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Abstract
Objectives Antimicrobial resistance (AMR) represents a significant threat to patient and population health. The study aim 
was to develop and validate a model of AMR that defines and quantifies the value of new antibiotics.
Methods A dynamic disease transmission and cost-effectiveness model of AMR consisting of three components (disease 
transmission, treatment pathway and optimisation) was developed to evaluate the health economic value of new antibiotics. 
The model is based on the relationship between AMR, antimicrobial availability and consumption. Model analysis explored 
the impact of different antibiotic treatment strategies on the development of AMR, patient and population estimates of health 
benefit, across three common treatment indications and pathogens in the UK.
Results Population-level resistance to existing antimicrobials was estimated to increase from 10.3 to 16.1% over 10 years 
based on current antibiotic availability and consumption. In comparison, the diversified use of a new antibiotic was associ-
ated with significant reduction in AMR (12.8% vs. 16.1%) and quality-adjusted life year (QALY) gains at a patient (7.7–10.3, 
dependent on antimicrobial efficacy) and population level (3657–8197, dependent on antimicrobial efficacy and the preva-
lence of AMR). Validation across several real-world data sources showed that the model output does not tend to systemati-
cally under- or over-estimate observed data.
Conclusions The development of new antibiotics and the appropriate use of existing antibiotics are key to addressing the 
threat of AMR. This study presents a validated model that quantifies the value of new antibiotics through clinical and eco-
nomic outcomes of relevance, and accounts for disease transmission of infection and development of AMR. In this context, 
the model may be a useful tool that could contribute to the decision-making process alongside other potential models and 
expert advice.
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1 Introduction

The prevalence of antimicrobial resistance (AMR) is 
increasing worldwide as a result of the misuse of antimi-
crobials and poor infection control practices [1, 2], posing 
a serious threat to public health. It is estimated that if no 
action is taken to optimise the use of current antimicrobi-
als and accelerate research and development of new ones, 
by 2050, AMR could result globally in 10 million deaths 
per year and cumulatively incur at least US$100 trillion in 
hospital costs and productivity losses [3].

The 2015 Global Action Plan on AMR from the World 
Health Organization proposed that national and local stew-
ardship programmes should be developed to monitor and 
promote appropriate antimicrobial use [4]. In the UK, there 
has been a government-commissioned review on AMR [5], 
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Key Points for Decision Makers 

The prevalence of antimicrobial resistance (AMR) is 
increasing worldwide as a result of the misuse of anti-
microbials and poor infection control practices, posing a 
serious threat to public health. The development of new 
antimicrobials and the appropriate use of existing antimi-
crobials are key to combating AMR.

Progress in the development of new antimicrobials 
and appropriate use of existing antimicrobials can be 
supported by valuation frameworks and models that 
reflect the potential patient and population benefits of 
antimicrobials. This study presents a simplified validated 
model of AMR and outcomes that aims to quantify the 
potential value of new antimicrobials, accounting for 
transmission of infection and development of AMR. In 
this context, the model is designed to be a useful tool to 
inform clinical and policy decision-making, whereby it 
could contribute to the process alongside other potential 
models (which may use other methodology and/or pro-
vide somewhat different predictions) and expert advice.

Model outputs emphasise the importance of steward-
ship strategies that allow infections to be treated effec-
tively and, at the same time, manage resistance within 
the pool of available antimicrobials using diversity or 
cycling treatment strategies. The introduction of a new 
antimicrobial as part of a diversity approach offered the 
best balance between reducing infection and preventing 
the development of resistance, and was associated with 
significant quality-adjusted life year (QALY) gains at a 
patient and population level.

health outcome. However, the value of antimicrobials goes 
beyond the demonstration of non-inferiority at patient-level 
efficacy and includes the population-level impact on AMR. 
The appropriate assessment of antimicrobial value has 
been discussed in detail in recent publicly available reports 
from the Office of Health Economics (OHE) [8] and the 
Policy Research Unit in Economic Evaluation of Health 
and Care Interventions Report (EEPRU) [9]. Briefly, the 
value of new antimicrobials to patients and health services 
is broad and may include the following: transmission value 
(the benefits of avoiding infection spread), insurance value 
(the benefits of having a treatment available as an insur-
ance against future outbreaks), diversity value (the benefits 
of having multiple antibiotics available that may be used 
within treatment strategies aiming to reduce selection pres-
sure and minimise resistance development), spectrum value 
(the benefits of replacing broad-spectrum antibiotics with 
narrow-spectrum ones that reduce collateral damage to the 
microbiome and minimise opportunities for resistant organ-
isms to thrive), novel action value (the benefits associated 
with a new mechanism of action or structure, which may 
allow avoiding cross-resistance and boost the development 
of follow-on drugs, increasing diversity), and enablement 
value (the benefits associated with antibiotic use in the set-
ting of surgical or medical procedures, which could not be 
safely undertaken were effective antibiotics not available to 
prevent or treat surgical site or post-procedure infections) 
[8, 9].

Reimbursement frameworks and health economic valu-
ation methods should reflect the full value of new antimi-
crobials to patients and populations in order to promote 
antimicrobial development and stewardship. While frame-
works for reimbursement of antimicrobials, including a de-
linked payment model, have been discussed in the EEPRU 
report [9], they are beyond the scope of this publication. The 
broader aim of this study was to develop, build and validate a 
novel, dynamic, disease transmission and cost-effectiveness 
model of antibiotic treatment and resistance. Our aim was 
to capture the salient features defining AMR and outcomes 
in a simplified model to assess the potential value of the 
new antibiotics, accounting for transmission of infection and 
development of resistance, as well as antibiotic availability, 
efficacy and patterns of use. The model has the potential 
to be used both in the valuation of new antimicrobials and 
to support informed clinical and policy decision-making 
concerning the utilisation of new and existing antibiotics. 
While the model is capable of evaluating individual anti-
biotics based on their effectiveness, this paper presents an 
analysis that aimed to estimate the value—independent of 
a particular treatment—associated with the availability and 
appropriate consumption of new and existing antimicrobials.

and the National Institute for Health and Care Excellence 
(NICE) have issued guidelines on antimicrobial stewardship 
[6, 7]. However, despite the strong recommendations made 
for securing new drugs for future generations, progress in the 
development of new antimicrobials and appropriate use of 
existing antimicrobials may be thwarted unless supported by 
valuation frameworks and models that reflect the potential 
patient and population benefits of antimicrobials.

A challenge in demonstrating the clinical and cost-effec-
tiveness of new antimicrobials concerns the available clinical 
data that would inform health technology assessment (HTA). 
In clinical trials, antimicrobials are typically assessed for 
non-inferiority, rather than superiority, in comparison with 
existing treatments [8]. Therefore, they may not prove cost-
effective in traditional analyses, where the new antimicro-
bial is associated with an additional cost and a comparable 
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2  Methods

2.1  Model Structure

2.1.1  Overview

A novel, dynamic, disease transmission and cost-effec-
tiveness model was developed to support the valuation of 
antimicrobial treatment and resistance. This deterministic 
open-cohort model is informed by the findings of a recent 
systematic review by Drake et al. [10] and best practice rec-
ommendations from the International Society for Pharma-
coeconomics and Outcomes Research (ISPOR) [11]. Best 
practice recommendations support the use of a dynamic 
model, as the introduction of new antimicrobials or chang-
ing the pattern of use of existing antimicrobials was antici-
pated to impact transmission within the modelled population 
and alter the distribution of patients infected with pathogens 
resistant or sensitive to treatment. Furthermore, modelled 
populations and subgroups were large, and as such, approx-
imating a systems average behaviour was deemed more 
appropriate than a patient-level stochastic model.

In accordance with ISPOR best practice recommenda-
tions for model conceptualisation [12], clinical and meth-
odological experts were involved in the design of the model 
to ensure that it captured the relevant dynamics of infec-
tion transmission and antimicrobial use, and that model 
inputs and data sources were appropriate. The experts 
were selected by the study sponsor based on their subject 
knowledge and experience across different aspects of the 
project and specialised in the fields of microbiology, infec-
tion control and modelling. Expert consultations took the 
form of unstructured group discussions, so as not to restrict 
the experts in expressing their opinion and judgment. No 
formal voting process was in place, and any disagreements 
were resolved by consensus. Guidance was provided through 
an iterative qualitative approach to model development and 
interpretation to ensure the model was methodologically 
appropriate and included all important aspects of transmis-
sion of infection, resistance development and patient man-
agement. Specifically, the experts were requested to com-
ment on the appropriateness of model conceptualisation and 
completeness of the captured infection transmission/AMR 
components, assess model inputs and their application and 
guide research questions. Recommendations from clinical 
and methodological experts were incorporated within the 
model, and the changes were subsequently fed back to the 
experts. This process of refining the model based on expert 
guidance and re-assessment was repeated until the experts 
concluded that the final model captured the desired compo-
nents appropriately and robustly, and that model output had 
clinical validity.

The model concept and structure are generic and can be 
parameterised to reflect different indications and pathogens 
of interest, investigating up to three lines of antimicrobial 
therapy and different treatment strategies. Model outputs 
reflect deterministic applications of the model (e.g. use of a 
new antimicrobial at first-line, last-line, or a mixing/diver-
sity strategy), and an optimisation procedure allows ‘policy 
goals’ to be specified, such that a model solution (treatment 
strategy) is identified that minimises or maximises the policy 
goal (e.g. minimise overall resistance, maximise life years) 
subject to constraints on the system (e.g. overall costs do not 
increase, deaths do not increase). Analysis may be conducted 
from the perspective of a single healthcare provider, or from 
a national perspective accounting for heterogeneity in infec-
tion and antimicrobial incidence across the country.

The core model structure is based on interrelated dis-
ease transmission model and treatment pathway compo-
nents. Additionally, model analysis is supported by a novel 
application of constrained optimisation that can identify 
and evaluate treatment strategies that satisfy antimicrobial 
policy objectives subject to relevant constraints on model 
input values. All model components were developed within 
Microsoft Excel.

2.1.2  Disease Transmission Component

A compartmental multi-state disease transmission model 
estimates the prevalence of bacterial infections within a 
healthcare environment based on patient interactions and 
exposure to antimicrobials. During each model cycle, 
patients may move between discrete health states represent-
ing colonised, infected or susceptible health states, or death. 
Transitions between health states are controlled by the inci-
dence and prevalence of infection and colonisation within 
the modelled environment, described using a series of dif-
ference equations. These transition parameters were derived 
from data reported by the English Surveillance Programme 
for Antimicrobial Utilisation and Resistance (ESPAUR) [13] 
and the Public Health Profiles Fingertips tool [14] published 
by Public Health England, which provides local indicators of 
AMR and infection incidence. Due to the lack of available 
published evidence, model inputs describing infection trans-
mission dynamics and resistance development were derived 
empirically through calibration, such that the model repro-
duced observed data from Public Health England describ-
ing infection incidence and resistance development over 
time [13, 14]. These model settings are further discussed 
and summarised in the Electronic Supplementary Material 
(Table S1 and S2), and the model structure is presented in 
Fig. 1.
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2.1.3  Treatment Pathway Component

The multi-state disease transmission module is linked to a 
treatment pathway determining the health economic impact 
of a specified treatment strategy in the context of the mod-
elled infectious environment. Patients in the infected health 
state receive antimicrobial treatment, described by an anti-
microbial treatment pathway that represents up to three lines 
of treatment, where patients are either cured (successfully 
treated or infection resolves spontaneously) or die from 
infection. Subsequent lines of treatment are received only if 
a treatment is unsuccessful. As a result, patients’ progression 
through the treatment pathway and exposure to antimicro-
bials is a function of treatment efficacy (the likelihood that 
treatment will be successful conditional on susceptibility 
at initiation) and the prevalence of AMR in the infected 

population, with high efficacy or low resistance leading to 
more effective treatment and improved patient outcomes.

The treatment pathway component of the model allows 
for flexible treatment algorithms where different treatment 
pathways may be specified, including the number of treat-
ment lines available or the order in which treatments are 
received. As such, the model can assess not only the impact 
of differing antimicrobial efficacy, but also that of various 
stewardship strategies. Furthermore, the effect of treatment 
mixing on outcomes may be examined, where combinations 
of different antimicrobial treatment pathways are used as 
part of (1) a diversity-based strategy, where multiple antimi-
crobials are used in the same line of the treatment pathway, 
(2) an antimicrobial cycling strategy where the treatment 
pathway is altered periodically, or (3) a combination of both.

Fig. 1  Overview of the model structure. a Disease transmission flow 
diagram and b treatment decision pathway. Upon becoming infected 
(a), patients enter the treatment pathway (shown in b). The dotted line 
and arrow around panel a highlight the interaction between the dis-

ease transmission diagram and the treatment pathway, while the dot-
ted arrow in panel b allows patients to re-enter the treatment pathway 
of a subsequent treatment line (up to three) as required
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The principle supporting treatment mixing is that the 
more frequently an antimicrobial agent is prescribed, the 
more likely it is that resistance to it will develop. With-
drawal, or reductions in use, of an antimicrobial agent will 
limit the selective pressures exerted by those agents (and 
hence the emergence of resistance), maintaining a higher 
relative efficacy than could have been expected if the anti-
microbial had been in use continuously.

2.1.4  Optimisation Component

Combinatorial and mathematical optimisation can be used 
when the complexity of a problem makes a complete enu-
meration of the parameter space unfeasible. The optimi-
sation module achieves this by changing input variables 
(within constraints) to produce a candidate solution, then 
using heuristic [15] or linear [16] programming methods to 
decide if it should replace the current solution with a new 
one, with the goal of achieving the best possible solution to 
the problem.

The optimisation module is used to describe the mini-
misation/maximisation of an objective function (e.g. treat-
ment/policy objective) subject to relevant constraints (e.g. 
resistance, available treatments). Optimal solutions are 
sought using Microsoft Excel’s built in Solver application, 
with users able to select the optimisation algorithm utilised 
(generalised reduced gradient non-linear, simplex linear-
programming, evolutionary). Given the non-linear nature 
of the model and the incorporation of integer variables (e.g. 
treatment sequence), the evolutionary method is employed 
as the default settings.

2.2  Resistance Gain and Loss

The development of resistance is a core feature of the model 
and is primarily a function of treatment exposure and the 
number of resistant patients at each model cycle. Each day a 
patient receives a given antimicrobial treatment, the exposed 
pathogen has a probability of developing resistance to that 
treatment. As such, the development of resistance is time-
updated as a function of the number of patients requiring 
treatment, the antimicrobials used, and treatment efficacy. 
In the model, a resistant infection can arise via two mecha-
nisms: resistance can be acquired during the course of an 
infection or a patient may become infected with an already 
resistant pathogen. The inclusion of de novo resistance 
development in addition to transmission of resistant patho-
gens is in line with previous work in the field [17]. Resistant 
infections acquired via either mechanism can be transmitted 
to others in the hospital cohort. There are two mechanisms 
by which patients may lose resistance. The first is follow-
ing successful treatment, where a proportion of patients can 
enter the susceptible health state. The second mechanism 

is a consequence of the fitness cost. Mutations conferring 
antibiotic resistance can affect important cellular processes, 
rendering them less efficient and therefore impacting the 
“fitness” of the microorganism, i.e. its ability to survive and 
replicate in a given environment. In the presence of an anti-
biotic, resistant strains have a competitive advantage over 
susceptible strains, but when selection pressure from the 
antibiotic is removed (e.g. antibiotics are switched as part 
of a cycling treatment strategy), resistant pathogens may be 
outcompeted by susceptible organisms with improved fit-
ness. As the model has been developed at a population level, 
it does not use a mechanistic approach to resistance loss 
over time as a result of selection pressure; instead, resistant 
infections and colonisation become sensitive to treatment at 
a constant rate.

2.3  Outputs

The model estimates infection incidence, life years and qual-
ity-adjusted life years (QALYs) lost due to infection, infec-
tion incidence, patient mortality due to infection and AMR 
levels. In addition, it provides standard health economic 
information, including estimates of total and incremental 
treatment and disease-related costs, cost per life year lost 
and cost per QALY lost.

In the context of this disease transmission model, proba-
bilistic sensitivity analysis may produce spurious model out-
puts as the majority of model inputs are derived based on 
empirical calibration to observed data. As a result, no associ-
ated estimates of uncertainty or covariance are produced that 
would enable robust sensitivity analyses. When input param-
eters and associated uncertainty are unbounded, the model 
may result in uninformative or misleading conclusions. 
Given the number of input parameters and inter-dependen-
cies, a systematic, transparent and justified approach was 
not considered achievable; therefore, probabilistic analysis 
was not undertaken; however, extensive scenario analysis 
is supported by the model to characterise the consequences 
associated with different permutations of input parameters 
and models settings. This approach to sensitivity analysis 
was considered to align to the relevant clinical practice sce-
narios and policy goals that would drive evaluations per-
formed with this model.

2.4  Model Settings

The disease transmission model utilises up to a 10-year time 
horizon with a monthly cycle to evaluate model outputs. 
The model cycle length and time horizon were informed 
by a previously published antimicrobial cost-effectiveness 
evaluation [18] and expert opinion. Since the value of a new 
antimicrobial becomes more apparent as the time horizon 
is extended, a 10-year horizon was selected to balance the 
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inherent uncertainty associated with long-term extrapola-
tion and the underestimation of value that would arise from 
a short time horizon. Due to the monthly cycle length, all 
infections are assumed to be resolved within the incident 
cycle. Patients who die due to infection incur a loss of life 
expectancy and quality-adjusted life expectancy correspond-
ing to that of the general population. Capturing life years and 
QALYs lost due to unsuccessful treatment allows the model 
to quantify the impact of infections avoided in addition to 
the benefits of successful treatment.

The model was populated with data reflective of the UK 
setting and adopted a UK payer (National Health Service 
[NHS]) perspective, considering direct healthcare resource 
utilisation and health effects. Model inputs reflect a hospital-
ised adult population with one of the following healthcare-
associated infections (HCAI): complicated urinary tract 
infections (cUTI), complicated intra-abdominal infections 
(cIAI), or hospital-acquired pneumonia (HAP) (including 
ventilator-associated pneumonia [VAP]). For each indi-
cation, patients were infected with one of three bacterial 
pathogens: Escherichia coli, Klebsiella pneumoniae or 
Pseudomonas aeruginosa; within the disease transmission 
model, pathogens are further stratified by resistance status 
(susceptible or resistant). Baseline pathogen resistance levels 
were sourced from ESPAUR [13], with a full description of 
the baseline distribution of patients across the susceptible, 
colonised and infected health states stratified by pathogen 
and indication, and baseline resistance levels. These data 
are reported in Table S3 (see the Electronic Supplementary 
Material).

2.5  Model Validation

The model was subject to external validation exercises to 
demonstrate the rigour, relevance and value of the model in 
the context of real-world evidence. External validation exer-
cises compared outputs from the model to publicly available 
data not specifically used to construct the disease transmis-
sion component, to verify the accuracy of projections for 
resistance. For each validation exercise, model transition 
parameters were calibrated to a training set of time-series 
data describing the prevalence of AMR; model performance 
was evaluated on a subsequent 3-year period comparing 
observed and modelled predictions. A 3-year period was 
chosen for evaluation of model validation results based on 
a qualitative assessment of the availability of validation 
data; a compromise was made with respect to the amount 
of time series data that could be used to calibrate the model 
while also leaving enough data to assess model goodness 
of fit. The specific validation studies included in this analy-
sis were based on data reported by the British Society for 
Antimicrobial Chemotherapy (BSAC) [19], European Centre 
for Disease Prevention and Control (ECDC) [20], Public 

Health Profiles Fingertips tool [14], English Surveillance 
Programme for Antimicrobial Utilisation and Resistance 
(ESPAUR) [13], Public Health Wales (PHW) [21], Scottish 
Antimicrobial Prescribing Group (SAPG) [22] and Antimi-
crobial Testing Leadership and Surveillance (ATLAS) [23] 
and included the pathogens E. coli, K. pneumoniae and P. 
aeruginosa and the antimicrobials piperacillin/tazobactam, 
colistin, tigecycline and carbapenems. Mean absolute error 
(MAE) was used to assess goodness of fit between predicted 
and observed values, calculated by comparing predicted 
resistance levels from the model with observed resistance 
levels reported in the identified data sources. Scatter plots 
of observed versus predicted endpoints are presented along 
with the coefficient of determination (R2) and the results of 
linear regression analysis. We performed formal statistical 
null hypothesis testing to assess whether the model predic-
tions are a reasonable approximation of observed data. Sta-
tistical significance was determined to be p < 0.05.

2.6  Scenario Analysis

The impact of different treatment strategies on the develop-
ment of AMR to existing antimicrobials was explored, and 
patient and population outcomes were estimated in terms of 
mortality, QALYs, and healthcare resource utilisation. The 
antimicrobials considered in the analysis were piperacillin/
tazobactam for the treatment of cUTI and cIAI, colistin/tige-
cycline for the treatment of HAP/VAP, meropenem and a 
theoretical new antimicrobial for the treatment of all indica-
tions. The treatment strategies considered were as follows:

1. An extrapolation of the most probable current pre-
scribing patterns, to be used as a reference point for 
the impact of other treatment strategies. This strategy 
utilised a treatment pathway of piperacillin/tazobactam 
(cUTI and cIAI) or colistin/tigecycline (HAP/VAP) at 
first line, with meropenem reserved for patients requir-
ing a second line of treatment, due to the growing public 
health concerns around resistance to carbapenems [24].

2. The addition of a new antimicrobial to be used at last 
line in the empirical treatment pathway, following treat-
ment failures with piperacillin/tazobactam or colistin/
tigecycline and meropenem.

3. The addition of a new antimicrobial to be used at first 
line in the empirical treatment pathway. Infections not 
cured after treatment with the new antimicrobial receive 
piperacillin/tazobactam or colistin/tigecycline followed 
by meropenem.

4. The addition of a new antimicrobial as part of a first-line 
diversity strategy, where half of newly infected patients 
receive the new antimicrobial at first line, and half 
receive piperacillin/tazobactam or colistin/tigecycline. 
Patients failing treatment at first line receive the other 
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first-line treatment (i.e. infections not resolved by treat-
ment with the antimicrobial may receive piperacillin/
tazobactam at second line or vice versa), with merope-
nem available as a last-line therapy.

5. The addition of the new antimicrobial as part of an all-
line diversity strategy, where infected patients are treated 
in equal proportions with the new antimicrobial, piper-
acillin/tazobactam or colistin/tigecycline, and merope-
nem, with no patient receiving the same antimicrobial 
twice.

6. The addition of the new antimicrobial as part of a 
cycling strategy, where empirical treatment pathways 
of either (1) the new antimicrobial followed by pipera-
cillin/tazobactam or colistin/tigecycline and finally 
meropenem or (2) piperacillin/tazobactam or colistin/
tigecycline followed by the new antimicrobial and finally 
meropenem are rotated every 12 months.

These treatment strategies were evaluated in modelled 
populations, with AMR prevalence levels of 0–30% at base-
line and 60–100% efficacy of the new antibiotic in patients 
infected with susceptible microorganisms based on expert 
opinion of plausible ranges. Scenarios focused on antimicro-
bial stewardship (scenarios 4–6) were conducted in patient 
populations where all infectious microorganisms were resist-
ant to one or more of the existing antibiotics. All scenarios 
utilised the same transition parameters; only starting resist-
ance, treatment efficacy and treatment pathways were varied.

3  Results

3.1  Validation

The model was subject to external validation, the results 
of which are described in detail in the Electronic Supple-
mentary Material. The overall R2 statistic (when measures 
of goodness of fit from different data sources, antimicrobi-
als, and pathogens were combined) was 0.82, indicating a 
high degree of linear correlation and resulting in an overall 
MAE of 1.34 percentage points; however, the accuracy of 
model predictions varied somewhat between data sources, 
antibiotics and pathogens (Table S4 and Fig. S1, see the 
Electronic Supplementary Material). Linear regression anal-
ysis (Table S5) revealed that model output does not tend to 
systematically under- or over-estimate observed data.

3.2  Scenario Analysis

Figure 2 shows the development of AMR levels over time 
for scenarios incorporating the new antimicrobial as a third- 
and first-line treatment, and as part of both diversity- and 
cycling-based stewardship strategies, in comparison to 

forecast resistance development when maintaining the cur-
rent antimicrobial prescribing strategy. Assuming no change 
in the current antimicrobial prescribing strategy, the propor-
tion of infections caused by a pathogen resistant to one or 
more of the existing antimicrobials was forecasted to reach 
16.1% over the next 10 years, or an increase of 5.8 percent-
age points from resistance levels today. Utilising the new 
antimicrobial at third line is predicted to increase resist-
ance further by 0.4 percentage points to 16.5% total, while 
reducing exposure to existing antimicrobials in the first line, 
first-line diversity, all-line diversity, and first-line cycling 
scenarios may see resistance levels reduce over the next 
10 years by 6.4 percentage points, 3.3 percentage points, 2.5 
percentage points and 2.5 percentage points, respectively. In 
contrast, strategies that minimised resistance to the existing 
antimicrobials tended to see the most rapid increase in resist-
ance to the new antimicrobial. Figure 3 shows resistance to 
the new antimicrobial increasing to 10.1% over the 10-year 
transmission horizon for the first-line treatment strategy, 
1.8% for the third-line treatment strategy and to 7.4%, 6.1% 
and 6.6% for the first-line diversity, all-lines diversity and 
cycling stewardship strategies, respectively.

A reduction in population resistance levels corresponds 
with a reduction in patient resistance to infections. As a 
result, substantial QALY gains are predicted at a patient 
level in comparison to current antimicrobial use. In those 
patients who are infected with pathogens resistant to one or 
more of the existing antimicrobial treatments, the impact 
of introducing a new antimicrobial as part of a diversity 
or cycling strategy resulted in QALY gains of between 
7.7 and 10.3 QALYs per patient (Fig. 4) corresponding to 
new antimicrobial efficacy of 70% and 90%, respectively. 
Furthermore, the impact of reducing resistance to existing 
antimicrobials by diversifying treatment strategies and hav-
ing additional treatment options for those patients who are 
infected with a multidrug resistant pathogen leads to signifi-
cant QALY gains at a population level, with gains between 
3657 and 8197 QALYs, depending on the levels of resist-
ance in the population, the efficacy of the new antimicrobial 
and the stewardship strategy utilised (Fig. 5).

4  Discussion

We present a novel, dynamic, disease transmission and 
cost-effectiveness model aiming to address the challenge of 
appropriate estimation of value associated with new anti-
microbials. The model represents a simplified account of 
the complex relationships between antibiotic availability, 
utilisation, resistance and consequent clinical and eco-
nomic outcomes. The model has been subject to external 
validation exercises based on real-world evidence and exten-
sive expert consultation throughout its conceptualisation, 
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implementation and interpretation, to ensure and demon-
strate the rigour, relevance and value of the model. Across 
several real-world data sources [13, 19–22], there was a 

high degree of correlation between model predictions and 
observed data, supporting the model for the assessment of 
antimicrobial treatment and resistance.

Fig. 2  Proportion of infections resistant to at least one of the exist-
ing antimicrobials over time for strategies assessed through dynamic 
health economic evaluation. Baseline resistance values are represent-

ative of current population resistance to piperacillin/tazobactam (or 
colistin/tigecycline in patients with hospital-acquired pneumonia) and 
meropenem in England

Fig. 3  Proportion of infections resistant to the new antimicrobial over time for strategies assessed through dynamic health economic evaluation. 
There is assumed to be no resistance to the new antimicrobial at baseline
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Population benefits over the 10-year transmission horizon 
were likely to be maximised by using the new antimicro-
bial at first line; however, our model predicts that resist-
ance to the new antimicrobial would develop more rapidly 
than the reduction in resistance to existing antimicrobials, 
which should preclude the use of a new antimicrobial in first 
line for extended periods. This emphasises the importance 
of stewardship strategies that allow infections to be treated 
effectively and, at the same time, manage resistance within 
the pool of available antimicrobials. Indeed, model outputs 
support using diversity or cycling treatment strategies, since 
the introduction of a new antimicrobial as part of a diversity 
approach offered the best balance between reducing infec-
tion and preventing the development of resistance, and was 
associated with significant QALY gains at a patient and 
population level.

There are several limitations in relation to the presented 
model that should be considered in applications of the model 
and the interpretation of its results, including the scarcity of 
data to inform the model development. Similar paucity of 
data suitable to parametrise and validate AMR models was 
reported in a recent systematic review [25]. In the case of 
this model, limited available data did not permit accurate 

predictions around P. aeruginosa resistance. As a result, the 
majority of model parameters were required to be derived 
through calibration to the best available observed evidence; 
however, model validation confirmed its ability to predict 
trends and estimates of resistance suggesting that calibration 
was appropriate in this analysis. However, since the outputs 
of the model and the estimates of value are conditional upon 
the input parameters and analysis settings, a remaining chal-
lenge is to ensure that the model is initialised and parameter-
ised with data that reflect its future applications and the deci-
sion problems that it seeks to address. As new data becomes 
available, the predictive validity of the model should be 
assessed and, if needed, the approach to model parametri-
sation refined to reflect the setting, contemporaneous data 
and the decision problem being addressed. The model’s sen-
sitivity to input parameters can be explored deterministically 
for a particular model application and analysis, facilitating 
transparency in model output for decision-making purposes. 
However, including probabilistic sensitivity analysis was 
considered neither practical nor appropriate in the context 
of this dynamic transmission model, where individual and 
combinations of inputs may form spurious outputs, with 
inferences that are not clinically plausible or valid. Although 

Fig. 4  Per-patient QALY gains for a population resistant to at least one existing antimicrobial when implementing a diversity-based treatment 
strategy in comparison to current use. QALY quality-adjusted life year
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the model is an important step towards including non-tradi-
tional value aspects in the assessment of antibiotics, not all 
non-traditional aspects of antimicrobial value defined by the 
OHE [8] and EEPRU [9] reports were considered: spectrum 
value was not captured, as no data from an appropriate set-
ting were available to accurately characterise the relationship 
between antimicrobial spectrum and resistance development. 
Similarly, enablement value was not considered, because of 
the challenges associated with appropriately quantifying 
the impact of missed surgeries or medical treatments due 
to infection on costs and health outcomes. The inability to 
include certain value aspects in the model suggests that it is 
likely to provide a conservative (and therefore more cred-
ible) estimate of the value of new antibiotics. Additionally, 
the scenarios presented do not necessarily correspond to 
optimal treatment pathways, rather strategies thought most 
likely to be implemented in clinical practice; greater benefit 
could be achieved through the introduction of a new antimi-
crobial within a strategy that would minimise total resistance 
gain and overall burden of infection. Furthermore, the model 
only considered the impact of resistance in the hospital envi-
ronment and not in the community. We did not determine 
interactions between different species of pathogens within an 

indication or between the same pathogen across indications. 
Therefore, the model may underestimate the rate of resist-
ance spread as well as resistance levels. Also, if resistance to 
modelled treatments became too high, no effective treatment 
options remained in the model, which does not adequately 
reflect real-world scenarios where a broader set of treatment 
options is available, compared with a maximum of three 
antimicrobials as assessed in the model. Finally, as with all 
economic models, the model presented herein is subject to 
the uncertainty associated with two key factors: (1) extrapo-
lation of outcomes beyond the available data and (2) neces-
sary simplification of the underlying disease pathology and 
the between-patient variability in natural disease course, 
response to treatment, mechanisms of treatment failure, and 
other relevant phenomena.

Whilst it is important to be aware of the limitations and 
caveats surrounding its use, the dynamic disease transmis-
sion cost-effectiveness model presented here addresses a 
fundamental challenge of appropriately estimating the value 
of new antimicrobials. We recognise that models are not 
universally valid, and whilst the current model has under-
gone extensive validation, it is based upon a simplified rep-
resentation of the complexities of AMR dynamics; we have 

Fig. 5  Population QALY gains corresponding to the estimated annual infection incidence when implementing a diversity-based treatment strat-
egy in comparison to current use. QALY quality-adjusted life year
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aimed for a parsimonious model that can be supported by 
data and is useful for clinical and policy decision making, 
alongside other potential models (which may use other meth-
odology and/or provide somewhat different predictions) and 
expert advice. The face validity of the model is supported by 
extensive expert clinical opinion during model development 
and the results of model validation exercises, which support 
the model’s usefulness as a tool for generating predicted 
outcomes. We recognise that current projections should be 
assessed against future data, and future applications of the 
model should be considered against contemporary data, clin-
ical and policy settings. The appropriateness of the methods, 
data sources and outputs of this model was confirmed based 
on proposals within the EEPRU report [9], which advocate 
that population-level as well as patient-level benefits are cap-
tured within a dynamic disease transmission model, develop-
ment of resistance is incorporated, new antibiotics should 
be evaluated alongside (not in replacement of) current anti-
microbials, and a range of potential treatment strategies are 
considered. Consequently, the proposed model provides an 
assessment of potential treatment strategies and outcomes 
associated with the availability and use of antimicrobials 
for HCAI in the presence of AMR. Furthermore, the model 
has flexibility for future applications investigating other sce-
nario analyses not explored in this study. It can be adapted 
and populated with data for various antimicrobials and can 
be used to consider a multitude of scenarios, including epi-
demics, high resistance levels or improved hospital infection 
control policies, directed compared with empiric treatment. 
Additionally, the optimisation component can be used to 
assess how inputs (e.g. treatment pathways/strategies) could 
be modified to achieve a certain policy goal (e.g. minimise 
resistance), while incorporating real-world constraints (e.g. 
no increase in healthcare resource utilisation), thus provid-
ing a valuable tool for decision-makers on how public health 
may be improved in the context of finite resources.

A recent systematic review of population-level math-
ematical models of AMR identified 117 modelling studies 
set across a range of pathogen (bacterial, viral, fungal, para-
sitic) and host (human, animal, plant) types [17]. Among 
these studies, modifications of treatment strategy were the 
second most commonly investigated type of intervention 
aimed at combating AMR (included in 46 studies [39%]), 
secondary only to improved hygiene and infection control 
[17]. The same review, however, reported that only 9% of 
the identified studies included a cost–benefit analysis [17]. 
The novelty of our study in light of previous research lies 
therefore in the combination of disease transmission and 
AMR modelling with a full economic model, capable of 
quantifying both the clinical and economic value of antibi-
otics in a transparent and rigorous manner that can support 
decision-making. Another important advantage of our model 
is its methodological quality and rigour, including detailed 

validation. In contrast, a recent systematic review of math-
ematical models in AMR highlighted insufficient adherence 
to good modelling practice guidelines among AMR models, 
including limited or no validation being reported [25].

Importantly, the model described in this study represents 
a ‘middle ground’ between two other economic modelling 
exercises in the area of antimicrobials and AMR recently 
published by EEPRU [9] and the OECD [26]. The EEPRU 
model [9] includes two components: a mechanistic model 
of infection transmission dynamics and a Markov model for 
patient outcomes. The model is based on a small healthcare 
setting of an ICU with 15 beds and includes a single patho-
gen (Acinetobacter baumannii) and four treatment scenarios. 
Outcomes (incremental costs and QALYs) are estimated 
over a 10-year time horizon from the UK NHS perspective. 
In contrast, the OECD three-component microsimulation 
Markov model [26] predicts a range of outcomes (number 
of deaths, disability-adjusted life years, extra hospital days, 
healthcare costs at point of delivery and costs of imple-
menting policy programmes) arising from healthcare- and 
community-acquired infections with eight pathogens. The 
time horizon of the model spans 35 years, with projections 
up to 2050 for multiple countries, and rather than evaluating 
treatment strategies, the analysis is focused on programmes 
aiming to reduce AMR such as improved hygiene. Conse-
quently, the EEPRU model appears most relevant for antimi-
crobial value assessments at the local commissioning level, 
and the OECD model for long-term international policy 
discussions. The model described in this publication fills 
the resulting gap for a national-level model which could be 
used both for estimating the value of antimicrobials for the 
purpose of reimbursement decisions, and for national-level 
discussions around optimising antimicrobial stewardship and 
related drug policies.

5  Conclusions

The development of new antimicrobials and the appropriate 
use of existing antimicrobials are key to combating AMR. 
This study presents a validated model that quantifies the 
value of new antimicrobials through clinical and economic 
outcomes of relevance, and accounts for transmission of 
infection and development of AMR. In this context, the 
model is designed to be a useful tool to inform clinical and 
policy decision-making, whereby it could contribute to the 
process alongside other potential models (which may use 
other methodology and/or provide somewhat different pre-
dictions) and expert advice.
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