation has strict recommendations for 

maximum DON concentration in unprocessed cereals (1250 µg/kg) and for bread and breakfast 

cereals (750 µg/kg) for human consumption (European Food Safety Authority, 2013). Finnish Food 

Authority has adopted the EU recommendations for maximum daily intake of dangerous mycotoxins 

including DON (Regulation 2005/856/EC). The changing climatic conditions have directly affected 

Finnish agriculture on one hand and the market dynamics of wheat grain products on the other. 

Previously, F. culmorum was reported to be the main DON producer in all Scandinavian countries, 

including Finland (Bottalico and Perrone, 2002) whereas, F. graminearum was dominant in warmer 

climates of central and southern Europe (Logrieco and Moretti, 2008). But during the last decade F. 

graminearum has become more active in most countries of the European continent because the higher 

temperature and humidity conditions favors its prevalence in the area (Madgwick et al., 2011; 

Miedaner et al., 2008; Stepien and Chełkowski, 2010).   

Apart from climatic conditions, the genetic potential of a cultivar is an important factor allowing 

various plant-microbe interactions resulting in resistance or susceptibility of the plant to a certain pest 

(Grażyna Podolska, 2017). The most effective and sustainable way to cope with FHB is to develop 

resistant cultivars and follow appropriate crop management practices (Ollier et al., 2020). 

Identification and utilization of resistant wheat genotypes is crucial to mitigate the problem by using 

tools of molecular plant breeding. It has already been reported that genetic resistance to FHB is non-
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race specific and is controlled by multiple loci with effects ranging from low to high (van Eeuwijk et 

al., 1995). Similarly, the heritability of the trait ranges from medium to high and is dependent of the 

genetic population under consideration (Bai and Shaner, 1994). Two types of FHB resistance has 

already been reported in wheat during 1960’s which includes today’s Type I resistance as the 

resistance to initial infection, and Type II resistance as the resistance against the spread of infection 

on wheat spike (Schroeder and Christensen, 1963). It has been also demonstrated that Type II 

resistance is more stable and is less influenced by environmental factors (Bai and Shaner, 1994). 

Although FHB resistance in wheat is a complex trait and probably comprises of complex interactions 

of genetic networks and signaling pathways (Bai and Shaner, 2004).  

Anther extrusion (AE) is a quantitative trait that refers to the extrusion of yellow stage anthers coming 

out of the florets. Higher AE has been reported for exhibiting a negative association with FHB 

severity, whereas less or partially extruded anthers showed association with increased infection (He 

et al., 2016; Kubo et al., 2013; Lu et al., 2013). The anthers if retained inside florets serves as nutrients 

source for F. graminearum, whereas if the anthers extrudes out, the colonization of the pathogen 

becomes more difficult (Xu et al., 2019). Selecting the desirable genotypes based on AE would be a 

helpful strategy for plant breeders to breed wheat crop against FHB (Strange et al., 1978). Moreover, 

plant height (PH) also shows a close association with FHB resistance; greater the height, lesser is the 

probability of infection (Muqaddasi et al., 2017b). Over the past two decades, many quantitative loci 

(QTL) have been mapped related to FHB resistance in wheat but the populations used for such studies 

were mostly biparental with relatively smaller sizes (Pais de Arruda et al., 2015).  

Genome-wide association studies (GWAS) is a promising strategy for the identification of QTLs 

related to the trait(s) of interest and exploits the recombination events to a higher mapping resolution 

(Pais de Arruda et al., 2015). Therefore, there is a need to study spring wheat genotypes adapted to 

Northern climates for identification of FHB resistant loci and in turn assist the wheat breeding 

programs in Finland. It is also important to validate AE as a phenotypic marker for FHB resistance 

to reduce the expensive cost of DON testing and to assist in selection process for the plant breeders.  
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2. Literature Review 

2.1 Wheat  

Wheat (Triticum aestivum L.) is an annual, self-pollinated  hexaploid (AABBDD genome, 2n=6x=42) 

cereal that has been first cultivated about 9,000 years ago (Shewry, 2009).  Wheat is currently one of 

the most important staple crops worldwide and is contributing to 40% of the nutrient intake of human 

population (Giraldo et al., 2019). Modern day wheat has been evolved from the hybridization among 

earliest cultivated species of wheat named as Triticum turgidum (AABB genome, 2n=4x=28) and an 

unrelated wild grass species Triticum tauschii (DD genome, 2n=2x=14) (Fig. 1). Wheat contributes 

substantially in global food security as the livelihood of about 80 million farmers rely on wheat crop, 

especially in developing countries (Giraldo et al., 2019). Wheat is also one of the principal staple 

crops after rice and with the passage of time, the demand of wheat products is rapidly growing in 

reference to tremendously escalating population coupled with changes in food preferences and dietary 

intake of people (Singh et al., 2019).  

 

Morphologically, wheat plant produces multiple leaves, stems/tillers and finally spikes on top of 

productive tillers which bear grains at maturity. Some of the tillers are unable to produce spikes and 

eventually grains hence known as unproductive tillers (Wang et al., 2016). In comparison with other 

                    Triticum monococcum × Aegilops speltoides 

                    (2n=14) AA                ↓             (2n=14) BB 

                                             Sterile hybrid 

                                              (2n=14) AB 

                                                        ↓ Chromosome doubling 

     Triticum turgidum (Cultivated) × Triticum tauschii (Wild) 

                           (2n=28) AABB    ↓ (2n=14) DD 

                                               Sterile hybrid 

                                               (2n=21) ABD 

                                                        ↓ Chromosome doubling 

                                       Triticum aestivum (Bread wheat) 

                                             (2n=42) AABBDD 

Figure 1 Flowchart diagram representing possible evolutionary hybridization events among 

various wheat types forming Triticum aestivum L. about 9000 years ago. 
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arable crops, wheat roots are fairly deep and can extend as far down as 2m. Whereas, leaves are 

produced first from the apical meristem during the initial phases of the development and later on, the 

spike and other respective parts are produced. Time period needed to transition between the vegetative 

phase and reproductive (flowering phase) strongly influences the heading of the particular wheat 

variety (Bonnet, 1936). A flag leaf is the last leaf produced on wheat stem, majorly contributes in 

providing carbohydrates to the developing ear because it has higher photosynthesis rate due to broader 

leaf area (Pajević et al., 1999). Presence and absence of awns on spikes is variety dependant but is an 

appreciable structure in wheat varieties cultivated in countries with hot and drought-prone conditions 

(Duwayri, 1984). Awns also enhances grain size but might reduce grain number (Rebetzke et al., 

2016). On the other hand, European wheat has shown a decrease in climate resilience so it has been 

suggested that awned wheat varieties could be a solution to combat this issue (Kahiluoto et al., 2019). 

Wheat grows successfully between the latitudes of 27°S and 40°S and 30°N and 60°N, but it has also 

demonstrated effective growth beyond these limits. The maximum and minimum growth temperature 

requirement for wheat cultivation is 34–36°C and 3-4°C, respectively but the mean optimum growing 

temperature is about 25°C (Mergoum, 2009). In terms of moisture, nearly three-fourth of the wheat 

cultivated land area receives annual precipitation of almost 375 and 875 mm but wheat has also 

adapted to a range of moisture conditions and can be grown in areas where annual precipitation ranges 

from 250 to 1,750 mm (Mergoum, 2009). The harvesting month of wheat varies in various parts of 

the world, but in the temperate zones of the Northern hemisphere, the maximum volumes are 

harvested in April and September, while in the southern hemisphere, wheat is mainly harvested in 

between October and January (Mergoum, 2009). 

Currently, wheat is cultivated on about 218 million hectares worldwide, and the land area as well as 

trade of wheat is more in comparison to any other crop all around the world (Giraldo et al., 2019). 

Since 1960s, the cultivation of wheat along with other cereals has increased to three-fold and is 

expected to increase further by the middle of 21st century (Godfray et al., 2010). In Finland, most of 

the consumer’s daily energy needs are fulfilled by cereals, meat and dairy. In year 2019, nearly 1.07 

million hectares was cultivated by cereal crops in Finland that were used as animal feed (62 %), as 

food (16 %), as seed (9 %) and as industrial use (13 %), like brewing bears and distilling other liquors 

(http://stat.luke.fi/en/cereals-balance-sheet). Out of this, 206,800 hectares were used for wheat 

cultivation overall among which 166,700 hectares for spring wheat, and 40,000 hectares for 

cultivating winter wheat (Partala, 2019). In terms of production in year 2019, winter wheat accounted 

for 222.3 million kg while spring wheat for 697.3 million kg, which brought the total to approximately 

919 million kg of annual wheat produce in Finland. Whereas, the average yield per hectare in 2019 
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for winter wheat was 5620 kg/ha and 4300 kg/ha for spring wheat (Luke, 2019). The concerns 

regarding the quality of wheat in Finland poses serious challenges to meet the demands of coming 

days. Consequently, it is imperative to set research goals and policies for productivity maximization 

in order to encounter the raising demand of wheat and wheat-based products keeping in view the 

importance of defined quality standards.  

2.2 Fusarium head blight  

Fusarium head blight (FHB), commonly known as scab, is a potentially devastating and deceptive 

disease of barley and wheat, mostly prevalent in humid and semi-humid areas of the world (Schroeder 

and Christensen, 1963). Before 1990s FHB was mainly reported in South America, East Asia and 

parts of Europe. But after that, FHB threat has also been rising in Canada and USA primarily due to 

climate change, crop rotations and adoption of conservation agricultural practices (McMullen et al., 

2012). In China, severe epidemics of FHB affected more or less 0.7 million hectares of wheat which 

reduced the yield to more than 1 million tons (Hongxiang MA, 2019; Leonard and Bushnell, 2003). 

In USA, various intense outbreaks of FHB on barley and wheat from 1991-1997 lead to almost 1.3 

billion USD worth losses that badly influenced the overall economy of the States (Bai and Shaner, 

2004). Although there are a lot of Fusarium species that can cause FHB but F. graminearum is the 

commonly reported pathogen in various studies done in different parts of the world (Bai and Shaner, 

1994; Bíliková and Hudec, 2013).  

2.2.1 Fusarium graminearum 

Until now, isolation of more than seventeen species of Fusarium from naturally infected spikes of 

wheat and barley have been accomplished (Becher et al., 2013; Dweba et al., 2017; Khan et al., 2020). 

All of the isolated species have various levels of virulence and can infect wheat and barley spikes on 

inoculation. Although F. poae and F. culmorum have been reported to be common in some of the 

European countries (Bottalico and Perrone, 2002) but F. graminearum is one of the most studied 

pathogen worldwide in cereal crops (Goswami and Kistler, 2004). F. graminearum can survive not 

only on various cereal crops like wheat, rice, soybean, corn and barley but also on the rotten and dead 

tissues of many other plant species (Mielniczuk and Skwaryło-Bednarz, 2020; Osborne and Stein, 

2007). The fungal pathogen can use the crop residues on the soil surface as the major reservoir of 

nutrients (Shaner, 2003). Macroconidia, hyphal fragments, chlamydospores, and ascospores, all of 

them can be used as an inoculum by the fungal strains (Bai and Shaner, 1994), but ascospores majorly 

act as primary inoculum that can initiate epidemics (Shaner, 2003).  
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2.2.2 Life cycle of F. graminearum 

The sexual development of F. graminearum starts by the formation of binucleate cells hyphae. The 

fungus cells are homothallic containing genetically identical nuclei and hence there is no requirement 

for a separate sexual partner for the development of sexual spores (ascospores). The mating behaviour 

of the fungus is under a strong genetic control (MAT genes) resulting in two mating types (Mat1-1 

and Mat1-2) (Yun et al., 2000). In one study, deletion of the mating-type locus was done to eliminate 

the sexual reproductive stage and it brought prominent disease reduction during field trials 

determining the importance of the locus in fungal pathogenicity (Desjardins et al., 2004). Generally 

F. graminearum’s binucleate cells use to form further small coiled cells, that later develops into 

fruiting body initials (Trail and Common, 2000). When the initials are cultured, they quickly develop 

into perithecia that is flask-shaped and is filled with asci which are sacs that are tubular in shape and 

contain the ascospores that are formed by meiosis. At the final stage of maturation, the asci extend 

themselves up to the opening of the perithecium and later the ascospores are discharged into the air 

(Fig. 2) (Trail, 2009). A complete life cycle of F. graminearum takes about two weeks inside the 

laboratory conditions, while the maturation of asci and the release of ascospores usually takes place 

during the last four days (Bowden and Leslie, 1999; Trail et al., 2002).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2  Life cycle of F. graminearum in field conditions (Adopted from (Trail, 2009)) 
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2.2.3 Infection cycle of F. graminearum 

In field conditions, the primary inoculum of FHB is airborne ascospores and it is considered to be a 

monocyclic disease (Trail, 2009). Infection begins to initiate when pathogenic spores that were 

released into air from the residues of crop lands come in contact with the growing wheat plant. Just 

after this novel contact, spores start germinating and enter the plant either through degenerating anther 

tissues or via natural openings of lemma and palea (Bushnell, 2003).  The extruded anthers are 

promptly infected and then the fungus further penetrates through the developing rachis and floral 

bracts (Bai and Shaner, 1994; Bushnell, 2003).  Soon after the initiation of infection, water soaked, 

dark brown spots begins to appear on the infected floret’s glumes and later the entire floret gets 

blighted. Further the infection can spread through the entire susceptible wheat spikelet by vascular 

bundles of rachis and rachilla. There the fungus radially spreads and the necrosis initiates as the 

pathogen begins to grow intracellularly and starts colonizing the tissues (Bushnell, 2003).  If the 

vascular tissues in the rachis gets clogged, it can lead to premature bleaching of spike head, and the 

tissues that get bleached might form a band of several florets right in the centre of the spike head  

(Fig. 3) which means that even grains that were not infected directly will also get shrivelled primarily 

due to a shortage of water and nutrients (Bai, 1995). The severity of blight increases as the pathogen 

further spreads within the spike, and ultimately the whole spike will get blighted. The infected florets 

are either unable to produce grains, or the produced grains are not completely filled which 

significantly influences the grain yield and quality due to the accumulation of mycotoxins produced 

by fungus (Bushnell, 2003).   

 

 

Figure 3 Phenotypic appearance of Fusarium 

head blight infection on Wheat spikes. Different 

spikes showing various infection intensities in 

terms of visible bleaching of spikelets  

https://fieldcrops.cals.cornell.edu/small-

grains/diseases-small-grains/fusarium-head-

blight-scab/ 

https://fieldcrops.cals.cornell.edu/small-grains/diseases-small-grains/fusarium-head-blight-scab/
https://fieldcrops.cals.cornell.edu/small-grains/diseases-small-grains/fusarium-head-blight-scab/
https://fieldcrops.cals.cornell.edu/small-grains/diseases-small-grains/fusarium-head-blight-scab/
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2.2.4 F. graminearum and environment factors 

The presence of favourable weather conditions particularly temperature, moisture and the abundance 

of primary inoculum during and after the period of anthesis usually influence the severity and spread 

of Fusarium head blight (Goswami and Kistler, 2004; Markell and Francl, 2003). In Finland, spring 

cereals have been observed to have more susceptibility for Fusarium spp. and hence the accumulation 

of mycotoxins as well (Yli-Mattila et al., 2008). It has been reported that humidity combined with 

temperature during flowering stage helps the dissemination of inoculum consequently increases the 

chances of FHB infection (Kriss et al., 2010). Risk of the FHB infection seems to increase during the 

anthesis stage for most of the cereal crops (Doohan et al., 2003). In some other studies, it has been 

reported that DON accumulation also depends upon wind and the intensity of light apart from 

temperature and humidity (Doohan et al., 2003). Changing climate with possible increase in 

temperature can be potentially feasible for Fusarium spp. to spread in Finland and probably be more 

damaging to cereal crops in coming days (Hietaniemi et al., 2016). 

2.3 Deoxynivalenol (DON) 

F. graminearum, the most common cause of FHB, mainly produces deoxynivalenol (DON), a 

mycotoxin for whom regulations have been set in a lot of organizations and countries to guarantee 

food safety (Buerstmayr and Buerstmayr, 2015). DON is commonly considered as a vomitoxin, and 

develops inside FHB infected grains of wheat, barley and oats. In wet and humid conditions, FHB 

may start to infect grain heads especially when the plant is under flowering or grain filling stage 

(McMullen et al., 2012). The infection of FHB does not always indicate the presence of DON, but if 

harvested grains have high level of scabby kernels, it indicates that DON will probably be present 

(He et al., 2019). The toxicity levels of DON have been established by United States department of 

Agriculture (USDA), to ensure provision of safe food. Generally, the presence of DON does effect 

flavour and sensory attributes but its consumption in safe levels do not pose any threat to human 

health and it also does not contain any carcinogenic properties like that of aflatoxins in corn (Reddy 

et al., 2010). DON is only believed to be causing serious health situations if ingested in high amounts, 

some of the symptoms are vomiting, diarrhoea, headache and vertigo (Pestka and Smolinski, 2005). 

Therefore, the maximum tolerable consumption levels of DON in terms of wheat grains were set at 

0.5 to 2 ppm in Canada, USA as well as in some European countries (Leonard and Bushnell, 2003; 

Osborne and Stein, 2007). On a similar note, European Union (EU) have also adopted certain 

recommendations on the threshold of food and feed mycotoxins. According to the EU Regulation 

(EC) No 1881/2006, the maximum level of DON in human food is settled at 1250 µg/kg in case of 

unprocessed cereals and at 200 µg/kg for food items suitable for infants and young children (European 
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Food Safety Authority, 2013). Most of the DON is present in the outer seed cover of bran and if FHB 

infection develops during very initial stages of kernel development, it can reduce yield by lowering 

down the kernel numbers as well (Sinha and Savard, 1997). Whereas, the infection at slightly later 

stages leads to chalky white or discoloured, shrunken and scabby kernels, that are also called as 

tombstones (Fig. 4). FHB infection at later stages of plant development may bring no visible damage, 

but the kernels may still possess high levels of DON (Góral et al., 2018). A Canadian study evaluated 

the DON content in FHB infected kernels and reported that DON content was 274 ppm in pink 

coloured kernels, 174 ppm in white tombstones, 2-5 ppm in shrunken kernels and 1-1.2 ppm in normal 

kernels (Sinha and Savard, 1997). Shrunken kernels are removed prior to milling in order to improve 

flour quality but this brings significant loss in milling yield (Dexter et al., 1997). In case of oats, de-

hulling of the seeds may lead to a reduction in toxin concentrations by 90 % (Schwake-Anduschus et 

al., 2010). On the other hand, the application of various cleaning methods was found to reduce the 

mycotoxins levels up to 36% in wheat (Schaarschmidt and Fauhl-Hassek, 2018).  

 

 

 

 

 

 

 

 

2.4 FHB Resistance in Wheat   

FHB resistance is a complex trait and is influenced by multiple factors, ranging from plant genetic 

constituents (QTLs) that influence intrinsic plant defence mechanisms to plant characteristics that 

have an indirect impact on decreasing susceptibility to FHB. These active and passive resistance 

factors are sometimes related to morphological and/or developmental traits of wheat.   

2.4.1 Types of FHB resistance  

In hexaploid wheat, various kinds of FHB resistances have been recognized till date. The ability to 

resist the incidence of infection is known as Type I resistance while the ability to prevent the severity 

or spread of FHB is referred as Type II resistance. Both of these resistances have been reported by 

Figure 4 Picture taken from healthy wheat kernels 

(right) and FHB infected tombstones (left). 

 www.uky.edu  

http://www.uky.edu/
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various studies in bread wheat (Burt et al., 2015; Chu et al., 2011; Lemes da Silva et al., 2019), 

although Type II resistance is regarded as most stable and effective against FHB (Bai and Shaner, 

2004) hence was studied in many breeding populations (Buerstmayr et al., 2002; Jiang et al., 2020; 

Zhang et al., 2018). A plant exhibiting good Type I resistance but week Type II resistance may easily 

get infected whenever the inoculum is abundant (Bai, 1996). On the other hand, Type III and IV 

resistance against FHB is usually less studied in comparison to that of Type II resistance. Type III 

resistance was conceived for stopping infection initiation in kernels and also has referred to different 

resistance capacities of some lines to degrade DON (David Miller and Arnison, 1986). Whereas, Type 

IV resistance has been reported for preventing the accumulation of DON (Liu et al., 2009; Löffler et 

al., 2009). The low level of DON in the infected kernel might be because of three possible causes: (a) 

The fungus produced less amount of DON, (b) The plant enzymes degraded the DON during 

development of kernel, or (c) The DON content was higher in spike tissue but it failed to move inside 

kernels during the developmental process (David Miller and Arnison, 1986). 

2.4.2 Genetic associations of FHB resistance(s)  

Studies has shown that days to heading (DH) and plant height (PH) are associated with development 

of Type I resistance (He et al., 2016; Mao et al., 2010). Type I and Type II resistances have also 

shown association with Type III and Type IV resistance mechanisms. A meta-analysis study showed 

that various types of FHB resistances were studied by QTL mapping among which only 22 and 25 

out of 209 QTLs were associated with Type IV and Type III resistance respectively but none of them 

were disassociated from Type I or Type II (Liu et al., 2009). Miller et al. (1985) first monitored Type 

III resistance and reported that the resistant cultivars depicted significant ability to promote 

degradation and can prevent synthesis of DON (Miller et al., 1985). Later in an in vitro experiment, 

embryo callus cultures of a resistant cultivar ‘Frontana’ and a susceptible cultivar ‘Casavant’ were 

compared that resulted in an 18% degradation of DON in resistant cultivar while just 5% decrease in 

the susceptible one, indicating the activity and variation among genetic mechanisms of Type III 

resistance is cultivar dependant (David Miller and Arnison, 1986).  

2.4.3 Breeding against FHB 

Traditional breeding approaches for breeding wheat against FHB are quite difficult, time-consuming 

and require laborious efforts. Quantitative mode of inheritance and substantial environmental 

influence makes FHB even more complex trait to breed in a conventional way (Stack, 2003). Over 

the course of past twenty years, more than 250 QTLs conferring FHB resistance have been reported 

on different wheat chromosomes (Buerstmayr et al., 2009; Löffler et al., 2009). Majority of these 

QTLs have been identified in association with Type II resistance and are found important in a 
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breeding perspective (Liu et al., 2009). Fhb1 gene has been intensively studied and is believed to be 

a major player in FHB resistance mechanism against various isolates of Fusarium species (Stack et 

al., 1997). A Chinese spring wheat Cultivar ‘Sumai 3’ and its progenitor lines were found to have 

Fhb1 gene in fixed state hence was extensively used in breeding wheat against FHB around the globe 

(Brown-Guedira et al., 2008). Marker-assisted selection (MAS) ensures an effective way of breeding 

against FHB in more accurate and speedy way (Li et al., 2019). Therefore, the identification of robust 

markers associated with resistance traits is of prime importance in today’s resistance breeding on 

commercial scale.  

2.5 Morphological traits of wheat related to FHB resistance  

Phenological and morphological traits like loose spikelet distribution, absence of awns, staggered 

flowering time and tallness could contribute in the development of Type I resistance (Mesterházy, 

1995). Recent advances in scientific studies for breeding against FHB has also shown that anther 

extrusion, plant height and days to heading are some of the important traits to consider as various 

resistance mechanisms for FHB (Lu et al., 2013; Mao et al., 2010; Skinnes et al., 2010).  

2.5.1 Heading, maturity class and FHB 

Days to heading and maturity are important traits in wheat breeding and are useful in terms of yield 

components (Anwar et al., 2009) and resistance against FHB (Mesterházy, 1995). Studies have shown 

contrasting results for marker-traits associations among FHB and both days to heading and maturity. 

One study in U.S.A has shown no significant association between markers and plant maturity  (Chu 

et al., 2011) whereas, another study has shown a negative correlation between heading and FHB 

resistance (Moreno-Amores et al., 2020). It is important to see how different maturity groups behave 

in terms of F. graminearum infection for breeding lines in Northern Europe. The practical suggestions 

for such relations could belong to an escape strategy of plant types to avoid FHB infection.  

2.5.2 Anther Extrusion and FHB 

One of the practically suggested resistance mechanisms against FHB in wheat is via anther extrusion 

(AE) since it was reported that the initial infection of FHB occurs via anthers (Buerstmayr et al.; 

Muqaddasi et al., 2017a). AE is generally regarded as a quantitative trait that is influenced by various 

genes and is majorly studied to enhance the ability of cross-pollination in hybrid wheat (Muqaddasi 

et al., 2017a; Muqaddasi et al., 2019). The potential of enhanced AE to prevent FHB has been 

confirmed by an assay of F. graminearum green fluorescent protein strain on two wheat cultivars 

‘Sumai 3’ and ‘Roblin’. In both of the plant types, anthers developed infection rapidly but in resistant 

cultivar Sumai 3, the infestation of pathogen was hindered by the closure of xylem and phloem tissues 



16 
 

that were near the infected florets (Miller et al., 2004). It was reported in 1970’s that various growth 

stimulants present inside anthers accelerate the growth of F. graminearum (Strange and Smith, 1971). 

These substances were further identified as betaine, choline and glycine that are present in high 

concentrations inside anthers (Pearce et al., 1976; Strange et al., 1974). However, these studies were 

revisited and no prominent influence of betaine and choline on growth of fungus was observed (Engle 

et al., 2003). It has also been suggested that emasculation and shedding of anthers is an effective tool 

against FHB (Strange et al., 1978). The partially extruded anthers, or those that are stuck between 

palea and lemma can enable the penetration of FHB inside the floret cavity but in case of full anther 

extrusion, FHB pathogen colonized on the anthers would face difficulty in infecting other floret 

tissues (Skinnes et al., 2010). A strong link between AE and duration of flower opening was also 

reported in the past (Singh et al., 2007). This might be because of the short opening duration or the 

fine angle between palea and lemma whereas, the anthers might retain inside the late flowering types 

(De Vries, 1971). A strong positive correlation between AE and FHB resistance was also observed 

and published in an extensive report on 60 different European winter wheats (Graham and Browne, 

2009).  

2.5.3 Plant Height and FHB 

Plant height is an important morphological trait for wheat crop and has been under selection for 

decades. A semi-dwarf wheat cultivar is desirable due to better yield and it minimizes the risk of 

lodging in field conditions as well (Laing and Fischer, 1977). On the other hand, it has also been 

reported that FHB Type I resistance is associated with plant height (Mao et al., 2010). A study 

indicated that a certain resistant QTL was found on chromosome 4D at a location closer to the Rht-

D1 locus controlling plant height (Draeger et al., 2007). The association among these two loci is 

found to be a result of linkage among genes and the germplasm exhibiting such association can be 

used for resistance breeding purposes. Various studies on different breeding populations suggested a 

negative association between FHB resistance and plant height suggesting that the taller lines were 

more resistant to the disease (Buerstmayr et al., 2002; Buerstmayr et al., 2000; Buerstmayr et al., 

2003; Somers et al., 2003). The mechanistic explanation of such a negative association could be an 

escape strategy of wheat plants against the fungus attack. Genetic associations among various plant 

traits often enables plant breeders to do indirect and effective selections for traits that are difficult to 

evaluate or practically expensive to phenotype (Aytaç, 2009).   

2.6 GWAS; A promising approach to study plant traits 

Recently developed techniques of DNA sequencing made it possible to genetically improve many 

traits like biotic and abiotic stress tolerance and grain quality in field crops. One of the useful and 
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successful tools for identification of regions close to candidate genes and related loci is genome-wide 

association study (GWAS) (Alqudah et al., 2020). GWAS works by investigating the statistical 

association between a genetic marker and the phenotypic trait which has been scored across distantly 

related or heterogeneous lines of a diverse collection of individuals (Huang and Han, 2014). The 

efficiency and robustness of GWAS in exploration of complex phenotypic traits among crops like 

wheat and barley had already been reported and with the aid of high throughput sequencing 

technology and currently available large populations, it is expected that GWAS will become more 

proficient in the identification of causative genes that are responsible for various quantitative traits 

(Alqudah et al., 2020). The variation of a phenotypic trait may involve few or many loci i.e. the trait 

might have a complex genetic structure (polygenetic e.g. heading date) or have a simple genetic 

architecture (e.g. barley spot blotch) (Bykova et al., 2017). The identification of factors to determine 

the basic genetic architecture of a trait is the main objective of a common GWAS study. On the other 

hand, Bernardo (2016) has criticized the use of GWAS for finding major but rare QTLs in breeding 

populations (Bernardo, 2016). Apart from the existence contrasting perspectives, GWAS approach is 

well-suited to predict the best performing candidates in the breeding population with the use of 

relatively cheaper and abundant markers (SNPs) instead of designing a methodology to create a cultivar 

(Bernardo, 2016). The possible utilization of a GWAS study in a plant breeding program is 

summarized in Fig. 4. 

 

 

 

 

 

 

 

 

Figure 3 Schematic representation of a genome-wide association mapping in a plant breeding 

program (Modified from Emre Aksoy) 
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3. Research Objectives 

The objective of the current study are as follows: 

1. To evaluate the genetic diversity in the breeding germplasm in terms of agronomic as well 

as FHB-resistance related traits. 

2. To inquire if there is any significant association between SNP markers and studied traits? 

3. Does Anther Extrusion have any significant correlation with DON concentration (i.e. FHB)? 
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4. Material and Methods 

4.1 Plant Material and Experimental Design 

A training population consisted of 198 spring wheat genotypes were provided by Boreal Plant 

Breeding Ltd. (Finland) to perform the study. Genetic divergence and breeding importance were held 

in mind during the process of genotypes selection. The panel consisted of a diverse breeding 

population of spring wheat containing both commercial cultivars and breeding lines, adopted to the 

Northern growing conditions. About 75% of the genotypes belong to the main type spring wheat 

maturity group suitable for growing in Finland, Sweden and Baltic countries. Whereas, the remaining 

25% were from very early maturing spring wheat group for northern regions. One line (Genotype ID 

48848) with Fhb1 gene (homozygote) was also included in the experiment.  

Experiment was conducted during the growing season 2019 at Jokioinen (60.811163, 23.497720), 

Finland (Fig. 5). A row-column design (Piepho and Williams, 2010) was used with three replications. 

Sowing was done at 5th June 2019 by using sowing machine (Linjarivikylvokone HEGE 75). Each 

experimental unit consisted of a single genotype sown in row of 1 m length. Guard rows were sown 

as borders to equalize disease pressure within rows.  

 

 

Figure 4 Map of artificially inoculated Spring wheat field (located at Jokioinen, Finland). 
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The inoculum was initially prepared by following the method of (Tekle et al., 2018) and was 

composed of a mixture of five F. graminearum isolates (12007, 12010, 05011, 05039 and 06249) 

collected from Finnish fields. Later, a spawn inoculation method was adopted by which heat-killed 

oat seeds (Fig. 6) infected with inoculum were evenly spread between all the rows at latest at Zadoks 

stage 49 (Zadoks et al., 1974). The experimental field was mist irrigated daily from 7pm to 10pm 

from inoculation until two weeks after the last flowering was observed. At maturity, the lines were 

sickle harvested and each individual row was bagged. Lastly, each bag was separately threshed by 

using Thresher (Kurt Pelz Maschinenbau Postfach 5300). Threshed samples were collected in small 

bags with respective genotype tags and then later subjected to milling before analysing DON 

concentration.  

4.2 Selection of suitable markers and Genotyping 

All breeding lines were genotyped by using a customized, unpublished single nucleotide 

polymorphism (SNP) chip. In total, 11,987 SNP markers were considered for the study and quality 

of the markers was taken into account by following criteria: 

i. If the missing values at any SNP marker was more than 10% (i.e. SNP call rate < 90%), such 

marker(s) were excluded. 

ii. If the minor allele frequency of a marker was < 5%, such markers were also removed because 

they are not informative enough in a GWAS analysis.  

iii. If the heterozygosity of a marker was >5%, such marker was not included as well. 

iv. Apart from that such lines were also removed, if >10% of their markers were found 

heterozygous and/or have 10% of missing values.  

Finally, the missing values were imputed with average values and 11,987 SNP markers were selected. 

SNPs that couldn’t fit in any of the mapped chromosome were assigned to chromosome ‘22’. 

Imputations for missing values were done with a mean value by using A.mat function of Ridge 

Regression and Other Kernels for Genomic Selection (rrBLUP) (Endelman, 2011). All the 

computations were resolved in R (Team., 2010). 

4.3 Phenotyping and Data collection 

Data was collected on seven plant parameters for each genotype in the experiment. The parameters and 

methodology adopted to collect the data is described below: 
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4.3.1 Days to heading and Maturity groups 

Days to heading was considered by counting the number of days from sowing to the visibility of at 

least 50% of the spikes in each individual row in all three replications. Maturity was scored on a scale 

of "1-5" in which ‘1’ means earliest and ‘5’ refers the latest maturing genotype group.  

4.3.2 Plant Height and Anther Extrusion 

Plant height of each genotype was determined by choosing the average looking plant in a row and 

measuring the length (in cm), starting from base of the plant till the tip of spike with the help of a 

meter rod. Whereas, for anther extrusion the methodology by Skinnes et al. (2010) was followed  

(Skinnes et al., 2010). A linear scale from 0-9 was developed with 10% interval between two 

individual points (Fig. 7) and data was collected by visually inspecting randomly collected spikes 

from the material under study. After the completion of heading and just before flowering, two equal-

sized spikes were bagged together to decrease the risk of losing the anthers by wind, water and 

shedding (Fig. 8). A visual inspection of all the lines was done at proper stage by using 

aforementioned scale and scores were taken. In case of strong shedding effect, scores from the bagged 

spikes were taken into consideration.  

4.3.3 Visual disease score, incidence and severity  

Visual disease was observed for 10 spikes per row on a scale of ‘0-5’ after three weeks of spawn 

inoculation, at Zadoks stage 91 (Zadoks et al., 1974). The scale was as follows: 0=none of the spikelet; 

1=one spikelet; 2=two spikelets; 3=3 spikelets or under half of the spikelets; 4=more than half of the 

spikelets and 5=the whole spike had disease symptoms.  Data was recorded in terms of Fusarium 

severity and Fusarium incidence. Fusarium incidence refers to the percentage of wheat spikes 

exhibiting disease symptoms in a single row and it corresponds to the resistance against initial 

infection (Type I resistance).  Whereas, Fusarium severity refers to the average score of infection in 

percentage in a single row and it corresponds to resistance against spread of the fungus from initial 

point (Type II resistance).  

4.3.4 DON testing  

A grain sample of 10g was taken from each wheat genotype in the study and was milled with the help 

of milling machine (Lab Mill 120, Perten Instruments, Hägersten, Sweden). DON concentration was 

measured by using Enzyme-linked immunosorbent assay (ELISA) kit (R5906 Ridascreen DON 96 

test, R-Biopharm, Darmstadt, Germany). A commercial reference sample (TR-D100) was also used 

to control variability among DON measurements. 



22 
 

 

 

 

 

 

4.4 Data Analysis 

Once the data from field experiment was obtained, spatial corrections were done by using suitable 

models for each trait. Statistical analysis were done using SPSS Version 25.0 (IBM, 2017). 

Uncorrected data was compared with data after applying various models such as models considering 

blocks, columns, rows and column within rows. The most obvious outliers were omitted, and the most 

suitable model was chosen for each trait respectively (Table. 1). The basis of selection of model was 

Bayesian information criterion (BIC) value. Finally, the best linear unbiased estimates (BLUEs) were 

computed and subjected for the data analysis. SPSS Version 25.0 (IBM, 2017) was used to do the 

corrections and to find least significant difference (LSD, α=0.05) and co-efficient of variation (CV 

%) values for all the traits.  

Figure 6 A single heat-killed oat 

seed treated with Inoculum. Black 

spots on the seed are Fusarium 

spores growing and onset of 

disseminating the disease to wheat 

plants in field 

Figure 7 Scale used for visual 

scoring of Anther Extrusion (AE) in 

field.  

A corresponds to'0'; no AE,  

B refers to '5'; medium AE and  

C means '9'; complete AE 

Figure 8 Bagged Spikes in one of the spring wheat rows 

to prevent shedding from wind and rain 
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 Table 1 Phenotypic traits with respective spatial correction models applied to remove outliers. 

TRAIT Selected Model  

Height block, column, row, column within row 

Maturity block, column, row  

Heading block, column, row 

Anthers extrusion block, column 

Fusarium incidence block, column 

Fusarium severity block, column, row 

DON block, column, row, column within block 

 

4.4.1 Correlation, Heritability and Descriptive Statistics 

Descriptive statistics for all the traits was computed in SPSS (Version 35.0) (IBM, 2017) while the 

heritability estimates and correlation analysis was conducted in Derivative-free approach to 

Multivariate analysis (DMU) software (Madsen et al., 2014).  

Variance components as well as narrow-sense heritability (h2) for each trait were estimated with 

DMU software (Madsen et al., 2014) by using single trait model. The formula used to calculate h2 is 

as follows:  

h2 =
d(𝐆)σa

2

d(𝐆)σa
2 + σe

2 
 

Where h2 refers to narrow-sense heritability, d(𝐆) indicates the mean of diagonal element of G 

matrix, whereas, σa
2 and σe

2 refers to additive genetic and residual variances, respectively. 

Computations were done by using DMU software (Madsen et al., 2014) taking two-trait model into 

consideration with following structure:  

𝐲′ = [𝐲1
′ 𝐲

2

′
], 𝐞′ = [𝐞1

′ 𝐞2
′ ] 

𝐛 = [
𝐛1

𝐛2
] , 𝐗 = [

𝐗1 0
0 𝐗2

] 

𝐚 = [
𝐚1

𝐚2
] , 𝐙 = [

𝐙1 0
0 𝐙2

] 

The assumptions regarding distribution for two traits model is as shown: 

a ~ N(0, 𝐆𝟎⨂ 𝐆) 

In which, 𝐆0 and 𝐆 shows genetic covariance between two traits and additive relationship matrix, 

respectively, 
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e ~ N(0, 𝐑𝟎⨂ 𝐈),  

Where, 𝐑0 and 𝐈 are residual matrix and incidence matrix, respectively. Also, E(y) = Xb and 

 Cov(a, e) = 0. The sign ⨂ indicates the Kronecker product of the two matrices. Symbolizing two 

traits as 𝑖 and 𝑗, the correlation among 𝑖 and 𝑗 was calculated as: 

d(𝐆)(𝐆0)ij

√d(𝐆)(𝐆0)iid(𝐆)(𝐆0)jj

=  
(𝐆0)ij

√(𝐆0)ii(𝐆0)jj

 

 

In which, 

 d(𝐆) = average of diagonal element of G-matrix 

(𝐆0)ij = genetic covariance between two traits 

(𝐆0)ii = genetic variance for trait 𝑖 
(𝐆0)jj = genetic variance for trait 𝑗 

 

and computations for phenotypic correlations (Pearson’s correlation) were done in MVApp 

(Julkowska et al., 2019).  

 

4.4.2 GWAS Analysis 

Genomic Association and Prediction Integrated Tool (GAPIT) was used to perform GWAS analysis 

(Lipka et al., 2012). GAPIT is a dynamic open source package in R (Team., 2010) environment and 

provides state-of-the art mixed model approaches to perform GWAS analysis.  

Firstly, Principal Component Analysis (PCA) was performed in R (Team., 2010) by using function 

‘prcomp()’ to determine number of PCs to be considered by visually observing the flattening of scree 

plot (Appendix. 1) so that the amount of variation explained by each PC was considered for further 

analysis. Moreover, BIC values from GAPIT were also used to set the code (“model.selection = 

TRUE and PCA.total = 10”) before running actual GWAS analysis.  

After that the GWAS analysis was performed with four different models to determine the marker-

trait association. Following models were used with the respective code settings:  

1. Naïve model: This model does not consider any population structure and relatedness among 

lines during association. Statistically, the model can be described as follows:  

𝐲 = 𝐗𝐛 + 𝐞 

In which, 𝐲 refers to the BLUEs determined for each trait, 𝐗 shows the design matrix and 𝐛 is the 

vector that considers the fixed effects that are only the markers in this case while 𝐞 reflects the random 
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error. The code settings in GAPIT (“group.from = 1, group.to = 1”) for Naïve model were so that it 

disabled the kinship calculation which otherwise is enabled by default.  

2. Q model: This model includes the population structure as covariate as per number of PCs 

decided to take into account but does not include any relationship between the lines. In principle, the 

model is similar to Naïve model i.e 𝐲 = 𝐗𝐛 + 𝐞 except that 𝐛 refers to the markers as well as 

eigenvalues from the PCA.  

3. K model: This model considers the cryptic relatedness with a kinship (K) matrix, while no 

population structure being taken into account (No PCs but just the markers). In GAPIT, the 

computation was done by default “VanRanden” method (VanRaden, 2008). Statistically, K model 

can be explained by following equation: 

y = Xb + Za + e 

Where, 𝐲 is the BLUEs for each trait, vector 𝐛, 𝐚 and 𝐞 show the fixed effects (markers), additive 

gene effects including K matrix and random error, respectively. Whereas, 𝐗 and 𝐙 describe the design 

matrices associating fixed and random effects, respectively, with BLUEs of each trait. 

4. QK model: This model includes both the kinship matrix and chosen number of PCs to 

determine the association between phenotypic and genotypic data. Statistically, QK models is similar 

to K model i.e. 𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐞 except that vector 𝐛 represents both the eigenvalues and markers. 

A detailed set of assumptions for all the above-mentioned models can be found in GAPIT Manual 

(http://www.zzlab.net/GAPIT/gapit_help_document.pdf). The significance of the association study 

was set on basis of Bonferroni multiple testing correction as well as by False discovery rate (FDR) 

adjusted p-value (0.10) (Benjamini and Hochberg, 1995). The final output from the GAPIT contains 

Microsoft Excel files with numeric data, graphs and images, quantile-quantile (Q-Q) plots and 

Manhattan Plots. 
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5. Results 

5.1 Phenotypic Parameters 

Measurements were taken on two types of traits in artificially inoculated spring wheat genotypes, the 

agronomic traits (plant height, days to heading, maturity class) and the FHB-resistance related traits 

(anther extrusion, fusarium incidence, fusarium severity, and DON content). The frequency 

distribution of all the measured traits can be seen in Fig. 9. After the spatial corrections with 

respectively suitable models, almost all the traits have followed a normal distribution that satisfies 

the need of further statistical analysis. Plant height, days to maturity and FHB-resistance related 

parameters have shown almost a perfect normal distribution as compared to days to heading and 

anther extrusion (Fig. 9).  

Descriptive statistics for all the measured traits are shown in (Table. 2). The mean value for anther 

extrusion was overall higher i.e. 6.87 with a maximum of 9 in some genotypes. Similarly, Fusarium 

incidence was also higher on average basis, ranging from a minimum of 17% up to a maximum of 

100%. On the other hands, Fusarium severity was found to have a comparatively lower mean value 

of about 29%, with a minimum and maximum values of 5.6% and 72%, respectively. Whereas, DON 

content on average was about 18.95 ppm with a minimum of 2.86 ppm and a maximum value of 53.5 

ppm, showing that in either case it was exceeding the recommended EU levels (1.25 ppm) for 

unprocessed wheat.  

Coefficient of variation (CV %) for Fusarium severity and DON are among the highest indicating a 

lot of variation in the germplasm. On the other hand, plant height showed a minimum CV % (Table. 

2). Even after performing spatial corrections, higher CV values were observed for maturity, and for 

all the FHB-resistance related traits (CV > 10). Similarly, higher least significant differences (LSD) 

were also found for FHB-resistance related traits, indicating a lot of variation in the data (Table. 2).  
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Figure 9 Frequency distribution of all the measured traits with reference to a normal 

distribution curve (red line)  
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Table 2 Mean values, range, least significant differences (α = 0.05), and coefficient of 

variation (%) for all measured traits 

 

 

 

 

 

 

 

 

5.2 Genotypic data and Population Structure 

Scatter plot (Fig. 10) for 198 spring wheat lines showed that there is no prominent population 

structure. A small aggregation near the bottom might be due to the fact that almost 3/4th of the 

genotypes were from the main type maturity group and were suitable for growing in Northern climatic 

conditions. Principal component analysis (PCA) was conducted to approximate the population 

structure (Fig. 10). First and second principal components explained 5.9% and 4.9% of the total 

variation, respectively (Appendix. 2).  

 

 

 

 

 

 

 

 

 

 

 

 

TRAIT Mean Min. Max. LSD (α = 0.05) CV % 

Height (cm) 75.85 63 90 6.34 5.22 

Maturity (1-5) 2.96 1 5 0.85 17.86 

Heading (no. Of days) 48.06 44 54 2.02 2.63 

Anthers extrusion (0-9) 6.87 1 9 1.44 12.92 

Fusarium incidence 73.5 17 100 25.67 21.73 

Fusarium severity 29.05 5.6 72 21.56 40.95 

Don (ppm) 18.95 2.86 53.5 8.87 29.51 

Figure 10 Scatter plot obtained from the genotypic data in three-dimensions 
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5.3 Heritability and Genetic Correlations 

Narrow-sense heritability estimates and respective variance components are shown in Table. 3. It can 

be seen that the agronomic traits for spring wheat showed relatively higher heritability than the FHB-

resistance related traits. The parameters such as days to heading, maturity class and anther extrusion 

exhibited the highest heritability (> 60%) values among all the measured traits. Whereas, Fusarium 

incidence and DON content showed the lowest heritability estimates of 34% and 39% respectively.   

Table 3 Variance components and narrow-sense heritability estimates for all measured traits 

 

 

 

 

 

 

Phenotypic correlations were computed for all the pair of traits and can be seen in Table. 4. Days to 

heading had a highly significant positive correlation with maturity class (0.68, α=0.01) and DON 

content (0.41, α=0.01) whereas, a negative correlation can be observed with anther extrusion and 

DON content (-0.5, α=0.01). Plant height had a significant positive correlation with anther extrusion 

(0.15, α=0.05), but a non-significant negative association can be seen with DON content. Maturity 

class has shown a significant positive phenotypic correlation with DON content (0.24, α=0.05) while 

a highly significant negative association with fusarium incidence (-0.49, α=0.05) and severity (-0.6, 

α=0.05). Anther extrusion had shown a positive correlation with fusarium severity (0.26, α=0.05).   

Genotypic correlations were computed with two traits mixed model for all the pair wise traits (Table. 

4). Confidence interval show that the days to heading has a stronger positive correlation with maturity 

class (0.83) but a negative association can be seen with FHB-severity (-0.76). Similarly, maturity 

class also showed a strong negative correlation with Fusarium incidence (-0.6) and severity (-0.9). 

Whereas, confidence interval for plant height indicated weak positive correlation with anther 

extrusion (0.20 but not with any of the FHB-resistance related traits. The anther extrusion has shown 

a strong negative genotypic correlation with DON content (-0.8), but a negative genotypic correlation 

with Fusarium severity (-0.4).    

 

TRAIT 𝝈𝒂
𝟐 𝝈𝒂

𝟐  (SE) h2 𝝈𝒆
𝟐 𝝈𝒆

𝟐  (SE) 

Height (cm) 8.18 3.27 0.40 12.09 2.51 

Maturity (1-5) 0.34 0.08 0.69 0.15 0.04 

Heading (No. of days) 2.89 0.77 0.64 1.60 0.46 

Anthers Extrusion (0-9) 1.14 0.32 0.69 0.50 0.18 

Fusarium incidence   69.51 31.20 0.34 130.81 25.52 

Fusarium severity 63.99 20.97 0.47 70.09 15.00 

DON (ppm) 35.21 14.11 0.39 54.51 11.00 
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Table 4 Phenotypic correlation coefficient calculated as Pearson correlation (α=0.05, 0,01)  (above the diagonal) and genotypic correlation (below the diagonal) 

for all the pair-wise measured traits, presented with confidence intervals in parenthesis. 

 

DH; days to heading, PH; plant height, MC; maturity class, AE; anther extrusion, Fussev; Fusarium severity, Fusinc; Fusarium incidence. *, ** P < 0.05, 0.01, 

respectively. For genotypic correlations, the confidence interval (values in parenthesis) decides the direction of the correlation and if it includes zero, no 

conclusion can be made for positive or negative nature of the relationship between the two traits.    

 

 

TRAIT DH PH MC AE Fussev Fusinc 

 

DON 

DH - 0.13 0.68** −0.16* −0.47** −0.34** 
0.41** 

PH 
0.07 

(-0.15, 0.30) -           0.04 0.15*           0.08           0.04 
       −0.08 

MC 
0.83 

(0.75, 0.92) 

-0.13 

(-0.34, 0.07) -         −0.12         −0.6** −0.49** 
0.24** 

AE 
0.07 

(-0.12, 0.27) 

0.29 

(0.06, 0.52) 

-0.03 

(-0.22, 0.14) -  0.26**           0.05 
       −0.5** 

Fussev 
-0.76 

(-0.89, -0.62) 

0.08 

(-0.17, 0.33) 

-0.95 

(-1.03, -0.88) 

0.36 

(0.17, 0.55) -  0.48** 
       −0.33** 

Fusinc 
-0.835 

(-1.04, -0.62) 

-0.16 

(-0.46, 0.14) 

-0.69 

(-0.86, -0.53) 

0.10 

(-0.14, 0.36) 

0.88 

(0.74, 1.03) - 
       −0.11 

DON 
0.39 

(0.19, 0.59) 

-0.03 

(-0.31, 0.25) 

0.16 

(-0.05, 0.38) 

-0.80 

(-0.92, -0.67) 

-0.44 

(-0.66-0.22) 

0.01 

(-0.27, 0.31) 

- 
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The distribution of DON content versus anther extrusion (Fig. 11) showed strong, negative, almost 

linear association between the two traits. Breeding lines with a lower anther extrusion has shown a 

broader range of DON content in respective lines but overall, more the anthers extruded out, less is 

the probability of DON accumulation.  

 

 

 

 

 

 

 

 

 

 

The distribution of DON content versus Fusarium severity was found to be moderately negative. A 

dispersed structure of distribution was observed even after spatial corrections for both the traits (Fig. 

12).  Genotypes with more fusarium severity has shown lesser DON accumulation in the kernels. 

 

 

 

 

 

 

 

 

Figure 12 Relationship between DON content (ppm) and Fusarium severity (%) for 198 spring 

wheat lines 

Figure 11 Relationship between DON content and Anther Extrusion for 198 spring wheat lines 
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A set of genotypes were taken from the spring wheat panel with successively increasing anther 

extrusion values and was plotted against respective DON content (Fig. 13). It was observed that the 

more the anther extrusion, lesser is the DON accumulation. However, the Fhb1 homozygote line 

(48848) had a comparatively lesser DON content compared to its nearby lines whereas, the anther 

extrusion score was not among the highest in the field (Fig. 13). 

 

 

5.4 Genome-wide association study  

The number of PCs to include in the association analysis to correct population structure is determined 

before executing the analysis. It was found by looking at respective BIC values that one PC was 

suitable as a covariate for traits such as maturity class and Fusarium severity, while no PCs (zero) 

were required to add while performing association analysis for rest of the traits. According to the 

scree plot (Appendix. 1), the variation (%) explained by each PC have shown the flattening of curve 

after 6th PC, hence 6 PCs were added for each trait where population structure needs to be considered.    

Marker-trait associations was computed for all the measured traits by using four models and the 

significant associations for all four-models are summarized in Table. 5. Manhattan plots and QQ-

Figure 13 Mean DON (ppt) values for some selected breeding lines from all three anther extrusion 

groups (low, medium and high). Red arrow indicating line with fixed Fhb1 gene (homozygous) 
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plots for days to heading are shown in Fig. 14 and for all remaining traits in (Appendices 2-7). A 

large number of associations were observed for most of the traits (except Fusarium incidence) with 

Naïve model that does not include population structure or a kinship matrix. Further, when population 

structure was included in association (Q-model), still significant associations were found for 

agronomic traits and anther extrusion, but no associations were detected for FHB-resistance related 

traits. On the contrary, when a kinship matrix was considered in the association analysis alone (K-

model), no significant associations were found for any of the measured traits. Similarly, when both 

the kinship and population structure were included together in the analysis (QK-model), no significant 

associations were observed. Interestingly, Fusarium incidence showed zero associations with any 

model used in the analysis. 

Table 5 GWAS models applied to each trait during association analysis and respective marker-trait 

associations for each model. False-discovery-rate (FDR)-adjusted p-values was considered to set 

significance level (α = 0.10). 

 

Manhattan plots and Q-Q plots for days to heading is provided in Fig. 14. The Manhattan plots for 

first two models i.e. Naïve and Q model showed significant associations even with stringent 

Bonferroni correction, but the significance was reduced to zero once cryptic relatedness alone and 

combined with population structure were considered in the latter two models i.e. K model and QK 

model, respectively. While the Q-Q plots for the Naïve and Q model showed a prominent deviation 

even from the start, whereas by adding cryptic relatedness, the deviation was diminished in case of 

both K model. Moreover, in case of QK model where both kinship and population structure were 

taken into account, the last data points again start deviating from the expected value (Fig. 14).  

 

 

 

TRAIT Naïve model Q model K model QK model 

Height 36 49 0 0 

Maturity 3355 147 0 0 

Heading 2134 50 0 0 

Anthers Extrusion 300 185 0 0 

Fusarium incidence 0 0 0 0 

Fusarium severity 2664 0 0 0 

DON 301 0 0 0 
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Figure 14 Manhattan Plots and Q-Q plots for days to heading with all four models used in association 

analysis. A, a refers to Manhattan and Q-Q plot for Naïve Model.  B, b refers to Manhattan and Q-Q 

plot for Q Model. C, c refers to Manhattan and Q-Q plot for K Model. D, d refers to the Manhattan 

and Q-Q plot for QK Model, respectively. Various colours on x-axis of Manhattan plots represent 

individual wheat chromosome, and the dots represent each SNP marker included in the study, whereas 

the filling of dot and its vertical position on vertical -log scale shows the strength of association.  

Horizontal green line on A and B shows Bonferroni’s correction. In the Quantile-Quantile (Q-Q) 

plots, red line shows the expected trend of no association between SNP and trait. Whereas, grey area 

shows 95% confidence interval under the assumption of null hypothesis of no marker-trait association 

and the blue dots above the grey area shows marker trait association.  
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6. Discussion 

Fusarium head blight (FHB) is a deadly disease of cereal crops and affects quality of the produce in 

addition to losses in yield and germination capacity (Tekle et al., 2013). Wheat is an obvious target 

for many fungal pest species worldwide but in Finland, Fusarium graminearum is getting more and 

more importance due to the yearly rise in temperature and probable rotation of maize crop with spring 

wheat, both of which might increase chances of FHB and DON accumulation (Blandino et al., 2010; 

Landschoot et al., 2013). In one study, DON accumulation has shown a positive correlation with 

temperature and humidity in a multi-year yield trial on wheat (Landschoot et al., 2012). Till date, 

DON accumulation in wheat kernels has driven a lot of scientific studies to look for FHB resistance 

in both spring and winter wheat germplasm worldwide but in Finland, notably less reporting was 

done in this regard. Practically, DON is an expensive trait to phenotype in terms of both economy 

and time for plant breeding industry. Today, the utilization of genomic information is vital to speed 

up resistance breeding programs and finding valid correlations between traits that can allow indirect 

selections for expensive traits.  

6.1 Phenotypic data 

A lot of variation was observed for most of the measured traits in the artificially inoculated spring 

wheat experiment. The CV% values for agronomic traits were relatively less as compared to the FHB-

resistance related traits (Table. 2). A higher CV% values for Fusarium incidence and severity might 

be due to cumbersome phenotyping of these traits, especially while dealing with a diverse set of 

genotypes. Similarly, higher LSD values were observed in our study that showed larger variations in 

the data. This might be due to the protocols followed for phenotyping FHB-resistance related traits 

and also non-uniform conditions observed in the field during the whole growing period. It has been 

reported that the uniformity (microclimate changes) of the field affects phenotyping and can possibly 

influence results where such factors will not be taken in to account (van der Burgt et al., 2011).  In 

general, a lower CV% for various traits indicates a reliable phenotypic outcome but, in our study, all 

the traits except heading and height showed a CV% value. This makes our observations in agreement 

with Haikka et al, 2020 for all the oat traits except DON content, which in our case showed lesser 

CV% (29.51%). Similarly, a comparatively higher CV% for DON content was found in a study on 

Oats in Canada (Yan et al., 2010). The mean DON content (18.95 ppm) was found to be more than 

the EU limits i.e. 1.75 ppm indicating that the spawn-inoculation methods was working well and 

could be potentially used for such studies where needed. Whereas, a high magnitude of variability 

observed in our disease related data complements with the situation where disease scoring was done 

earlier in the season for even late maturing genotypes, probably resulting in a false estimation of 
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disease incidence and severity. This also make our results less reliable and evokes a need to repeat 

the experiment and to take measurements on time in relevance to the maturity group of the respective 

genotypes, so that earlier genotypes get an earlier score and late genotypes get score later in the season 

accordingly. It is also recommended to be more careful in terms of crop management to increase field 

uniformity to make phenotyping easy and more reliable.    

6.2 Heritability and Correlations 

The narrow-sense heritability estimates for maturity class, heading and anther extrusion were higher 

(> 60%) as compared to the resistance related traits and plant height (< 50%) (Table. 3). Anther 

extrusion has shown a narrow-sense heritability of about 69% indicating that the trait is highly 

heritable and can be subjected to effective selection in wheat breeding programs. Our results are in 

disagreement with the results by Atashi- Rung and Lucken (1978) who reported low narrow-sense 

heritability for anther extrusion (19%). The higher heritability for anther extrusion in our case depicts 

the influence of major genes controlling the trait in spring wheat population.  

In this study, the time taken by genotypes to initiate heading has shown a significantly negative 

phenotypic (-0.47, -0.34) as well as strong genotypic (-0.8, -0.7) correlation with Fusarium incidence 

and severity, respectively. This implies that the late heading genotypes might have adopted an escape 

strategy to get less prone to initial infection and hence less severe symptoms in contrast to the early 

flowering ones. Although the phenotyping on the late maturing genotypes was also done quite earlier 

which might have an impact on our interpretations. It also seems like the late flowering genotypes 

are less susceptible to the infection and its spread as maturity class has shown negative phenotypic (-

0.49, -0.6) as well as genotypic correlation (-0.6, -0.9) with both fusarium incidence and severity, 

respectively. Similar results were reported in various studies on different wheat germplasm in past 

(Gervais et al., 2003; Paillard et al., 2004; Schmolke et al., 2005). Whereas, DON content has shown 

an unexpected negative phenotypic (-0.3) and genotypic (-0.4) correlation with Fusarium severity, 

and is not in line with other studies on this topic (Haikka et al., 2020). This might happen due to early 

disease scoring of the late maturing genotypes and also with a relatively smaller sample size in non-

uniform field conditions in our case. This argument is supported by a positive phenotypic correlation 

between maturity class and DON content (0.24), implying that the DON accumulation increased with 

time, hence the disease, indicating that the earlier scores were not reliable.  It has been also 

emphasized in past that the development stages might have an effect on DON accumulation in wheat 

kernels (Del Ponte et al., 2007). Although, similar positive correlation between DON content and 

maturity was reported in Oat breeding lines in Finland (Haikka et al., 2020).  It has also been reported 

that FHB infection at later stages of plant development may bring no visible damage, but the kernels 
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may still possess high levels of DON (Góral et al., 2018). Therefore, a keen understanding is needed 

to make valuable conclusions regarding DON accumulation for various plant types. 

Selecting anther extrusion on routine basis could be effective to enhance the frequency of the trait in 

spring wheat breeding programs (Atashi-Rang and Lucken, 1978). Anther extrusion is reported as a 

stable trait in wheat crop with high heritability and breeding can be helpful in further improvement 

of this trait (Muqaddasi et al., 2017a). It has been also suggested that plant varieties can be developed 

with higher anther extrusion and relatively lower plant height to combat with FHB (Lu et al., 2013), 

as the semi-dwarf cultivars are more adopted to today’s cultivation system (Graham and Browne, 

2009). Our data showed that anther extrusion had a significantly moderate negative phenotypic (-0.5) 

and strong negative genotypic (-0.8) correlation with DON content. This implies that the genotypes 

with a higher anther extrusion score may have resisted the DON accumulation conferring resistance 

against DON accumulation. Our results are in agreement with previous studies where negative 

correlation was reported between AE and DON accumulation (Skinnes et al., 2010; Skinnes et al., 

2008). Our results might be helpful in adopting AE as a phenotypic marker for selecting against DON 

accumulation in spring wheat breeding programs. Our recommendations are also supported by a study 

on European wheat germplasm which showed that selections made for FHB resistance on the basis 

of anther extrusion could be helpful without penalising yield (Graham and Browne, 2009). Hence, 

the anther extrusion needs to be tested and verified in a broader range of genotypes at multiple 

locations before including as FHB-marker trait in actual wheat breeding programs in Finland. A path-

coefficient analysis of traits associated with AE can also provide a better understanding of the trait 

behaviour.  

6.3 Population structure and GWAS 

A great importance has been given to the population structure while performing a GWAS study as it 

might result in false marker-trait associations (Matthies et al., 2012). Our data showed decreased 

stratification in this experiment and no obvious population structure was observed for our genotypes. 

The first and second PC accounted for 5.9% and 4.9% variation respectively (Appendix. 1). Our 

plant material was mainly composed of breeding lines from breeding programs that might result in 

lower variation compared with other studies on the same subject with oat plants (Haikka et al., 2020).  

In this study, the data acquired from artificially inoculated field experiment depicted no significant 

genome-wide association with FHB-resistance related traits. Precisely, no significant associations 

were detected for both agronomic and FHB-resistant traits with mixed linear model. Furthermore, Q-

Q plots become more closer to the expected values after adding kinship into the model. On the other 
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hand, Q model after correcting with population structure does not make any significant change in Q-

Q plot to follow the expected trend (Naïve Model). Hence, it can be concluded that correcting for 

population structure alone in our material was not sufficient and might have caused an overestimation 

of marker-trait association in case of Q-model. But including kinship matrix in the association (K 

Model), all the false associations were diminished showing that a high magnitude of cryptic 

relatedness is affecting the analysis. This is logical to understand that there is a possibility of close 

relatedness among the germplasm as it is composed of breeding lines with possibly shared pedigrees.  

Interestingly, no marker-trait association was observed in case of Fusarium incidence even with the 

model that does not consider population structure (Naïve) and relatedness (Q) which otherwise result 

in false associations. This suggests that the phenotypic data was not reliable and phenotyping for FHB 

resistance was not done properly. One reason could be that only one genotype with Fhb1 gene was 

included, which probably reduced the success of association mapping. This was also emphasized by 

Rex Bernardo (2016) that an association study carried out with a population with relatively low 

frequency of resistant alleles seems not to be successful (Bernardo, 2016). Hence, it is recommended 

that to get more realistic and consistent results, the study should be repeated with the inclusion of 

more lines with Fhb1 gene in fixed state.  
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7. Conclusion  

There was a high magnitude of variability present in the tested germplasm for both agronomic as well 

as FHB-resistance related traits. Days to heading, maturity and anther extrusion were the highly 

heritable traits compared to plant height and FHB-resistance related traits. No marker-trait 

associations were found in the current study indicating the possible influence of relatedness among 

the genotypes and inclusion of only one line with Fhb1 gene in fixed state in the study. An unexpected 

negative correlation between DON accumulation and Fusarium severity was found, implying 

inaccuracies in phenotyping the disease in the artificially inoculated spring wheat field. Whereas, a 

negative correlation between anther extrusion and DON content was found to be the most interesting 

result of the study. Apart from repeating the experiment by rectifying identified gaps, it is highly 

recommended to study anther extrusion in detail with a special reference to breeding spring wheat 

against Fusarium head blight in Northern Europe.  
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10. Appendices 

10.1 Appendix 1: PC plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Principal components showing the variation explained by each PC1 and PC2 
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10.2 Appendix 2: Scree Plot  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scree plot representing the variation explained by each PC 
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10.3 Appendix 2: Manhattan and Q-Q plot for Height  
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10.4 Appendix 3: Manhattan and Q-Q plot for Maturity class 

 

 

 

 

 



53 
 

 

10.5 Appendix 4: Manhattan and Q-Q plot for Anther extrusion 
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10.6 Appendix 5: Manhattan and Q-Q plot for Fusarium incidence 
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10.7 Appendix 6: Manhattan and Q-Q plot for Fusarium severity  
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10.8 Appendix 7: Manhattan and Q-Q plot for DON content  

 

 

 

 


