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Abstract
Aims/hypothesis This biomarker study aimed to quantify the association of essential and other plasma fatty acid biomarkers with
macrovascular disease, microvascular disease and death in individuals with type 2 diabetes.
Methods A case-cohort study (N = 3576), including 654 macrovascular events, 341 microvascular events and 631 deaths during
5 years of (median) follow-up, was undertaken as a secondary analysis of the Action in Diabetes and Vascular Disease: Preterax and
Diamicron Modified-Release Controlled Evaluation (ADVANCE) study (full details of the study design and primary endpoints of the
ADVANCE trial and its case-cohort have been published previously). This current study considers new data: fatty acidsmeasured from
baseline plasma samples by protonNMR analysis. The fatty acidsmeasured were n-3, docosahexaenoic acid (DHA), n-6, linoleic acid,
and polyunsaturated, monounsaturated and saturated fatty acids. HRs were modelled per SD higher (percentage) fatty acid. C statistics
and continuous net reclassification improvement were used to test the added value of fatty acids compared with traditional cardiovas-
cular risk factors.
Results After adjustment for traditional cardiovascular risk factors, an inverse association was observed for n-3 fatty acids and DHA
with the risk of macrovascular events (HR [95%CI]: 0.87 [0.80, 0.95] and 0.88 [0.81, 0.96], respectively, per 1 SD higher percentage),
and for n-3 fatty acids with the risk of death (HR 0.91 [95% CI 0.84, 0.99] per 1 SD higher percentage). Such associations were also
evident when investigating absolute levels of fatty acids. There were no statistically significant associations between any fatty acids and
microvascular disease after adjustment. However, there was limited improvement in the predictive ability of models when any fatty
acid was added.
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Conclusions/interpretation Plasma n-3 fatty acids and DHAwere found to be inversely associated with macrovascular disease,
while n-3 fatty acids were also inversely associated with death. These results support the cardioprotective effects of n-3 fatty acids
and DHA and further merit testing the role of high-dose supplementation with n-3 fatty acids in individuals with type 2 diabetes.
Trial registration ClinicalTrials.gov NCT00145925.
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Abbreviations
ADVANCE Action in Diabetes and Vascular Disease:

Preterax and Diamicron Modified-Release
Controlled Evaluation

AHA American Heart Association
CVD Cardiovascular disease
DHA Docosahexaenoic acid
EPA Eicosapentaenoic acid
1H-NMR Proton NMR
LA Linoleic acid
MUFA Monounsaturated fatty acids
NRI Net reclassification index
PUFA Polyunsaturated fatty acids
REDUCE-IT Reduction of Cardiovascular Events with

Icosapent Ethyl–Intervention Trial
SFA Saturated fatty acids

Introduction

Type 2 diabetes is associated with a substantial risk of
macrovascular disease, including coronary and cerebrovascular
diseases; microvascular disease, including kidney disease and
retinopathy; and premature death [1]. Early recognition of diabe-
tes in its progression and initiation of an intervention are therefore
needed for preventing such adverse long-term outcomes.

Fatty acids are vital nutrients which play regulatory roles in
energy metabolism. The composition of fatty acids in blood can
be affected by dietary intake [2] and has been reported to be
involved in pathological mechanisms of various diseases such
as insulin resistance, obesity, diabetes and atherosclerosis [3]. For
several decades, clinical trials and population-based studies have
attempted to determine the effects of dietary intake of fatty acids
on vascular outcomes and mortality; however, the results remain
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controversial and inconsistent. Several meta-analyses of clinical
trials have suggested that dietary intake of n-3 fatty acids such as
docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA),
which are generally known as seafood-derived fatty acids, had
no, or at most a weak, protective effect on cardiovascular disease
(CVD) and death in people with and without diabetes [4, 5]. In
contrast, a recentmeta-analysis reported that n-3 supplementation
was associated with a lower risk of CVD [6]. In particular, the
recent Reduction of Cardiovascular Events with Icosapent
Ethyl–Intervention Trial (REDUCE-IT) observed pronounced
protective effects of high-dose (4 g/day) supplementation with
n-3 fatty acids against cardiovascular outcomes among individ-
uals with established CVD or with diabetes and other risk factors
[7]. Based upon these results, the recent scientific statement from
the American Heart Association (AHA) recommends the
prescription of n-3 fatty acids, whether EPA+DHA or EPA only,
at a dose of 4 g/day as an effective and safe treatment for reduc-
i n g t r i a c y l g l y c e r o l s among i n d i v i d u a l s w i t h
hypertriglyceridaemia [8].

Blood or tissue n-3 fatty acids have been reported to be asso-
ciated with a lower risk of CHD [9, 10]. These results support the
belief that measurements of circulating n-3 fatty acids may be
useful for the prediction and management of cardiovascular risk.
However, the benefits of measuring circulating fatty acids in
people with type 2 diabetes in predicting the risks of cardiovas-
cular and other vascular diseases are unclear. In addition, most
studies report the results for individual fatty acids, and there are
limited studies investigating multiple circulating fatty acids
together.

To address these questions, we assessed the association of
baseline plasma fatty acids with the risk of macrovascular and
microvascular disease and death in participants with type 2
diabetes included in the Action in Diabetes and Vascular
Disease: Preterax and Diamicron Modified-Release
Controlled Evaluation (ADVANCE) study.

Methods

Participants and study designWeperformed a biomarker study
using a case-cohort assessing the relationship between baseline
plasma fatty acids and macrovascular and microvascular events
and death in individuals with type 2 diabetes who participated in
the ADVANCE trial (ClinicalTrials.gov registration no.
NCT00145925). Between June 2001 and March 2003, 11,140
participants with type 2 diabetes were recruited for the
ADVANCE trial, from 215 collaborating centres in 20
countries in Asia, Australasia, Europe and North America.

Individuals were potentially eligible for the ADVANCE trial
if they had been diagnosed with type 2 diabetes mellitus at the
age of 30 years or older and were aged 55 years or older at entry
to the study. Potentially eligible participants also needed to have
at least one of the following: a history of major CVD (stroke,

myocardial infarction, hospital admission for transient ischaemic
attack, hospital admission for unstable angina, coronary
revascularisation, peripheral revascularisation, or amputation
secondary to vascular disease) or at least one other risk factor
for CVD. Such risk factors were defined by the presence of at
least one of the following: a history of major microvascular
disease (macroalbuminuria [urinary albumin/creatinine ratio
>300 μg/mg], proliferative diabetic retinopathy, retinal photoco-
agulation therapy, macular oedema, or blindness in one eye
thought to be caused by diabetes), current cigarette smoking, total
cholesterol >6.0 mmol/l, HDL-cholesterol <1.0 mmol/l,
microalbuminuria (urinary albumin/creatinine ratio 30–300 μg/
mg), diagnosis of type 2 diabetes mellitus made ≥10 years before
entry, or age ≥ 65 years at entry. The trial included two
randomised interventions: (1) a double-blind assessment of the
efficacy of perindopril/indapamide (2mg/0.625mg for 3months,
increasing to 4 mg/1.25 mg if tolerated) vs placebo; and (2) an
open-label evaluation of an intensive glucose-lowering regimen
using modified-release gliclazide (with a target HbA1c ≤
48 mmol/mol [6.5%]) vs standard care.

For the present biomarker study, blood sampleswere available
from all countries participating in the ADVANCE trial, except
China and India, giving a base population of 7376 (Fig. 1). We
included 4197 individuals from the case-cohort study, who
comprised a random subcohort of 3500 individuals (2860
‘controls’ and 640 ‘cases’) that was enriched with 697 additional
‘cases’with a macrovascular or microvascular event or who had
died during follow-up but were not in the subcohort. Full details
of the study design and primary endpoints of the ADVANCE
trial [11, 12] and its case-cohort [13] have been published
elsewhere.

Proton NMR analysis Plasma samples were obtained at baseline
from all study participants when they were in an unfasted state,
given that these were people with type 2 diabetes at risk of
hypoglycaemic episodes. Samples were collected across sites in
a pragmatic fashion (commensurate with a multinational RCT)
according to local facilities. Plasma samples were separated and
stored centrally at −80°C until measurement. The present study
used a previously unthawed aliquot of plasma for proton NMR
(1H-NMR) analysis. 1H-NMR spectroscopy was performed on
all available EDTA plasma samples from the ADVANCE case-
cohort study at baseline using a low-volume (100μl) variation of
the quantitative 1H-NMRmethod (Nightingale Health, Helsinki,
Finland) described previously [14, 15] and reviewed [16].
Sample spectra were analysed on a Bruker AVANCE III HD
spectrometer (Billerica, MA, USA) to quantify a targeted list of
metabolites, lipids and lipoproteins, as described previously [16].

This study presents new data on all fatty acids that can be
robustly quantify by NMR, i.e. two individual fatty acids: DHA
(an n-3 fatty acid) and linoleic acid (LA; an n-6 fatty acid). Six
aggregate measures included: n-3, n-6, polyunsaturated (PUFA;
sum of n-3 and n-6 fatty acids), monounsaturated (MUFA) and
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saturated (SFA) fatty acids. The percentages of total fatty acids as
well as the absolute levels were used as the exposures of interest
for the current analysis.

Study outcomes The primary outcomes for this study were
major macrovascular and microvascular events and death that
occurred during a median of 5 years of follow-up. An inde-
pendent endpoint adjudication committee validated all these
outcomes using ICD codes (electronic supplementary material
[ESM] Methods). Major macrovascular events were cardio-
vascular death, non-fatal myocardial infarction and non-fatal
stroke. Major microvascular events were a composite of new
or worsening nephropathy or retinopathy, defined as any of
the following: (1) development of macroalbuminuria; (2)
doubling of serum creatinine level to ≥200 μmol/l; (3) the
need for renal replacement therapy due to kidney disease, or
death due to renal disease; (4) development of proliferative
retinopathy; (5) development of macular oedema; (6) occur-
rence of diabetes-related blindness; (7) use of retinal photoco-
agulation therapy. The secondary outcomes were individual
components of macrovascular and microvascular events:
cardiovascular death, non-fatal stroke, non-fatal myocardial
infarction and new or worsening nephropathy.

Statistical analyses Baseline participant characteristics were
summarised according to the study outcomes (major
macrovascular and microvascular events and death).
Categorical data were presented as number (percentage), and
continuous data according to the data distribution, mean (SD)
for approximately symmetrically distributed data and median

(interquartile interval [IQI]) for skewed distributions. The
percentage contribution of the fatty acid biomarkers of the total
fatty acid and the absolute fatty acid values were summarised as
mean (SD) values for each study outcome.

Cox proportional hazards models for case-cohort data were
used to model the associations between fatty acids and the study
outcomes, adjusting covariates considered as traditional cardio-
vascular risk factors. Models estimated HR (per SD percentage
higher) of the percentage contribution of total fatty acids. Two
sets of models were fit for each fatty acid-outcome combination:
model 1, adjusted for age, sex, region and the treatments random-
ly allocated in the RCT; andmultiple-adjustedmodel 2, addition-
ally adjusted for history of macrovascular disease, duration of
diabetes, current smoking status, systolic BP, BMI, urinary
albumin/creatinine ratio, eGFR (calculated using the Chronic
Kidney Disease Epidemiology Collaboration [CKD-EPI] creati-
nine equation), HbA1c, HDL-cholesterol, triacylglycerols, and
use of aspirin or other antiplatelet agents, statins or other lipid-
lowering agents, β-blockers and ACE inhibitors or angiotensin
receptor blockers. All p values reported are two-sided, with the
5% threshold used to determine statistical significance. Since
several statistical tests are included in this article, the reader is
recommended to treat marginal levels of significance with
caution.

Sensitivity analyses included models estimating HRs for 1
SD higher of the absolute level of each fatty acid. For the fatty
acid-outcome combinations that yielded statistically signifi-
cant results in multiple-adjusted models in the main analysis,
models were fitted estimating HRs in quarters of the range of
values of the percentage of fatty acids.

Insufficient samples
• Unsuitable for NMR analysis (n=621)

n=4197 included in the case-cohort study

n=3576 samples
• n=654 macrovascular events
• n=341 microvascular events
• n=631 deaths a

n=3500 randomly selected participants 
• n=374 macrovascular events 
• n=320 microvascular events
• n=367 deaths during follow-up a

n=7376 included in biobank

n=3764 Chinese and Indian participants
excluded from biobank

N=11,140 recruited in the ADVANCE trial

Further selection of all other participants 
(n=697) 

• n=396 macrovascular events 
• n=180 microvascular events 
• n=410 deaths during follow-up a

Fig. 1 Flow diagram for design
of ADVANCE case-cohort study
of fatty acid biomarkers for
macrovascular events,
microvascular events and death.
aMacrovascular events,
microvascular events and death
are not mutually exclusive

Diabetologia



Subgroup analyses were performed according to baseline
covariates, including age (<65 years or ≥65 years), sex, region
of residence (Australia, New Zealand and South East Asia,
Canada, Continental Europe and Northern Europe), history of
macrovascular disease, history of microvascular disease, eGFR
(<60 ml min−1 [1.73 m]−2 or ≥60 ml min−1 [1.73 m]−2), triacyl-
glycerols (<1.7 mmol/l or ≥1.7 mmol/l), and randomised treat-
ments (BP- and glucose-lowering treatments).

The ability of fatty acids to discriminate between those who
will and those who will not go on to suffer major macrovascular

andmicrovascular events and death was estimated using C statis-
tics accounting for censoring [17, 18]. Further, the ability of fatty
acids to reclassify participants was estimated using the continu-
ous net reclassification improvement (NRI) [19, 20]. These statis-
tics were computed, for 5 year risk, for individuals in the random
subcohort only for those fatty acids whose percentage contribu-
tion demonstrated a statistically significant association with
outcomes. 95% CIs for the C statistic (and increments in it when
adding fatty acids) and NRI were calculated using bootstrap
methods with a normal approximation and 500 bootstrap

Table 1 Baseline characteristics of participants in the case-cohort study by macrovascular events, microvascular events and death

Characteristic Macrovascular events Microvascular events Death

Yes No Yes No Yes No

N (%) 654 (18.3) 2922 (81.7) 341 (9.5) 3235 (90.5) 631 (17.6) 2945 (82.4)
Age, years 69 (7) 66 (7) 66 (6) 67 (7) 70 (7) 66 (6)
Men, n (%) 450 (69) 1712 (59) 226 (66) 1936 (60) 438 (69) 1724 (59)
Region, n (%)
ANZ/SEA 155 (24) 713 (24) 123 (36) 745 (23) 120 (19) 748 (25)
Canada 33 (5) 185 (6) 28 (8) 190 (6) 34 (5) 184 (6)
Continental Europe 262 (40) 1154 (39) 90 (26) 1326 (41) 264 (42) 1152 (39)
Northern Europe 204 (31) 870 (30) 100 (29) 974 (30) 213 (34) 861 (29)

Duration of diabetes, years 9.2 (7.1) 7.6 (6.3) 9.8 (6.9) 7.7 (6.4) 9.2 (7.6) 7.6 (6.2)
History of macrovascular disease, n (%) 323 (49) 925 (32) 118 (35) 1130 (35) 283 (45) 965 (33)
Current smoker, n (%) 84 (13) 390 (13) 44 (13) 430 (13) 96 (15) 378 (13)
Systolic BP, mmHg 150 (23) 146 (21) 150 (21) 147 (22) 149 (23) 147 (21)
Diastolic BP, mmHg 82 (11) 82 (11) 82 (11) 82 (11) 81 (12) 82 (11)
HbA1c, mmol/mol 60 (17) 57 (15) 61 (18) 57 (15) 59 (17) 57 (15)
HbA1c, % 7.6 (1.6) 7.4 (1.4) 7.8 (1.6) 7.4 (1.4) 7.6 (1.6) 7.4 (1.4)
eGFR, ml min−1 (1.73 m)−2 68 (18) 73 (16) 70 (19) 72 (16) 67 (18) 73 (16)
Urinary ACR, μg/mg 21 (9, 71) 13 (6, 35) 49 (14, 127) 13 (6, 34) 21 (8, 66) 13 (6, 35)
Total cholesterol, mmol/mol 5.1 (1.2) 5.2 (1.2) 5.2 (1.1) 5.1 (1.2) 5.1 (1.1) 5.2 (1.2)
HDL-cholesterol, mmol/mol 1.17 (0.31) 1.23 (0.33) 1.18 (0.31) 1.23 (0.33) 1.18 (0.31) 1.23 (0.33)
Triacylglycerols, mmol/l 1.6 (1.2, 2.3) 1.7 (1.2, 2.4) 1.8 (1.3, 2.6) 1.7 (1.2, 2.3) 1.6 (1.2 2.3) 1.7 (1.2 2.4)
Randomised BP-lowering treatment, n (%) 310 (47) 1453 (50) 163 (48) 1600 (49) 296 (47) 1467 (50)
Randomised intensive blood glucose control, n (%) 321 (49) 1445 (49) 151 (44) 1615 (50) 309 (49) 1457 (49)
Medication use, n (%)
Aspirin or other antiplatelet agent 386 (59) 1373 (47) 170 (50) 1589 (49) 351 (56) 1408 (48)
Statins or other lipid-lowering agent 283 (43) 1305 (45) 157 (46) 1431 (44) 260 (41) 1328 (45)
β-blocker 211 (32) 875 (30) 95 (28) 991 (31) 196 (31) 890 (30)
ACE inhibitor or angiotensin receptor blocker 417 (64) 1664 (57) 231 (68) 1850 (57) 394 (62) 1687 (57)

Fatty acids, % of total fatty acids
PUFA 28.8 (5.8) 29.0 (5.7) 28.2 (5.8) 29.1 (5.7) 28.9 (5.5) 29.0 (5.8)

n-3 Fatty acids 2.5 (1.3) 2.8 (1.4) 2.7 (1.4) 2.7 (1.4) 2.6 (1.3) 2.8 (1.4)
DHA 0.75 (0.46) 0.83 (0.50) 0.79 (0.53) 0.82 (0.49) 0.76 (0.48) 0.83 (0.50)

n-6 Fatty acids 26.2 (4.9) 26.2 (4.8) 25.5 (5.2) 26.3 (4.8) 26.3 (4.6) 26.2 (4.9)
LA 17.2 (6.7) 17.2 (6.2) 16.6 (6.7) 17.3 (6.3) 17.3 (6.3) 17.2 (6.3)

MUFA 30.2 (3.6) 30.2 (3.7) 30.4 (5.4) 30.2 (3.5) 30.2 (3.7) 30.2 (3.7)
SFA 41.0 (5.1) 40.8 (5.0) 41.6 (5.9) 40.8 (5.0) 40.9 (5.0) 40.8 (5.1)

Fatty acids, mmol/l
Total fatty acids 8.34 (2.91) 8.63 (3.18) 8.50 (2.93) 8.59 (3.16) 8.31 (2.61) 8.64 (3.24)

PUFA 2.45 (1.01) 2.55 (1.03) 2.45 (1.03) 2.53 (1.03) 2.43 (0.92) 2.55 (1.05)
n-3 Fatty acids 0.23 (0.15) 0.26 (0.17) 0.24 (0.17) 0.25 (0.17) 0.23 (0.15) 0.26 (0.17)
DHA 0.067 (0.049) 0.077 (0.056) 0.073 (0.057) 0.076 (0.055) 0.068 (0.050) 0.077 (0.056)

n-6 Fatty acids 2.21 (0.88) 2.29 (0.89) 2.21 (0.89) 2.28 (0.88) 2.20 (0.79) 2.29 (0.90)
LA 1.52 (0.84) 1.56 (0.83) 1.50 (0.83) 1.56 (0.83) 1.51 (0.75) 1.57 (0.84)

MUFA 2.55 (1.05) 2.64 (1.16) 2.61 (1.07) 3.43 (1.15) 2.54 (0.95) 2.64 (1.17)
SFA 3.34 (1.06) 3.46 (1.23) 3.45 (1.08) 3.43 (1.22) 3.33 (0.95) 3.46 (1.25)

Data are presented as mean (SD) or median with IQI (lower quartile, upper quartile), unless otherwise stated

ACR, albumin/creatinine ratio; ANZ/SEA, Australia and New Zealand/South-East Asia; IQI, interquartile interval
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iterations. All analyses in this study were performed using Stata/
MP, version 15 (Stata Corporation, College Station, TX, USA),
and R, version 3.5.3 (R Foundation for Statistical Computing,
Vienna, Austria); the R code is provided in the ESM Methods.

Results

Participants’ characteristics There were 3576 individuals from
the case-cohort that had available data for at least one fatty
acid, which comprised 3021 from the random subcohort
(2507 controls and 514 cases) and 555 additional cases. For
the 3576 individuals there were 654 macrovascular events,
341 microvascular events and 631 deaths during a median of
5 years of follow-up (Fig. 1).

Higher percentages of the fatty acids of total fatty acids in
those free from an adverse event were observed, compared with
lower percentages in those with adverse events. Significant
differences were observed in the percentage of n-3 fatty acids
and DHA for macrovascular events and death, and in PUFA,
SFA, n-6 fatty acids and LA in microvascular events (Table 1).
Similar findings were observed in the absolute fatty acid levels,
for most fatty acids considered in this study, where the mean
levels were significantly higher in participants who were free

from major macrovascular events and alive at the end of the
study. There were no significant differences in the absolute level
of any fatty acids for microvascular events.

Clinical outcomes during follow-up After adjustment for age,
sex, region and randomised treatments (model 1), there were
highly significant inverse associations with the risk of
macrovascular events and death for the percentage of n-3 fatty
acids (HR [95% CI]: 0.84 [0.77, 0.91] and 0.85 [0.79, 0.93],
respectively, per 1 SD higher percentage) and DHA (HR [95%
CI]: 0.82 [0.76, 0.89]) and 0.85 [0.78, 0.92], respectively, per 1
SD higher percentage) (ESM Fig. 1). After further adjustment
(model 2), the association remained, albeit weaker, for the
percentage of n-3 fatty acids (HR [95% CI]: 0.87 [0.80, 0.95]
and 0.91 [0.84, 0.99] for the risk of macrovascular events and
death, respectively, per 1 SD higher percentage) and for DHA
(HR [95%CI]: 0.88 [0.81, 0.96] and 0.93 [0.85, 1.01] for the risk
of macrovascular events and death, respectively, per 1 SD higher
percentage), although the latter was not significant (Fig. 2).

For individual components of macrovascular events from
multiple-adjusted models, n-3 fatty acids and DHAwere associ-
ated with lower risks of cardiovascular death (HR [95%CI]: 0.85
[0.75, 0.96] and 0.86 [0.76, 0.98]), respectively, and non-fatal
stroke (HR [95%CI]: 0.82 [0.69, 0.97] and 0.82 [0.69, 0.97]),

HR (95% CI)

Macrovascular events
PUFA (1SD = 5.8) 0.94 (0.86, 1.03)

n-3 Fatty acids (1SD = 1.4) 0.87 (0.80, 0.95)
DHA (1SD = 0.49) 0.88 (0.81, 0.96)

n-6 Fatty acids (1SD = 4.8) 0.97 (0.89, 1.07)
LA (1SD = 6.3) 0.98 (0.90, 1.07)

MUFA (1SD = 3.7) 1.07 (0.96, 1.19)
SFA (1SD = 5.1) 1.03 (0.95, 1.11)

Microvascular events
PUFA (1SD = 5.8) 0.98 (0.87, 1.11)

n-3 Fatty acids (1SD = 1.4) 1.01 (0.91, 1.13)
DHA (1SD = 0.49) 1.01 (0.91, 1.13)

n-6 Fatty acids (1SD = 4.8) 0.97 (0.86, 1.10)
LA (1SD = 6.3) 0.98 (0.87, 1.10)

MUFA (1SD = 3.7) 0.97 (0.85, 1.12)
SFA (1SD = 5.1) 1.07 (0.96, 1.19)

Death
PUFA (1SD = 5.8) 0.95 (0.86, 1.04)

n-3 Fatty acids (1SD = 1.4) 0.91 (0.84, 0.99)
DHA (1SD = 0.49) 0.93 (0.85, 1.01)

n-6 Fatty acids (1SD = 4.8) 0.97 (0.88, 1.07)
LA (1SD = 6.3) 0.98 (0.85, 1.07)

MUFA (1SD = 3.7) 1.03 (0.92, 1.15)
SFA (1SD = 5.1) 1.04 (0.95, 1.13)

0.8 0.9 1.0 1.1 1.2

Fig. 2 Adjusted HRs for macrovascular events, microvascular events and
death associated with fatty acid levels (per 1 SD increase in percentage of
total fatty acids), using multiple-adjusted models. Models were adjusted
for age, sex, region, randomised treatment, history of macrovascular
disease, duration of diabetes, current smoking status, systolic BP, BMI,

urinary albumin/creatinine ratio, eGFR, HbA1c, HDL-cholesterol, triac-
ylglycerols, and use of aspirin or other antiplatelet agents, statins or other
lipid-lowering agents, β-blockers, and ACE inhibitors or angiotensin
receptor blockers
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respectively (Fig. 3). The statistically significant associations did
not hold for non-fatal myocardial infarction.

Further, significant inverse associations were suggested
after minor adjustment in the percentage of PUFA on
macrovascular events, and in PUFA, n-6 fatty acids and LA
on the risk of death (ESM Fig. 1), but these findings did not
persist after further adjustment (Fig. 2). No significant associ-
ations were observed between any fatty acids and the risk of
microvascular events (Fig. 2) as well as new or worsening
nephropathy (ESM Fig. 2).

Further analyses of quarters of fatty acids levels revealed that
the inverse associations with the percentage of n-3 and DHA
were approximately linear with the adjusted HRs for
macrovascular events and death (ESM Fig. 3). The associations
in the absolute values of the fatty acids were in line with the
percentage fatty acid, albeit weaker (ESM Fig. 4).

Subgroup analyses for n-3 fatty acids and DHA Subgroup
analyses were undertaken for n-3 fatty acids and DHA with
macrovascular events and death (ESM Figs 5 and 6). There were
no significant interactions between any subgroups (p for interac-
tion >0.1) other than triacylglycerols (p for interaction = 0.02)
and randomised BP-lowering treatment (p for interaction =
0.01) for n-3 fatty acids and the risk of macrovascular events.
A further subgroup analysis (ESM Table 1) for major microvas-
cular outcomes in those free from microvascular disease at base-
line yielded HRs [95% CI] for n-3 of 0.94 [0.82, 1.08] and for
DHA of 0.94 [0.82, 1.08]. The p value for interaction indicates
that there was no statistically significant interaction in the asso-
ciation of n-3 (p= 0.243) or DHA (p = 0.247) and major micro-
vascular outcomes by history of microvascular disease at
baseline.

Prognostic value of fatty acids compared with traditional risk
factors The difference in the C statistics between the base
model with age, sex, region and randomised treatments with-
out fatty acids and the model which included the index fatty
acids demonstrated small improvements for predicting
macrovascular events for DHA (difference: 0.0104 [95% CI
0.0001, 0.0206]) and for predicting death for n-3 fatty acids
(difference: 0.0103 [95% CI 0.0004, 0.0202]) and DHA
(difference: 0.0084 [95% CI 0.0000, 0.0169]) (ESM
Table 2). There were no statistically significant differences
in the C statistics for other fatty acids. The inclusion of n-3
fatty acids and DHA, in comparison with base model 1,
yielded the largest improvements in the continuous NRI,
although not statistically significant: 0.157 (95% CI −0.006,
0.267) and 0.156 (95% CI −0.009, 0.265), respectively, for
macrovascular events; and 0.170 (95% CI −0.013, 0.293)
and 0.161 (95% CI −0.008, 0.272), respectively, for death
(ESM Table 2). After including fatty acids in model 2, which
included many traditional cardiovascular risk factors, there
were limited improvements in the C statistic and continuous
NRI for n-3 fatty acids and DHA, although there were no
longer any significant associations (Table 2).

Discussion

This biomarker study showed inverse associations of baseline
plasma n-3 fatty acids and DHA with the risk of
macrovascular events and for n-3 fatty acids with the risk of
death among individuals with type 2 diabetes. These inverse
associations appeared approximately linear, and among the
macrovascular events, n-3 fatty acids and DHA demonstrated

HR (95% CI)

Macrovascular events (654 events)
n-3 Fatty acids (1SD = 1.4) 0.87 (0.80, 0.95)

DHA (1SD = 0.49) 0.88 (0.81, 0.96)

Cardiovascular death (330 events)
n-3 Fatty acids (1SD = 1.4) 0.85 (0.75, 0.96)

DHA (1SD = 0.49) 0.86 (0.76, 0.98)

Non-fatal stroke (172 events)
n-3 Fatty acids (1SD = 1.4) 0.82 (0.69, 0.97)

DHA (1SD = 0.49) 0.82 (0.69, 0.97)

Non-fatal myocardial infarction (227 events)
n-3 Fatty acids (1SD = 1.4) 0.93 (0.81, 1.07)

DHA (1SD = 0.49) 0.95 (0.83, 1.10)

0.6 0.8 1.0 1.2

Fig. 3 Adjusted HRs for individual components of macrovascular events
(cardiovascular death, non-fatal myocardial infarction, non-fatal stroke)
associated with n-3 fatty acid and DHA levels (per 1 SD increase in
percentage of total fatty acids,) using multiple-adjusted models. Models
were adjusted for age, sex, region, randomised treatment, history of

macrovascular disease, duration of diabetes, current smoking status,
systolic BP, BMI, urinary albumin/creatinine ratio, eGFR, Hb1c, HDL-
cholesterol, triacylglycerols, and use of aspirin or other antiplatelet
agents, statins or other lipid-lowering agents, β-blockers, ACE inhibitors
or angiotensin receptor blockers
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stronger associations with cardiovascular death and non-fatal
stroke. In contrast, no significant associations were observed
for the predominant fatty acids such as n-6 fatty acids, LA,
MUFA and SFA with the risk of macrovascular events and
death, after adjustment for multiple traditional risk factors.

The prospective associations of circulating n-3 fatty acids
and DHA with the risk of CVD are consistent with the prior
studies. According to previous pooled analyses, DHA in
whole plasma was associated with a lower risk of fatal and
non-fatal CHD (RR [95% CI]: 0.78 [0.69, 0.90] and 0.91
[0.84, 0.98], respectively) in people without a history of
CVD [9]. In addition, another study reported that plasma n-3
fatty acids were associated with a lower risk of non-fatal
myocardial infarction [21]. Similar inverse associations with
CHD and stroke were observed in other studies which
measured n-3 fatty acids in plasma phospholipid [10,
22–24], whole blood [25] and serum [26], among people with-
out prior CVD. These studies did not assess the C statistic and
NRI; however, the present study did not detect significant
improvement in predicting macrovascular events by adding
n-3 fatty acids or DHA into the model including traditional
cardiovascular risk factors. This indicates that the predictive
power of plasma n-3 fatty acids and DHA may be limited in
the presence of a complement of traditional cardiovascular
risk factors. On the other hand, cardiovascular benefits of
high-dose supplementation with n-3 fatty acids were recently
observed in REDUCE-IT, where there were potentially greater
benefits of n-3 fatty acid supplementation in those with lower
plasma levels of n-3 fatty acids.

In contrast to generally consistent results from observation-
al studies of circulating n-3 fatty acids and DHA, the effects of
n-3 fatty acid supplementation on cardiovascular outcomes in
RCTs have been mixed [4, 6, 27–30]. The recent study, A
Study of Cardiovascular Events in Diabetes (ASCEND) trial,
of 15,480 individuals with diabetes free of prior CVD, which

tested n-3 fatty acid supplementation (1 g/day) for 7.4 years,
did not lower the risk of composite major vascular outcomes,
while only vascular deaths were less frequent in the supple-
mentation group than in the placebo group (RR 0.82 [95% CI
0.68, 0.98]) [31]. On the other hand, the recent AHA science
advisory has suggested that the use of n-3 fatty acid supple-
mentation was probably justified in individuals at high cardio-
vascular risk [8, 28]. In REDUCE-IT, which used high-dose
(4 g/day) n-3 fatty acid supplementation in 8179 individuals
with established CVD or with diabetes and other risk factors,
the risk of composite cardiovascular outcomes was substan-
tially reduced (HR 0.75 [95% CI 0.68, 0.83]) [7]. In addition,
some secondary analyses from large trials have reported the
benefit of n-3 fatty acid supplementation on CVD in diabetic
populations with hypercholesterolaemia [32], chronic heart
failure [33] and history of myocardial infarction [34].
Further investigation of the benefits of n-3 fatty acid supple-
mentation will, therefore, be required among people with type
2 diabetes and high CVD risks.

Several mechanisms may explain the favourable associa-
tions between n-3 fatty acids and the risk of CVD. Previous
clinical trials looking at intermediate cardiovascular outcomes
among people with diabetes have reported that n-3 fatty acid
supplementation could lower triacylglycerol concentrations
[35, 36], improve arterial blood flow and attenuate inflamma-
tory signals [37, 38]. These effects were supported by clinical
trials in the general population and in experimental studies
[39–41].

The present study observed the inverse associations
between baseline plasma n-6 fatty acids and LAwith the risk
of death, but these associations attenuated after adjustment for
multiple risk factors. Similar findings have been reported
between serum LA and mortality in a cohort of older adults
(≥65 years of age) [42]. We did not, however, detect signifi-
cant associations between n-6 fatty acids and LAwith the risk

Table 2 Prognostic value of fatty
acids, compared with traditional
CVD risk factors, using C statistic
(and difference) and continuous
NRI, with 95% CIs, for
macrovascular events and death
(per 1 SD increase in percentage
of total fatty acids): results from
multiple-adjusted models

C statistic and difference (95% CI)a Continuous NRI (95% CI)

Macrovascular events

Multiple-adjusted model 2b 0.6919 (0.6467, 0.7101) –

+ n-3 Fatty acids +0.0034 (−0.0035, 0.0102) 0.144 (−0.019, 0.263)
+ DHA +0.0025 (−0.0027, 0.0076) 0.121 (−0.066, 0.254)

Death

Multiple-adjusted model 2b 0.7044 (0.6641, 0.7220) –

+ n-3 Fatty acids +0.0057 (−0.0005, 0.0119) 0.124 (−0.047, 0.257)
+ DHA +0.0042 (−0.0004, 0.0087) 0.145 (−0.070, 0.274)

a Presented for themultiple-adjustedmodel with traditional CVD risk factors; the difference in the C statistic given
the addition of each fatty acid is presented as a difference with 95% CI of the difference
bAdjusted for age, sex, region, randomised treatment, history of macrovascular disease, duration of diabetes,
current smoking status, systolic BP, BMI, urinary albumin/creatinine ratio, eGFR, HbA1c, HDL-cholesterol,
triacylglycerols, and use of aspirin or other antiplatelet agents, statins or other lipid-lowering agents, β-blockers,
and ACE inhibitors or angiotensin receptor blockers
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of macrovascular events. These results were consistent with
those of previous observational studies [23, 24, 43] and
directionally concordant with the recent pooled analyses of
30 cohort studies which reported that higher circulating and
tissue levels of LAwere associated with a lower risk of major
cardiovascular events (HR 0.93 [95% CI 0.88, 0.99]) [44]. In
addition, our study did not detect significant associations with
the risk of CVD for circulating MUFA and SFA, which is
consistent with previous studies [24, 43, 45], while some stud-
ies have reported that MUFA in blood were associated with a
higher risk of CVD [46].

There were no significant associations between any fatty
acids and the risk of microvascular events. A further analysis
specifically for renal outcome also demonstrated no signifi-
cant associations. Although limited studies have assessed the
association between circulating fatty acids and renal
outcomes, in an Italian cohort of 931 adults, plasma n-3 fatty
acids were inversely associated with the risk of developing
renal insufficiency (creatinine clearance rate <60 ml/min)
[47]. However, in a cohort of 2792 individuals, levels of n-3
and n-6 fatty acids and SFA in plasma phospholipid were not
associated with kidney function [48].

The strengths of the current study include the use of an
efficiently designed case-cohort study from a well-
characterised clinical trial to yield a powerful study for a range
of outcomes, which were independently adjudicated accord-
ing to pre-specified criteria. This study included multiple plas-
ma fatty acids and the ability to adjust for multiple covariates
including lipids and lipid-lowering drugs, such as statins. We
also considered the percentage that individual fatty acids
contributed to total fatty acids, as well as the absolute levels
of fatty acid, and both measures are important for interpreting
fatty acid values since an increased intake of a specific fatty
acid could alter the relative percentage of other fatty acids
while their absolute levels are unlikely to be altered. The pres-
ent study, however, has several limitations. First, as the study
cohort was derived from a randomised trial of individuals with
type 2 diabetes, our results may have limited generalisability
to broader populations. Second, as fatty acids were measured
in pragmatically collected plasma samples in a randomised
trial, we cannot rule out the potential for differential pre-
analytical sample handling or sample degradation during stor-
age, which may have biased our results [49]. Further, as plas-
ma samples were collected from non-fasted participants, the
levels of fatty acids might have been affected by the consump-
tion of a recent meal [50], although, in clinical practice, fasting
is rarely required among individuals with type 2 diabetes.
Third, fatty acids were only measured in plasma samples
collected at study baseline; thus, we were unable to consider
how the change in fatty acid values during the study follow-up
might have influenced the exposure–outcome association.
Finally, our study considered only two individual fatty acids
(DHA and LA), since the resolution of the employed high-

throughput NMR platform was limited in terms of individual
fatty acid types, and only allowed robust quantification of
DHA within n-3, and LA within n-6. The specific set of
measures was determined by their overall concentration in
plasma and also on spectroscopic aspects, such as overlapping
signals, which makes it challenging to quantify from native
plasma where no lipid extraction is used [14]. LA and DHA
were reported since they generate distinct peaks in the spectral
data produced by the measurement, and we were able quantify
them separately as part of our high-throughput service.
However, fatty acid concentrations quantified by the NMR
metabolomics platform were highly consistent with the
concentrations compared with GC, the latter being challeng-
ing with large samples [46]. Further, NMR, is a novel tech-
nology with the potential of offering a cost-effective platform
for multiple biomarker testing and has great potential in regard
to fatty acid measurement.

In conclusion, we report distinct associations of different
plasma fatty acids with the risk of major clinical outcomes in
individuals with type 2 diabetes. In particular, plasma n-3 fatty
acids were associated with a lower risk of macrovascular
disease and death, and DHAwas associated with a lower risk
of macrovascular disease. These results support the
cardioprotective effects of n-3 fatty acids and DHA and
further merit testing the role of high-dose n-3 fatty acid
supplementation in individuals with type 2 diabetes.
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