Tran et al. BMC Cancer (2020) 20:368

https://doi.org/10.1186/512885-020-06862-w B M C C ancer

RESEARCH ARTICLE Open Access

Evaluation of the expression levels of ®
BRAF®°° mRNA in primary tumors of
thyroid cancer using an ultrasensitive
mutation assay

Tien Viet Tran'", Kien Xuan Dang®', Quynh Huong Pham?, Ung Dinh Nguyen®, Nhung Thi Trang Trinh?,
Luong Van Hoang®, Son Anh Ho* Ba Van Nguyen®, Duc Trong Nguyen®, Dung Tuan Trinh’, Dung Ngoc Tran®,
Arto Orpana’, Ulf-Hakan Stenman'®, Jakob Stenman®'"" and Tho Huu Ho>*'*"

Check for
updates

Abstract

Background: The BRAF'** gene encodes for the mutant BRAF'*®F protein, which triggers downstream oncogenic

signaling in thyroid cancer. Since most currently available methods have focused on detecting BRAF*** mutations
in tumor DNA, there is limited information about the level of BRAF"¢ mRNA in primary tumors of thyroid cancer,
and the diagnostic relevance of these RNA mutations is not known.

Methods: Sixty-two patients with thyroid cancer and non-malignant thyroid disease were included in the study.
Armed with an ultrasensitive technique for mRNA-based mutation analysis based on a two step RT-gPCR method,
we analysed the expression levels of the mutated BRAF®* mRNA in formalin-fixed paraffin-embedded samples of
thyroid tissues. Sanger sequencing for detection of BRAF'*°* DNA was performed in parallel for comparison and
normalization of BRAF*°% mRNA expression levels.

Results: The mRNA-based mutation detection assay enables detection of the BRAF"2%%F mRNA transcripts in a 10,

000-fold excess of wildtype BRAF counterparts. While BRAF"®* mutations could be detected by Sanger sequencing
in 13 out of 32 malignant thyroid cancer FFPE tissue samples, the mRNA-based assay detected mutations in
additionally 5 cases, improving the detection rate from 40.6 to 56.3%. Furthermore, we observed a surprisingly
large, 3-log variability, in the expression level of the BRAF"®* mRNA in FFPE samples of thyroid cancer tissue.

Conclusions: The expression levels of BRAF"®™* mRNA was characterized in the primary tumors of thyroid cancer
using an ultrasensitive mRNA-based mutation assay. Our data inspires further studies on the prognostic and
diagnostic relevance of the BRAF"*“ mRNA levels as a molecular biomarker for the diagnosis and monitoring of
various genetic and malignant diseases.
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Background

Thyroid cancer is the most frequent endocrine cancer
and the fourth most common cancer in women, with a
worldwide annual incidence of 3.1% [1]. One of the most
important events in the progression of thyroid cancer is
the occurrence of the BRAF"*°° mutation, which can be
detected in 29-83% of cases [2]. This somatic missense
mutation at the nucleotide position 1799 T > A results in
substitution of glutamic acid (E) for valine (V) at codon
600 [3]. The constitutively active BRAFVY60E protein
transduces mitogenic signals from the cell membrane to
the nucleus, thus leading the deregulation of cell prolif-
eration and oncogenesis [4-6]. Detection of the
BRAFY®%F mutation in DNA has been consistently re-
ported as a useful prognostic and diagnostic biomarker
in thyroid cancer (7, 8].

Up to date, there are several methods for BRA
DNA mutation testing, including Sanger sequencing [9],
pyrosequencing [10], allele-specific PCR (AS-PCR) [11],
high resolution melting (HRM) analysis [12], and
COLD-PCR [13]. These methods vary in sensitivity, spe-
cificity, assay complexity and costs. Although Sanger se-
quencing exhibits highly reliable and specific outputs, it
suffers from the risk of handling contamination, costly,
time consuming, and a relatively low sensitivity, requir-
ing a 7-20% mutant allele frequency for reliable detec-
tion [9]. In comparison, allele-specific PCR (AS-PCR),
high resolution melting analysis, COLD-PCR have been
reported to have an analytical sensitivity ranging from
0.1 to 2%, 1 and 3.1%, respectively [11-13].

As an alternative to DNA-based mutation assays,
antibody-based test using the monoclonal antibody VE1
has recently been reported to specifically detect the pres-
ence of mutant BRAFV**F protein in tumor specimens
[14]. This IHC detection enables visualization of the dis-
tribution of BRAFY*** mutant protein at a single-cell
level with semiquantitative readout of protein abun-
dance, thus improving sensitivity and specificity in com-
parison to DNA-based tests. High heterogeneity of
BRAFY®%F expression, causing false negatives, and re-
strictions for other BRAF variants are the main weak-
nesses of this method [15].

Despite various methods for BRA mutation ana-
lysis at both the DNA and protein levels, there is still
limited information regarding the mRNA level of the
mutated BRAFV*?F allele in primary thyroid cancer tu-
mors. The use of mRNA as a template allows for meas-
uring mRNA levels of the mutated and wildtype genes,
which, like protein-based testing, might reflect the func-
tional consequences of the mutated genes in cell and tis-
sue more accurately than assays based on detection of
the mutation in DNA only. Furthermore, the number of
mRNA molecules of a moderately or highly expressed
gene, often exceeds the copy number of DNA
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counterparts by several orders of magnitude, which al-
lows an increased sensitivity of detection.

In this study, we performed BRAF"*°° mutation ana-
lysis using formalin-fixed paraffin-embedded (FFPE)
samples of thyroid tissues from 62 patients, using an
mRNA-based mutation assay with improved sensitivity
to clarify the diagnostic and prognostic relevance of the
level of mutant BRAF"*°° in relation to wildtype BRAF
alleles at the mRNA level.

Methods

Patient samples and nucleic acid extraction

FFPE tissue samples from 62 patients were obtained
from the Department of Pathology, 103 Military Hos-
pital, Hanoi, Vietnam (Table S2). Multiple 10 pm-thick-
ness sections that contain 10 mg of FFPE tissue were
collected, then deparaffinized by mineral oil before ex-
traction of nucleic acids. RNA was extracted using Gen-
Elute™ FFPE RNA Purification Kit (Sigma — Aldrich,
Canada), and DNA was extracted using QIAamp DNA
FFPE Tissue Kit (Qiagen, Germany), according to the
manufacturers’ instructions. The nucleic acid concentra-
tion was determined using an ND-1000 spectrophotom-
eter (NanoDrop, Walmington, DE). In-vitro transcribed
mRNA of the mutated BRAF®%F variant (mutant
mRNA) and wildtype BRAF (wildtype mRNA) was uti-
lized for determination of the sensitivity of BRAF"**%F
mRNA-based mutation assay [16].

Overview of the mRNA-based mutation assay

The principle of Extendable Blocking Probe-Reverse
Transcription (ExBP-RT) assay, which was recently de-
veloped in our laboratory [16], utilizes an extendable
wildtype-blocking probe that competes with a mutation-
specific primer for annealing and extension of the mu-
tant and corresponding wildtype mRNA during reverse
transcription (Fig. 1). This allows for mutation-specific
reverse transcription and subsequent selective qPCR
amplification of ¢cDNA derived from mutated mRNA.
Improvements to the original protocol include optimal
design of the mutation-specific primer and a recently de-
veloped warmstart reverse transcriptase enzyme which is
activated above 40 °C (Table S2). A slow cooling toward
the optimal annealing temperature during reverse tran-
scription ensures that correct priming at a higher
temperature occurs temporally prior to any possible mis-
priming event (Fig. 1c, d). The mutated BRAF"%%%F
mRNA template can thus, be selectively amplified in a
highly specific RT-qPCR assay (Fig. 1e).

Primer and probe design for the BRAF"*°° mRNA-based
mutation assay

In order to segregate mutant and wildtype mRNA tran-
scripts during reverse transcription, we designed a
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Fig. 1 Overview of the BRAF*®?® mRNA mutation detection assay. Mutant BRAF“% mRNA was detected in a two-step qPCR reaction as follows:
) A mutation-specific reverse transcription, utilizing a warmstart reverse transcriptase that is activated at relatively high temperature (40°-50 °C), in
combination with an extendable wildtype-blocking probe and a 5™-tailed BRAF**** mutation-specific primer; Il) selective gPCR amplification of
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mutation-specific primer (Fig. la) and an extendable
wildtype-blocking probe (Fig. 1)b with a sequence of
12-14 nucleotides, complementary to the mutant and
corresponding wildtype mRNA at the mutation site (5'-
AGATTTCACTGTAG-3"). A 5'-tail consisting of 10
nucleotide sequence, unrelated to the target gene, was
incorporated in the mutation-specific primer (5'-
CTCTCCCGTTGATTTCTCTGTA-3"). The mutation-
specific primer was also used as the reverse primer
during qPCR, allowing for selective amplification of
¢DNA derived from mutant mRNA.

Two step RT-qPCR for detection of expressed BRAFV%%
mutation

Reverse transcription was carried out in a 10 pl reaction
containing 1X buffer, 1.875U reverse transcriptase
(WarmStart- Reverse Transcriptase, NEB, USA), 0.5 mM
of each dNTP, 0.125pM mutation-specific primer,
0.8 uM extendable wildtype-blocking probe, and mRNA
template. The cDNA synthesis was performed at 50 °C
for 5 min, after which, the temperature was gradually de-
creased to 40 °C, 1 °C per minute with a final enzyme in-
activation step at 80°C for 15min. Following reverse
transcription, 2 ul of cDNA was transferred to the qPCR
reaction. qPCR was performed in duplicate using the
Rotor Gene Q realtime detection system (Qiagen,
Germany) in a 20 pl reaction containing 1x QuantiTect

SYBR Green master mix (Qiagen), 0.8 uM forward pri-
mer (5'- CATGAAGACCTCACAGTAAA-3'), reverse
primer (5'-CTCTCCCGTTGATTTCTCTGTA-3"), and
2 ul ¢cDNA template. The cycling protocol included de-
naturation at 95°C for 15 min, followed by 45 cycles of
94.°C for 155, 63 °C for 30s and 72 °C for 30 s. A parallel
wildtype BRAF SYBR qPCR was performed in duplicate
to control for mRNA extraction, as well as for measure-
ment of the wildtype BRAF mRNA level (forward pri-
mer: 5- CATGAAGACCTCACAGTAAA-3’; and the
reverse primer: 5 - GATTTCACTGTAGCTAGACC-3").
Determination of the sensitivity for detection of BRAFV%%
mRNA mutation

The sensitivity of the mRNA-based mutation assay for
detecting mutant mRNA transcripts in a background of
corresponding wildtype transcripts was determined by
comparing the amount of PCR product formed in a first
reaction containing 10”7 copies of in-vitro transcribed
wildtype BRAF mRNA as a template, with the amount of
PCR product created in a second reaction containing the
same amount of transcribed mutant BRAF"*°°F mRNA.
The threshold cycle value (Ct value) was identified auto-
matically during qPCR amplification by the Rotor Gene
Q system (Qiagen, Germany). The ratio of products
formed in the first reaction and second reaction were
determined by quantitative PCR based on the difference
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in Ct values derived from the two reactions (ACtyme =
Ctyildtype = Ctmutant)- The sensitivity of the mRNA-based
mutation assay for BRAF'®*’* mutation, expressed as
percentage, was calculated as 27" x 100%, which corre-
sponds to the lowest fraction of mutant transcripts to be
detected as a distinct signal in a background signal de-
rived from cross-priming of the wildtype template.

DNA sequencing

DNA extracted from clinical FFPE samples were ampli-
fied by PCR in 20 pl reactions of Kapa HiFi HotStart
ReadyMix (Kapa Biosystems, USA) containing 1X buffer,
05uM forward primer (5-CATGAAGACCTCAC
AGTAAA-3"), 0.5uM reverse primers (5'- ACTGTT
CAAACTGATGGGACCCAC -3’), and DNA template.
PCR was performed by denaturation at 95 °C for 5 min,
followed by 40 cycles of 98°C for 30s, 60°C for 30s,
72°C for 30s with a final extension at 72 °C for 1 min,
using a conventional PCR thermal cycler Eppendorf
vapo.protect (Eppendorf, Germany). PCR products were
purified by ExoSAP-IT® PCR Product Cleanup (Affime-
trix, USA) and subsequently subjected to Sanger sequen-
cing using ABI 3130xl Genetic Analyzer system (Applied
Biosystem, USA) with the reverse primer as sequencing
primer.

Statistical analysis

Cohen’s Kappa coefficient and McNemar’s chi-square
tests were used to compare the performance of two tests,
mRNA-based mutation assay and Sanger sequencing
method.

Results

Patient samples

Sixty-two patients were included in the study. Thirty-
two of these had been diagnosed with thyroid cancer
and 30 patients with benign thyroid disease. Out of the
32 thyroid carcinoma samples, 24 (75%) were papillary
thyroid cancer (Table 1 and Table S1). Ethics approval
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and consent to participate in the study was obtained in
accordance with the Declaration of Helsinki.

Sensitivity of the BRAF*°” mRNA mutation detection
assay

The sensitivity of mRNA-based mutation assay was de-
termined using in vitro transcribed mutant BRAF"*%%F
and corresponding wildtype BRAF mRNA as templates
(Fig. 2). The amplification product derived from qRT-
PCR amplification of 10" copies of the mutant
BRAF"*?F mRNA was detected 14.67 cycles earlier than
the amplification product derived from wildtype BRAF
mRNA. The signal generated from the amplification of
wildtype BRAF mRNA represents the cross-priming of
mutation-specific primer to the wildtype BRAF mRNA
template. The difference in threshold values, delta Ct,
thus corresponds to a cross-priming efficiency of ap-
proximately 0.005% of the specific priming efficiency
(274C" x 100% = 271*7 x 100%). As a result, the mRNA-
based mutation assay can detect the BRAF"*’°* mutation
in mRNA with frequency of 0.01%, or in other words, in
the presence of a 10,000-fold excess of the wildtype
BRAF counterpart.

Detection of the BRAF'*°* mutation in mRNA and DNA

from benign and malignant thyroid FFPE tissue samples

The clinical applicability of the mRNA-based mutation
assay for BRAF"°”°" mRNA was evaluated by analyzing
nucleic acids isolated from FFPE tissue samples of thy-
roid tumors and non-malignant thyroid disease, and
comparing results with direct sequencing (Fig. 3).
BRAF"*?F mRNA was detected in 18 out of 32 thyroid
cancer samples (56.3%) with the BRAFY®°F mRNA
based mutation assay. In comparison, BRAF"**°* DNA
was detected by Sanger sequencing in only 13 (40.6%) of
these 18 samples (Fig. 4). The presence of BRAF"**%F
mRNA could be confirmed in all 13 FFPE samples in
which the mutation was detected by in DNA, by Sanger
sequencing. The Cohen’s Kappa coefficient of 0.695

Table 1 Clinicopathologic parameters in patients with thyroid diseases

Clinicopathologic parameters

Frequencies

Number Percentage (%)

Sex Male 7 113

Female 55 88.7
Histology of malignant tumours Papillary 24 75.0

Follicular 6 188

Mixed Papillary — Follicular variant 1 3.1

Thyroid Adenocarcinoma 1 3.1
Histology of benign tumours Nontoxic single thyroid nodule 9 300

Benign neoplasm of thyroid gland 20 66.7

Basedow with euthyroid phase stage 1 33
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Fig. 2 Detection sensitivity for BRAF®?F mutation in mRNA. The sensitivity of a novel mRNA based mutation assay for BRAF"* was determined
using 107 copies of in vitro transcribed mRNA containing the BRAF**?* mutation and the same amount of corresponding wildtype mRNA as
templates: a Amplification signal from mutant BRAF"*"F mRNA (red line), wildtype BRAF mRNA (blue line) and no-template control-NTC (green
line); b) Corresponding melting peaks of the amplification products

reveals the substantial agreement between the current
mRNA-based mutation assay and Sanger sequencing
method, in detecting the BRAF"%°°* mutation in thyroid
cancer tissue samples. On the other hand, the McNe-
mar’s chi-square test shows a two-tailed P value of
0.0736, suggesting a borderline significant difference be-
tween two tests in the detection of the BRAF"**°* muta-
tion. No BRAF'®%’! mutation was detected either in
mRNA by the BRAF**”* mRNA-based mutation assay,
or in DNA by Sanger sequencing, in any of the 30 FFPE
samples of benign thyroid tissues, indicating a high spe-
cificity of both assays.

Determination of relative expression levels of the
BRAF"5°° mRNA versus wildtype BRAF mRNA

We further investigated the allele-specific expression of
the mutant and wildtype alleles of the BRAF gene in the
13 thyroid cancer tissue samples with BRAF"**’F mutation

detected in both DNA and mRNA (Table S1). The relative
abundance of mutant versus wildtype alleles at the DNA
levels was estimated using the peak heights (H) at the nu-
cleotide position of interest (1799 T > A) on a direct se-
quencing  chromatogram: RPNA = YBRAFVEOOE
HBRABwildipe - Similarly, the relative abundance of mutant
versus wildtype alleles at the mRNA levels was estimated
using the delta Ct value (ACt) between the mutant and
wildtype signals in mRNA-based mutation assays: R** =
1/2ACHBRAFVGOOE-BRAFwildlype) - The relative abundance of
the mutated BRAF"*?’F allele in DNA was relatively con-
stant, in the range 0.170-0.703. On the mRNA levels,
however, the relative abundance of the mutated
BRAF"%%F alleles varied in the range of 0.001-0.429. The
observed log (R®**/RP™) ratio was in the range — 2.48 -
0.35, corresponding to almost 3 log differences in expres-
sion levels of the mutated BRAF"*°’F alleles versus the
wildtype BRAF counterparts in these tissue samples.
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Discussion

In spite of functional genomics being an appealing ap-
proach for studying the relationship between genes and
diseases, there is currently no data available regarding
the specific mRNA expression of the BRAF"**°* muta-
tion in different cancer tissues. Many papillary thyroid
cancers possess a mutated BRAF gene, most commonly
the point mutation T1799A or BRAF"*°’%, which acti-
vates the MAPK pathway causing a loss of control of
cellular proliferation, triggering the oncogenesis of thy-
roid gland [6, 17, 18]. We detected BRAFY%%°E mutations
on the mRNA level in 56,3% (18/32) and on the DNA
level in 40,6% (13/32) of thyroid cancer patients, which
is roughly in concordance with the prevalence reported
by a number of studies [2, 19-22]. The mRNA-based
mutation detection assay, thus contributed to a 28% im-
provement in the sensitivity of detection, whereas the
specificity of both the mRNA- and DNA-based assays
was 100%. According to a number of studies, the prog-
nostic relevance of BRAF*°”* mutation still remains

controversial in papillary thyroid carcinoma [23-26].
While the BRAF"*°® mutation is not an independent
predictor of poor outcome, the presence of the mutation
is valuable for determining whether certain high-risk pa-
tients, in a relapse or primary metastatic setting, could
be eligible for targeted BRAF inhibitor therapy with any
of the currently available drugs, such as lenvatinib,
vemurafenib or sorafenib [27]. Also, the presence of the
BRAFY°F mutation in the primary tumor tissue opens
possibilities for monitoring of the disease using liquid bi-
opsy techniques.

Sanger sequencing is currently considered as the gold
standard for point mutation detection, primarily due to
the possibility to analyze a multitude of different muta-
tions simultaneously. Drawbacks of this method are a
relatively long, 2-3 day turn-around time as well as a
relatively low sensitivity, limiting the detection of mu-
tated alleles below a frequency of 7-20% [9]. Subse-
quently, a significant number of low-level mutations will
remain undetected primarily due to tumor tissue
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heterogeneity and a relatively low frequency of mutated
alleles. In our study, Sanger sequencing failed to detect
the BRAF"%°F mutation in 5 out of 18 samples, which
were positive with BRAF"*°°" mRNA. BRAFV**°F mRNA
should, by definition, only be detected in a subgroup of
patients haboring BRAF*’°* mutation in DNA. In spite
of this, the novel mRNA-based assay detected BRAF"%°F
mutations at a higher frequency than Sanger sequencing
in FFPE samples from the same cohort of thyroid cancer
patients. We speculate that this discrepancy might par-
tially be explained by the superior technical sensitivity of
the mRNA-based assay compared to direct sequencing,
but also by the higher copy number of BRAF'*"°F
mRNA transcripts in comparison to that of BRAFV%%F
DNA in thyroid cancer cells.

We also analyzed the relative level of the mutant
BRAF"%%F allele in the thyroid cancer FFPE tissue sam-
ples separately on the DNA and mRNA expression level.
On the DNA level the relative abundance of BRAF"%%%F
versus wildtype BRAF ranged between 0.170-0.703,
while the variation in the relative abundance of the

respective alleles was much wider on the mRNA level, in
the range of about 3 logs (0.001-0.429). This suggests
that the expression level of the BRAF*?F gene can be
highly variable in thyroid cancer and maybe in other
cancers as well. The level of BRAFV** mRNA expres-
sion can to some extent be predictive of the subsequent
expression of a mutant protein, and this may provide
some insights to the role of BRAF mutations in cancer
progression and prognosis. Nevertheless, the number of
mRNA copies does not always reflect the functional pro-
tein expression level due to several post-transcriptional
factors. A challenge for gene expression studies on
mutation-dependent diseases is to innovate and imple-
ment integrative methodologies to analyze mRNA/pro-
tein expression in parallel.

Mutation detection at the mRNA level benefits from a
higher copy number of mutated mRNA transcripts per
cancer cell compared to the number of mutated DNA
copies. Detection of the BRAFV*°F mutations in mRNA
without prior amplification has been demonstrated using
a nanomechanical sensor comprising of microcantilever
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arrays coated with titanium and gold in combination with
with a probe oligonucleotide and non-specific reference oli-
gonucleotides [28]. This ultrasensitive device enables detec-
tion of mRNA at a concentration of 20ng/ul and
recognition of mutated BRAF DNA in a 50-fold excess of
the wildtype background. In addition, there have been sev-
eral improvements to previously existing amplification
technologies, most recently by using artificial mismatched
nucleotides on allele-specific primers to improve segrega-
tion between the respective alleles and externally added
controller sequences [29]. Many other sensitive mutation
detection assays based on the principle of allele-specific
PCR have been described [30—32]. All of these technologies
are, however, hampered by cross priming during amplifica-
tion, leading to a decay in the discriminating power during
the amplification process [33, 34]. The rate of cross-
priming is dependent on the nucleotide used for discrimin-
ation between the alleles. In particular, PCR product yields
have been shown to decrease by 20-fold for A:A mis-
matches, whereas mismatches involving T have minimal ef-
fect on PCR product yield [35]. Therefore, the design of
AS-PCR assays for detection of the BRAF"*** (1799 T > A)
mutation, which involves A:A or T:T mismatches, is inher-
ently challenging, restricting assay sensitivity to about 0.1%
at best [12, 13, 21, 36—39]. In contrast, the ExBP-RT tech-
nique used in this study discriminates between wild type
and mutant alleles during a single cycle of reverse transcrip-
tion, completely eliminating the problem of decay of sensi-
tivity during subsequent qPCR amplification [16].

Conclusions

In conclusion, we have successfully established a novel
assay for ultrasensitive detection and quantification of
the BRAFV*” mRNA in FFPE tissue from thyroid can-
cer. This assay not only reveals the presence of the
BRAF"F mutation, but also the level of the mutated
BRAF"®” mRNA. This approach opens new possibil-
ities to study the functional consequences of mRNA ex-
pression of mutated genes and the potential clinical
utility of mutation detection in mRNA, as a novel bio-
marker in various types of cancer and genetic diseases.
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