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a b s t r a c t 

We explore a technique called class-activation mapping (CAM) to investigate how a Machine Learning 

(ML) architecture learns to classify particles based on their light-scattering signals. We release our code, 

and also find that different regions of the light-scattering signals play different roles in ML classification. 

These regions depend on the type of particles being classified and on the nature of the data obtained 

and trained. For instance, the Mueller-matrix elements S ∗11 , S 
∗
12 and S ∗21 had the greatest classification ac- 

tivation in the diffraction region. Linear polarization elements S ∗12 and S ∗21 were most accurate in the 

backscattering region for clusters of spheres and spores, and was most accurate in the diffraction region 

for other particle classes. The CAM technique was able to highlight light-scattering angles that maximize 

the potential for discrimination of similar particle classes. Such information is useful for designing detec- 

tor systems to classify particles where limited space or resources are available, including flow cytometry 

and satellite remote sensing. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Optical characterization of particles is an important application

f light scattering. Elastic scattering has the largest cross-section

ompared to the inelastic scattering processes [1] , the components

or an elastic light-scattering detector system are relatively inex-

ensive, such a system can be automated, and analyses can be

ade without collecting samples. While particles can be analyzed

sing Raman or fluorescence spectra [2–4] , such analyses are per-

ormed on spectra that are typically orders of magnitude less in-

ense than those in elastic scattering. While some recent devices

ave been constructed to analyze aerosols in situ, aerosol sam-

les are often collected because the inelastic light-scattering sig-

als are so weak. The light sources are typically in the UV for fluo-

escence excitation, costing significantly more than visible sources.
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s a result, there has been significant effort dedicated to finding

iscriminating patterns among elastic light-scattering data [5–10] .

uch discriminating features could include, for instance, the phase

unction, dynamical time-resolved analysis [39] , or degree of polar-

zation [40] . 

In recent years, ML [11] has proven to be useful in finding ac-

urate decision-boundary limits, which allow for very fine discrim-

nation of particle shapes from light-scattering information. For in-

tance, Kaye et al. [12] studied the performance of radial-basis-

unction neural networks to detect hazardous respirable fibers

rom light scattering. These results were limited to only three

lasses of particles and only a limited portion of the forward

cattering was used. Misclassifications were around 20%. How-

ver, modern architectures of neural networks such as convolu-

ional neural networks or successive subspace learning [13] have

emonstrated accurate results for classifying 2D and 3D datasets.

he results of implementing convolutional neural networks for

hape classification of complex-shaped particles using elastic light-

cattering data was explored by us previously [14] . In that study,
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Convolutional neural network designed for this study. The quantities in 

parentheses indicate the dimensions of our data processing. The global-average 

pooling layer [15] was originally invented as a regularization layer, but it also al- 

lows for class-activation mapping [16] . 

c  

n  

c  

n  

t  

e  

d  

t  

a

2

 

t

i  

n  

s  

g  

i  

o  

i

 

t  

t  

m  

i  

p  

p  

i  

a

 

o  

n  

T  

F

 

i  

R  
we found that convolutional neural networks (CNN) yield accurate

classification of the shape of particles whose scattering intensity

or degree-of-polarization distribution was collected at 1 ° resolu-

tion. Our ML architecture was able to classify complex shapes from

highly variant light-scattering data inputs. However, a major draw-

back of ML is that it is difficult for humans to comprehend how

the intermingling of numerous tensor weights and biases of deep

learning eventually lead to these decision boundaries that yield

discrimination. Nonetheless, in these weights and biases lie im-

portant clues regarding decision-making characteristics about the

dataset. If we can open the so-called ML black box, we can miti-

gate the non-intuitive nature of ML and furthermore leverage ML

as an avenue to promote discovery of discriminative features. In

this study, we focus on understanding how ML yields discrimina-

tion between different classes of light-scattering datasets and try

to bring some physical intuition regarding ML classification. We

apply a technique called class-activation mapping [ 15 , 16 ] to exam-

ine which part of the light-scattering phase function has the most

influence in making the classification. Such information is valuable

for the experimentalist to know where to put a detector to get the

best results. The CAM tells, in effect, where the ML algorithm looks

to find discriminating features among the different classes of par-

ticles. In addition, we describe and release our code for others to

use on their datasets. Our code, which we named ScatCAM, can be

accessed at: https://github.com/USArmyResearchLab/ScatCAM/ . 

2. Methods 

This study uses the dataset that was synthetically generated by

Piedra et al. [14] , which consists of seven classes of particles with

the following characteristics: complex shape, rotated stochastically

and isotropically, of refractive index 1.5 + i0, and size parameter 5.

We kept the size and refractive index constant for all model par-

ticles in this study in order to focus on the dependence of par-

ticle morphology. For instance, we are quite aware that transpar-

ent soot particles, represented by pre-fractal clusters of spheres,

do not exist in the visible spectral region, but we also know that

the inclusion of a realistic absorbing component would introduce

features attributable to the absorbing component, that would fur-

ther complicate the analyses. In addition, we also restrict the size

parameter, so this factor does not play a role in the classification.

This latter restriction may seem quite limiting for practical applica-

tions, but in actuality, there are many methods that can be used to

determine aerosol size, e.g., [ 17 , 18 ]. Such techniques even can be

incorporated into the instrumentation used to capture the light-

scattering patterns. When we consider that the sizing can be de-

termined using such a parallel technique, then this restriction is

not so limiting. For the purposes of this discussion, we briefly dis-

cuss some foundations for ML to provide an understanding of neu-

ral networks followed by a description of the network architecture

used in this investigation. We specifically address the creation of

a class-activation map (CAM) through the use of a global-average

pooling (GAP) layer. Lastly, we discuss the selection of hyperparam-

eters and the training environment. 

2.1. Convolutional neural networks 

CNNs are multi-stage algorithms that learn features with train-

able convolutional filters for classification. CNNs outperform ar-

tificial neural networks for high-resolution image classification

through the use of the convolutional operator [19–21] . Convo-

lutional processing is usually paired with pooling, which down-

samples neighboring pixels into a single pixel, thereby increasing

the scope of a convolutional filter once a feature map or image

has been pooled. A CNN usually contains a processing sequence of
onvolutional filters and pooling layers to down-sample the origi-

al input into a feature space that can be handled by a set of fully

onnected neurons for classification. Neural networks gain their

on-linear discrimination ability from the use of activation func-

ions at each node or filter output. A loss function calculates the

rror between input and prediction. Learnable parameters are up-

ated with stochastic gradient descent to minimize the loss func-

ion. Hyperparameters are those excluded from the learning and

re chosen before network training. 

.2. Network architecture 

Essentially, a digital image is a � × � × P matrix of informa-

ion, where � is the number of pixels in the vertical direction, �

s the number of pixels in the horizontal direction, and P is the

umber of colors (i.e., typically red, blue and green). In a light-

cattering dataset, � is the number of datapoints of the polar an-

le, � is the number of datapoints in the azimuthal angle, and P

s the scattering information input (e.g., scattering intensity, degree

f polarization, degree of circular polarization, etc.). One could also

ncorporate wavelength dependence. 

We use Python and the Keras library [22] to implement the ML

ool. The network used in this investigation is comprised of mul-

iple processing modules that are connected sequentially. 2 × 2

aximum pooling, down-sampling by taking the maximum value

n a 2 × 2 pixel region, is performed in between the connections of

rocessing modules. After four sequences of process modules and

ooling a final process module, a GAP layer and classification layer

s attached to complete the network. A schematic of the network

rchitecture used is displayed in Fig. 1 . 

Each process module contains 3 × 3 convolutional operators

f stride 1, leaky ReLU activation with alpha of 0.3 [23] , batch

ormalization [24] , and Res-net inspired residual connections [25] .

he architecture within a single process module is depicted in

ig. 2 . 

Batch normalization mitigates internal covariant shift, maintain-

ng the distribution of features so as to speed up learning [24] .

esidual connections reduce the effect of diminishing gradient dur-

https://github.com/USArmyResearchLab/ScatCAM/
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Fig. 2. Process module for the ML network. The width, height and depth of features maps is dictated by the incoming feature width and height and the specified number 

of filters of the process module respectively. 

Fig. 3. Creating a class-activation map (CAM) for an instance of spore-cluster pre- 

diction. The feature maps of the final convolutional layer are up-sampled to the 

original input size and multiplied by the corresponding classification weights. The 

CAM is assembled from the summation of the feature maps. 
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ng backpropagation and encourage the learning of residual infor-

ation [25] . Leaky ReLU activations provide non-saturating acti-

ations with defined gradients [23] . The final layers include the

lobal average pooling layer across the final 7 features maps con-

ected to 7 neurons with softmax [23] activation for classification.

.3. Class-activation maps with gap layers 

CAMs are generated from the interaction between the final con-

olutional layer, GAP layer and classification layer. A CAM indicates

he highest activated regions used by the CNN for classification

16] . 

Each feature map of the last convolutional layer is up-sampled

o the original input height and width through bilinear interpola-

ion. Each up-sampled feature map is then multiplied by the cor-

esponding weight of the predicted class connection between the

AP and classification layer. The features maps are then summed

ogether along the feature map axis. A diagram of the CAM gener-

tion for an input Mueller matrix and predicted class is depicted

n Fig. 3 . 
.4. Network training environment 

Three networks are trained for each Mueller matrix element
¯
 = [ S i j ( θ, φ) ] ; i, j = 1, 2, 3, 4, where θ is the polar angle and ϕ

s the azimuthal angle. We partition each S̄ = [ S i j ( θ, φ) ] data set

nto three subsets for 3-fold cross-validation experimental scheme.

or each of the three folds, two subsets are used for training and

ne subset is used for validation. The loss function is cross-entropy

ith respect to the class shapes. L2 regularization [26] is used for

lter weights, with a value 0.01. Optimization is performed with

tochastic gradient descent using a learning rate scheduler [27] .

he initial learning rate is 0.001 and reduce incrementally by a

actor of 0.2 to a minimum learning rate of 0.0 0 0 01. We stop net-

ork training when the loss function no longer decreases after 12

terations or a maximum of 100 epochs is reached. An epoch is de-

ned as a set of training iterations with the number of iterations

qual to training set size divided by the batch size. Each batch is

andomly sampled from the training set. Batch size was set to 25.

oss and accuracy are recorded during network training across the

-fold cross-validated schemes. 

. Results 

.1. An example to illustrate our results 

For the purposes of this discussion, let us briefly discuss one

xample that will demonstrate how we analyzed our dataset. The

ight-scattering Mueller matrix is a 4 × 4 transformation of the

nitial light-beam Stokes vector to the 4-dimensional Stokes vec-

or � I = [ I, Q, U, V ] T as described by [28–30] . The Mueller matrix de-

cribes the electromagnetic state of the scattered light and is a

unction of the polar angle θ and azimuthal angle ϕ; mathemat-

cally, S̄ = [ S i j ( θ, φ) ] ; for i, j = 1, 2, 3, 4. Each of the elements of

he Mueller matrix is an inherent property of the light-scattering

ystem and describes a transformation of the incident Stokes vec-

or � I to a scattered Stokes vector � I sca ; i.e., � I sca = S � I . For example,

ig. 4 illustrates two elements of the light-scattering Mueller ma-

rix from a spore cluster, one of the seven groups discussed by

iedra et al. [14] . 

The light-scattering total intensity distribution S 11 acts as the

agnitude of the transformation S̄ . In experiments, it is difficult

o measure the absolute magnitude and the element is usually

ormalized at some scattering angle, e.g. θ = 10 o . We are inter-

sted in highlighting the importance of two-dimensional structure

n the distribution of light scattering. Hence, in our training set,

e normalized S such that scattering in the forward direction
11 
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Fig. 4. A particle of the shape in the left produces the logarithmic light-scattering intensity distribution S 11 shown in the center. The normalized polarization element S 12 / S 11 

is shown in the right column. The light-scattering figures represent light incoming from behind the page towards the reader and scattering with the particle. For intuitive 

clarity, we show only the forward hemisphere scattering from 0 o ≤ θ ≤ 90 o and 0 o ≤ ϕ ≤ 360 o . 

Table 1 

Maximum and minimum values of recall, precision and F1 

score for the S ∗12 3-fold cross-validation experiments . 

Class F1_Score Precision Recall 

BOX (1,1) (1,0.99) (0.99,0.99) 

CYLINDER (1,0.99) (1,0.99) (1,0.99) 

ELLIPSOID (1,0.96) (1,0.96) (1,0.97) 

SPHERES (0.96,0.95) (0.96,0.94) (0.97,0.96) 

SPORES (0.97,0.95) (0.97,0.96) (0.96,0.94) 

DUST (1,0.99) (1,0.99) (0.99,0.99) 

FRACTAL (0.99,0.99) (0.99,0.99) (0.99,0.99) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Plot of accuracy over each epoch in training for the validation and training 

subsets during cross-validation experiments. 
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θ = 0 o is 1. In this manner, the ML architecture cannot simply dis-

tinguish scattering particles by differences in the intensity of the

forward direction, and we force the ML to learn patterns of the

light-scattering distribution along θ and ϕ. Furthermore, for the

training set of all other elements of S̄ other than S 11 , all quanti-

ties have been normalized with respect to S 11 ; i.e., S ij / S 11 for S ij � =
S 11 . For the purposes of brevity, henceforth in our discussion, when

we refer to S ∗11 , we are referring to a normalized S 11 with respect

to forward scattering, while S ∗
i j 

� = S ∗
11 

is referring to the polarization

matrix elements normalized to the total intensity: 

S ∗i j = 

S i j 

S 11 

, for S i j � = S 11 (1)

3.2. Network training results 

Across the 16 Mueller matrix components, we performed 3-fold

cross-validation experiments, and 48 networks were trained. We

display a portion of training diagnostics from a single 3-fold cross-

validation experiment of the S ∗
12 

Mueller matrix component to

highlight the network convergence. Similar results were observed

across all other Mueller components and the same analysis was

performed for each. 

Recall, precision and F1 score are described by Fawcett [31] . Re-

call represents the correct classification of a class. Precision rep-

resents the number of correct classification within the predicted

classes. F1 score is the harmonic mean of the recall and precision.

We present the validation subset maximum and minimum recall,

precision, and F1 score for classification across the 3-fold cross-

validation experiments for each class in Table 1 . These are values

between 0 and 1, where large values indicate better performance. 

The agreement of asymptotic loss ( Fig. 6 ) and accuracy ( Fig. 5 )

across the cross-validation experiments provides evidence for net-

work convergence and lack of over-fitting. Similar results were ob-

served across the cross-validation experiments for other Mueller-
atrix components. The incorporation of data processing layers

i.e., Fig. 2 ) to our CNN architecture yielded significant improve-

ents in ML performance compared to the results previously re-

orted by us [14] . For example, notice in Fig. 5 how convergence

as achieved at 100 epoch iterations reaching accuracies above

4% for all shapes. In contrast, our previous results, used 1800 iter-

tions and still some shapes such as cubes and cylinders had mis-

lassifications above 25%. 

.3. An example data input and CAM 

We can represent light-scattering data to display the Mueller

atrix in a planar data grid for all angles. For example, Fig. 7 il-

ustrates the same data as that of Fig. 4 for all elements S ij of the

ueller matrix and for all angles from 0 o ≤ θ ≤ 180 o and 0 o ≤ ϕ
360 o . 

All these elements, when processed by our ML architecture pro-

uce CAMs as described in Section 2.3 . The resulting CAM is shown

n Fig. 8 . 
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Fig. 6. Plot of loss over each epoch in training for the validation and training sub- 

sets during cross-validation experiments. 

 

i  

e  

t  

w  

o  

t  

d  

t  

l  

a  

h  

o  

l

3

 

s  

t  

t  

a  

S  

a  

t  

t  

m  

w  

Fig. 7. Light-scattering Mueller matrix of the particle in Fig. 2 with volume-equivalent siz

ϕ while the horizontal axis is the polar angle θ . 
Fig. 8 shows sample activation regions for one specific particle

n a specific orientation. These regions of activation are unique for

ach particle and orientation. In addition, these markers of activa-

ion are determined by the combination of weights and biases that

ere optimized while training. If these weights are changed, the

ptimization maps will change. However, we note that we have

rained the weights to optimize classification from our training

ataset. We do not expect that finding a different local optimiza-

ion will change this map drastically. The asymptotic limit of the

oss function and near maximum classification metrics across the

ll cross-validation experiments indicates near optimum weights

ave been learned. The ML architecture evaluates the combination

f activation regions and decides which type of particle is the most

ikely to produce this pattern of activation. 

.4. Azimuthally averaged CAMS 

To make sense of these CAMs and have some generalizable in-

ights, we calculate CAMs for 20 0 0 samples of each type of par-

icle. Since we also consider particle orientation in the averaging,

he dependence on the azimuthal angle vanishes and eventually

 constant fringe of activation along the azimuthal angle appears.

ince our activation function is ReLU, it is not normalized and the

ctivation yields a uniform evaluation value of how useful or not

he region is to perform a classification decision. Hence, in order

o compare the activation of different shapes of particles, we nor-

alize the CAMs by division by their maximal values. In this way,

e can compare the activation of each region. In other words, we
e parameter 5 and refractive index 1.5 + i0. The vertical axis is the azimuthal angle 
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Fig. 8. CAM for the input data shown in Fig. 7 . The vertical axis is the azimuthal angle ϕ while the horizontal axis is the polar angle θ . The reddest regions represent regions 

of most activation, indicating that the ML architecture finds these regions of data highly useful to perform classification decisions. The bluer regions are those that the ML 

finds less useful for decision making. 
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show where, along the polar-angle, features occur that ML uses to

differentiate one class of particles from another. We show this data

in Fig. 9 . 

As can be seen in Fig. 9 , the activation region is different for

each type of particle and Mueller matrix element. This means that

if our goal is to detect cuboids, we may want to consider setting

up detectors in different locations and consider different polariza-

tion states than if we are trying to detect agglomerated debris. The

peak of activation of S ∗11 is perhaps one of the most intuitive as the

region of maximum activation for most particles is located in the

near-forward scattering region between ~20 ° to ~70 °. This range

of angular discrimination is often referred to as the diffraction

regime, which is known to be highly dependent on particle shape.

Indeed, detector systems have taken advantage of this region for

decades [ 32 , 33 ] and continues to the present day in aerosol clas-

sification [34] . The peak of the CAMs in this region suggests that

light-scattering features are distinct in this region. While the use of

the diffraction region for particle differentiation is based on phys-

ical principles, the ML architecture confirms this through brute-

force analysis. Another interesting observation occurs in the linear-

polarization element S ∗
12 

, which peaks at approximately ~30 ° for

most shapes, except for sphere and spore clusters whose classi-

fication activity peaks at ~100 °. The scattering angles recognized

as the most discriminative for these two particular classes of par-

ticles showcase the usefulness of CAMs as a tool for leveraging

ML as means of discovering discriminative features among parti-

cle types. Spore clusters and sphere clusters were the most similar
lasses of particles created by Piedra et al. [14] . As such, we con-

idered these two classes would present a difficult discrimination

hallenge. Hence, we see that the ML optimized its activation and

ound the diffraction region as the most discriminative; however,

or the S ∗
12 

data from spore and sphere clusters, the ML also found

id-range angles ~ 100 o as being equally discriminative as the

iffractive region. This demonstrates that CAMs can be leveraged

s a tool to highlight discriminative light-scattering angles, which

ight not be inherently intuitive a priori. We expected the fractal

ggregates also to have peaked near ~90 °, because they tend to be

omposed of nearly non-interacting dipoles that have a strong TE

olarization near 100% in this region, but it turns out that near-

orward region is actually more efficient at classifying such parti-

les given this dataset. This possibly is because such porous parti-

le do not have strong diffraction rings, differentiating them from

ther particle shapes that we considered. Other interesting ele-

ents are S ∗
33 

, S ∗
34 

, S ∗
43 

and S ∗
44 

that can have a bimodal activation

egion with a minimum near 90 °, especially for the clusters. Other

article shapes may have a fairly flat response. This flat response

s seen for other Mueller matrix elements as well. For instance,

ueller matrix element S ∗
22 

maintains nearly constant activation

or all shapes between 30 o ≤ θ ≤ 150 o . This indicates that using

his element will achieve nearly the same usefulness across this

ange of polar angles. 

In Fig. 10 , we present the resulting azimuthally averaged activa-

ion map for 10 0 0 particles selected at random. This exploration is

nalogous to a scenario when a light-scattering discrimination sys-
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Fig. 9. Average activation maps for 20 0 0 discriminated particles. The order of the 

matrix of activation curves is the same as that of Fig. 8 . The final activation map 

is nearly azimuthally independent and is normalized with respect to its maxi- 

mum value. Here we display the normalized, azimuthally averaged activation per- 

formance of light-scattering data as function of polar angle. 

Fig. 10. Normalized CAM for 10 0 0 particles selected at random. The final activa- 

tion map is shown as a function of polar angle since the overall activation map is 

independent of the azimuthal component for a large number of particles. 
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em does not know what types of particles are being differentiated

 prori. The CAMs highlight which scattering angles are most dis-

riminative for all particles in common. We have normalized this

urve with respect to the highest activation of the combined set of

articles. As in Fig. 9 , the resulting CAM is a function of the polar

cattering angle θ only. These activation maps present some inter-

sting results. For instance, for the S ∗ , S ∗ S ∗ and S ∗ training

11 14 12 21 
atasets, the ML architecture found the region about the polar an-

le ~35 o to be most useful for classification while still maintaining

 fairly large activitation greater than 0.5 out to ~120 o . For the ele-

ent S ∗
12 

, the architecture found the angle ~ 30 o to be most use-

ul, and largely found the backscattering from θ > ∼ 125 o to be the

lightly less useful for elements S ∗
12 

and S ∗
21 

than for element S ∗
11 

.

n general, the other polarization matrix elements did not find that

orward-scatter region to be as strong a classifier as for these ele-

ents. As expected from the results of Fig. 9 , the diffraction region

f the total intensity element S ∗
11 

provides strong overall classifica-

ion differentiation for all particle shapes. 

Some datasets such as S ∗
13 

, S ∗
22 

, S ∗
24 

, S ∗
34 

, S ∗
42 

, and S ∗
43 

have acti-

ations that peak in the backscattering hemisphere between 110 o <∼
< ∼ 130 o . In the far backscattering region where scattering angle θ

pproaches 180 0 , we do not see significant activation of any of the

ueller matrix elements. Coherent effects play a dominant role in

his scattering regime, which are manifest in a backscattering surge

nd accompanying negative polarization branch [ 35 , 36 ]. The mask-

ng simulations of Bickel et al. [37] suggest that this region is es-

ecially sensitive to small changes in particle morphology. It ap-

ears that this region is too sensitive to be used as a classifier of

ifferent particle classes as defined in this particular experiment,

ut may be useful to provide information about particle subclasses,

ike the size of particles making up an agglomerate as suggested by

ubko et al. [38] . 

. Conclusions 

In this work, we release our ML code, ScatCAM, which can

e accessed at https://github.com/USArmyResearchLab/ScatCAM/ . 

e show how ML techniques can be used to locate regions of

ight-scattering patterns that possess discriminating features. We

emonstrate a method for mitigating the poor understanding of

L methods, i.e., the ML black-box problem. We investigate how

 ML architecture learns to classify particles using the scattering

ataset that was studied previously [14] . CNN-architecture hyper-

arameter tuning and choices including leaky ReLU, batch nor-

alization, and residual connections allow for significant improve-

ents in accuracy and convergence speed in comparison with our

revious results. This study explores the CAM technique by modi-

ying our CNN to include a global-average pooling layer. By doing

o, we are able to obtain a weighted map such as Fig. 8 that high-

ights the most unambiguous features of the input light-scattering

ataset, provided that the ML optimized its weights and biases

uring training. We calculate how each Mueller matrix element is

ctivated as a function of polar angle θ and azimuthal angle ϕ.

e also produce average maps of this function over many such

articles of the same class. For such populations, the azimuthal

ependence disappears and we only plot the polar-angle depen-

ence. This quantity is a measure of how useful the ML finds the

ata for classification decisions in comparison to the most useful

egion. Overall, we find that class-activation mapping recognizes

he forward-scattering, diffraction region to be most discriminative

or analyzing the total intensity signals. Interestingly, for other po-

arization elements, the most useful classification regions depend

n particle shape (or class). For example, for two classes of parti-

les with extremely similar light-scattering profile, our CAMs were

ble to highlight discriminative scattering angles at ~ 100 o . This

ngle might not necessarily be an intuitive choice to perform a

article-discrimination experiment. These result highlight that ML

an potentially be used for guidance as to which scattering angles

an present the strongest classification profiles. Such a tool can be

sed in different applications, for instance in determining where

o place detectors to classify particles most efficiently. Such appli-

ations range from flow cytometry to characterize blood cells to

atellite remote sensing to determine atmospheric components. 

https://github.com/USArmyResearchLab/ScatCAM/
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