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Abstract

The demand for single-cell level data is constamtbtyeasing within life sciences. In order to
meet this demand, robust cell segmentation methwatscan tackle challenging vivo tissues
with complex morphology are required. However, ently available cell segmentation and
volumetric analysis methods perform poorly on 32ag®es. Here, we generated ShapeMetrics, a
MATLAB-based script that segments cells in 3D adomyglperforming unbiased clustering using a
heatmap, separates the cells into subgroups aogotditheir volumetric and morphological
differences. The cells can be accurately segregaecbrding to different biologically
meaningful features such as cell ellipticity, losgaxis, cell elongation, or the ratio between cell
volume and surface area. Our machine learning beggat enables dissection of a large amount
of novel data from microscope images in additionthie traditional information based on
fluorescent biomarkers. Furthermore, the cellsiffeidnt subgroups can be spatially mapped
back to their original locations in the tissue iradg help elucidate their roles in their respective
morphological contexts. In order to facilitate thensition from bulk analysis to single-cell level
accuracy, we emphasize the user-friendliness omthod by providing detailed step-by-step
instructions through the pipeline hence aiming &ach users with less experience in
computational biology.



Introduction

Within the past decade, the criteria for high gyadiata onin vitro cells, and increasingly on
intact tissues, are shifting towards a demand ifogle-cell level data analysis. Acquisition of
data at this resolution creates pressure to inctuseputational methods to complement basic
biological studies (Yanai and Chmielnicki 2017). Feparate cells in 3D, usage of cell
segmentation methods is a necessity in order teeehobust, reliable results. Yet, although
computational methods for cell segmentation haven lavailable for decades (Hodneland et al.,
2013, Meijering, 2012), many biologists still cheds use at least partially manual approaches,
even for complicated quantitative analysis purpgdemann-Hella et al., 2018, Li et al., 2019,
Gordon et al., 2018), and thus remain vulnerablsé&ocurate measurements and restricted to
only eliciting a small proportion of the informatidheld within the data acquired by advanced
microscopy. One of the reasons for this gap has libe simple lack of scientists with
overlapping skills in computer science and biologijch has rapidly improved during the past
decade with the new generation of scientists halbetter computational knowledge. Given that
most computational methods to accomplish cell segatien were originally developed for
applications in other fields (computer vision, robs, materials science, medical imaging) and
are often tailored to meet the needs of the pdatictissue in question (Meijering, 2012),
unavailability of user-friendly and cost-effectiigeneral” analysis software created specifically
for complex biological tissues has also played k.roEven today, when image analysis
techniques are constantly improving in order tovedhe problems of imaging data complexity
and dimensionality, these segmentation applicatiares not trivial and still fail to catch

everything a human eye can see.

The majority of the information obtained from adead microscopy images in biomedicine as
well as cell and developmental biology today isdoiasn visualization of particular molecules in
their biological milieu, such as specific transtgipr proteins, by using fluorescent dyes. Less
effort has been put on the analysis of morpholdgit@nges in a given tissue and how they
correlate with a certain phenotype or cellular fioxc Here, we provide a user-friendly,
straightforward pipeline for machine learning-basetl segmentation, based on our previous
pipeline for Spatial Genomic Analysis, a methodt tlggoups individual cells based on

transcriptional profile similarity in their origihdissues of origin (Lignell et al., 2017). In our



modified version here, we generated detailed iostas for unbiased grouping of the cells, via
creation of a heatmap, based on novel morpholodeatures that we created in MATLAB.
Notably, unlike several other current software paogs that segment cells based on nuclear
recognition, ShapeMetrics is based on staining hed plasma membrane, which enables
volumetric measurements of the individual cells. ¥&&ted our script on different sample types
including mouse embryonic kidney, chick neural tubed large human epitheliah vitro
spheroids. The results show clear and statisticgilipificant separation of cells within each
tissue according to differences in parameterslbkgest axis of the cell, elongation, ellipticity,
or ratio of cell volume to area. In order to empbaghe user-friendliness and truly make the
script approachable for researchers with minimglegience in coding, we provide a thorough
readme-file with step-by-step instructions. We &adi this software will be a useful tool for a
wide research community using image analysis gésgrdata to gain additional information

regarding variance of cell morphology in any tissfienterest.

M ethods

Overview of the Pipeline

Our ShapeMetrics pipeline consists of three pdrighich the first two are used for the 3D cell
segmentation (both modified from Lignell et al. 1Z). The first part takes advantage of a pre-
existing segmentation software (llastik). This maehlearning based software provides a
superior and unbiased segmentation algorithm agdgkcto immunostained images. Briefly,
llastik is used to create a prediction map thateserns a seed (a matrix) for MATLAB to further
process the image, which significantly improves siegmentation accuracy (Fig 1A, part 1).
The second part of the script (Fig. 1A, part 2)suse MATLAB-based watershed segmentation
for further image processing, which MATLAB as a iy language is specialized in. The
possible gaps in cell borders are connected, aledhblding is used to clean the signal and to set
the size of the cells to finalize the segmentatiimrd (Fig. 1A, part 3), segmented cells in the
image are collected into a single unbiased heatmapdivided into subgroups according to cell
features that we have created here, such as vaignaed morphological measurements in the
post-segmentation analysis. As the final step,sihetial location of cell groups with a certain
morphology can be visualized by “mapping them baoktheir spatial locations in the original

tissue image by using a modification of our presioapplication (Lignell et al., 2017).



Instructions for the entire pipeline (as well as the 2D versions presented in this work),
including the creation of the prediction map togetlwith our well-commented script for
segmentation and further analysis as well as ampbeasample can all be found in GitHub:

(https://github.com/KerosuoLab/ShapeMetrics).

Immunostaining of cell membranes

We used z-stacked images from multiple differemtga types to test our script, which is based
on cell segmentation from fluorescent staining @f membranes. A strong staining with high
signal to background ratio is a prerequisite farcessful segmentation (Fig. 1B). Basically, as
long as the membrane staining is readable withiklasur code can be applied to any tissue

sample. For the immunostaining, the following stdorotocols were used.

Mouse husbandry and procedures were approved Heditlation and Finnish Animal Care and
Use Committee. The developing kidney samples frd@.& mouse embryos were cultured for 4
h to allow tissue attachment to a nitrocellulosembiane (Millipore), as described previously
(lhermman-Hella et al. 2014). Samples on membrames subsequently fixed for 10 min in ice-
cold methanol, washed 3x 15 min with PBS-0.3% Tri¥6-100, incubated twice overnight at
+4°C with primary antibody against E-Cadherin (BDafisduction Laboratories) to stain
epithelial tissue, and N-Cadherin (MA1-91128, TheFisher) for the mesenchymal part. The
samples were washed 2x 1 hr, then once overnightmBS-0.3% Triton X-100, and incubated
overnight with the respective AlexaFluor647 and xalEluor488 secondary antibodies

(ThermoFisher).

The chick embryos (stage HH9) were fixed in 4% Riw&rnight and washed five times with
PBS-0.2% Tween for 45 minutes. The embryos wereeeiohdd in OCT embedding compound
(TissueTek) , snap frozen in liquid ;Nsectioned into 20 pm thick cryosections, and
immunostained under “para-film coverslips” overriigh+4°C as previously described (Kerosuo
et al. 2016). A cocktail of E-Cadherin and Betaddat primary antibodies was used to stain the
membranes (BD Transduction 610181 and Abcam ab6Si)larly, for the chick mesenchyme
we used a cocktail of Beta-Catenin and N-CadheMNCD2, Developmental Studies



Hybridoma Bank). The primary antibodies were foleahby AlexaFluor647 secondary antibody
against E-Cadherin, and AlexaFluor488 against Bettenin and N-Cadherin.

The human epithelial spheres were created by usagmbryonic stem cell line H1, which were
induced into neuroepithelial spheroids by usingrevipusly described protocol (Bajpai et al.,
Nature 2010). The spheroids were fixed in 4% PFR®&tfor 30 min. The same E-cadherin and
Beta-catenin primary antibodies as listed abovetlfia chick tissue were used. PBS-0.15%
Triton X-100 was used for permeabilization. Sphesese washed 3x 10 min in PBS-Triton.
Blocking was done with PBS-0.15% Triton X-100 arfib 8lonkey and goat serum overnight
at +4°C. Primary and secondary antibodies werebaiad for 3 days each at +4°C.

Image acquisition

The images were captured using confocal microscadpetsbly, epifluorescent microscopes can
also be successfully used to create high qualiges suitable for the segmentation pipeline (not
shown here, see Lignell et al, 2017). All embryomiouse kidney samples were mounted in
99.5% glycerol on glass slides with coverslip spa¢kvitrogen) and imaged using a Leica TCS
SP8 X confocal microscope (63x oil-immersion objext NA 1.4). The chick neural tube
images were acquired by using the Zeiss Axio imagmfluorescence microscope (40x oil-
immersion objective, NA 1.3, for figure 1B), ancetAndor Dragonfly Spinning disc confocal
microscope (63x water immersion NA 1.7; Figs 4 &hdThe epithelial spheroids were imaged

by using a Nikon A1R+ confocal microscope (40xipimersion objective, NA 1.3.)

Readme-file

As common practice when sharing a code, this patstepwise instruction file to guide the user
through the code using an example sample and expdaievery step of the code. It thus

explicitly explains what to do during each commamdl how to load in new samples. It should
be open on the side as the code is in use. Sorthe @irinciples behind the algorithms and basic
steps are explained separately below. The scrigivisled into sections, and we also refer to

some of the sections here by using (Sect.).

Ilastik machine learning: creating a prediction map



Briefly, llastik software offers a Pixel Classiftaan workflow, which labels pixels according to
the user’s pixel annotations. This part outputsexighat has separated the raw image into values
that represent a range of colors, which ultimatelly provide MATLAB with instructions on

how to interpret the image for further processamgpreviously described (Lignell et al., 2017).

The input files (z-stacks) used for the segmentatieed to be in .tif format. In order to define
cell borders, we used images with strong membraeesc immunostaining. The Pixel
Classification workflow allows users to select gwale of pixel color/intensity, edge filtering,

and texture. We have chosen all these featuresufotrainings.

The next step in this machine learning workflowadrain the random forest classifier to detect
the membrane and cell interiors uniquely for eawhge. In order to start the training, the user
needs to add two labels from the “Training” sectidiese labels correspond to the cell
membrane and cell interior/background, respectivifier the selection of one label, one needs
to mark the pixels that belong to that label bywdng over those areas. The predictions can be
viewed by pressing the “Live Update” button. Thesedictions are displayed with the label
colors on top of the original image. In additiolgstik software provides an uncertainty map
where it indicates the unsure parts of the premhictesults (displayed in turquoise). Users can
draw more label annotations to improve the prenigibthe machine learning. After the user is
satisfied with the prediction results, the predictimap can be saved to the disk by selecting
“Prediction Export” and “Export” (or “Export all’dr multiple images). The probability map file
is saved in .h5 format (Fig. 1A, Part 1).

Segmentation in MATLAB by using water shed algorithm

The next part of the pipeline is to read the injdas (user’s image) into MATLAB. In the first
section of the script, the prediction map is ready using the MATLAB functiorh5r ead
(Sect. 1.2) and converted into a form that is lsabMATLAB. Similarly, the second input file

(the original z-stack image (Sect. 2.2)) is reallyirusing a functiom5r ead.

The next step thresholds the pixel values provigethe llastik prediction map. The prediction

map in MATLAB is a greyscale image with any pixalwes between 0 (black) and 1 (white),



where 0 corresponds to the llastik pixel label foell membrane and 1 for cell
interior/background. We have pre-set four differémeshold values (>0.7 - >0.95) and their
visualizations (sect. 4.1) for the user to testsT™tep is followed by another threshold section
where the minimum and maximum limits for cell siaee set (sect. 4.3). The selected size
threshold values are displayed for all six pixdieathresholds, and the user should choose the
best pixel value from these (sect. 5). Finally, shecess of the segmentation can be evaluated by
comparing the 3D rendering to the original imagd atso by confirming that the cell volumes
are distributed into multiple peaks between thegeaaf 0-16 um?® (the majority of cells in a
given tissue will be in between 50 and 1Q0@°, see Fig. S1A for guidance on good vs bad

histograms).

A seed for the watershed algorithm is created WMi&TLAB function i m nposem n by using
the chosen pixel value threshold together withathginal image (sect. 6). Finally, a label matrix
that assigns an individual label for each cellrsated with the seed and the MATLAB function
wat er shed (Fig. 1A, Part 2).

Mor phological features and their visualization

In order to extract the spatial information fromcleaof the label matrix cells, a MATLAB
functionr egi onprops3 (Sect. 9) is used. This function provides voluntetrieasurements
for 3D images. In our script, we utilize some oégh built-in parameters, like number of cells
and cell volume, while we also created new pararadiy providing additional mathematical
calculations to better meet the requirements f@ type of image analysis on intact tissues.
These include longest axis, cell elongation, ckibtecity, and the cell volume to surface ratio
(Fig. 1C). The cells are hierarchically clusteredading to the parameters described above, and
heatmaps are generated based on their z-scoredsvdlte script provides multiple different
combinations of parameters and their heatmaps. riauptty, we have preselected these five
parameters that we use for our example imagessmihnuscript because we feel they provide
the most useful information in a biological cefiffue context. However, tmeegi onpr ops3
provides several other parameters, which can ballgqutilized by ShapeMetrics if desired

(Supplemental Table 1). For comparison we alsaedisadditional parameters from other



software and conclude thaegi onpr ops3 provides the largest selection (Supplemental Table
1).

In section 11 of the script, users select whichtimap to visualize and identify the cells of
interest by typing in the branches that correspona certain group of cells. The script cuts off
the labels of these selected cells from the orldmiael matrix and assigns color to it to create
pseudo-colored cells. Section 12.7 provides cdtoiaes for this step.

This sub-label is automatically saved to the disktif format, and it can be displayed as a z-
stack in Fiji (Imaged). In Fiji, the original imagand the sub-label can be merged together to

display the spatial location of the sub-label gs@ection.

Results

Testing of ShapeMetricsin a biologically relevant context

We have created a new MATLAB-based method, Shap#ddeto segment cells and analyze
their volumetric details in 3D. According to thepgpline, which is described in the Methods
section, we tested ShapeMetrics on multiple saniptes different species and tissue types to
evaluate the performance of the code in a varietyia@ogical example settings as shown in the
results below.

Results interpretation: 3D rendition and histograms

When a sample image consisting of multiple z-sta¢ks shown with maximum projections of
our example tissues consisting of a ureteric bud déveloping kidney in Figure 2A, a neural
tube in 3A, and a spheroid in 3F) is run through StnhapeMetrics, the result is a 3D label matrix
visualized as a 3D rendition (Figs. 2B, 3B, and 3&)wing the volumetric appearance of the
tissue with cell borders. The segmentation for é¢heamples resulted in 328, 824, and 3690
individual cells, respectively, and the volumetmeasurements for all the respective cells were
calculated. As one of the most important featuites yolume of each cell is presented separately
in the histogram in voxels, the 3D equivalent ofgts, which we converted tom® to provide
the results in a biologically meaningful settinggd: 2C, 6K, S1B). These histograms show the
number of cells with certain volumes in the segmdndample and thereby demonstrate the
success of segmentation. Based on the histograamm#jority of cells have volumes roughly

within the range of 1010° um®. As long as the histogram shows (one or several)s&ian



distributions for the voxel gm®sizes, the segmentation can be considered suctgdstase see

Fig S1A for potential pitfalls).

Results interpretation: heatmaps and spatial visualization

All calculated volumetric measurement values focheandividual cell are presented by using
unbiased hierarchical clustering in a heatmap (F2&s 3D, and 3l). In addition to generating
heatmaps from single images, Shapemetrics allogsid@ag data from bigger data sets as cells

from multiple images can also be clustered intmgls heatmap (Fig. 4A).

In the heatmap, individual cells are clustered o tbp row (x-axis) while the morphological
features are presented on the y-axis (Rg5.3D, and 3I). The heatmap clusters the indiMidua
cells into subgroups (branches) according to tlsemilarity regarding the five volumetric
cellular features, which thus present groups with lor low values in certain parameters in
correlation with other parametric values. The sabgs of interest can be labeled with a color.
The simplified heat map cartoons, typically presdnin the right side of the heatmap (Figs. 2E-
H and 3D, I) demonstrate the representation of @achmeter as high/low values in each color-
selected subgroup. These color-selected subgrampthen be “mapped back” and visualized in
their original spatial context either as dots repreging the centroid of each cell (on the upper
row) or with pseudo-colored cells in 3D (on the &swow, Figs. 2F, 3E, 3J and S1B-C). By
assigning colors to the chosen groups of cellqyengample with corresponding branch colors,
the method thus allows combining the spatial infation of individual cells with their
morphological information. In addition, the viswaition of volumetrically separated cell groups
shows the accuracy of the method, since the vimatédn results can be compared to what is

seen in the heatmap to verify that they match (&gs. 2F, S3C).

Cdlular characterization of ureteric bud in embryonic kidney

We utilized ShapeMetrics for cellular characteii@matof multiple distinct tissues (ureteric bud

and metanephric mesenchyme of mouse embryonic kidttecken neural tube, and human

epithelial spheroids). Our results in the uretdnicd example show that these epithelial cells
clustered into several subgroups (Figs 2A-G). Aamar of T-bud stage that demonstrates known

regional identities and segments of developingamiebud is shown in figure 2D (Kurtzeborn et
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al., 2018). Highlighting of a few interesting clest reveals, as expected, that none of the
volumetric categorieper se represent an anatomically defined structure. Henethe analysis
clearly demonstrates that the vast majority of ¢ebs throughout the ureteric bud epithelium
consist of large and elliptical cells (shown in élin Figs. 2E-G) together with another
population of cells that are smaller in volume wahually long axes and are thus elongated
(shown in yellow in Figs. 2E-G). According to thaimall volume to surface area ratio, these
yellow cells are less round in shape and may tepsesent either cuboidal or polyhedral cells
with more surface irregularities such as cellulaojgctions. Finally, small and round cells
(shown in green in Figs. 2E-G) are located mainlyhie epithelial lumen, and another group of
small but elongated and elliptical cells (shownpink in Figs. 2F-G) are found on the outer

edges of the lumen and the epithelium.

The code also allows users to select the numbkratdires investigated. As an example of fewer
features, grouping the cells shown in Figure 2A-@ based on only their volume and
elongation, we identified a group of large, nonngjated cells (yellow), cells that are small and

not elongated (turquoise), as well as a group d@lisetongated cells colored with pink (Figs 2H-

).

Developing neural tube

As our second example we used chick neural tulgs(BA-B). The simplified structure of the
tissue is demonstrated in a cartoon (Fig. 3C). I&mto our findings in the kidney sample, even
though none of the volumetric clusters selectedhlieyheatmap would fully represent any of the
anatomically known cell types, clear conclusionsldde drawn. For example, we identified the
cells with the longest axis and biggest cell voluimat are elongated and elliptical and marked
them with blue (Figs 3D and E). The vast majoritytteese cells are found in the epithelium of
the developing neural tube and not in the dorsafaierest domain. On the other hand, many of
the neural crest cells are found in the orange fatipn of small round cells with longest axis
located around the dorsal midline (Fig 3E). Therdthinteresting cell group identified
(highlighted in pink in Figs. 3D and E) are smallsize, and although elongated and elliptical,
they are less round in shape (polyhedral or otrssrwiore irregular in their membrane shape).

Majority of these cells are found in the neuraltlegium on the inner edge that faces the lumen.

11



Finally, the green population of small, non-ellgati non-elongated cells with irregular non-

round shapes seem randomly distributed acrossetvedaping neural tube (Figs 3D-E).

Neuroepithelial spheroids

The human ES-cell derived neuroepithelial spheisidarge in size with almost 3700 cells
expanding through 120 um in diameter and serves &ample of our method being applicable
to whole organoids (Fig 3F-J, S1B-C). Althoughfamitl in nature, these spheres spontaneously
form rosettes that mimic neural tube-like strucsuvath small lumens inside the spheres (Fig
3H). Due to the large size of the spheroid andrideonto get a better visualization regarding the
anatomy, the heatmap and pseudo-coloring showigumef 3 only represents half of the sample.

Of note, the characterization results for all 3¢60s were very similar (not shown).

Characterization of the cell features in the epighespheroid (Figs I-J) shows that elongated,
large elliptical cells (blue cells) are concentdaéeound these epithelial rosettes, whereas equally
long and elongated cells that have a smaller vol(yekow) are mostly found inside the lumen.
On the other hand, the pink group that consisinudlier, elongated cells that are not round and
may be cuboidal or otherwise irregular in their mhadue to cellular projections are
predominantly seen outside the rosettes. Finafhallsround cells (green population) are seen

throughout the sphere but seem to be predomintottlised around the rosettes (Figs 3I1-J).

Satistical differences between samples, between clusters, and between devel opmental stages

The results above from three different sample tygleswv that our code works well in all the
tissues we tested. Although all our samples weosea purely as examples with no intention to
generate biologically meaningful data comparable tesearch project, we were able to reveal
trends in cell shapes in certain spatial locatidnsorder to ultimately apply our method,
ShapeMetrics, to acquisition of actual biologicalyevant data, next we wanted to evaluate a) to
what extent do we detect sample to sample variatidnin the defined clusters in a heatmap,
and b) whether the differences in volumetric patansebetween cell clusters are statistically

significant.
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First, we wanted to confirm that cells from paraamples (developing kidney ureteric buds
from three different E11.5 embryos) within a certaluster are not statistically different from
each other. For this, we clustered all segmentéd frem all three samples into one heatmap
and, for this example, chose two clusters that werg different from each other (Fig S2A, light
blue; small and round and yellow; big and elongatkters). We plotted the cells of each
embryo separately according to the five used pamemeThe results, displayed as box plots,
show the cells from parallel samples within onestduare very similar to each other (Fig. S2A).
Next, we tested whether the differences in the liggted clusters, the light blue and yellow
clusters, shown in the heatmap (Figs. 4A,B; S2A&) statistically significant. Since biological
replicates often are presented as individual datatp we compared average values (n=3
embryos) from both groups by plotting them accogdio all five parameters used in the
heatmap. The results showed the differences inulaellcharacteristics identified by the
ShapeMetrics and indicated by different coloring the heatmap indeed are statistically
significant (ttest p<0.01) for all parameters excéfSA, which is in line with the visual color
coding in the heatmap (Fig. 4C). However, box plitso allow the possibility of analyzing the
two groups without taking average values by pooktigindividual yellow cells into a single
group (n=646) and comparing them to the group @ncgells (n=654). This way, the high
amount of data points radically diminished the psga, which was significant (p<0.01) also for

V/SA, although the value was much higher than lierdther parameters (Fig. 4D).

Finally, we wanted to showcase an example of uSingpeMetrics for monitoring of a certain

morphologically distinct subgroup of cells duringveélopment. We chose two timepoints during
kidney development (E11.5 and E12.5 ureteric budpses, respectively). As described above,
we clustered all segmented cells from each devedopahtime point into a single heatmap, and
chose two similar clusters from the two respechieatmaps for comparison: pink cells that are
big, elliptical and have a high V/SA ratio and gell cells that are elongated, elliptical and have
the longest axis but a smaller volume than othls gecluded in the comparison (Fig 5A-B, S3).

For the cells in the pink clusters, when averagees of cells representing each biological
sample are compared (E11.5 n=3; E12.5 n=3), the dlots show similarity (ttest p>0.01)

between the two developmental stages for all fiseameters both in the pink (Fig. 5C) and

yellow groups (Fig. 5D).
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Equal segmentation successin epithelial and mesenchymal tissue

Another possible bias we wanted to rule out waseml tissue type-dependent unequal
segmentation performance. For this, we immunosfaimesenchymal and epithelial tissues
separately within the same developing kidney sarapt evaluated their segmentation success.
As expected, the 3D rendering and histograms ftbrvotumes looked reliable and we did not
find any reason to suspect systematic bias in thecess rate between epithelium and
mesenchyme (Figs. 6A-D). We also successfully seg¢ede mesenchymal cells from the
developing HH9 chicken embryo (Fig. S2B). We codelthat as long as the membrane staining
is strong and the signal to noise ratio is higle, tiesue type is not a contributing factor for the

success of the segmentation.

Combining volumetric data with traditional biomarker results

Finally, we asked whether we can, as an addititesilire of ShapeMetrics, combine volumetric
information with other biomarker expression datahsas protein expression. For this, we used
an image of the developing neural tube that wasunwoatained with an antibody to Sox9 that
marks the neural crest cells in the dorsal part¢Bieo and Bronner-Fraser, 2012; Fig.6E). The
Sox9+ nuclei were segmented in order to define tlasnobjects inside the segmented cells,
taking advantage of the fact that all segmentel$ ¢elour code are assigned an identification
number (Fig. 6E-1). Of all the 824 cells, 150 (18%8re Sox9-positive (Fig 6 J-L). Next we
clustered all the cells and displayed the diffeseriigroups in a heatmap accordingly (Figure 6M
that is also previously shown in 3D). In order ittdfout more information about the volumetric
properties of the Sox9+ cells, we tested which tehgscontained most of them. Indeed, the
majority of the Sox9+ cells (137 cells, 91% ) wéyand in one of the two main branches of the
heatmap that consisted of all the large cells wthlongest axis (divided into three subclusters
shown in yellow, pink and green) and also were elmmgated with high volume to membrane

surface ratio (Figs 6M-0O).

ShapeMetrics segmentation capacity is excellent as compared to other existing methods
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Next, in order to further evaluate the segmentafierformance of our ShapeMetrics code, we
compared it to other existing free software suceProfiler™ (McQuin et al., 2018), ImageJ,
and CellSegm as well as the commercially availabiege processing program Imaris (Fig 7).
Analysis of the same sample with all four methaoslgeerled that while our software performed
equally well or better in 2D as CellProfil&ror ImarisCell (the module designed specifically for
2D and 3D cell analysis), which were the best @f pine-existing methods, our ShapeMetrics
performed extremely well in 3D segmentation andilted in similar cell count and volume
numbers as the commercial ImarisCell. ShapeMetiigsompeted all others in recapitulating
the shape of the cells in the 3D rendering as coedp@ the original image. Notably, none of the
pre-existing non-commercial methods or “basic” limavere able to produce meaningful 3D
volumetric data or cell counts based on membramnisg (Fig. 7, S4 and Table 1).
Furthermore, user-friendliness was not emphasiaexhy of the pre-existing methods including
ImarisCell. To note, even though CellProflfémprovides a package for Linux platform, its usage
in our hands was problematic and seemed poorly atiblp. Furthermore, we also tested
CellSegm (Hodneland et al., 2013), yet another iphbtd approach for cell segmentation.
However, rather than being a complete pipeline tiies other software we used for comparison,
CellSegm is more of a display of a selection ofivitial MATLAB functions (some of which
share similar features that we used in our Shapgddetode) available to be included in the end
user’s script if one were to create a new codénidividual novel needs.

We also performed nuclear segmentation comparidan3D, our method, ShapeMetrics, and
ImarisCell were superior in their performance, vetzarin 2D CellProfildl! was also excellent
(Fig S4, Supplemental Table S2, and Table 1). Hewenve analyzed several additional samples
which showed that if the nuclei were closely pact@edach other, ShapeMetrics was not optimal
in separating them as individual objects (not sHowre don’t thus recommend ShapeMetrics
for nuclear segmentation for densely packed cél&en together, these results suggest that our
method developed here, ShapeMetrics, is excelledtaxcurate for cell membrane staining-
based segmentation and volumetric analysis. Mogtortantly, none of the other methods
provide further analysis on cell shape in a sirggl# level, nor do they provide information on

the spatial location in the tissue.

Discussion and Conclusions
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The techniques for cell and nuclear segmentatiore ieeen available for decades (Meijering
2012), but methods that actually perform accur@es8gmentation and volumetric analysis at
the cellular level are still missing. Depending e particular needs of given experiments,
multiple possibilities for executing the requireakks have been used and recently improved
(Boutin et al., 2018, Caicedo et al., 2017, Hodnelat al., 2013, Lignell et al., 2017, Lou et al.,
2014, Molnar et al., 2016). Although several methgpdrtially take advantage of model-based
choosing of the algorithms and manual optimizatafnparameters using histogram-based
thresholding, these approaches do not provide tooladdressing hurdles that are faced with
robust high-throughput 3D segmentation of complesue samples (Caicedo et al.,, 2017,
Xinghua et al., 2014). Here, we developed Shapebtseta new cell analysis pipeline capable of
performing unbiased segmentation of membrane-staioells in 3D according to their
volumetric and morphological features. ShapeMetaiosurately segregates tissue-residing cells
based on their biologically meaningful features atidws mapping them back to the original
organ structures. By these means, ShapeMetricida®we new, user-friendly method with

unique features for single-cell level data analysis

ShapeMetrics is specialized in separation of irthliai cells based on their morphological
features in 3D. Based on the volumetric differencesnorphology we clustered cells into
subgroups in three different example tissues amstdialized (pseudo-colored) them in their
original images. Our examples show that cells frpanallel samples clustered in the same
population are similar with each other, while diéfleces between cell features in different
clusters are statistically significant. Likewiseplwmetric values of cells clustered in similar
subgroups in two different developmental stagesw@iown to be statistically similar. To note,
an alternative option we did not showcase herecémnparing similarities between biological
timepoints, is to combine all segmented cells fiseweral developmental stages into one single
heatmap and then analyze and compare the spataliZlation of the cells that are clustered

together.
With these results we conclude ShapeMetrics caappéed to generate biologically meaningful

data and to perform comparisons between spati@ddlyelopmentally or phenotypically different

subgroups. In sum, we hope to provide a useful fimotomputational single-cell analysis for
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routine phenotype and tissue characterization.oitfm our goal here is to provide a method for
volumetric tissue analysis, our results in the gxantissues already allow us to also draw
preliminary biological conclusions. None of the emtéd subpopulations in our examples,
however, per se fully corresponded to known anatomically definedmains, which likely
reflects the fact that structural domains are cempind constructed based on several variables
with cell volumetrics only being one of them. Due lack of userfriendly and accurate
volumetric analysis softwares like Shapemetrics,cueently know very little about the impact
of volumetric properties of cells on defining dey@inental stages or pathological states. We
believe usage of our method will thus not only ctengent but also extend the information that
is routinely acquired from imaging data to helpges started in understanding the role of cell

shapes and sizes in tissue architecture on sieglégel.

ShapeMetrics identifies individual cells based q@praximately twenty previously identified
MATLAB parameters. Of these we preselected the ameghink provide the most valuable
information in a cell biological context such ag.eprinciple axis length as well as the new
parameters cell elongation, longest axis, elliptjcor the prediction of round vs. irregular or
more pointy shape. Some similar features are peavid a recent analysis on spheroids, where
the approach combines primary detection of 2D abdnh8clear clusters followed by a robust
watershed-based segmentation. However, while tleihod allows performance of volumetric
calculations for the spheroids and to some extentighes details about the nuclei shapes it does
not allow volumetric analysis of individual cell8dutin et al., 2018). Similarly, another

MATLAB implemented approach, SpheroidSizer, spéxgal in volumetric measurements of

spheroids but not individual cells (Chen et al1£20

The performance of our new MATLAB-based pipelineaeMetrics, was compared to multiple
existing free programs including ImageJ/FIJI, Celfffer™, and CellSegm as well as the
commercially available Imaris and its applicatiomakisCell specifically developed for this type
of 3D and 2D analysis of cells. We conclude thalinanalysis CellProfilé and ImarisCell
performed equally well as our method ShapeMetitswever, ShapeMetrics and ImarisCell
were superior to all the other methods for 3D asialyand ShapeMetrics in fact turned out to be

the only one capable of providing additional infatran about cell shapes and sizes.
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A fairly recent paper nicely brings together a setm, which they named CellSegm, of 13
previously established MATLAB-based applicationsfds that perform 3D cell segmentation
based on both membrane and nuclear staining amtpeosteps for illumination correction and
image smoothening, although none of these scpgtsse contain full segmentation pipelines
ready for usage (Hodneland et al., 2013). An olstaat addressed in our code, segmentation of
overlapping cells, is overcome in a 2D set up ofutar cells by Molnar and colleagues (Molnar
et al., 2016)However, our method uses watershed segmentatiobinechwith llastik machine
learning that greatly improves the accuracy of3Besegmentation of cells intermingled in intact
in vivo tissues. This is similar to CellProfifé;, another open source software that uses similar
advanced algorithms for precise and sophisticaizat&ll segmentation but lacks the ability to

perform true 3D analysis (McQuin et al., 2018).

Furthermore, all these previously existing appiars mentioned above lack the fundamental
feature of spatial mapping, which is a unique feataf ShapeMetrics and our previously
published tool SGA that served as the base forc#le segmentation part in our method
described here (Lignell et al., 2017, Lignell andrésuo 2019). ShapeMetrics works equally
well on images from any tissue type as long asiémbrane staining is successful and outputs a
high signal to noise ratio. Finally, we provide @ption of combining the volumetric analysis
with traditional biomarker expression information further explore the identity of the
segmented cells. These are essential featuregeddor the detailed cellular characterization of
complex tissues and orgams vivo, which together with user-friendliness makes ocnips

applicable for wide range of users, regardlesdssuijpline and computational skills.

In order to reach a wide range of potential usaduding those with limited coding experience,
we have emphasized on making the usage of ourt sipser-friendly as possible by providing
thorough commenting and additional step-by-stepructions in the readme-file, unlike some of
the existing methods we tested for comparison. iaépeople trained in biology with moderate
coding skills successfully tested our code, whicleg us confidence to describe ShapeMetrics
as a user-friendly tool. Furthermore, it's worthting that even though our example samples in

this work are all based on confocal microscopy iesagur previous work shows that the cell
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segmentation part is also applicable for samplesged with an epifluorescent microscope
(Lignell et al, 2017), which we hope will make thee of ShapeMetrics applicable for as many
researchers as possible. In sum, our goal is timasaript and others will push the trend and
demands of our field forward so that the next decadl implement usage of single-cell level
guantitative analysis as a standard approach taobénely included in biomedical and

developmental biology research.
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FigureLegends

Figure 1. Pipelinefor the ssgmentation and volumetric analysis.

(A) Part 1: Ilastik machine learning. The original z-stack image of epithelial ureteric bud in
developing kidney (.tif) used as an input filBixel annotations are made by manual labeling of
the membrane (red) and the background (gré&ejliction overlay based on the labels that have
been used for the training, colors indicate thedipted pixel values: red = 0, green = 1.
Uncertain pixels are marked with cyan to indicate the pixel valug Brediction map is the final
file obtained after full training; the file consssbf a matrix array of pixel values between 0 and 1
with one value corresponding to each pixel in thgioal input imagePart 2: Segmentation in
MATLAB. Prediction map serves as an input file for the MATLAB segmentatiscript.
Tresholding the prediction map selects all the pixels withabue greater than 0.9Substraction
sets the size threshold for the pixel clusterss Hiibws getting rid of the white background (that
survived from the pixel value threshold) and onhe tcells are left.The (watershed)
segmentation is done by using the thresholded prediction mgetteer with the original z-stack
image as the seed for the watershed segmentagorithm 3D rendering of the final watershed
label matrix of segmented cells. Thistogram shows the distributions of the cell volumBart

3: Extraction of spatial parameters in MATLAB. The heatmap visualizes the hierarchical
clustering of spatial parameter values calculatelividually for each cell in the segmented label
matrix. Each row corresponds to one parameter walsesach column corresponds to each
individual cell. Red color points to high represditn of a certain parameter and blue to low,
respectivelySpatial localization is based on the heat map clusters where each clugieved of
cells is mapped back to their spatial location aisdalized by pseudo-coloring the cells using
the same, respective color-co@B) A strong and specific immunostaining is a requiretrfer
successful cell segmentation as shown in singleeplanages of our example tissues, which are
from the top: ureteric bud in E13.5 mouse kidneypeonic HH9 chicken neural tube, and a
human neuroepithelial spheroid. Scale bar 40 um.

(C) Presentation of the volumetric parameters usetldérShapeMetrics scriglumber of cells:
Number of cells is calculated from the final segtednlabel matrix as a number of
distinguishable (separable) group of voxésll volume: Calculated as the number of voxels in

each cell.Longest Axis: Length of the longest axis out of three princips¢sfrom parameter
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“Principal axis length” extracted from Matlab fuimt regionprops3Cell Elongation: Longest
axis length divided by the average length of inedmte and minor axis. High values of
elongation are presented in red and small valuéduie. Cell elipticity: As demonstrated in the
figure, ellipticity is calculated by dividing theulstraction of the longest and minor axis lengths
by the longest axis length/olume-to-surface area ratio: This parameter is calculated by
dividing the volume with surface area. It shows diféerence between round and platonic cells

(polyhedronic or irregular spiky membrane&)ball will display the darkest intensity of red.

Figure 2. Analysis of the segmented ureteric bud in developing kidney: hierarchical
clustering and visualizations. (A) A maximum projection of the ureteric bud raw ima§eale
bar 40 pm (B) 3D rendition.(C) Histogram showing the distribution of the segmented
volumes in cubic micronsD{) Schematic illustration of the ureteric bud in d®ping mouse
kidney. The ureteric bud is an epithelial tube viitnen (pink), and it is compartmentalized into
tip (aqua) and trunk (light blue) regiong&) (Hierarchical clustering of the distinct cells bdn
their differences identified by the script accoglito the five used volumetric features. The
individual clusters with interesting features, afiosas examples here, are color-labelled. The
same clusters are also illustrated in the simplifable on the right. For example, the cells in the
green population are round and small, and theynateelongated. F) Visualization of the
selected subgroups by mapping them back to thenatigmage, as shown by single color
images. The upper panel shows centroids of theeeted cells marked on top of the maximum
projection image. The lower panel shows the viga#ibn of selected clusters by filling the
respective cells from a selected cluster with augeecolor. (5) Magnification and overlay of
two-colored cell clusters, respectively, and allstérs together as indicated by the dashed box.
(H) Hierarchical clustering of the ureteric bud in ei®ping kidney by using only cell elongation
and volume as parameters. The heatmap shows tiséeoe of subgroups, among other
subgroups not color-selected here, that represtrdresmall elongated cells (pink), large non-

elongated cells (yellow), or small non-elongatedsogsualized(l) separately or as an overlay.
Figure 3. Analysis of the segmented neural tube and spheroid: hierarchical clustering and

visualizations. (A) A maximum projection of the neural tube raw ima8eale bar 40 pun{B)

3D rendition. C) Schematic illustration of the developing Hamburgamilton Stage 9 chick
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neural tube. @) Hierarchical clustering of the cells based orirtdéferences identified by the
script according to the five used volumetric featurThe individual clusters of interest are color-
labelled and also illustrated in the simplifiedleabn the right. For example, the cells in the pink
population are small, elongated and elliptic8l) ¥isualization of the selected subgroups by
mapping them back to the original image, as shownsimgle color images as well as
magnification and overlay of two-colored cell clrst, respectively, and all clusters together as
indicated by the dashed box€E) A maximum projection of the raw image of an epiidel
spheroid. Scale bar 40 ufG) 3D rendition. H) Schematic illustration of the neuroepithelial
spheroid/organoid.I] Hierarchical clustering of the cells based ondiféerences identified by
the script according to the five used volumetriatéees. The individual clusters of interest are
color-labelled and also illustrated in the simplditable on the right. For example, the blue cells
are big, have the longest axis and are elongaig¢d/igualization of the selected subgroups by
mapping them back to the original image, as shownsimgle color images as well as
magnification and overlay of two-colored cell ckrst, respectively, and all clusters together as

indicated by the dashed boxes.

Figure4: Differences between hierarchical clustersare statistically significant.

(A) All 5464 segmented cells from three developing &disamples from E11.5 were pooled
into one heatmap. Two subgroups that, accordirthedcheatmap, represent different values for
elongation, ellipticity and longest axis were sedecdor statistical comparison (high in yellow vs
low in the cyan group, as indicated by coloredas)(B) Maximum projections of each sample
image with the number of segmented cells in thgpeet®d embryo displayed in white.
Visualization of the individual cells in the seledtclusters in their respective original sample
images are shown in the lower row with the numbkrsegmented cells belonging to the
respected colored group in the heatmap displayeale ®ars 50 un{C) Comparison of the two
selected groups for each of the five parametepdalisd as box plots of average values (n=3 for
both yellow and cyan groups, respectively) showatistcally significant (ttest p<0.01)
differences for all parameters except volume tdeserarea ratio (V/SA), which is in accordance
with the information provided by the heatmap. The=ldots represent the individual data points.
(D) An alternative way of presenting the same data isool values of the individual cells into

the box plot. Although the results provide the samfiermation than shown in Fig. 4C, the high
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increase in data points changes the p-values toelneendously smaller, and the p-value for
V/SA is now smaller than 0.01. The line in the nedepresents the median value, and the first
and second quatrtiles are defined inside the bo&.Whiskers mark the calculated maximum and

minimum value within the data points counted asltesoutliers are shown in red.

Figure 5: Comparison of ureteric buds at two different depeiental stagegA) All segmented
cells from three developing kidney samples from gmic day E11.5 and E12.5, respectively,
were pooled into two heatmaps. Two colored clustégts distinct profiles were chosen from
both heat maps: pink cells representing largeptethl nonelongated cells while the yellow cells
are small but elongated, elliptical and have thegést axis. The groups were chosen based on
their similar profiles in both heat mag8) Maximum projections of the original images of each
sample together with visualization of the spatighdllization of the individual selected cells in the
original images. Scale bars 50 u(@) The box plots show comparison of the differencethe

five individual parameters within cells in the pigkoups between E11.5 and E12.5, shown as
average values from three different embryos froohesge group (n=3 per stage). As expected,
there is no statistically significant differencetween any of the parameters (ttest p>0.01) in the

pink group (D) or the yellow group. The blue dots represent igvidual data points.

Figure 6. ShapeMetrics can be combined with traditional biomarker analysis. (A)
ShapeMetrics shows no bias between different tiggpes as shown by segmentation of
mesenchyme and epithelium from the same embryaditelk sample stained with two different
cadherins (E- cadherin in red and N-cadherin inemye Scale bar 50 pn(B) Maximum
projections of the distinct channe(§}) 3D renderings an(D) histograms showing distribution
of cell volumes in a realistic biological range i(eplium in the upper row and mesenchyme in
the lower row).(E) Single stack of the original neural tube image ueedhe analysis an(F)
the respective 3D rendition ari@) corresponding histogram of cell volume distriboso(H)
Sox9 immunostaining for the same sample @hthe resulting 3D rendition of the Sox9-positive
nuclei.(J) 3D rendition of the cells that express Sox9 Eleare the same voxel coordinates with
the Sox9 rendition)(K) The histogram of volume distributions as well &9 the spatial
localization of these cells labelled with pseudésdag in the original image(M) Heatmap of

all the cells segmented from the sample. One oftwltemain branches that contains the large
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cells is selected in re@\) Visualization of the spatial localization of thells included in the red
cluster from the heat mafO) Visualization of only the Sox9 positive cells irethed subgroup

presented by pseudo-coloring on the original image.

Figure 7: Comparison of 2D and 3D segmentations performed with ShapeMetrics and
other pre-existing segmentation software. (A) The original image used for all softwaréB)
FIJI: visualization of2D (left) and 3D (right) segmentation results oé thinary watershed
segmentation optiorfC) CellProfiler: Visualization of the2D (top) and 3D (below) monolayer
segmentation results using IdentifyObjects and Meamodules(D) I marisCell: Visualization
of the 2D (left) and 3D (right) segmentation resulE) ShapeMetrics: visualization of the 2D

(left) and 3D (right) watershed segmentation rasult

Tablel: The quantitative results of the comparison shbat bur code ShapeMetrics outputs
very similar cell numbers and volumes as Imarisdsd]l, on the other hand, outputs a similar
number of cells but the mean volume of the cellsvall as the visualization in figure 7 reveal
that the segmentation is not successful. CellRnmofd not applicable for 3D segmentation of
cells.
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KEY RESOURCES TABLE (Takko et al.)

Reagent or resource \ Source \ Identifier

Antibodies

Mouse anti E-cadherin BD Transduction Cat # 610181
Laboratories

Mouse anti beta-catenin Abcam ab6301

Rat anti N-cadherin Hybridoma Bank MNCD2

Mouse anti N-Cadherin Thermofisher MA1-91128

Secondary antibodies

Molecular probes

Alexa fluor 647, 488

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Human neural crest induction protocol

Bajpai et al, 2010

Neurobasal Medium Gibco Cat #21103049
DMEM/F12 w/ GlutaMax Gibco Cat # 10565018
EGF Sigma Aldrich Cat #E9644

FGF Peprotech Cat #100-18B
Insulin Sigma Aldrich Cat #11070-73-8
Matrigel HESC qualified Cornig Cat# 354277
mTeSR Stem cell technologies | Cat #85850

Critical Commercial Assays

Deposited Data

Experimental Models: Cell Lines




Human embryonic stem cell line H1

Commercial source

the Wisconsin stem
cell bank

Experimental Models: Organisms/Strains

Mouse embryos; C57BL/6JOlaHsd

Commercial source

Envigo

Chicken embryos

Commercial source
local farm

Pavelan
siitoskanala, Finland

Oligonucleotides

Recombinant DNA

Software and Algorithms

Cell segmentation based on volumetric features This paper https://github.com/
KerosuolLab/ShapeM
etrics

ilastik free downloadable

software https://www.ilastik.o
rg/

MATLAB Commercial source mathworks.com

Other
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Figure 5
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Figure 6
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Figure 7

FUJI/Imagel:

- ORIGINAL IMAGE

Watershed

Table 1

Number of cells

Mean Surface 21.1 8.04 167.47 10.22
Area (um?)
Number of cells 821

Mean volume (um3) 27.45 2.364 379.59 401.6
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Table 1

_ CellProfiler m ImarisCell ShapeMetrics

Number of cells

Mean Surface 21.1 8.04 167.47 10.22
Area (pm?)

_ CellProfiler m ImarisCell ShapeMetrics

Number of cells

Mean volume (pm3) 27.45 2.364 379.59 401.6



A MATLAB based pipeline that subgroups cells in intact tissues according to volumetric,
morphological features.

A method aimed to complement tissue and phenotype analysis from 3D microscopy
data in addition to traditional information based on usage of fluorescent biomarkers.
Provides the option of visualization of the spatial location of selected subgroups or
individual cells within the original tissue image.

User-friendliness aims to provide a tool that meets modern needs for single cell level
data acquisition for a broad readership.

Step by step instructions provided for users with limited computational skills.



