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ARTICLE INFO ABSTRACT

Keywords:
Neuronal spike trains

Background: The accuracy of electroencephalography (EEG) and magnetoencephalography (MEG) in measuring
neural evoked responses (ERs) is challenged by overlapping neural sources. This lack of accuracy is a severe
EEG limitation to the application of ERs to clinical diagnostics.
MEG . New method: We here introduce a theory of stochastic neuronal spike timing probability densities for describing
C,Omponen,t analysis X the large-scale spiking activity in neural assemblies, and a spike density component analysis (SCA) method for
Single-subject analysis . . . . . .. . .

isolating specific neural sources. The method is tested in three empirical studies with 564 cases of ERs to au-
ditory stimuli from 94 humans, each measured with 60 EEG electrodes and 306 MEG sensors, and a simulation
study with 12,300 ERs.
Results: The first study showed that neural sources (but not non-encephalic artifacts) in individual averaged
MEG/EEG waveforms are modelled accurately with temporal Gaussian probability density functions (median
99.7 %-99.9 % variance explained). The following studies confirmed that SCA can isolate an ER, namely the
mismatch negativity (MMN), and that SCA reveals inter-individual variation in MMN amplitude. Finally, SCA
reduced errors by suppressing interfering sources in simulated cases.
Comparison with existing methods: We found that gamma and sine functions fail to adequately describe individual
MEG/EEG waveforms. Also, we observed that principal component analysis (PCA) and independent component
analysis (ICA) does not consistently suppress interference from overlapping brain activity in neither empirical
nor simulated cases.
Conclusions: These findings suggest that the overlapping neural sources in single-subject or patient data can be
more accurately separated by applying SCA in comparison to PCA and ICA.

1. Introduction analysis of functional changes in a specific response is often inaccurate

and unreliable at the single-subject level (Litvak et al., 2013; Nikulin

1.1. Present limitations in MEG/EEG

Electroencephalography (EEG) and magnetoencephalography
(MEG) methods are among the most applied in human neuroscience
(Duncan et al., 2009; Tong and Thakor, 2009). The latest MEG/EEG
protocols test advanced cognitive processes and detailed perceptual
discrimination abilities for tasks and stimuli of increasing complexity
(Puce and Hamadldinen, 2017). However, with increasingly complex
protocols the neural sources often need to be obtained from fewer
measurement samples and show smaller amplitudes compared to other
interfering brain activity (Cong et al., 2010). A general problem is that
the evoked response of interest becomes difficult to isolate, and the
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et al., 2011; Scharf and Nestler, 2018). This leads to low replication
rates (Luck and Gaspelin, 2017) and limits the translation of basic
MEG/EEG research findings into clinical applications with the in-
dividual patient (Armanfard et al., 2018; Bishop and Hardiman, 2010).

1.2. Isolating the component of interest from a mixture of components

The measured evoked response MEG/EEG waveforms contain a
summation of overlapping latent components which must be separated
analytically (Luck, 2014). A common solution for isolating a specific
component of interest is the use of a functional localizer (Luck and
Gaspelin, 2017), or analysis window. The time range and the channel
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selection for the analysis window are conventionally defined based on
the maximum amplitude response in the grand average signal across a
group of subjects. A weakness of this method is, however, that other
neural sources can remain interfering with the evoked response of in-
terest within the analysis window. Also, a narrow analysis window
might result in analytical bias, caused by possible inter-subject varia-
tion in the latency and location of the response of interest that may
occur outside the analysis window (Luck and Gaspelin, 2017).

1.3. Source location modelling

Another solution is to separate the overlapping responses by mod-
elling the locations and orientations of the neural sources and their
projections through the brain and skull onto the extracranial MEG
sensors or EEG electrodes (Wendel et al., 2009). However, when more
sources are simultaneously present and the signal-to-noise and inter-
ference ratio (SNIR) (including the interference from spatially and
temporally overlapping neural activity originating from different brain
regions) is low, source location errors of up to centimeters and distorted
source waveforms are commonly observed (Kiebel et al., 2008;
Schwartz et al., 1999; Sharon et al.,, 2007; Vanrumste et al., 2001;
Whittingstall et al., 2003; Zumer et al., 2008). Recently, it has been
considered that part of the source location modelling errors may ori-
ginate from the simultaneous estimation of the source amplitudes, lo-
cations, orientations, and projections within a single model (Wendel
et al., 2009). Instead, it has been proposed to first separate the mixed
sources with blind source separation, prior to modelling the locations
and orientations of the sources (Reynolds and Richards, 2009; Richards,
2004; Tsai et al., 2006; Vigario et al., 2000; Zhukov et al., 2000).

1.4. Blind source separation

With blind source separation applied for MEG/EEG, each compo-
nent is commonly assumed to have a consistent spatial distribution, or
topography (Jung et al., 1998). The component topography is re-
presented by a linear weighting vector that defines the magnitude and
polarity of the projection of the component waveform onto each MEG/
EEG channel, which is often estimated with principal component ana-
lysis (PCA) or independent component analysis (ICA) (Choi et al.,
2005). However, a general weakness of the blind source separation
methods is that they cannot separate temporally overlapping sources
with similar spatial topographies, and they do not distinguish between
sources based on their polarity (Groppe et al., 2008). The spatial to-
pography and the polarity are crucial characteristics for identifying
sources originating from the brain, and sources with similar spatial
topographies are common in MEG/EEG paradigms (Picton et al., 1974).
Therefore, we here suggest applying a novel spike density component
analysis (SCA) method, which in addition to the spatial topography also
models the polarity and temporal shape. Recent work has applied
temporal PCA to estimate consistent temporal components, in addition
to spatial blind source separation for estimating consistent spatial
components (Dien, 2010; Dien et al., 2005, 2007; Kayser and Tenke,
2003). The present work focuses on modelling physiologically con-
strained temporal shapes reflecting the large-scale activity constituted
by individual behavior of the neurons in brain networks.

1.5. Large-scale stochastic neuronal spike trains

The electrical potentials measured with EEG and the magnetic fields
measured with MEG originate from large-scale spiking activity of
neurons and the resulting postsynaptic potentials in neural networks
(Buzsaki et al., 2012; Deco et al., 2008; Hamaéldinen et al., 1993). Each
spike of the single neuron involves an action potential in the axon ap-
pearing typically for durations on the range of 1 ms and a synaptic
current flow with a duration in the range of 10 ms, which typically
results in a local voltage change of 25 mV and a magnetic field of 20
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fAm across 0.1-0.2 mm (Hamaldinen et al., 1993). The spiking activity
observed in intracranial recordings of the electrophysiological re-
sponses to auditory, visual or tactile stimuli of single cortical or sub-
cortical neurons is commonly analyzed with a peristimulus time his-
togram (PSTH) (Brown et al., 2004; deCharms and Merzenich, 1996;
Dorrscheidt, 1981; Filali et al., 2004; Gerstein and Mandelbrot, 1964;
Mukamel et al., 2010; Rodieck, 1962; Shimazaki and Shinomoto, 2007).
The PSTH shows the number of spikes counted in time bins, i.e., the
momentary firing rate in spikes per second, in a time window locked to
the beginning of a stimulus. The spikes in each time bin are counted
across a series of trials of repeated stimulation. Whereas the spike
timing of the single neuron after each single stimulation appears to be
random, the accumulated spike timing across a series of trials reveals
systematic distributions of the spikes across time, which can be de-
scribed with stochastic spike density functions (Barbieri et al., 2001;
Brown et al., 2004; Gerstein and Mandelbrot, 1964; Maimon and Assad,
2009; Rodieck, 1962; Stein et al., 2005; Teramae and Fukai, 2014).

The spike densities, observed as variance in the spike timing of the
single neuron, have been considered to originate from a large-scale
principle of stochastic resonance in neural assemblies, which depends
on the organization of the synaptic pathways (Stein et al., 2005;
Teramae and Fukai, 2014). While the spike timing variability in single
neurons is commonly described with stochastic functions (Aljadeff
et al.,, 2016; Barbieri et al., 2001; Gerstein and Mandelbrot, 1964;
Maimon and Assad, 2009; Shin, 2002; Stein et al., 2005; Teramae and
Fukai, 2014), it has not yet been investigated how the stochastic var-
iance in spike timing might be reflected in EEG and MEG. PSTHs for
peripheral neurons show regular clock-like spike patterns with low
variability in the spike timing, such as in neurons in the brain stem,
while in pyramidal cortical neurons, in particular in association areas,
there is higher variability in spike timing, as observed with intracranial
single neuron recordings (Maimon and Assad, 2009). Interestingly, non-
invasive scalp EEG recordings of evoked responses from the human
brain stem reveal similar narrow time distributions of each brainstem
response component (I, IL, III, IV, V, VI), while the cortical evoked re-
sponses (N1, P2, N2) observed from cortical regions exhibit similar
broader temporal distributions (Picton et al., 1974). Based on these
considerations, we suggest that, in addition to single-neuron spike
timing behavior, also large-scale neuronal activity in MEG/EEG wave-
forms may be systematically described with stochastic spike density
functions (Fig. 1). We here apply the term ‘spike density’ heuristically
by acknowledging that the single neuronal spikes are not directly
measured in the large-scale MEG/EEG waveforms. The spikes produced
by the presynaptic neurons initiate synaptic currents, which cause the
post-synaptic potentials, and the propagation of the post-synaptic po-
tentials within and across the biological tissues results in the electro-
magnetic changes that are measured with MEG/EEG (Buzsaki et al.,
2012; Deco et al., 2008; Haméldinen et al., 1993).

The main generators of the post-synaptic potentials observed in
MEG/EEG waveforms are cortical pyramidal neurons from layers IV-V
(Friston, 2005; HdmAl4inen et al., 1993). At the micrometer scale of the
single neuron, the spike timing of the cortical pyramidal cell has often
been described as a Poisson process (Aljadeff et al., 2016; Barbieri et al.,
2001; Gerstein and Mandelbrot, 1964; Kass et al., 2003; Maimon and
Assad, 2009; Stein et al., 2005; Teramae and Fukai, 2014; Waldert
et al.,, 2013). At the centimeter scale of electrocorticography (ECoG),
EEG and MEG a large number of neurons are involved in generating the
post-synaptic potentials (Hamaéldinen et al., 1993) initiated by the
Poisson-shaped spike densities, and Poisson processes with large num-
bers of events can be approximated by Gaussian probability density
functions (Tseng, 1949). Also, a recent MEG/EEG simulation study
(Beauducel, 2018) shows that temporal Gaussian functions can model
the true morphology of temporally overlapping evoked response com-
ponents more accurately in comparison to PCA and ICA. The study by
Beauducel (2018) introducing the temporal Gaussian functions was
based on simulated MEG/EEG waveforms, which were first
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Fig. 1. Modelling single-subject EEG waveforms with
stochastic spike density functions. The top panel shows an

example of a butterfly plot and scalp topography for a single-
subject average evoked response (ER) measured with EEG
(here the mismatch negativity or MMN response). In the
bottom, the parameters for the same data modelled with
temporal Gaussian density functions are illustrated. For two
optimally fitted Gaussian functions the parameters y; and p,
denote the expected latencies and the o; and o, the standard
deviations in the time domain; the parameters a; and a, in-
dicate the MMN component amplitudes. The estimated pro-
jection’s weights on the EEG electrodes are denoted W; and
Wo; right to the butterfly plot the scalp topographies for Wy
and W, are shown (cold colors indicate negative values and
warm colors positive values). (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred
to the web version of this article.)
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decomposed with temporal PCA, and the Gaussian functions were fitted
to the temporal PCA components and optimized with Procrustes rota-
tion. We here suggest that MEG/EEG waveforms measured from human
subjects can be modelled directly by temporal Gaussian functions (see
Methods section, Formula 1).

1.6. Research questions and hypotheses

In Study 1 we investigated whether single-subject average evoked
responses (ERs) measured with EEG and MEG can be modelled by
stochastic functions. The modelling performance of Gaussian functions
was measured in percent explained variance and compared to the
modelling performance of gamma and sine functions. Also, we in-
vestigated whether spike density component analysis (SCA) functions
can specifically model the signals originating from the brain or other
signals such as eye blink artifacts. This was tested by comparing the
modelling performance and the residual signal peak amplitudes for SCA
functions either with preprocessing or without preprocessing, in the last
case including artifactual signals not originating from the brain.

In our second study we tested whether the SCA based on the

Gaussian functions can be applied to accurately isolate a specific
evoked brain response of interest, such as the mismatch negativity
(MMN). Moreover, we investigated whether SCA isolates the MMN
more accurately than principal component analysis (PCA) and in-
dependent component analysis (ICA). First, the root-mean-squared
error (RMSE) of the remaining interfering signals in the baseline time
points surrounding the MMN response was applied as a measure of the
accuracy in suppressing interfering signals (the lower RMSE the higher
accuracy). Also, the group-level ERs have a higher signal-to-inter-
ference and noise ratio (SNIR), since they are based on averages across
more trials compared to the single-subject average waveforms, which
contain more random interference and noise. This means that the
group-level average of the individual ERs more closely reflects the true
topography and waveform morphology of the ERs of interest compared
to the individual ERs (Dien et al., 2007; Luck, 2014). Therefore, to test
the ability of the MMN extraction methods to suppress the interference
and noise in the single-subject ERs we correlated the extracted single-
subject MMN with the group-level one with respect to spatial topo-
graphy and temporal morphology (higher correlations indicate higher
accuracy). Moreover, the number of estimated MMN-related
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Table 1
Relationships between spike densities and MEG/EEG waveforms.
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Waveform analysis Spike density component analysis

Calculation from parameters of fitted Gaussian function

TIME DOMAIN

Amplitude Maximum spike rate
Latency Expected latency

- Spike timing uncertainty
FREQUENCY DOMAIN

Power Maximum spike rate of neural network loop
Frequency Expected frequency of neural network loop
- Frequency bandwidth of neural network loop
Phase Expected time slot of neural network loop

- Time slot uncertainty of neural network loop
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components was investigated (fewer estimated components indicate
higher accuracy).

Furthermore, in our third study we tested whether previous findings
of individual differences in MMN amplitude related to depressive traits
analyzed using conventional functional localizers (Bonetti et al., 2017)
could be replicated with the SCA method.

Finally, in a fourth study we simulate EEG data to test how much
MMN responses extracted with the SCA, ICA, and PCA methods diverge
from known simulated MMN responses.

2. Materials and methods for study 1
2.1. Repository dataset

A pre-existing dataset was used consisting of 564 average ER wa-
veforms recorded from 94 human subjects each exposed to six different
experimental conditions under the "musical multi-feature no-standard"
(muMUFEns) stimulus paradigm and recorded with 366 channel si-
multaneous EEG (60 electrodes) and MEG (102 axial MEG magnet-
ometers, and 204 MEG planar gradiometers) at the Biomag Laboratory
of the Helsinki University Central Hospital (for further details, see, e.g.
Bonetti et al. (2017)). The MEG sensor positions were aligned according
to the Elekta Neuromag Vectorview™ System (Elekta Neuromag®,
Elekta Oy, Helsinki, Finland). A 64-channel EEG electrode cap fol-
lowing the modified 10-20 system was applied, and the ground elec-
trode was placed on the right cheek and the reference electrode on the
nose tip. All MEG/EEG data was recorded at a sampling rate of 1000 Hz.
Informed consent was obtained from all participants. The dataset was a
part of the data repository obtained under the research protocol named
"Tunteet", approved by the Coordinating Ethics Committee of the
Hospital District of Helsinki and Uusimaa (approval number: 315/13/
03/00/11, obtained on March the 11th, 2012). Data are fully anon-
ymized and here we only used processed data that have already been
published. Specifically, findings related to studies 1-2 were previously
published in studies on noise sensitivity (Kliuchko et al., 2016) and
comparison of artifact correction methods (Haumann et al., 2016), and
for study 3 in papers on the relationship between MMN amplitude and
depressive traits (Bonetti et al., 2017) and working memory skills
(Bonetti et al., 2018). The datasheets applied for statistical analyses in
our studies are attached as supplementary materials.

2.2. Data preprocessing

MEG data was preprocessed with Elekta Neuromag™ MaxFilter 2.2
Temporal Signal Space Separation (tSSS) (Taulu and Hari, 2009) (with
automatic detection and correction of bad MEG channels; default inside
expansion order of 8; outside expansion order of 3; automatic optimi-
zation of both inside and outside bases; subspace correlation limit of
0.980; raw data buffer length of 10s). Afterwards MEG and EEG data
was further preprocessed with the FieldTrip toolbox for Matlab (version
19093, Donders Institute for Brain, Cognition and Behaviour/Max

Planck Institute, Nijmegen, the Netherlands) (Oostenveld et al., 2011)
and Matlab R2013b (MathWorks, Natick, Massachusetts). EEG and
MEG waveforms were downsampled to 300 Hz, highpass filtered at
1 Hz, and lowpass filtered at 30 Hz. EEG channels were inspected and
bad channels corrected with interpolation of the neighboring channels.
Eye blink and ECG artifacts were inspected and corrected with ICA
(Makeig et al., 1996). Trials were extracted for six experimental con-
ditions consisting of (1) intensity, (2) location, (3) pitch, (4) rhythm, (5)
slide, (6) timbre deviants and a standard condition. Any trials with
amplitudes exceeding 100 pV, 2000 fT, or 400 fT/cm were rejected to
reduce influence of potentially remaining artifacts. Averages across
trials were obtained and average ER waveforms for the standard con-
dition was subtracted from the deviant conditions to obtain the evoked
MMN waveforms (for further details, see Bonetti et al. (2017)). A du-
plicate of the same average evoked MMN waveforms with presence of
external artifactual signals was created by excluding the preprocessing
procedures, before the trials and average MMN waveforms were ex-
tracted from the same dataset.

2.3. Spike density component analysis

Assuming that MEG/EEG waveforms in the time domain can be
modelled with Gaussian functions (Eq. (1)), the a parameter describes
the maximum spike rate, which is equivalent to the amplitude of a
component in the MEG/EEG waveform (Table 1). The u parameter
denotes the expected latency, corresponding to the latency of a com-
ponent in terms of conventional MEG/EEG waveform analysis, while
the o parameter defines the spike timing uncertainty or width of a
component in the MEG/EEG waveform (Table 1).

—(-w)?
e 20?2

a21 €8]

The Gaussian function applied in the time domain analysis will re-
sult in another Gaussian function applied in the frequency domain
analysis (Bracewell and Bracewell, 1986). In the frequency domain, the
a parameter describes the maximum spike rate of a neural network
loop, equivalent to the observed power of the oscillation (Table 1). The
u parameter in the frequency domain defines the expected frequency of
the neural network loop, and the p parameter in the phase domain
defines the expected time slot of the neural network loop (Table 1). The
uncertainties in frequency and phase are represented by the o para-
meters for frequency and phase (Table 1).

Another function often considered in spike density analysis is the
gamma function (Eq. (2)) (Barbieri et al., 2001; Gerstein and
Mandelbrot, 1964; Maimon and Assad, 2009). Here the shape para-
meter, k, defines the regularity of the spike timing, where higher value
of k denotes more regular spike timing, which approaches a Gaussian
distribution, while lower value of k denotes more random and skewed
spike timing, differing from a Gaussian distribution (Maimon and
Assad, 2009). For example, in the rhesus monkey neurons in the higher-
level visual association area have been found to show more regular

Gaussian function:f (ta, u, 0) = a
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spike timing, k = 8, compared to the more random and skewed spike
timing of neurons in the lower level visual areas, k < 5 (Maimon and
Assad, 2009).

- =17
r'k)e @)

Gamma function:f (ta, k, ) = a

Moreover, we suggest investigating the sine function (Eq. (3)),
which is the foundation for the Fourier series and Morlet wavelets ap-
plied in analysis of narrowband oscillations in MEG/EEG waveforms:
the theta, alpha, mu, beta, and gamma waves (Pfurtscheller and da
Silva, 1999). Here it should be noted that the sine function reflects
regular changes in the spike rate related to neural network loops in-
volving polarity reversals (not to be confused with the frequency of the
spike rate).

Sine function:f (to, , ¢) = asin(wt + @) 3)

Spike density component analysis (SCA) in the time domain is
performed on each average ER waveform by following an automatized
iterative procedure (see Supplementary Materials Figure A.1) (example
outputs are created with an open source FieldTrip-compatible Matlab
function freely available at https://github.com/nielsthaumann/sca for
decomposing any MEG/EEG/ECoG/iEEG data into SCA components).
With SCA it is assumed that:

1 Components exist at signal-to-noise and interference ratios
(SNIR) > 1. (SNIR here refers to background noise and artifacts, not
overlapping components from the brain).

2 Components differ in time, width across time or topography

The SCA decomposition procedure is similar to PCA and Gaussian
ER Procrustes analysis (Beauducel, 2018); though, since SCA and
Gaussian ER Procrustes analysis find components with specific temporal
shapes, each SCA step begins by finding the maximum amplitude across
channels and time (instead of finding the maximum variance across the
multichannel waveforms). First, the Gaussian function parameters (Eq.
(1) and Fig. 1 bottom) are estimated with the fit Matlab function in the
part of the waveform of the channel with maximum amplitude, on the
time samples that are estimated to be valid with respect to the
SNIR > 1 assumption, which is found by extending the time samples
around the peak amplitude time sample until the nearest local minima
or baseline crossing is reached. The SCA component waveform is
modelled by applying the fitted function parameters. Since part of the
data might contain non-Gaussian signals, if the Gaussian function
parameter estimation fails, i.e., the errors between the modelled and
measured data exceed the 95 % confidence intervals, the raw curve
within the time samples is applied as a substitute instead of a modelled
waveform, while the search for Gaussian shapes of lower amplitudes
continues in the subsequent iterations.

Second, the component weighting matrix, W, ., for the weighting of
each component waveform, n, on each channel, c, i.e. the topography of
each component, is estimated with linear regression of each component
waveform, x,, on each residual channel waveform, y., based on the
expression ), = W, x,, with the Matlab function midivide. To minimize
the influence of false partial correlations between the component and
channel waveforms, the linear regression is based on the complete
range of time samples.

Third, the modelled component waveform is multiplied by the
channel weight vector, W,,, to create a projection of the component
waveform on the channels. Fourth, the component waveform projected
back on the channels is subtracted from the multichannel waveforms to
obtain the residual waveforms: ¢ = y — Wx, where ¢ is the residual
waveforms, y is the measured waveforms, x is the modelled component
waveforms, and W is the modelled channel weight vector.

The SCA procedure is performed, and components are estimated
iteratively. The SCA procedure is based on minimizing the sum of the
residual waveforms across channels and time, where the SCA procedure
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stops when the residual variance increases or reaches zero.

SCA based on Gaussian halves was performed using the same pro-
cedure with the fit function in Matlab, except that the parameters of one
Gaussian function (Eq. (1)) was fitted to the part of the waveform
leading up to the peak amplitude, and a second Gaussian function was
fitted to the part of the waveform following after the peak amplitude.
Also, SCA based on gamma functions was performed using the exact
same procedure, and the parameters of the gamma function (Eq. (2))
were estimated with the nlinfit function in Matlab. SCA with sine
functions was also achieved with the exact same procedure, although
the parameters of the sine function (Eq. (3)) was fitted only to the sine
half-wave with the fit Matlab function, and only the sine half-wave was
applied in the back projection of the components onto the channel
waveforms.

The Gaussian and sine models were available in the built-in curve
fitting Matlab toolbox library models, and they were called 'gaussl' and
'sin1', respectively. Fit starting points for library models are by default
determined heuristically. The toolbox selects new, random initial
guesses for each function call. To our experience, the fitted coefficients
remained the same across repeated tests of the same case indicating that
the optimization is robust to differences in seed points.

The gamma model is not directly part of the available curve fitting
Matlab toolbox library models, and the recommended gamfit Matlab
function does not include the a coefficient, which corresponds to the
amplitude parameter used in the Gaussian and sine models. Therefore,
to match the gamma model with the Gaussian and sine models, it was
necessary to use the nlinfit Matlab function, which allows a function
handle, which here referred to the gampdf Matlab function (the same as
applied in the recommended gamfit function), but with the a (ampli-
tude) coefficient added to match the Gaussian and sine models. The
initial guess of values for coefficients can only be set manually. Here we
applied k = 10 as initial guess of the shape parameter for the compo-
nent, because cases with k=10 (mean k = 8) for regular cortical neurons
were reported by Maimon and Assad (2009). Since the mean value of
the gamma distribution, i.e., the mean latency, u=k0, and with k = 10,
then y = 10*6, and thus 6 = 1/10*u. Therefore, the initial guess of 6
was set to equal 1/10 of the observed peak latency, approximating 1/
10*u. Also, for an initial guess of the a coefficient a value of 1/10 of the
observed peak amplitude was applied. To our experience, initial guess
values of k < 10 in general led to failure of the fitting algorithm, while
other changes in the initial coefficient values for a, k, and 0 did not
appear to affect the resulting fitted gamma coefficients for the com-
ponent. Generally, all fits terminated due to convergence (stopping
criteria based on residual minimization).

2.4. Performance evaluation

The performance of the algorithms was evaluated with Pearson's
product-moment correlation coefficients, r, between each modelled and
measured single-subject ER. The explained variance was expressed as
the mean 7? across channels. In addition, the peak amplitudes (across
the complete time range) were obtained from the residual waveforms,
showing the peak amplitudes in the part of the waveform that could not
be modelled by the SCA components (including any component sub-
stitutes with raw curves applied during the SCA procedure).

2.5. Statistical analysis

Statistical analyses were conducted with SPSS v. 25 (IBM, Armonk,
New York, USA). The performance evaluations showed general ten-
dencies towards high performances, resulting in skewed performance
distributions diverging from normality in the positive direction
(Kolmogorov-Smirnov and Shapiro-Wilk tests shows overall violations
of the normality assumption at p < .001). Therefore, differences in
performance, as defined in the preceding section, were tested with
Friedman's ANOVA by ranks, and post hoc comparisons were conducted
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Fig. 2. An example of a single-subject evoked average waveform decomposed into SCA components. SCA components for a single-subject and stimulus
condition (slide deviant) with the peristimulus time in ms on the horizontal axis and the EEG amplitude of the SCA components in the peak channel in uV on the
vertical axis (irrespective of differences in peak channels across components). Below is shown the topographies of the components (color scales are set according to
the maximum amplitude for each component). Numbers shown next to the component labels (right) and topographies (bottom) designate expected latency in ms.
Component labels (right) are defined by expected latency in ms, name of peak channel, and amplitude (here in pV).

with Wilcoxon signed rank tests.

3. Results of study 1

An example of a typical result of an SCA decomposition with
Gaussian functions is shown in Fig. 2.

Significant differences are observed in the percent explained var-
iance of SCA with Gaussian functions compared to Gaussian halves,
gamma or sine functions, X2(3) = 1519.29, p < < .001 (Fig. 3A). Post
hoc comparisons show that the Gaussian function describes the single-
subject evoked average MEG/EEG waveforms significantly better than
the Gaussian halves (p < < .001), gamma (p < < .001), and sine
(p < < .001) functions (Fig. 3A and Table 2). Also, the Gaussian halves
describes the MEG/EEG waveforms better than the gamma
(p < <.001) and sine (p < < .001) functions, and the sine function
describes the MEG/EEG waveforms slightly better than the gamma
function (p < .001) (Fig. 3A and Table 2). In general, the SCA with the
Gaussian function and Gaussian halves show gradual increases in the
explained variance by the components, while the SCA modelled with
gamma and sine functions fails explaining more variance after the first
component estimate for the peak amplitude in the MEG/EEG waveform
(Fig. 3B and Table 2). There is a relatively high variability in the
number of Gaussian components explaining the individual M/EEG
waveforms: median of 66 Gaussian components and a range between
4-160 Gaussian components (Table 2).

Across measurement modalities, the Gaussian function shows a
slightly higher modelling performance on the average evoked responses
from EEG waveforms compared to the MEG waveforms, while there is
no significant difference in the Gaussian modelling performance on the

MEG magnetometer and gradiometer waveforms (Fig. 3A-B and
Table 2). Interestingly, the shape parameter, k, of the gamma function
shows the highest median value for the EEG (k = 45.7) and lower va-
lues for the MEG magnetometers (k = 34.1) and MEG gradiometers
(k = 34.7), x%2)=19.51, p<10~* indicating lower skewness
(Y= 2/+k) in the EEG (Y(EEG) = .30) compared to the MEG (Y(MEG
mag.) = .34; Y(MEG grad.) = .34) measurement modality.

There is significant decrease in the modelling performance with
Gaussian functions on the evoked average MEG/EEG waveforms that
have not been preprocessed compared to those that have been pre-
processed, p < < .001 (Fig. 3C). Also, the peak amplitudes in the re-
sidual waveforms is larger for the Gaussian SCA models without pre-
processing compared to with preprocessing in the EEG, p < < .001,
MEG magnetometers, p < < .001, and MEG gradiometers, p < < .001
(Fig. 3D-F). The same decrease in performance for unprocessed com-
pared to preprocessed MEG/EEG waveforms is observed for SCA based
on Gaussian halves, p < < .001, gamma, p < < .001, and sine,
p < <.001, functions. Similarly, peak amplitudes in residual wave-
forms are larger without preprocessing compared to with preprocessing
for the Gaussian halves based SCA, in the EEG, p < < .001, MEG
magnetometers, p < < .001, and MEG gradiometers, p < < .001, for
the gamma-based SCA, in the EEG, p < < .001, MEG magnetometers,
p < <.001, and MEG gradiometers, p < < .001, and for the sine-
based SCA, in the EEG, p < < .001, MEG magnetometers, p < < .001,
and MEG gradiometers, p < < .001 (Fig. 3D-F). The grand average
waveforms obtained with all the compared methods are shown in
Fig. 4.
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Fig. 3. The variance in the single-subject average evoked MEG/EEG waveforms is more accurately explained by the Gaussian components (shown in red) compared
to the Gaussian halves (green), gamma (blue) and sine (cyan) components (A). (MAG: MEG magnetometers; GRAD: MEG gradiometers. Bars designate medians and
error bars indicate interquartile ranges.) Also, the cumulative percent of variance explained by the first ten components (in descending order of amplitude) shows an
early onset of the higher accuracy of the Gaussian function during the MEG/EEG waveform decomposition (B). When MEG/EEG preprocessing (for removing
artifactual signals not originating from the brain) is omitted (shown in brighter colors), a reduction in the accuracy of the SCA functions is seen (C), and higher peak
amplitudes remain in the residual EEG (D), MEG magnetometer (E) and gradiometer (F) waveforms after the decomposition into SCA components. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4. Interim discussion 1

The findings in the first study support our hypothesis that large-
scale spike density components in MEG/EEG waveforms originating
from neural networks can accurately be described by Gaussian func-
tions, with median 99.7 %-99.9 % of the variance explained by
Gaussian functions. The single-subject average evoked responses MEG/
EEG waveforms could also to some extent be modelled with Gaussian
halves, however, with lower performance in comparison to the sym-
metric Gaussian functions. While the first component, of highest am-
plitude, to some extent could be approximated by gamma and sine
functions, our findings suggest that the Gaussian function more accu-
rately models the complete set of spike density components in the

single-subject average evoked responses MEG/EEG waveforms. It seems
unlikely that the high performance of the Gaussian function is related to
the high pass and low pass filter response, because the filter has a
constant response shape, while the modelled Gaussian components vary
in width, and the performance of the Gaussian function is still relatively
high without the preprocessing, i.e., with filtering excluded. As with
any MEG/EEG analysis in general, with the SCA method it is necessary
to consider a compromise between the suppression of artifactual signals
while retaining as much of the component of interest across frequency
bands. In addition, it is unlikely that the Gaussian distribution is caused
by timing error in the signal averaging across trials, because the com-
ponent of interest in the single-trial evoked responses is typically
identical in shape with the average single-subject waveform when the
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Table 2

Percent explained variance by Gaussian, Gaussian halves, gamma, and sine functions. Post hoc comparisons for percent explained variance in EEG, MEG
magnetometer (MAG), and MEG gradiometer (GRAD) after decomposing the single-subject evoked responses into Gaussian, Gaussian halves, gamma, and sine
components. Showing median percent explained variance and median number of SCA components. Ranges are shown in parenthesis.

% explained variance (range) Post hoc comparisons, p, for % explained variance Number of SCA components (range)

SCA function Modality EEG MEG mag.

Gaussian EEG 99.9 (29.3-100.0) - - 69 (4-154)
MEG mag. 99.7 (72.9-100.0) < <.001* - 62 (10-160)
MEG grad. 99.7 (88.8-100.0) < <.001 * 265 65 (20-153)

Gaussian halves EEG 96.6 (32.1-99.9) - - 59 (3-72)
MEG mag. 95.1 (50.6-99.5) - - 58 (19-72)
MEG grad. 94.9 (28.3-99.4) - - 59 (7-76)

Gamma EEG 24.7 (0.0-75.6) - - 1(0-1)
MEG mag. 21.0 (0.0-50.5) - - 1(0-1)
MEG grad. 20.8 (0.0-49.0) - - 1(0-1)

Sine EEG 25.9 (0.0-69.7) - - 1(0-1)
MEG mag. 21.6 (0.0-50.3) - - 1(0-1)
MEG grad. 21.4 (0.0-50.2) - - 1(0-1)

stimulus condition remains constant (Gaspar et al., 2011). Moreover,
while the current sources of the spike density might be considered to
move in space as they propagate on the cortex, findings from research
on 'micro-states' suggests that the component topography does not
change significantly across time except in the transitions between

components (Koenig et al., 2014; Lehmann, 1989; Pascualmarqui et al.,
1995), which supports the validity of applying constant channel (c)
weights, W, ., for each component (n). The overlap between compo-
nents when their relative amplitudes change will result in topographies
that through visual inspection appear to be moving across time, even

Gamma Sine
components components

Gaussian halves
components

Original Gaussian

signal components

EEG

MEG
magneto-
meters

MEG
gradio-
meters

EEG,
no pre-
processing

MEG
magneto-
meters,
no pre-
processing

MEG
gradio-
meters,
no pre-

processing

100 200 300 400

T E W0 200 a0 40 oo o
ms ms

Fig. 4. Components extracted with Gaussian, Gaussian halves, gamma, and sine functions across all cases. Showing the grand-average butterfly waveform
plots for the extracted first five SCA components across all 564 cases. The topography is shown next to each waveform by using a 30 ms time window around the peak
latencies of the negative component (MMN) marked with a light blue rectangle (peak latencies: EEG = 116 ms, MEG magnetometers = 113 ms, MEG gradi-
ometers = 110 ms) and the positive component (P3a) marked with a light red rectangle (peak latencies: EEG = 243 ms, MEG magnetometers = 245 ms, MEG
gradiometers = 246 ms). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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though the topography of each separate component might be relatively
constant.

Our findings also showed that the skewness reflected by the fitted
gamma shape parameter was lower for EEG compared to MEG. The
high performance of the fitted symmetric Gaussian functions and the
low performance and higher skewness in the MEG than the EEG with
fitted gamma functions might suggest that partial overlap of latent
symmetric Gaussian components results in more skewed waveform
shapes in the MEG than the EEG. This might reflect that the signal gain
in the measurement angle of the EEG electrodes causes less overlap
between, e.g., the MMN and P3a responses of opposite polarities, while
such overlap might have stronger influence on the signal gain of the
MEG magnetometer and gradiometer sensors. Another explanation
could be that the higher skewness and the slightly lower percent ex-
plained variance in MEG compared to EEG is related to general dif-
ferences in the spatial specificity affecting how much of the complete
spiking distribution is included in the measurements. The measured
part of the large-scale spike timing distribution in a neural assembly
might be most complete and thus most symmetrically distributed in the
largest-scale EEG measurements, less complete and thus more skewed
in the more spatially specific MEG magnetometers and gradiometers,
and most incomplete in the highly spatially specific intracranial mea-
surements that show the highest skewness in the measured spike timing
distribution (Maimon and Assad, 2009).

While the findings in Study 1 suggests that MEG/EEG waveforms
can accurately be decomposed into spike density components with the
SCA method, in the following Study 2, we investigated whether the SCA
method can be applied to isolate a specific evoked response of interest
from spatially and temporally overlapping neural sources with higher
accuracy compared to PCA and ICA.

5. Materials and methods for study 2
5.1. Repository dataset

The repository dataset for Study 2 was the exact same as in Study 1.
5.2. SCA, ICA and PCA decomposition

The SCA decompositions were performed following the same pro-
cedure as in Study 1. The SCA results were compared with those of
principal component analysis (PCA) and independent component ana-
lysis (ICA).

The PCA decomposition was performed by applying the varimax
Matlab function from the EEGLab Toolbox (Delorme and Makeig, 2004)
referred by the FieldTrip Toolbox. PCA is an iterative procedure by
which the waveform explaining most of the variance in the data is es-
timated and subtracted from the data, while subsequent components
explaining most of the remaining variance in the data are repeatedly
estimated (Jung et al., 1998). A constraint is imposed that each weaker
component must be topographically orthogonal to the preceding com-
ponent, in order to increase spatial independence between the com-
ponents (Jung et al., 1998). The PCA was calculated based on the cross-
covariance matrix and by applying the orthogonal Varimax rotation,
which maximizes the variance of the squared loadings of each com-
ponent (Kaiser, 1958). While orthogonal PCA typically succeeds sup-
pressing the signal of spatially dissimilar components explaining less
variance from components explaining more variance, it fails in separ-
ating mixed signals from spatially similar components (Jung et al.,
1998). Also, oblique PCA rotation, which allows components to be
partially correlated, such as Promax rotation, has been tested on si-
mulated EEG data. However, while we here focus on spatial component
analysis, the most reliable findings with oblique PCA have mainly been
observed with temporal PCA, where constant temporal shapes are es-
timated by applying Promax rotation on a constrained PCA subspace
derived from simulated EEG data (Dien, 2010).
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ICA achieves higher spatial accuracy than PCA by separating the
mixed multichannel signals into spatially statistically independent
sources across time (Groppe et al., 2008). However, weaknesses of ICA
concern its dependency on estimating the projection weights based on
statistics obtained across time, whereby its accuracy decreases with
lower SNR (related to higher background noise) (Comon, 1994) and
fewer time samples (Jung et al., 2000). Therefore, ICA is able to isolate,
e.g., eye blink artifactual components accurately, because they exhibit
high SNR and can be estimated based on several time samples in the
continuous MEG/EEG recording (Haumann et al., 2016). However, the
assumptions underlying ICA are violated for brain responses that show
either low SNR in the continuous recording, or few time samples if
signal averaging is applied to increase the SNR. Therefore, the evoked
response waveforms are likely to be distorted when ICA is applied to
decompose these signals (Groppe et al., 2008). Also, if ICA components
are estimated from concatenated averages of MEG/EEG signal across
experimental conditions and subjects, one obtains summary statistics
that ignores the individual variance across conditions, which compro-
mises the single-subject analysis (Groppe et al., 2008).

The ICA decomposition was performed with the Infomax algorithm,
implemented in the runica function for Matlab, which has been shown
to be among the most accurate ICA algorithms for EEG data (Crespo-
Garcia et al., 2008; Delorme et al., 2007) and is also commonly applied
for artifact correction for MEG and EEG data (Haumann et al., 2016).
First, the rank of the average ER waveform was estimated with the rank
Matlab function. The resulting rank number was given as input to the
runica function for the initial PCA-based dimensionality reduction step
prior to the ICA procedure. In cases where the ICA decomposition re-
sulted in imaginary numbers in the component waveforms or topo-
graphies, due to overestimates of the rank, the assumed rank and PCA-
based dimensionality output was reduced by 1, and the ICA decom-
position repeated, until the resulting ICA estimates contained only real
numbers.

5.3. Automatic component of interest extraction based on template match

The stimulus paradigm was specifically designed to evoke MMN
responses, and the investigated dataset contained a total of 1692 cases
of averaged MEG/EEG multichannel waveforms with MMN responses to
be analyzed (564 cases simultaneously recorded with EEG, MEG mag-
netometers, and MEG gradiometers). Since each case was analyzed with
SCA, ICA, and PCA, the resulting set of 5076 decompositions in total
was relatively large for conventional manual MMN identification and
extraction. Moreover, it was important to ensure that the MMN com-
ponents were extracted following the exact same procedure across the
SCA, ICA, and PCA decompositions. Therefore, an automatic extraction
procedure was developed, which was based on a template matching
approach (for similar automation methods, see (Lee et al., 2003) and
(Armanfard et al., 2018)). Since the dataset contained six different
types of deviant stimuli affecting the MMN component, all MMN
components were identified separately for each type of deviant sti-
mulus. The group-level average of the individual ERs more closely
approximates the true topography and waveform morphology of the
component of interest than the individual ERs, because the group-level
waveform has a higher signal-to-interference and noise ratio than the
single-subject averaged waveforms (Dien et al., 2007; Luck, 2014).
Therefore, the grand average group-level MEG/EEG waveforms were
applied as templates (Lee et al., 2003) and matched against the SCA,
ICA, and PCA components.

There is no automatic standard approach to extract an MEG/EEG
component of interest from component analysis (e.g., PCAs or ICAs).
However, in the manual standard approach an expert determines by
visual inspection whether components in the decomposition matches
the typical topography and common waveform morphology of the
component of interest within reliable time points (Jung et al., 1998;
Luck, 2014):
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1 Following the manual standard approach, reliable time points, tcomp,
containing the MMN component waveform in the group-level tem-
plate were isolated by finding the peak amplitude and extending the
selected time points around the peak until they reach the baseline
value at 0. In addition, the t.,m, Was constrained to be within the
typical MMN component range of 75—250ms (N&dtdnen et al.,
2019).

2 In the manual standard procedure, the component topography is
matched with a typical component topography (Jung et al., 1998),
i.e., a common scalp distribution (e.g., for an EEG MMN component
a frontal negativity at Fz and positivity at mastoids). Matches be-
tween components and group-level templates were implemented in
terms of Pearson's correlation r-estimates. The match in component
topography was expressed in r-values, rypo, by correlating each
component topography with the average group-level topography
across the time window t .

3 According to the manual standard procedure the component wave-
form morphology is matched with a typical waveform morphology
to find a deflection in the normal latency range (or frequency band)
(Jung et al., 1998) (e.g., for an MMN component a deflection with
an increase, peak, and decrease in the 75—250 ms latency range).
The component waveform matches expressed in r-values, ryye, Were
estimated by correlating each component waveform projection on
each channel with the group-level waveform for the channel, and
applying the mean r-value across the channels in the time window
tcamp-

4 Next, following the standard procedure of combining the match in
topography and waveform morphology (Jung et al., 1998) a com-
bined R?-value was defined as: R? = Tiopo X Twave, Where components
were taken into subsequent consideration if both ri,p, and ryave Were
positive values (excluding invalid cases of anticorrelations). For
each SCA, ICA, and PCA decomposition, the single-subject compo-
nents were sorted in descending order according to their resulting
R?-values indicating their match with the group-level template.

5 Finally, the component of interest can be composed of more sub-
components in the decomposition (Jung et al., 1998; Luck, 2014).
Therefore, following the order of the R2-values (highest to lowest),
each component was projected and summed into the extracted
channel waveforms, as long as the addition of a component resulted
in an increase in the correlation, r, which was initially set to r = 0.
The correlation, r, was calculated by correlating the projected
component waveform with the group-level waveform in the time
window t.om, and obtaining the mean r across channels. Thereby, 0
or more sub-components matching the MMN topography and wa-
veform morphology were automatically extracted from the SCA,
ICA, and PCA decompositions.

5.4. Performance calculations

The accuracy of the SCA, ICA, PCA methods for decomposing MMN
components and the accuracy of the original MEG/EEG waveforms in
representing the MMN components was evaluated and compared. First,
the ability to remove interfering signals was evaluated by calculating
the root-mean-squared error between the ideal baseline with values of 0
and the waveform values outside the MMN time range t onp. Also, the
group-level topography and waveform morphology have higher SNIR,
because it is based on a signal averaging across more trials compared to
the individual averages, and thereby approximates the true topography
and waveform morphology more than the individual averages (Dien
et al., 2007; Luck, 2014). Therefore, it is relevant also to benchmark the
individual topographies and waveform morphologies for the SCA, ICA,
PCA and original results by correlating them with the group-level to-
pography and waveform morphology. The accuracy of the MMN to-
pography was calculated as the r*-value based on the squared corre-
lation coefficient between the extracted MMN component topography
and the group-level MMN topography within the time points t ,mp. Also,

10
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the accuracy of the MMN waveform was calculated as the mean r*-
value equal to the mean squared correlations coefficients between the
extracted single-subject MMN waveform and the group-level MMN
waveform across channels within the time points t.o.,,. Also, the
number of sub-components representing the MMN with SCA, ICA, and
PCA was counted.

5.5. Statistical analysis

Since the performance values were not normally distributed (most
Kolmogorov-Smirnov and Shapiro-Wilk test results are p < .001), dif-
ferences in performance were, as in Study 1, tested with Friedman's
ANOVA by ranks, and post hoc comparisons were conducted with
Wilcoxon signed rank tests.

6. Results of study 2

The SCA method showed a significantly higher performance in re-
moving the interfering signals overlapping with the individual MMN
responses than the ICA and PCA methods with respect to the EEG,
x3(3) = 1099.50, p < < .001, MEG magnetometers, x*(3) = 1117.01,
p < < .001, and gradiometers, x¥%(3) = 1138.51, p < < .001 (Fig. 5A-
C and Table 3). The best removal of interfering signals was achieved
with the SCA, followed by the ICA, and PCA. The resulting grand
averages of the MMN topographies and waveforms achieved with each
component analysis method are shown in Fig. 6.

The similarity of the single-subject and group MMN topography
differed significantly between SCA, ICA, PCA, and the original,
x2(3) = 178.08,p < < .001 (Fig. 5D). All component analysis methods
resulted in representations of the MMN topography that were more
similar to the group-level topography compared to the original in-
dividual topographies (Fig. 5D and Table 4). There was a slightly higher
similarity between the component and group-level topographies for ICA
compared to SCA and PCA, and for SCA compared to PCA (Fig. 5D and
Table 4). Moreover, the MMN topography was more similar between
the group-level and individual SCA topography for the EEG than for the
MEG magnetometers (p < <.001) and MEG gradiometers
(p < <.001), while no significant difference was observed between
the MEG magnetometers and gradiometers (p = .066) (Fig. 5D).

The similarity between the single-subject and group MMN wave-
forms also differed significantly depending on the applied method,
%2(3) = 434.69,p < < .001 (Fig. 5E). The extracted single-subject SCA
and PCA components showed higher similarity with the group-level
MMN waveforms compared to the ICA components and original single-
subject waveforms (Fig. 6 and Table 4). There was no significant dif-
ference in resemblance with the group-level MMN waveforms for the
SCA components compared to the PCA components. However, the re-
presentation of the MMN waveform with the ICA components was
worse than the original single-subject waveforms (Fig. 5E and Table 4).
There was a minor decrease in the similarity between the group-level
MMN waveform and individual SCA waveforms for the MEG magnet-
ometers compared to the EEG (p < .001) and MEG gradiometers
(p < < .001), while no difference in similarity of the group-level and
individual SCA waveforms was observed for the EEG and the MEG
gradiometers (p = .350).

We also observed a minor difference in the number of estimated
components extracted from the SCA, ICA, and PCA decompositions
representing the MMN, %%(2) = 15.65, p < .001 (Fig. 5F). In general
the MMN is estimated to be represented by one component, however,
post hoc comparisons suggested that there was a tendency of more
estimated components representing the MMN in the ICA compared to
the SCA decompositions (p = .003), while SCA and PCA (p = .052) and
ICA and PCA (p =.157) decompositions tended to contain similar
numbers of estimated components representing the MMN. The SCA
decompositions contained slightly different numbers of estimated
components representing the MMN dependent on the measurement
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Fig. 5. The SCA analysis suppresses the interfering signals significantly more in the EEG (A), MEG magnetometer (B) and MEG gradiometer (C) in comparison to the
ICA and PCA analyses and the original evoked single-subject waveforms. (Results are shown for SCA in red, for ICA in green, for PCA in blue, and for original single-
subject averages in cyan. MAG = MEG magnetometers; GRAD = MEG gradiometers. Bars designate medians and error bars indicate interquartile ranges.). Generally,
the component analyses result in topographies with higher similarity to the MMN group-level topography compared to the original single-subject average evoked
response topography (D). Specifically, the extracted SCA and PCA waveforms more closely resembles the group-level waveform in comparison to the ICA and original
individual waveforms (C). Finally, the single-subject SCA analysis provides the most sparse representation of the MMN response in terms of number of estimated
components representing the MMN (F). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

modality, x%(2) = 7.81, p = .020 (Fig. 5F). The SCA decompositions of
the EEG waveforms contained slightly more estimated components re-
presenting the MMN compared to those for the MEG gradiometer wa-
veforms (p = .001), while there were no differences between EEG and
MEG magnetometer waveforms (p = .063) and MEG magnetometer and
gradiometer waveforms (p = .054).

7. Interim discussion 2

The results of Study 2 show as hypothesized that the novel SCA
decomposition method accurately isolates an evoked response of in-
terest, in this case the MMN, from other interfering neural sources in
the single-subject evoked average MEG and EEG waveforms. In terms of
the accuracy in the isolation of the evoked response of interest, the SCA
method clearly outperforms the ICA and PCA methods. Also, the find-
ings show that the evoked response of interest is more accurately
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represented in the extracted SCA components than in the original
measurements. Moreover, as expected, the ICA decompositions suffered
in particular from non-veridical reproduction of the MEG/EEG wave-
forms. Furthermore, as expected, the PCA components were only par-
tially separated, with interfering signals partially mixed with the
component of interest in the PCA decomposition.

The slightly higher resemblance between the grand average and
individual PCA waveforms compared to the similarity of the grand
average and individual SCA waveforms does not necessarily indicate a
more precise extraction of the MMN response with PCA. The relatively
high resemblance between the original and PCA waveforms could be
explained by a mutual failure in suppressing the overlapping P3a re-
sponse. Fig. 6 supports this assumption, since in both the original wa-
veforms and the PCA waveforms the negative MMN amplitude appears
lower than in the SCA waveforms, and also the zero-crossings
(~200ms) and the peak of the positive P3a response (~250 ms) are
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Table 3

Remaining interfering signals overlapping with component isolated with
SCA, ICA, and PCA. Post hoc comparisons for the root-mean-squared error
(RMSE) from a perfect MEG/EEG waveform baseline of values O in the time
range surrounding the component of interest, tcomp, for EEG, MEG magnet-
ometer (MAG) and MEG gradiometer (GRAD) waveforms when applying SCA,
ICA, PCA or the original waveforms.

Remaining interfering signals (EEG)

Method Median pv Post hoc comparisons, p

SCA 0.005 SCA ICA PCA

ICA 0.103 < <.001 *

PCA 0.385 < <.001 * < <.001 *

Original 1.165 < <.001 * < <.001 * < <.001 *
Remaining interfering signals (MAG)

Method Median fT Post hoc comparisons, p

SCA 0.819 SCA ICA PCA

ICA 5.395 < <.001 *

PCA 13.056 < <.001 * < <.001 *

Original 35.044 < <.001* < <.001 * < <.001 *
Remaining interfering signals (GRAD)

Method Median fT/cm Post hoc comparisons, p

SCA 0.241 SCA ICA PCA

ICA 1.579 < <.001 *

PCA 3.185 < <.001 * < <.001 *

Original 8.442 < <.001* < <.001* < <.001 *

present in the original and PCA waveforms, whereas, as expected, the
positive P3a response seems absent in the SCA waveforms.

While Study 1 and Study 2 showed that the SCA method can be
applied to isolate a specific component of interest in single-subject
evoked responses, it remains to be verified whether SCA is a reliable
method for the study of inter-individual differences measurable in a
specific component. In particular, we tested whether the previous
findings of increased MMN amplitude to pitch and slide deviants
measured in the MEG gradiometers in subjects with higher traits of
depression (Bonetti et al., 2017) could be replicated with the SCA
method.

8. Materials and methods for study 3
8.1. Repository dataset

For Study 3 the same dataset was applied as in Study 1 and Study 2
and in a previously reported study on effects of depressive traits on
MMN (Bonetti et al., 2017). The study included a subset of 75 subjects
rated on the Montgomery—/gxsberg Depression Rating Scale (MADRS)
(Bonetti et al., 2017).

The measured MMN components were categorized according to six
types of auditory deviants that evoked the MMN: 1) intensity deviants
with —6 dB change in sound amplitude, 2) location deviants where the
sound amplitude in one of the stereo sound channels was lowered, 3)
rhythm deviants with shortening of a tone by 60 ms, 4) pitch deviants
with 1.4 % change in tone frequency, 5) slide deviants with gradual
change in tone frequency, and 6) timbre deviants with an "old time
radio" sound spectrum filter-effect (Bonetti et al., 2017).

8.2. Statistical analysis

The mean amplitude was measured in a 30-ms time window cen-
tered on the peak latency in the grand average, measured separately for
each deviant type. As in the previous study the effect was investigated
for the MEG gradiometers (Bonetti et al., 2017), and the combined
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gradiometer channels MEG 1322 + 1323 above the right hemisphere
which showed the largest amplitude was applied for testing with linear
regression. Statistical test results were obtained with linear regressions
between the MADRS score and the extracted mean MMN amplitude for
each type of deviant.

9. Results of study 3

The same effects of individual depression trait on the MMN ampli-
tudes for the spectral features were observed in both the original data
and in the MMN components extracted with the SCA method (Fig. 7 and
Table 5). Increasing depression scores were related to increasing MMN
amplitudes in response to spectral changes (pitch, slide, and timbre) in
acoustic features of the sound stimulation. Also, the effects where re-
plicated for the MMN components extracted with ICA and PCA, how-
ever, with smaller effect sizes (Table 5) and less consistent waveforms
(Fig. 7) compared to the MMN components extracted with SCA.

10. Interim discussion 3

The findings of Study 3 show that inter-individual differences in
MMN amplitudes are preserved when the individual MMN responses
are extracted with the SCA method. However, the true individual MMN
responses are unknown in the empirical MEG/EEG. Therefore, in the
following study we simulate MMN responses, interferences, and noise,
and test how much the simulated MMN responses with interference and
noise extracted with the SCA, ICA, and PCA methods diverge from the
true simulated MMN responses.

11. Materials and methods for study 4

11.1. Simulation of controlled realistic Gaussian signals, interferences, and
noise

MMN signals and P3a interferences were simulated based on rea-
listic empirical responses to three auditory spectral deviants (pitch,
slide, and timbre deviants). The SCA method was applied to fit Gaussian
function parameters and channel weights to the empirical MMN and
P3a grand average responses from the dataset applied also in Studies
1-3. The modelled realistic MMN responses were applied for the si-
mulated MMN signals and the P3a responses for interferences. Also,
realistic empirical alpha wave interferences were simulated by applying
the SCA method to derive an alpha half-wave cycle. Based on the
Gaussian function parameters, a regular time series of Gaussian-shaped
alpha half-waves were simulated at different latencies to imitate rea-
listic alpha waves at a realistic frequency of 10 Hz. Finally, white noise
was simulated with the randn Matlab function. The simulated MMN,
P3a, alpha, and noise waveforms are illustrated in Fig. 8.

EEG MMN waveforms were simulated at amplitude values
0.50-5.00 pV with a step-size of 0.50 uV, P3a waveforms at amplitude
values 0.50-10.00 pV with a step-size of 0.50 pV, and alpha waveforms
at amplitude values 0.25-5.00 pV with a step-size of 0.25 puV. A con-
stant EEG noise amplitude value of 0.5 uV was applied. The noise was
pre-processed with a 1 Hz high-pass and 25 Hz low-pass filter by fol-
lowing the same procedure as in the empirical MMN studies (1 s extra
noise for filter padding was added before and after the final applied
noise segment to avoid filter distortion at the edges of the noise seg-
ment). The average filtered noise across 100 trials was applied in the
simulation. The amplitudes for each MMN, P3a, and alpha waveform
were tested in each possible combination, which resulted in 4000 wa-
veforms (each with 60 channels and 151 time points) with tested am-
plitude combinations for each of the pitch, slide, and timbre deviant
responses (Fig. 8A).

The simulated MMN signals and alpha and P3a interferences were
weighted by their channel weights obtained from the empirical grand
averages using the SCA method (Fig. 8B). A constant weight was
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in the component of interest time range, t.omp.

Table 4

Similarity of topography and waveform between single-subject and group
MMN. Post hoc comparisons on topography and waveform similarities for EEG,
MEG magnetometer (MAG) and MEG gradiometer (GRAD) waveforms applying
SCA, ICA, PCA or the original single-subject average waveforms.

Similarity between topography of single-subject and group MMN

Method Median r? Post hoc comparisons, p

SCA .44 SCA ICA PCA

ICA .49 < <.001 *

PCA .41 < <.001 * < <.001 *

Original .36 < <.001 * < <.001 * < <.001*
Similarity between waveform of single-subject and group MMN

Method Median r? Post hoc comparisons, p

SCA .42 SCA ICA PCA

ICA .32 < <.001 *

PCA 42 .345 < <.001 *

Original .36 < <.001 * < <.001 * < <.001*
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applied for a single noise waveform uniformly present on all simulated
channels.

Finally, the simulated MMN signal, alpha and P3a interference, and
noise waveforms were mixed by summing their waveforms (Fig. 8C).
The SCA, ICA, and PCA methods were mainly challenged by inter-
ference between the MMN and alpha wave. The alpha interference
pattern was constructive for the pitch and slide MMN and destructive
for the timbre MMN. Also, there was destructive interference patterns
between the alpha waves and the pitch and slide P3a, which cancel out
interference on the pitch and slide MMN.

11.2. Simulation of approximated real signals, interferences, and noise

The controlled simulation with Gaussian signals and interferences
was based on the assumption that the neural signals measured with
EEG/MEG have Gaussian temporal shapes, which was supported by the
findings in Study 1. Also, we included an additional simulation that did
not require this assumption to be true. The additional simulation was
based on real single-subject EEG waveforms, and the true MMN signal
was approximated with regression methods. In comparison to the
controlled simulation the manipulations of real EEG waveforms make
this additional simulation more realistic, however, since the approxi-
mated true signals partially contains interference and noise, the results
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Fig. 7. Average MEG gradiometer waveforms and topographies of single-subject MMN responses to pitch, slide, and timbre deviants extracted with SCA,
ICA, and PCA for subjects with low (0-5), medium (6-10) and high (11-17) depression scores (MADRS). (Additional waveforms and topographies for EEG and

MEG magnetometers are shown in the Supplementary Materials.).

of this simulation are less reliable.

The additional simulation was based on real average MMN wave-
forms to the three auditory spectral deviants (pitch, slide, and timbre
deviants) from ten single subjects showing clear examples of MMN (see
Supplementary Materials). First, the raw curve in the time segment with
the MMN in its peak EEG channel was regressed on all EEG channels (as
described above in methods Section 2.3). Second, the regressed MMN
curve was subtracted to isolate interference and noise waveforms. The
peak amplitude of the regressed MMN curve was scaled to a constant of
5 pV. The amplitudes of the interference and noise waveforms were
estimated as the standard deviation of the interference and noise wa-
veforms (Haumann et al., 2016). Next, the interference and noise wa-
veform amplitudes were scaled to match SNIRs from 1 to 10 (0.5-5 pV
inverse ratios). Finally, the MMN and interference and noise waveforms
were multiplied by their channel weights and mixed by summing their
waveforms.

11.3. Extraction of MMN responses from SCA, ICA, and PCA
decompositions

The simulated data was decomposed into SCA, ICA, and PCA
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components and the MMN responses were extracted by following the
same procedures as in Studies 2-3. The time range t.,m, for identifying
the MMN was based on the grand average MMN shape for the con-
trolled simulation based on the fitted Gaussian components to the grand
average MMN. The time range t,m, was based on the single subject
MMN for the simulation based on the approximated single subject
MMN.

11.4. Measuring the accuracy in extracting the MMN responses

The accuracy of the SCA, ICA, PCA methods for extracting the MMN
components was evaluated and compared. The error of each method in
extracting the MMN response was evaluated by calculating the mean
across channels of the root-mean-squared (RMS) error between the
extracted and true MMN waveform within the MMN time range tcomp.
Since it is assumed that SNIR > 1 (see Methods section 2.4 above),
only cases where SNIR > 1 were included in the analysis of the results.
The median RMS errors for the MMN responses extracted with SCA,
ICA, and PCA and the original uncorrected MMN was compared sta-
tistically with Friedmann’s ANOVA and Wilcoxon signed-rank tests.
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Table 5

Results of linear regressions between depressive traits score (MADRS) and
amplitudes of MMN responses to each of six types of stimulus deviants.
Bonferroni-corrected significance level isp = .05 / 6 = .008.

Original signal

Deviant B df t P F P r
Pitch 1.80 73 3.13 .003* 9.81 .003* 12
Slide 2.21 73 3.89 <.001* 15.11 <.001* 17
Timbre 1.31 73 2.40 .019 5.77 .019 .07
Intensity 0.38 73 1.16 .248 1.35 .248 .02
Location 1.23 73 1.50 139 2.24 139 .03
Rhythm 0.21 73 0.85 .396 0.73 .396 .01
SCA components

Deviant 8 af ot P F P r
Pitch 1.90 73 2.96 .004* 8.79 .004* 11
Slide 2.58 73 4.13 < <.001 * 17.02 < <.001 * .19
Timbre 1.96 73 3.15 .002* 9.93 .002* 12
Intensity ~ 0.34 73 0.89 .378 0.79 .378 .01
Location 1.09 73 1.21 .229 1.47 229 .02
Rhythm 0.35 73 2.33 .022 5.44 .022 .07
ICA components

Deviant B df t P F P s
Pitch 1.65 73 3.08 .003* 9.50 .003* 12
Slide 2.28 73 3.64 <.001* 13.24 <.001* .15
Timbre 1.27 73 2.57 .012 6.60 .012 .08
Intensity 0.21 73 0.81 419 0.66 419 .01
Location 0.63 73 0.86 .392 0.74 .392 .01
Rhythm 0.03 73 0.67 449 0.45 .449 .01
PCA components

Deviant B df t P F P r
Pitch 1.85 73 2.89 .005* 8.36 .005* .10
Slide 2.58 73 4.04 <.001* 16.31 < .001* .18
Timbre 1.44 73 2.31 .024 5.33 .024 .07
Intensity 0.28 73 0.82 415 0.67 415 .01
Location 1.30 73 1.48 144 2.19 144 .03
Rhythm 0.33 73 2.41 .019 5.79 .019 .07

12. Results of study 4

For the simulation with controlled realistic Gaussian signals the
RMS error at SNIR > 1 differed significantly dependent on whether the
applied method was SCA, ICA, PCA, or the original uncorrected wa-
veforms, x2(1845) = 2077.13, p < < .001 (Fig. 9 top and Fig. 10). In
comparison to the RMS error for the original uncorrected waveforms
(median = 1.037) only the SCA method showed a consistent reduction
in the RMS error (median = 0.731) (p < < .001) (Fig. 9). No sig-
nificant reduction in RMS error was observed for ICA (median = 1.089)
(p = .474) or PCA (median=1.076) (p = .174) compared to the ori-
ginal uncorrected waveforms. The RMS error was significantly lower for
SCA compared to ICA (p < < .001) and PCA (p < < .001). Also, there
was a tendency of the RMS error to be lower for PCA compared to ICA
(p = .004).

The patterns in the RMS error heat maps shown in Fig. 10 suggest
that the higher RMS errors for the ICA and PCA compared to the SCA
method might be related to the constructive and destructive inter-
ference patterns between the MMN, alpha, and P3a. Throughout, the
effect of P3a amplitude is seen to be less determining for the RMS error
than alpha amplitude. Interestingly, this is not the case for ICA where
islands of high RMS error are seen instead of the banded appearance of
the heat maps in most of the other cases. In a few cases the simulations
reveal very noisy RMS landscapes with abrupt changes between
neighboring simulation point in the heat map. These likely represent

15

Journal of Neuroscience Methods 340 (2020) 108743

areas where the RMS error is so low that stable estimation would re-
quire many more simulation steps. In the PCA heat maps the simula-
tions show RMS error to flatline except for small areas in the region of
low P3a and alpha amplitudes. These areas were retained in order to
have the same parameter span in all heat maps.

For the simulation with approximated real signals the RMS error at
SNIR > 1 also differed significantly dependent on the applied method,
%2(300) = 424.09, p < < .001 (Fig. 9 bottom). Again, the overall
lowest RMS error was achieved with SCA in comparison to ICA
(p < <.001), PCA (p< <.001), and the original waveforms
(p < <.001) (for further details, see the Supplementary Materials).
Also, the PCA waveforms showed less RMS error compared to the ICA
(p < <.001) and original (p < < .001) waveforms. Despite less con-
sistent results with ICA, there tended to be an overall reduction of RMS
error with ICA in comparison to the original waveforms (p < < .001).

13. Discussion

We here proposed that the large-scale activity in neural networks
measured with MEG/EEG can be described by spike timing probability
density functions. In the first study we show that Gaussian probability
density functions consistently and with high-accuracy model neural
sources originating from the brain obtained with MEG and EEG mea-
surements, while the Gaussian functions were unable to model arti-
factual non-encephalic signals. The results of the second study show
that the Gaussian probability density functions can be applied to isolate
a specific evoked response (ER) of interest, and it is found that the
isolated component of interest is represented with higher accuracy with
the SCA method than in the original MEG/EEG waveform and in ICA
and PCA decompositions. In the third study we show that the SCA
method is more reliable compared to ICA and PCA for the analysis of
inter-individual differences in ERs, which is relevant to clinical diag-
nosis. Finally, in the fourth study we observe that the SCA method
better than ICA and PCA reduces error caused by interfering neural
signals on simulated brain responses at SNIR > 1. The findings from
the four studies presented here suggest that the introduced spike den-
sity component analysis (SCA) method offers a higher standard of
single-subject MEG/EEG analysis than achievable with original data or
decompositions with ICA or PCA.

13.1. Modelling MEG/EEG waveforms as Gaussian mixtures

The SCA method uses Gaussian parametric modelling to decompose
multichannel MEG/EEG waveforms into Gaussian components. Other
MEG/EEG research has utilized Gaussian Mixture Models (GMM), ei-
ther to estimate soft boundaries for classification or decoding of fea-
tures based on summary statistics derived from MEG/EEG recordings
(Ahmed et al., 2016; Cruz-Garza et al., 2014; Gu et al., 2014; Hasan and
Gan, 2010; Yaghouby and Sunderam, 2015; Yuan et al., 2017), for
spatial clustering of EEG source locations (Farahani et al., 2017), or for
smoothening time-frequency representations of MEG/EEG recordings
and neuronal spike rate recordings (Ba et al., 2014). Results similar to
the current Gaussian parametric modelling method might be achievable
with GMM. Although, we are not aware of studies applying GMM di-
rectly on multichannel MEG/EEG waveforms, and GMM appear to have
some limitations in relation to the present approach. GMM is appro-
priate for estimating parametric solutions for a few mixed Gaussian
components, but in the present case a relatively high number of mixed
Gaussian components were estimated as optimal solutions for model-
ling MEG/EEG waveforms (median = 66). Also, when applying GMM
the number of latent Gaussian components in the data must be pre-
defined (e.g., see Cruz-Garza et al., 2014), though, the Gaussian SCA
modelling approach was successfully able to model the MEG/EEG wa-
veforms using an unknown and highly variable number of Gaussian
components (range = 4-160). Furthermore, while GMM can model
Gaussian shapes in single-or multidimensional spaces, it is here
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Fig. 8. Simulated signals, interferences, and noise. Waveforms of simulated MMN and P3a responses to spectral pitch, slide, and timbre sound deviants, alpha
waves and noise (A). The waveforms with darker colors indicate higher amplitudes. The waveforms are weighted by channel weights for the MMN, P3a, alpha, and
noise (B). The white cross marks the position of the Fz channel for which the waveforms and amplitudes are shown (B). Finally, the simulated signals, interferences,
and noise are mixed in different amplitude combinations (some examples are shown) (C).

necessary to include estimates of spatial weights for projecting each Brown, 1983; Levy and Steward, 1979; Lord et al., 2017; Mcnaughton
temporal Gaussian component across MEG/EEG channels, and it is not et al., 1978; Stein et al., 2005). This means that for a general Hebbian
guaranteed that these spatial weights confine to Gaussian shapes. type of learning to occur, it is necessary that the spikes between two or

more neurons in a neural network, which reflect the neurotransmission
process, are overlapping in time. For Hebbian learning based on neu-
rotransmission from lower level areas to be integrated across time, e.g.

Previous research has suggested that the stochastic spike timing auditory patterns or visual movements, the STDP in higher level asso-
might result from the structure of the dendrite pathways in neural ciation areas would improve with a stochastic spike timing function for
networks (Stein et al., 2005; Teramae and Fukai, 2014). The stochastic systematically increasing the overlap of the spikes. This explanation is
spike timing behavior in specific brain regions might introduce certain co‘rcllsifte'nt Wltb tfle obs.er\./atlons of lgrger spike timing dlstrlbutzlons
functional advantages over non-stochastic spike timing for the internal widths in cort1c::.1 aSS.OC.IatIOI? ar.eas .(PICtOI} et al.,, 1974) c.ompare FO
processing of certain types of stimulus features. In particular, the more narrow spike timing distributions widths observed in the brain
function of learning, and the perceptual and cognitive abilities achieved stem (PICt(:ln .et al., 1'917'4)’dm primary Zomato.se.nsory corte]zz (Forss e.t .al"
through learning, is assumed to be implemented in the neural networks 19?4)’ and in specialized motor an c9gn1t1ve networks comprising
through spike-timing-dependent plasticity (STDP) (Barrionuevo and regions of the frontal lobe, basal ganglia and cerebellum (Kelly and

13.2. Possible role of spike timing in functional specialization
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Fig. 9. RMS error of simulated MMN in the original cases and with SCA, ICA, and PCA extraction.

Strick, 2003; Stein et al., 2005), where the last regions are functionally
specialized in fast processing and accurate timing (Bostan et al., 2010;
Dreher and Grafman, 2002).

13.3. Stochastic neuronal functions in the frequency domain

Until now we have mainly considered MEG/EEG analyses in the
time domain. Based on the present theory and findings of low ex-
planatory power of narrowband sinusoids for evoked MEG/EEG signals,
it could be considered that the observations of cross-frequency cou-
plings in the frequency domain (Buzsaki et al., 2012; Lakatos et al.,
2005) might reflect that high frequency sinusoids are phase-locked to
the slower sinusoids, because the lower and higher frequency sinusoids
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conjointly describe the shape of an underlying non-sinusoidal broad-
band component. While most MEG/EEG analyses in the frequency do-
main focus on narrow-band oscillations (Pfurtscheller and da Silva,
1999), in modern signaling theory investigations of signals from sine
waves to square pulses have found that the Gaussian function provides
an optimal signal shape, which allows a certain amount of timing un-
certainty in a communication system (Turletti, 1996). According to the
Gaussian minimum-shift keying (GMSK) scheme in signaling theory, the
Gaussian function provides an optimal compromise between mini-
mization of the overlap in time and of the occupied frequency band-
width (related by o(frequency domain) = 1/0 (time domain)) (Turletti,
1996). Also, a discussion has recently been introduced specifically
concerning Gaussian shapes in MEG/EEG power spectra (Haller et al.,



N.T. Haumann, et al.

MMN amplitude = 0.5 pV' MMN amplitude = 1.0 pV'

MMN amplitude = 1.5 v

Journal of Neuroscience Methods 340 (2020) 108743

MMN amplitude = 2.0 pV/ MMN amplitude = 2.5 pV/

RMS evmr(yV)

y ; e, g 2 |
g a7 gus § a7 Sns g
2 2 2 E 2
g 25 g 25 | E 24 5 g 24
s s s § 5
s s ©
£ 12 £ 12 £ 129 £ £ 123
< < < < <
25 8 75 10 10
Original *Baa ampitude (1) P3a amplitude (pV) *P3a ampiitude (V) “Paa amphlude (w; b3 amplxlude (uv)
MMN amplitude = 3.0 vV MMN amplitude = 3.5 v MMN amplitude = 4.0 pv MMN amplitude = 4.5 v MMN ampiitude = 5.0 iV
g s 1% ¢ g9 g s g s 1
2 8 o 3 am ] 2 !
= 2 2 2 2
g 2 g o2 g 2 E B o2 g 25 |
5 s § 5 §
s 2 =
£, £ £ 12 £ 2
< < < < <
25 s 7510 25 5 75 10
= *B3a ampitudo (V) P3a amplitude (V) * 32 ampitude (V) *B3a amplitudo (V) P3a amplitude (uV)
_ MMN amplitude = 0.5 uV MMN amplitude = 1.0 pV MMN amplitude = 1.5 pV/ MMN amplitude = 2.0 4V MMN amplitude = 2.5 pV/
2 S 6 S 9 S 5 3 9
2 fE 3 2 2
3 3 y Iy 3
8 8 a1 8 37 < a1 8 arsfy
3 - 3 - 3
E 25 E 2§ E 25 E 25 £ 25|
§ 5 s 3 5
s s s s =
g £ 12 £ 1 £ £ .2
< < < < <
25 5 75 10 25 s 75 10
SCA *Paa ampiitude (V) Paa amplitude (4V) “Paa amplitude (V) *B3a amplitudo () P3a amplitude (V)
_ MMN amplitude = 3.0 WV _ MMN amplitude = 3.5 pV MMN amplitude = 4.0 pv MMN amplitude =4.5 pv MMN amplitude = 5.0 pV
5 9 S 9 j S S S ¢
2 : 3 2
g %’ 73] § § 373)
g k-3 5 3
24| 24| 5 5
§ & £ §°
2
£ 128 f: 125 £ 12 2 2 24
< < < <
25 s 75 25 s 75 10
*Paa amplitude (1V) P3a amplitude (4V) *paa an\phlude (uV) “P3a amplitude (1¥) P3a amplitude (bV)
— MMN amplitude = 0.5 pV MMN amplitude = 1.0 pV MMN amplitude = 1.5 WV MMN amplitude = 2.0 v MMN amplitude = 2.5 )V
3 3 a3 8 1 3 g ars
2 2 = 2 2 2
g 25 g 24 g 24 g 25 £ 25
& & 5 s §
© s s
£ £ 129 £ 129 £ £z
< < < < <
25 5 T 25 5 75
ICA *Psa amplllude (uV) P3a amplitude (uV) Baa amplllude (pV) “Bsa ampllmde (w) P3a amplitude (4V)
MMN zmphlude 30 MMN amplitude = 3.5 pV MMN amplitude =40V __ MMN amplitude = 4.5 iV MMN amplitude = 5.0 pV
s s — 4 S - - S i : y s
3 3 3 - 3 3
3 K o 2, 5,
iR 2 3 2 2
3 3 -3 3 a
£ £
£ £ : § 5
s
£ g S £ £
£ < < £ <
25 s 75 25 s 15 25 5 75 25 s 75
— Pa ampiiude (pV) P3a amplitude (V) P3a amplitude (V) P3a amplitude (V) P3a amplitude (V)
- MMN amplitude = 0.5 pV/ MMN amplitude = 1.0 pV. MMN amplitude = 1.5 pV/ MMN amplitude = 2.0 pV MMN amplitude = 2.5 pV
2 9 2 3 7 3 2
H H H H 3
& £ § § &
2 2 2 2, 2
i s B4 R s
< < < < <
25 s 75 25 s 75
PCA amphlude (uV) P3a amplitude (uV) Psa ampmude (uv) “Faa ammvlude (uVi P3a amplitude (uV)

MMN amplitude = 3.0 pV

MMN amplitude = 3.5 pV/

Alpha amplitude (uV)
Alpha amplitude (V)
Alpha amplitude (V)

25 s 75 25 s 75
P3a amplitude (4V) P3a amplitude (V)

MMN amplitude = 4.0 uV/

_

*B3a ampitude (uV)

MMN amplitude = 4.5 pV MMN amplitude = 5.0 WV

Alpha amphlude ®v)
Alpha amplitude (V)

—

*P3a ampitude (V)

25 s 75
P3a amplitude (V)

Fig. 10. RMS error heat maps for simulation with controlled realistic Gaussian slide MMN in the original cases and with SCA, ICA, and PCA extraction.
(Additional resulting waveforms and the heat maps for the simulated pitch and timbre MMNs are illustrated in the Supplementary Materials.).

2018). The here presented theory of large-scale stochastic neuronal
spike trains and the SCA method could provide a theoretical framework
and method for estimating the power, peak frequency, and bandwidth
and topography of the Gaussian shaped SCA components in the fre-
quency domain.

13.4. Clinical applications of SCA

Auditory brainstem response (ABR) measurement methods are
available to indicate stimulus encoding in the brainstem of patients.
The short-latency (1 —10ms) average evoked ABR can be obtained
through the repetition of a brief auditory stimulus (of 40—500ms
duration) and application of a high-pass filter (with cut-off frequency at
30—-100Hz) to efficiently suppress the relatively slower cortical and
external signals (Skoe and Kraus, 2010). However, most cognitive
processes occur within the cortex (Duncan et al., 2009), and the pro-
blem with overlapping neuronal sources from the cortex is preventing
the use of cortical activity, such as the MMN response, in a clinical
context with single-subject analysis (Armanfard et al., 2018; Bishop and
Hardiman, 2010). We here observe that the SCA analysis provides more
accurate isolation and suppression of overlapping cortical sources

compared to PCA and ICA. Also, we found that SCA replicates a pre-
viously observed effect in a clinical risk population. Hence, SCA allows
translation of cortical responses into single-subject clinical diagnostics.

14. Conclusions

We propose that the large-scale stochastic spiking activity observed
in MEG/EEG measurements can be accurately described by temporal
probability density functions. Findings from our four studies mutually
support the assumption, and the findings suggest that single-subject
MEG/EEG analysis can be improved with an introduced SCA method in
comparison to ICA or PCA. The method and findings presented here are
of particular relevance to the investigations on individual differences in
brain function and single-subject clinical diagnoses.
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