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Abstract: Dropout is a common complication in longitudinal studies, especially since the distinction
between missing not at random (MNAR) and missing at random (MAR) dropout is intractable.
Consequently, one starts with an analysis that is valid under MAR and then performs a sensitivity
analysis by considering MNAR departures from it. To this end, specific classes of joint models, such as
pattern-mixture models (PMMs) and selection models (SeMs), have been proposed. On the contrary,
shared-parameter models (SPMs) have received less attention, possibly because they do not embody
a characterization of MAR. A few approaches to achieve MAR in SPMs exist, but are difficult to
implement in existing software. In this article, we focus on SPMs for incomplete longitudinal and
time-to-dropout data and propose an alternative characterization of MAR by exploiting the conditional
independence assumption, under which outcome and missingness are independent given a set of random
effects. By doing so, the censoring distribution can be utilized to cover a wide range of assumptions for
the missing data mechanism on the subject-specific level. This approach offers substantial advantages
over its counterparts and can be easily implemented in existing software. More specifically, it offers
flexibility over the assumption for the missing data generating mechanism that governs dropout by
allowing subject-specific perturbations of the censoring distribution, whereas in PMMs and SeMs
dropout is considered MNAR strictly.
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1 Introduction

Follow-up studies that include human subjects are known to be highly susceptible
to dropout. The extent to which dropout will complicate the subsequent analysis
depends on how the missingness is associated with the observed and unobserved
longitudinal outcomes. According to the taxonomy introduced by Rubin (1976) and
Little and Rubin (2002), this may happen according to three distinct missing data
mechanisms: missing completely at random (MCAR), missing at random (MAR)
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and missing not at random (MNAR). Under MCAR, the missingness depends on
neither observed nor unobserved outcomes. If the missingness is independent of
the unobserved outcomes after conditioning on the observed outcomes, then the
missing data mechanism is considered to be MAR. Conversely, under MNAR,
conditioning on the observed outcomes cannot disentangle the dependence between
the missingness process and the unobserved outcomes.

What separates MNAR from its counterparts in applied practice, though, is the
concept of ignorability. That is under the (Bayesian) likelihood framework, one
does not need to consider a model for the missingness process and hence ‘ignore’
it. Ignorability holds under the assumption that the process that generates the
missing data is MAR and that the missingness and measurement processes depend
on independent sets of parameters. While the innate convenience of ignorability
popularized MAR models, one needs to consider if such an assumption holds
carefully. That is especially the case since the distinction between MAR and MNAR
is intractable as for every MNAR model, there exists a MAR counterpart with the
same fit to the observed data (Molenberghs et al., 2008). Hence, one should start
with an analysis that is valid under MAR and then perform a sensitivity analysis
considering plausible MNAR departures from it.

To showcase the importance of such sensitivity analysis, consider the illustrative
example in Figure 1 which is based on simulated data. The data were simulated
assuming a joint model for longitudinal and survival data. To mimic MAR
missingness, censoring was based on the value of previous repeated measurements,
and therefore the missing longitudinal trajectories (depicted with dotted grey) consist
of the subjects that fulfilled the MAR criterion or experienced the event. We then
fitted a model to the complete data, whereas for the incomplete data we fitted an
MAR and an MNAR model. All three models resulted in different fits to the data,
which consequently lead to different subject-specific predictions as shown in the lower
panel of Figure 1. Therefore, sensitivity analysis is necessary to be able to investigate
the robustness of the model and the plausibility of the assumptions concerning the
mechanism that generated the missing data.

To this purpose, three well-established general frameworks exist, distinguished by
their approach in factoring the joint distribution of the outcome and missingness
processes to conditionally independent components. In a pattern-mixture model
(PMM), the joint distribution is expressed as the product of the marginal distribution
of the missingness process and the conditional distribution of the outcome given the
missingness process. Contrariwise, in a selection model (SeM), the joint distribution
is expressed as the product of the marginal distribution of the outcome and the
conditional distribution of the missingness process given the outcome. Alternatively,
in a shared-parameter model (SPM), the outcome and the missingness processes are
assumed to be driven by a set of unobserved variables, the so-called random effects.
The use of latent variables gives rise to the conditional independence assumption
under which the outcome and the missingness processes are independent, given the
set of random effects.

The SeM framework naturally encompasses MAR, while Molenberghs et al.
(1998) provided a characterization of MAR under the PMM setting, specifically
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for the case of longitudinal data with dropout. As a result, sensitivity analysis is
well-developed in the SeM and the PMM frameworks (Molenberghs and Vereke,
2005; Molenberghs and Kenward, 2007), whereas the SPM has received less
attention. More specifically, Creemers et al. (2011) provided a characterization of
MAR for the SPM case by introducing the general SPM (GSPM) and then proposed a
sensitivity analysis approach utilizing this framework (Creemers et al., 2010). Later,
Njagi et al. (2014) proposed a characterization of MAR for the case of SPMs for
longitudinal and time-to-event data under the GSPM.

In this article, we introduce an alternative characterization of MAR in SPMs
for longitudinal and time-to-event data by exploiting the conditional independence
assumption and utilizing the censoring distribution. By doing so, we cover a wide
range of assumptions for the missing data mechanism on the subject-specific level.
Previous work on the topic focused on the GSPM, which includes potentially a broad
set of random effects. Here, we focus on the standard SPM (Wu and Carroll, 1988;
Wu and Bailey, 1988, 1989; Hogan and Laird, 1997, 1998), a particular case of the
GSPM, that is most commonly encountered in practice. The benefit of doing so is
that our approach is intuitively appealing and can be easily implemented in existing
software. Furthermore, it allows for subject-specific perturbations of the censoring
distribution, concerning the missing data generating mechanism, whereas in PMMs
and SeMs dropout is considered MNAR strictly.

The rest of the article is structured as follows. In Section 2, we propose an
alternative characterization of MAR for the SPM model. In Section 3, we discuss
its estimation under the Bayesian framework. In Section 4, we illustrate with an
application how the SPM can be used for sensitivity analysis with existing software.
In Section 5, we present a simulation study to assess the behaviour of the proposed
sensitivity analysis under different scenarios with respect to the amount of MAR and
MNAR missingness. Discussion follows in Section 6.

2 A characterization of MAR for the shared parameter model

For each subject i out of a sample of size N from the target population, let
yi = (yi1, . . . ,yini)

⊺ denote the vector of size ni × 1 of planned repeated measurements,
with yij being the value of the longitudinal outcome at time point tij, j = 1, . . . ,ni,
out of a set of J planned measurement occasions. The vector of planned repeated
measurements may further be partitioned into two vectors: yi = (yo

i ,y
m
i ), of observed

and missing repeated measurements, respectively. Next, let T∗

i be the true dropout
time, Ci the censoring time and Ti = min (T∗

i ,Ci) the observed dropout or censoring
time. Furthermore, let θ and ψ = {ψT∗,ψC} be the vectors of parameters for the
measurement, dropout and censoring processes respectively. Under these settings,
the vectors of observed and missing repeated measurements can be expressed as
yo

i = {yij; tij < Ti,∀j ∈ J } and ym
i = {yij; tij > Ti,∀j ∈ J }. In other words, the vector of

observed measurements includes all the observations which were recorded before
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Figure 1 Illustrative Example: (Upper panel) observed longitudinal trajectories (black lines), missing
longitudinal trajectories (grey), and fitted models using complete data and using incomplete data under
MAR and MNAR. (Lower Panel) observed longitudinal measurements of a new subject and subject-specific
predictions based on the three different models

neither dropout nor censoring occurred. On the contrary, the vector of missing
measurements includes the observations which were not recorded due to either
dropout or censoring. Note that we regard dropout and censoring as different causes
of missingness, a distinction that we will exploit to achieve MAR characterization
of SPMs.
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What differentiates dropout from censoring in such a setting pertains to the
causes of leaving the study. As an example, consider the case of a study, with
death as the main outcome and where a longitudinal outcome is also planned to
be recorded for a time period. The planned longitudinal outcome measurements will
be missing for both the subjects that died during the study but also for subjects
that dropped out from the study due to any other reason (e.g., they moved to
another country). Depending on the information available and the research setting,
one may define death as the only cause of dropout and assume all the other reasons
are non-informative and therefore record them as censoring. In the case where no
information is available for the cause of dropout, then one would consider only those
who completed the study as censored.

Under this framework and with covariate vectors suppressed from the notation,
the shared parameter model can be specified as follows:

p (yo
i ,y

m
i ,T

∗

i ,Ci; θ,ψ) = ∫ p (yo
i ,y

m
i ,T

∗

i ,Ci,bi; θ,ψ,D)dbi, (2.1)

where bi ∼ N (0,D) is a vector of shared random effects assumed to induce the
dependence between the processes involved in the joint density of the SPM. That is by
conditioning on the random effects, the joint density of the SPM can be decomposed
to the following product of conditional densities

∫ p (T∗

i , ∣ bi;ψT∗
)p (Ci ∣ yo

i ,y
m
i ,bi;ψC)p (yo

i ,y
m
i ∣ bi; θ)p (bi; D)dbi, (2.2)

which brings to light the core assumption of conditional independence in SPMs,
under which the measurement and the dropout processes are independent conditional
on the random effects. Note that the conditional independence assumption commonly
does not imply independence of the censoring and the measurement processes. More
specifically, in the general case, censoring is allowed to depend on the measurement
process. Note that the conditional independence assumption may be extended to
allow for independence of the censoring and the measurement processes as well.
Finally, the assumption of non-informative censoring, which we discuss later, may
be used to relax both these assumptions and allow for independence between the
censoring and measurement processes.

Model (2.2) is a conventional SPM for longitudinal and time-to-event data. The
term conventional here is in reference to the GSPM framework in the sense that
a single common underlying random effects structure is used instead of multiple
random effects structures. Another important note for model (2.1) is that by definition
it allows for dependence between the dropout process T∗

i and the censoring process
Ci. When there is no information from the data on the joint distribution of (T∗

i ,Ci),
the assumption of non-informative censoring may be utilized (Tsiatis, 1975) to further
simplify the model. Under both the assumptions of non-informative censoring and
conditional independence, (2.2) further simplifies to the following:

∫ p (T∗

i ∣ bi;ψT∗
)p (Ci ∣ yo

i ;ψC)p (yo
i ,y

m
i ∣ bi; θ)p (bi; D)dbi, (2.3)
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which, in other words, means that the censoring process no longer depends on the
random effects and the missing observations. It should be noted that the assumption
of non-informative censoring, while commonly applicable, may not always be a
reasonable choice depending on the setting under study. Nevertheless, it is a necessary
condition for achieving an MAR characterization in SPMs without introducing more
latent variables as in Creemers et al. (2011).

Note that by definition, a subject may either be classified as a dropout or as
censored and never both. This means that the decomposition of the joint density as
described in (2.3) is, on a subject-specific level, further decomposed to the following:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∫ p (T∗

i ∣ bi;ψT∗
)p (yo

i ,y
m
i ∣ bi; θ)p (bi; D)dbi, i ∶ dropout

∫ p (Ci ∣ yo
i ;ψC)p (yo

i ,y
m
i ∣ bi; θ)p (bi; D)dbi, i ∶ censored.

(2.4)

The decomposition in (2.4) reveals that SPMs encompass MAR on the
subject-specific level. That is for a subject who dropped out from the study, the
model is MNAR because both the dropout, p (T∗

i ∣ bi;ψT∗), and measurement,
p (yo

i ,y
m
i ∣ bi; θ), processes depend on the missing observations through the random

effects bi. For a censored subject, though, the model is MAR since the random effects
and the missing observations appear only in factor p (yo

i ,y
m
i ∣ bi; θ). Moreover, due

to ignorability, the joint density reduces to the density of the observed measurement
process ∫ p (yo

i ∣ bi; θ)p (bi)dbi. Ignorability is a key consequence of MAR in SPMs.
It entails that there are not any information to be gained from either the dropout
or the censoring processes with respect to the measurement generating process, and
therefore MAR can be explored within the SPM framework. This is achieved without
broadening the definition of the conventional SPM by introducing additional random
effects. Furthermore, the fact that MAR in SPMs is achieved on the subject-specific
level allows for the potential of a subject- or cause-specific MAR sensitivity analysis.
This is in contrast to the SeM and PMM frameworks which are MNAR or MAR for
all the individuals under study. Finally, as we are going to illustrate in the upcoming
section, this decomposition allows exploiting existing software for its estimation.

3 Estimation of SPM under MAR

Estimation of the SPM under MAR follows from the conventional joint model for
longitudinal and time-to-event data, which exploits the decomposition of the full
joint-likelihood function to conditional independent components given the random
effects. More specifically, the likelihood contribution of the ith subject is given by the
following:

∫ p (T∗

i ∣ yi,bi;ψT∗
)p (Ci ∣ yi;ψ

C)p (yi ∣ bi; θ)p (bi; D)dbi, (3.1)
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The form of the conditional densities depends then on the model specification of
each component. Let the risk of dropout for subject i depend on a function of the true
underlying subject-specific trajectory ηi (t). Then the instantaneous risk of dropout
can be expressed as follows:

hi (t ∣Hi (t) ,bi,wi) = lim
1t→0

1
1t

Pr{t ≤ T∗

i < t +1t ∣ T∗

i ≥ t,Hi (t) ,wi}

= h0 (t) exp [γ⊺wi + f {ηi (t) ,bi,α}] , t > 0, (3.2)

where Hi (t) = {ηi (s) ,0 ≤ s ≤ t} denotes the history of the true underlying
longitudinal process up to time t (and therefore depends on the random effects
as well), h0 (⋅) is the baseline hazard function and wi is a vector of baseline covariates
with corresponding regression coefficients γ. The association between the features
of the longitudinal measurement process, p (yo

i ,y
m
i ∣ bi; θ), and the instantaneous

risk for dropout, hi (t ∣Hi (t) ,bi,wi), is quantified by parameter vector α. Function
f (⋅) may take various forms but for the remainder of the article we will assume that
f (ηi (t) ,bi, α) = αηi (t), the so-called current value association, which postulates that
the risk of dropout at time t depends only on the current value of the true underlying
subject-specific trajectory at the same time ηi (t). Let ui be a vector of baseline
covariates with corresponding regression coefficients γC and g (yo

i ) a function of the
observed measurements. Then, analogously, the instantaneous risk to be censored
can be expressed as follows:

λi (t ∣ yo
i ,ui) = lim

1t→0

1
1t

Pr{t ≤ Ci < t +1t ∣ Ci ≥ t,yo
i ,ui}

= h0 (t) exp [γ⊺Cui + g (yo
i )] , t > 0, (3.3)

since based on the assumption of non-informative censoring, it cannot depend on
the missing observations and the random effects.

The probability of not dropping out from the study can then be obtained by the
following:

Si (t ∣Hi (t) ,bi,wi) = Pr (T∗

i > t ∣Hi (t) ,wi)

= exp(−∫

t

0
h0 (s) exp{γ⊺wi + αηi (s)}ds) (3.4)

which means that unlike the instantaneous risk of dropout, the probability
of remaining in the study depends on the whole true underlying subject-specific
trajectory up to time t. Let Yo

i (t) = {yo
i (l) ,0 ≤ l ≤ t} denote the history of the

observed repeated measurements.Then, analogously, the probability of not being
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censored can be expressed as follows:

Vi (t ∣ Y
o
i (t) ,ui) = Pr (Ci > t ∣ Yo

i (t) ,ui)

= exp(−∫

t

0
λ0 (s) exp{γ⊺Cui + g (yo

i )}ds) (3.5)

omitting the conditioning on missing values and the random effects due to the
non-informative censoring assumption. Finally, to distinguish between censored
subjects and dropouts, let δi be an indicator variable which takes the value 1 if a
subject dropped out from the study, that is, T∗

i < Ci and 0 otherwise.
Under these assumptions and suppressing covariates wi and ui from the notation,

the conditional density of the dropout process can be expressed as follows:

p (T∗

i ∣ bi;ψT∗
) = {

hi (t ∣Hi (t) ,bi)Si (t ∣Hi (t) ,bi) , δi = 1
Si (t ∣Hi (t) ,bi) , δi = 0,

(3.6)

while the conditional density of the censoring process is given by the following:

p (Ci ∣ yo
i ;ψC) = {

λi (t)Vi (t) , δi = 0
Vi (t) , δi = 1,

(3.7)

Depending on the dropout and censoring status of the ith individual, the
joint-likelihood in (3.1) can be written as follows:

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Vi (t)∫ hi (t ∣Hi (t) ,bi)Si (t ∣Hi (t) ,bi)p (yi ∣ bi; θ)p (bi; D)dbi, δi = 1

Vi (t)λi (t)∫ Si (t ∣Hi (t) ,bi)p (yi ∣ bi; θ)p (bi; D)dbi, δi = 0.

(3.8)

Under (3.8), the model is MNAR for both uncensored and censored subjects. The
latter is because even for censored subjects, the term Si (t ∣Hi (t) ,bi) still appears in
the likelihood decomposition. However, for the case that a subject is censored, this
term equals to 1 reducing (3.8) to the following:

Vi (t)λi (t)∫ p (yi ∣ bi; θ)p (bi; D)dbi, (3.9)

which due to ignorability further reduces to the following:

∫ p (yi ∣ bi; θ)p (bi; D)dbi, (3.10)

an MAR model for the observed longitudinal measurements. The transition from
equation (3.9) to (3.10) holds due to the fact that the instantaneous risk to be censored
λi (t) and the probability of not being censored Vi (t) are ignorable, since they strictly
depend on the history of the observed repeated measurements and not the missing

Statistical Modelling xxxx; xx(x): 1–20
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ones (see equations (3.3) and (3.5)). Then when a subject is censored, instead of
dropout, he/she is considered MAR allowing for straightforward sensitivity analysis
since it can be achieved with existing software just by doing a data manipulation step
and changing all the dropout indicators to zero.

As far as the true underlying longitudinal trajectory is concerned, let yi (t) be the
contaminated, with measurement error εi, observed values of the true longitudinal
trajectory, ηi. Then the longitudinal process can be expressed using a mixed-effects
model defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi (t) = ηi + εi (t) ,
ηi (t) = E [yi (t) ∣ bi] = x⊺i (t)β + z⊺i (t)bi,

εi ∼ N (0,6i) ,

bi ∼ N (0,D) ,

bi ⊥⊥ εi,

(3.11)

where the true longitudinal trajectory ηi is assumed to be a function of some
general time-dependent design vectors x⊺i (t) and z⊺i (t) which are associated with a
set of fixed-effects β and a set of subject-specific random effects bi, respectively. The
errors are typically assumed to be normally distributed with mean zero and a general
variance—covariance matrix 6i which is commonly specified as I × σ2. The random
effects bi are also assumed to be normally distributed with mean zero and a general
variance—covariance matrix D, and they are also assumed to be independent from
the errors.

The conditional density for the longitudinal responses is then given by the
following:

p (yi ∣ bi; θ) = (2πσ2)
ni/2 exp{−∣∣yi − xiβ − zibi∣∣

2
/2σ2}

with ∣∣x∣∣ = ∑i {x2
i }

1/2
denoting the Euclidean vector norm. The density of the

random effects is, then, given by the following:

p (bi; D) = (2π)−q/2 det (D)
−1/2 exp (−b⊺i D−1bi/2) (3.12)

Under the Bayesian framework, estimation of the parameters of the SPM
is achieved using Markov chain Monte Carlo (MCMC) algorithms. Let 2 =

{β,6i,ψ
T∗,ψC,D} be a vector of unknown parameters, then the posterior

distribution is proportional to the following:

p (2,b)∝∏
i

p (yi ∣ bi; θ)p (T∗

i ∣ bi;ψT∗
)p (Ci ∣ yo

i ;ψC)p (bi; D)p (2) (3.13)

The computation of the integrals involved in p (T∗

i ∣ bi;ψT∗) and p (Ci ∣ yo
i ;ψC)

is achieved using standard Gauss–Kronrod and Gauss–Legendre quadrature rules.
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For the parameters in 2, standard prior distributions are used. More specifically,
for the vector of regression coefficients β of the longitudinal submodel and for the
vector of regression coefficients of the dropout submodel γ we use independent
univariate diffuse normal priors. For the covariance matrix of the random effects
an inverse-Wishart prior is used, while for the variance of the error terms σ2

an inverse-Gamma prior is used. For the baseline hazard, we use a B-spline
approximation expressed as follows:

h0 (t) = exp
⎛

⎝
γh0,0 +

Q

∑
q=1
γh0,qBq (t,k)

⎞

⎠
, (3.14)

with Bq (t,k) denoting the qth basis function of a B-spline with knots k1, . . . ,kq

and γh0
the vector of coefficient corresponding to the spline terms. To achieve the

B-spline approximation to the baseline hazard under the Bayesian framework, the
following prior is specified:

p (γh0
∣ τh)∝ τ

ρ(K)/2
h exp(−

τh

2
γ⊺h0

Kγh0
) (3.15)

In the above specification, τh is a smoothing parameter with a Gamma (1,0.005)
hyper-prior, K is a penalty matrix and ρ(K) is its rank. For more details, the reader
is referred to Rizopoulos (2016).

4 The HIV CD4 data: A sensitivity analysis

As an illustrative case study, we will use data from a randomized clinical trial designed
to compare the efficacy and safety of Didanosine (ddI) versus Zalcitabine (ddC) in
HIV patients (Abrams et al., 1994; Goldman et al., 1996). In total, 467 advanced
HIV patients were included in the study and were randomized to ddI (230; 49.2%)
or ddC (237; 50.8%). The primary goal of the trial was to compare survival between
the two treatment arms, while a secondary goal of the study was to investigate the
association between CD4 cell count (a marker for the strength of the immune system)
and the risk of death. For the latter goal, measurements of the CD4 cell count were
recorded at scheduled visits at baseline, 2, 6, 12 and 18 months after the start of the
study. Figure 3 shows the observed trajectories of the square root CD4 cell count.
Until the end of the study, 184 (39.4%) died while only 1 405 (60.1%) out of the
2 335 planned visits were recorded, leading to 930 (39.9%) missing observations.
In total, only 24(5.1%) patients were present for all five planned visits, 382(81.8%)
dropped out from the study due to death or other reasons, and 61(13.0%) missed
at least one planned visit without dropping out though from the remainder of the
study. Table 1 shows the number of available measurements per dropout pattern per
treatment arm, excluding the 61 cases of intermittent missingness.

Statistical Modelling xxxx; xx(x): 1–20
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Figure 2 Observed longitudinal trajectories of
√

CD4 by treatment arm

We observe that dropout rates are similar between the treatment groups, the closer
we look at the beginning of the study, but they slightly start to deviate towards the
end of the study. Nevertheless, it is not possible to distinguish if the missing data
are missing completely at random, MAR or MNAR. This highlights the importance
of being able to explore different scenarios with respect to missing data in the SPM
framework via sensitivity analysis.

To model the longitudinal measurements of CD4 cell count, we used a linear
mixed-effects model with an interaction between time and ddI in the fixed-effects

Table 1 Number of observed CD4 measurements per dropout pattern and per treatment arm. ‘OXXXX’
denotes a dropout pattern where only the first planned measurement was obtained (denoted with ‘O’)
while the rest were not (denoted with ‘X’), whereas ‘OOOOO’ denotes a pattern for a completer (all planned
measurements were obtained)

ddC ddI

Dropout Pattern N % N %

OXXXX 29 14.4 32 15.6
OOXXX 35 17.4 37 18.0
OOOXX 41 20.4 47 22.9
OOOOX 85 42.3 76 37.1
OOOOO 11 5.5 13 6.3
Total 201 100 205 100

Statistical Modelling xxxx; xx(x): 1–20



12 Grigorios Papageorgiou and Dimitris Rizopoulos

Table 2 Posterior means (standard errors) for an MAR and MNAR analyses

Scenario 1 Scenario 2

Effect Parameter MNAR MNAR MAR

Intercept β0 2.4671 (0.0640) 2.4680 (0.0629) 2.4423 (0.0647)
Time β1 −0.0655 (0.1701) −0.0674 (0.1715) −0.0399 (0.0050)
ddI β2 0.1038 (0.0908) 0.1067 (0.0879) 0.1188 (0.0946)
ddI × Time β3 0.0219 (0.2332) 0.0290 (0.2376) 0.0089 (0.0070)

structure. We also used random intercepts and random slopes to allow for
subject-specific deviations. The square root of the CD4 cell count was used in order to
meet the normality and homoscedasticity assumptions of the model, which is defined
as follows:

√
yo

ij = (β0 + bi0) + (β1 + bi1) tij + β2ddI + β3 (tij × ddI) + εij, (4.1)

where bi ∼ N (0,D), independent of εij ∼ N (0, σ2).
For the time-to-dropout Ti, we assumed a relative risk model of the form:

hi (t ∣Hi (t) ,bi) = h0 (t) exp [γ1ddI + αηi (t)] (4.2)

where the baseline hazard h0 (t) was approximated using penalized B-splines with
three internal knots placed at quantiles of the observed event times (Eilers and Marx,
1996). The number of knots was kept small due to the low number of time points
per subject.

These two sub models define the MNAR joint model for the CD4 cell count and
the dropout. We then assumed two different scenarios with respect to the cause
of dropout. Under Scenario 1, we assume no information concerning the cause
of dropout, which means we treat dropout due to death or any other reason the
same. Contrariwise in Scenario 2, we consider as dropouts only the subjects who
died during the study. Finally, to achieve MAR, we assume that all the subjects are
censored instead of dropping out. As shown in Section 3, this reduces the model
to the mixed-effects sub model, which is considered MAR. All models were fitted
using R version 3.6.1 and package JMbayes (Rizopoulos, 2016). Table 2 shows the
parameter estimates after fitting all three different models.

While the results of all the models are close, there are quantitative differences
which indicate that the findings might not be stable. This is especially the case
when comparing the MAR model with both MNAR models. In Figures 3 and 4, the
posterior means of the random effects estimated from the MAR model against the
respective estimated random effects from each MNAR model are shown. Similarly, in
Figure 5, the posterior means of the random effects estimated from the MNAR model
under the 1st Scenario are plotted against the respective estimated random effects
from the MNAR model under the 2nd Scenario. These plots give insight into the
differences between the three models. We see that especially for the slope components,
the differences in the random effects’ estimates are more intense between the MAR
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Figure 3 Scenario 1: Posterior means of the random effects under MNAR and MAR

model and the MNAR models under both scenarios. These differences become weaker
when we compare the MNAR model under the 1st Scenario and the MANR model
under the 2nd Scenario, which utilizes the information and distinguishes between
dropout due to an event and dropout due to any other reason. This highlights the
importance of sensitivity analysis in this context since the differences in the random
effects estimates would translate to differences in the subject-specific predictions
based on each of the models. The results are stable under different MNAR scenarios,
but substantial differences are observed when using an MAR model.

5 Simulation study

We conducted a simulation study to evaluate the performance of the following three
models (used in the analysis of the HIV CD4 data):

• Model 1: all dropout cases considered MNAR (as the MNAR model used under
Scenario 1 MNAR in the analysis of the HIV dataset),

• Model 2: all dropout cases considered MAR,
• Model 3: dropout cases considered MNAR if dropout due to the event or MAR

otherwise (as the MNAR model used under Scenario 1 MNAR in the analysis of
the HIV dataset),
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Figure 4 Scenario 2: Posterior means of the random effects under MNAR and MAR

under different scenarios for the amount of MAR and MNAR dropouts. More
specifically, assuming a total dropout rate of 50%, we considered three different
scenarios concerning the amount of dropout type: (a) 5% MAR dropouts versus
45% MNAR dropouts, (b) 25% MAR dropouts versus 25% MNAR dropouts and
(c) 45% MAR dropouts versus 5% MNAR dropouts. Our goal is to investigate the
behaviour between these models under each scenario.

We assumed 600 subjects and then randomly selected follow-up visits, tij from a
uniform distribution between 0 and 10. We set the total number of measurements per
subject to 10, but the final number of measurements may vary depending on whether
a subject was a dropout or not. The type of dropout was then determined as follows:
if the value of the longitudinal trajectory of a subject exceeded a pre-specified value,
then the next time point was selected as the candidate MAR dropout time, which
was then compared to the candidate MNAR dropout time. We simulated the MNAR
dropout time using a joint model. Depending on which of these time points occurred
sooner (if occurred), the subject was classified as MAR dropout, MNAR dropout or
completer. The threshold value for MAR varied between the three scenarios in order
to attain the target percentages of dropout per type.
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Figure 5 Scenario 2: Posterior means of the random effects under MNAR (1st Scenario) and MNAR (2nd
Scenario)

For the continuous longitudinal outcome, the data were simulated from a linear
mixed-effects model as follows:

yij = (β0 + bi0) + (β1 + bi1) tij + β2Xcov + β3 (Xcov × tij) + εij, (5.1)

where Xcov is a categorical variable with two groups, εi (t) ∼ N (0, σ2Ini) and
b ∼ N (0,D). The parameter values used are as follows: β0 = 2.47, β1 = −0.067, β2 =
0.107, β3 = 0.029, σ = 1.431 and for the variance—covariance matrix of the random
effects:

D = [
d11 = 0.765 d12 = −0.038

d21 = −0.038 d22 = 4.910
]

The values of the parameters were based on the analysis of the HIV CD4 data.
For time-to-dropout, we assumed a relative risk model of the form:

hi (t ∣Hi (t) ,bi) = h0 (t) exp [γ1Xcov + αηi (t)] (5.2)
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where the baseline hazard was simulated from a Weibull distribution h0 (t) = ξtξ−1

with ξ = 3.765.
We simulated 500 datasets per scenario, and we fitted each of the three models

on each dataset. To assess the behaviour of the three models, we calculated the Bias
and Root Mean Squared Error (RMSE) for both the regression coefficients, and
the variance parameter estimates. Table 3 summarizes the results for the regression
coefficients, while Table 4 summarizes the results for the variance parameters. The
results suggest that when the major cause of missingness is MAR, Models 2 and 3
perform similarly and slightly better than Model 1, as far as the regression coefficients
are concerned. As the amount of MNAR dropout increases, the three models seem
to have similar performance in the estimation of the regression coefficients with only
slight differences.

On the other hand, when looking at the Bias and RMSE for the estimates of
variance parameters for the random effects, there are more distinct differences
between the models. More specifically, the results suggest that Models 1 and 3
perform better than Model 2. Moreover, for the variances of the random effects,
under Model 2, the Bias seems to increase as the balance between dropout types moves
from MAR dominance to MNAR dominance, whereas the case is the opposite for
Model 3. The differences in the variance parameters’ estimates of the random effects
between the models also imply that there are considerable differences in the estimated
random effects. The difference in the random effects means that the subject-specific
predictions derived from these models will differ.

6 Discussion

In this article, we have proposed an alternative characterization of MAR for the
conventional SPM and proposed its application as a sensitivity analysis tool towards
MNAR deviations from the MAR assumption. In doing so, we did not broaden
the definition of the SPM by adding additional random effects structures and hence
retaining the computational feasibility of the model.

Furthermore, we argued how the subject-specific nature of the MAR
characterization in SPM comes with the advantage of more flexible comparisons
regarding the causes of missingness. This is an important advantage over other
MNAR frameworks such as the PMM and SeM since it allows distinguishing groups
of subjects as MAR or MNAR depending on the information available for the causes
of missingness. This was illustrated in the application to the HIV data, where we were
able to consider different MNAR scenarios with respect to the information available
on the causes of missingness.

Finally, it should be mentioned that this characterization of MAR in SPMs allows
for potential extensions to account for multiple causes of missingness by using for
example a multi-state model and/or generalized mixed-effects models for categorical
longitudinal outcomes. Dropout is present in most longitudinal studies, and our
approach showed how one could perform a sensitivity analysis using standard joint
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modelling software to explore different causes of missingness. By doing so, we do
hope that such sensitivity analyses will become standard procedure and will be
routinely reported in longitudinal studies with dropout.
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