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Abstract 

Glass-fibre reinforced polymer (GFRP) laminates were manufactured using Vacuum assisted Resin 

Transfer Moulding (VaRTM) with a range of thermosetting resins and a novel infusible thermoplastic resin 

as part of a comprehensive down-selection to identify suitable commercially available resin systems for the 

manufacture of marine vessels greater than 50 m in length. The effect of immersion in deionised water and 

in an organic liquid (diesel) on the interlaminar shear strength (ILSS) and glass transition temperature (Tg) 

was determined. The thermoplastic had the highest Tg of all materials tested and comparable ILSS properties 

to the epoxy. Immersion in water, however, caused larger reductions in ILSS properties of the thermoplastic 

compared to the other systems. SEM showed a transition from matrix-dominated failure in the dry condition 

to failure at the fibre-matrix interface in the wet and organic-wet specimens. The overall performance of 

the infusible thermoplastic is good when compared to well-established marine resin systems; however, the 

environmental performance could be improved if the thermoplastic resin is used in conjunction with a fibre 

sizing that is tailored for use with acrylic-based resin systems. 

1 Introduction 

Glass-fibre reinforced polymer (GFRP) composite materials are the most widely adopted amongst fibre-

reinforced polymer (FRP) composites globally, with approximately 1 million tons produced annually in the 

EU alone [1].  GFRP composite materials have excellent balance between good performance (i.e. high 

specific stiffness and strength) and low cost, compared to FRP utilising other commercially available fibres 

(e.g. carbon, aramid). As a result they are extensively used in the marine industry for the manufacture of 

lightweight hull structures (currently only in vessels up to 50 m in length with some exceptions), secondary 

structures and components. The main benefits of GFRP in shipbuilding include: significant weight 

reduction resulting in substantial fuel saving and reduced greenhouse gas emissions, increase in cargo 

capacity, improved life-cycle performance and reduced maintenance costs due to improved corrosion 

resistance. Despite the many benefits associated with the use of GFRP, the increasing amount and handling 
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of end-of-life composite parts has a negative impact on the environment [2]. As a result, current 

environmental legislations in relation to future waste management require all engineering materials to be 

properly recovered and recycled from end-of-life products and vehicles [3, 4]. However, the current 

potential for recycling marine composites, (typically glass fibre reinforced polyester, vinylester or epoxy 

thermoset matrix) is limited. Rybicka et al. [5] analysed the technology readiness level (TRL) of many 

composite recycling techniques, and found that environmentally harmful techniques, such as incineration 

and landfilling, and techniques with high-energy requirements, such as pyrolysis for carbon fibre and 

mechanical grinding for glass fibre, are currently the only recovery and disposal techniques with high TRL 

levels.  

Thermoplastic matrix composite components can be reformed or reshaped using heat and/or 

pressure and therefore offer the potential for recycling end-of-life composite structures. They also offer 

improved fracture toughness over thermosets, as well as the ability to be easily joined using welding 

techniques. Otheguy et al. [6] demonstrated that a thermoplastic-based composite hull of a rigid inflatable 

boat (made from a composite sandwich structure composed of glass/polypropylene laminate, balsa core 

material and paint) could be recycled by melt processing into injection mouldable granules that have 

acceptable properties when processed. However, as shipyards primarily use resin infusion manufacturing 

techniques for composite hulls, most thermoplastic matrix materials are not suitable due to their high melt 

temperatures and viscosities. Arkema have developed an acrylate-based thermoplastic liquid resin family 

(Elium®) that can be used for room-temperature resin infusion. These matrices have attracted considerable 

interest since their introduction in 2013, and manufacturing trials have been performed for racing yachts 

and a wind turbine blade [7]. Results from tensile tests on the thermoplastic matrix indicated a modulus 

around 3 GPa, similar to common epoxy resins [8]. Bhudolia et al. [9] found that carbon/ Elium® laminates 

exhibited 72% higher Mode-I interlaminar fracture toughness than carbon/epoxy composites. However, 

there are still few publications reporting the mechanical properties of the infusible thermoplastics, or 

comparing them to well-established marine resin systems. Therefore, it is important to characterise the 

performance of the infusible thermoplastic resin as a potential candidate for selection in composite ship 

construction.  

This needs to be done under a wide range of environmental conditions, as durability of composites 

and their ability to exhibit unchanged performance and stability in a marine context and environment is a 

crucial factor in order to select the most appropriate combination of polymer matrix and reinforcement. 

Ideally, a composite would retain its mechanical and thermo-mechanical profile even when exposed to a 

marine environment for extended periods. During the service life of marine composites (typically 20-25 

years [10]), water uptake is inevitable. This may cause plasticization, swelling, matrix hydrolysis or 
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debonding of fibres from the matrix. As a result, the mechanical and thermal properties degrade 

accordingly, and the service life is shortened [11]. In composite materials with a brittle matrix, the damage 

mode can change from matrix-dominated before moisture absorption to fibre–matrix interfacial failure after 

saturation [12]. This leads to a significant change in the strength of composites. The Elium® matrix 

reportedly has a lower susceptibility to moisture uptake than epoxy matrices - Davies and Arhant [8] 

reported significantly lower equilibrium moisture content for glass/Elium® than for glass/epoxy composites 

(0.4% and 1.2%, respectively), and Chilali et al. [13] observed a similar result for flax/ Elium® and 

flax/epoxy composites (6.6% and 7.3%, respectively). Composite materials in marine structures will also 

be exposed to corrosive liquids, such as engine oils and fuels, and it is important to evaluate the effect that 

exposure to a corrosive environment has on the mechanical properties of the material. Not much work has 

been done on immersion of composite materials in vehicle oils, and there is no published study on the effect 

of immersion in oils of infusible thermoplastic composites at the time of writing. Amaro et al. [14] reported 

reductions of up to 11% in the flexural strength and 18% of the flexural modulus of glass/epoxy composite 

specimens exposed to engine oil for 45 days. The creep behaviour of glass/polyester composites exposed 

to water and lubricant oil for a period of six months was found by Souza et al. [15] to be affected due to a 

20% reduction in Young’s Modulus when tested at room temperature. The specimens were also tested at 

60°C, where the large change in viscosity of the oil degraded the properties further than in the case of the 

specimens immersed in water, thereby demonstrating the need for an understanding of the effect of organic 

liquids (i.e. oils, diesel, etc.) on the properties of composite materials.  

The performance of Elium® as a potential matrix for marine structural applications is not yet 

comprehensively documented. The development of infusible thermoplastics has created an opportunity to 

use materials that have a greater potential for recyclability without having to change the resin infusion 

equipment currently in place for manufacturing marine composite structures. Therefore, it is essential to 

characterise the mechanical properties of this resin system as a composite matrix, and determine if they are 

comparable to those of the well-established marine resin systems. While there is certainly more 

development required in terms of recovering the full value of long-fibre composite materials (i.e. separation 

of undamaged fibres and reusable matrix component) from end-of-life composite structures, increasing the 

potential for recovery and reusability of these materials is highly beneficial. Recyclability and recovery 

techniques are currently a popular and important research topic [2, 16-20], but are outside the scope of this 

work. There is however a clear link between our work to characterise this novel infusible thermoplastic, 

and the current need to design composite structures with end-of-life disposal in mind. 

The aim of this study is to assess the performance of an infusible thermoplastic matrix system 

compared with matrix materials most commonly used in marine structures under various immersion 
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conditions. This work represents a part of a selection procedure to identify the most suitable materials for 

large-length ship construction. Commercially available vinyl ester, polyester and epoxy resin systems and 

a novel infusible thermoplastic were used to manufacture GFRP laminates using Vacuum assisted Resin 

Transfer Moulding (VaRTM). Mechanical properties of test coupons extracted from the laminates were 

assessed in relation to apparent interlaminar shear strength and dynamic mechanical properties. Properties 

of specimens under dry conditions and after an immersion period in deionised water and an organic liquid 

(diesel) were assessed to determine the effect of immersion on the performance of the materials. 

2 Materials and Methods 

2.1 Materials 

A range of state-of-the-art thermosetting resins and a novel infusible thermoplastic were studied as part of 

this work:  

 EP: Epoxy - PRIMETM 27 from Gurit  

 VE: Vinylester  - LEO Injection Resin 8500 from BÜFA (this resin is part of the Saertex LEO® 

fire retardant composite system) 

 PE: Polyester - Synolite 8488-G from Aliancys  

 TP: Thermoplastic – Elium® 150 from Arkema 

The properties and curing details of all matrix systems according to the manufacturer’s datasheet are 

summarized in Table 1, where the benefits of the thermoplastic system over the thermosetting systems in 

terms of faster gel times, high temperature performance and the absence of post-cure requirements are 

evident. The reinforcement fabrics used in this study were SAERTEX U-E-996g/m2 unidirectional (UD) 

non-crimp glass fabric and SAERTEX U-E-940 g/m2-LEO UD non-crimp glass fabric. The latter was used 

only with the LEO VE resin, as it is part of the LEO® composite system. Both of the reinforcement fabrics 

used in this study have 90% of the glass fibres aligned with the 0° direction, the remaining glass fibres are 

oriented in the 90° direction to provide support to the dry reinforcement.  
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Table 1: Cured resin properties according to manufacturer datasheets 

Description EP VE PE TP 

Name (A) Prime 27 Leo-M-8500 Synolite 8488-G Elium 150 

Curing Agent (B) 
Prime 20 Slow 

Hardener 
Butanox M-50 Butanox M-50 

Perkadox CH-

50X 

Mass Ratio (A:B) 100 : 28 100 : 2.5 100 : 1.5 100 : 2.5 

Density 1.08 g/cm3 1.04 g/cm3 1.05 g/cm3 1.19 g/cm3 

Viscosity 
190-200 mPa.s 

@25°C 

300-400 mPa.s 

@20°C 

80-90 mPa.s 

@23°C 

100 mPa.s  

@25°C 

Gel Time 
2hr 40min 

@25°C 

1hr 50min 

@20°C 

1hr 30min 

@23°C 

25min         

@25°C 

Curing time at ambient 24 hr 24 hr 24 hr 24 hr 

Post-cure temperature 60°C 80°C 40°C Not Required 

Post-cure time 7 hrs 6 hrs 16 hrs Not Required 

Heat deflection temperature 60-62°C 105°C 64°C 109°C 

Tensile strength 74.3 MPa 95 MPa 70 MPa 76 MPa 

Tensile modulus 3.5 GPa 3.6 GPa 3.8 GPa 3.3 GPa 

Elongation at break 4.5% 6.1% 2.3% 6% 

  



6 

 

2.2 Laminate Manufacture 

All laminates were manufactured on a glass tool using a [0°]2S stacking sequence. All resin systems were 

infused at ambient temperature (approximately 20°C). The ratios of curing agent, curing and post-curing 

conditions for each system are shown in Table 1. The infusion time was measured from the opening of the 

resin inlet to the closure of the outlet (outlet was closed on observing bubble-free resin in the outlet tube). 

Infusion times to impregnate a preform of the size shown in Figure 1 were approximately 20 minutes for 

all matrix systems. Test coupons were extracted using a water-cooled diamond-coated rotating disc cutter. 

 

Figure 1: Liquid Resin Infusion of glass fabric (500 mm wide x 350 mm long) 

2.3 Environmental Conditioning 

All samples were dried for four hours at 45 °C prior to testing. Wet condition samples were then immersed 

in distilled water at 35°C for 28 days, in line with Lloyds Register Book K, Procedure 14-1, Rev 1 Dec 

2013. Organic-wet condition samples were then soaked in diesel fuel for seven days. For both wet and 

organic-wet conditions, specimens were weighed after drying to obtain the “dry mass” and after soaking to 

obtain the “soaked mass”.  

2.4 Experimental Procedures 

2.4.1 Physical Properties 

Fibre volume fraction (FVF) was determined using thickness measurements in accordance with ISO 14127. 

Cured ply thickness is also reported based on thickness measurements of the [0°]2S laminates. 
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2.4.2 Dynamic Mechanical Thermal Analysis 

Dynamic Mechanical Thermal Analysis (DMTA) was conducted using a TA Instruments Q800 Dynamic 

Mechanical Thermal Analyser with a three-point bend fixture in order to assess the viscoelastic properties 

of the composite specimens under dry, wet and organic-wet conditions. The specimens were heated from 

ambient temperature to 180°C for dry and wet specimens and 150°C for organic-wet specimens at a rate of 

5°C/min, with a displacement amplitude of 10 μm and at a frequency of 1 Hz. Storage modulus (E′), loss 

modulus (E″) and tan delta were recorded during the test. The Tg is taken as the tan delta peak temperature. 

2.4.3 Short Beam Shear 

Short-span three-point bend Short Beam Shear (SBS) tests were conducted under quasi-static loading 

conditions in accordance with ISO 14130 to determine the apparent interlaminar shear strength (ILSS). 

Nominal specimen dimensions were 30 mm x 15 mm x 3 mm. A nominal span length of 15 mm was used, 

at a testing speed of 1 mm/min. The upper roller diameter was 10 mm and the diameter of the lower rollers 

was 4 mm. Cross-sections of tested SBS specimens were examined using a Hitachi SU-70 at a voltage of 

10 kV to determine if there was any change in the interlaminar failure mode due to the presence of water 

or the organic liquid. Specimens were mounted in a two-part epoxy (Epoxicure Resin and Epoxicure 

Hardener in a ratio of 5:1) with a conductive powder filler.  

3 Results and Discussion 

3.1 Environmental Conditioning and Physical Properties 

The results of the water and diesel fuel uptake during immersion are summarised in Table 2. Two types of 

specimen (SBS and DMTA) were weighed before and after immersion to determine the amount of liquid 

uptake, which is expressed as a percentage of the dry specimen mass. The diffusion rate of the liquid into 

the specimen was not studied as part of this work.  

Table 2: Summary of the cured ply thickness, fibre volume fraction, average water uptake and average diesel fuel uptake of each 
material tested. 

Material 
Cured Ply 

Thickness 
FVF 

Average Water 

Uptake  

(28 days, 35°C) 

Average Diesel 

Fuel Uptake 

(7 days, 23°C) 

VE 0.71 mm 52% 0.26% ± 0.07% 0.14% ± 0.03% 

PE 0.73 mm 54% 0.26% ± 0.02% 0.08% ± 0.07% 

EP 0.74 mm 53% 0.56% ± 0.03% 0.03% ± 0.03% 

TP 0.72 mm 55% 0.45% ± 0.04% 0.02% ± 0.02% 

The materials have similar cured ply thickness and similar FVF in the range of 52-55%, which is 

typical for the VaRTM manufacturing method. As the FVF for all specimens is similar, the quantity of 
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water absorbed in the specimens can be compared directly – specimens with higher FVF tend to have lower 

potential for water uptake as the fibres hamper the water diffusion channel, which slows the diffusion rate 

of water molecules in composites [11]. The water uptake for the EP specimens is 24% higher than that of 

the TP specimens, which is similar to published results [8, 13]. However, the diesel fuel uptake is within 

the same range for both materials. It can be seen that the VE and PE specimens had the lowest water uptake 

of all materials studied. It is worth noting at this point that the moisture uptake presented here is just a 

snapshot of the diffusion of moisture into the specimens. The purpose of this test was to evaluate the 

performance of the materials after the immersion conditions stated by the marine classification society 

Lloyds Register Book K, Procedure 14-1, Rev 1 Dec 2013. These values are not indicative of the maximum 

equilibrium moisture content, nor of the diffusivity mechanisms present in the specimens. While the 

moisture content at this point for the PE is lower than expected, the VE’s low moisture uptake could 

potentially be influenced by the custom sizing on the glass fibres in the VE (LEO system) fabric. Wang et 

al. reported that carbon/epoxy composite specimens that had a fibre sizing that was designed to be 

compatible with the matrix absorbed less moisture than those that did not. The interface between the fibre 

and the matrix is therefore easier to debond or crack under attack by water molecules, which ultimately 

increases the moisture volume [21]. The uptake of diesel fuel is low – partly due to the short immersion 

time – with the EP and TP having comparable results; the VE and PE had higher uptake than the EP and 

TP 

3.2 Dynamic Mechanical Thermal Analysis 

During this study, DMTA was primarily used as a tool to ensure that laminates had reached a fully cured 

state before proceeding to mechanical testing. None of the laminates showed signs of ongoing post-cure, 

and hence all mechanical testing was carried out thereafter. The results of the DMTA tests for all materials 

under dry, wet and organic-wet conditions are shown in Table 3. The glass transition temperature (Tg) was 

taken as the temperature corresponding to the peak in the tan delta curve.  

The storage modulus is a measure of elasticity: the onset temperature is the temperature at which 

the storage modulus drops dramatically indicating a loss in rigidity and hence defines the service 

temperature ceiling of the material. The TP specimens had the highest onset temperature, which 

significantly exceeded all other systems, and the EP specimens had the lowest. Immersion in water was 

observed to have reduced the onset temperatures of all materials. The EP and VE systems were observed 

to have a large drop (~20%) in the temperature to which stiffness could be maintained. The PE system only 

had small changes in the onset temperature and storage modulus due to the presence of water in the 

specimens. This could be attributed to a combination of having a comparatively low moisture uptake (Table 

2) a. The TP system, however, had a moderate drop in onset temperature (11%). These reductions in the 
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temperature associated with the retention of the stiffness component of the composite materials are an 

indication of matrix plasticisation. Organic-wet specimens exhibited no significant change in the onset 

temperature, except in the case of the PE (-11%).  

Tan delta is known as the damping parameter and is an indication of the viscoelastic damping 

behaviour of the composite material. The peak of the tan delta curve occurs due to the relaxation of the 

polymer chains, and, as stated previously, the corresponding temperature is considered as the Tg [22]. EP, 

VE and TP systems experience a reduction in Tg between 9% and 12%, while the Tg of the PE system was 

reduced by 4%. The reduction in the Tg indicates that less energy is required to cause large scale motion of 

the polymer chains during the glass-rubber transition. This could be caused by the molecules of the 

immersion liquid occupying the free volume between the polymer chains, plasticising the matrix and 

increasing molecular movement. Alternatively, the absorbed water may induce cracking and fibre-matrix 

due to the mismatch in the moisture expansion coefficients between the fibre and the matrix [21].   

Table 3: Onset and Glass Transition Temperatures for EP, VE, PE and TP composite laminates. 

Material 

Onset Temperature (°C) Tg (°C) 

Dry Wet* Flam* Dry Wet* Flam* 

EP 76.2 
60.1 

(-21.1%) 

76.7 

(+0.6%) 
85.1 

75.7 

(-11.3%) 

85.0 

(-0.1%) 

VE 82.7 
67.4 

(-18.5%) 

78.8 

(-4.7%) 
100.2 

90.5 

(-9.7%) 

98.4 

(-1.8%) 

PE 85.8 
83.0 

(-3.3%) 

76.4 

(-11.0%) 
104.3 

100.3 

(-3.8%) 

101.3 

(-2.9%) 

TP 96.3 
85.7 

(-11.0%) 

94.9 

(-1.5%) 
115.2 

102.8 

(-10.8%) 

112.5 

(-2.3%) 

* The change in these properties relative to the “dry” values due to the presence of fluid in the wet and organic-wet specimens is shown below the 

“wet” and “organic-wet” value in parentheses.  

3.3 Interlaminar Shear Strength 

Figure 4 presents a summary of the apparent ILSS values for all specimens under dry, wet and 

organic-wet conditions. SEM images of the tested SBS specimens under dry, wet and organic-wet 

conditions for EP, VE, PE and TP specimens, as well as a schematic of the specimen indicating the 

approximate location of cracks, are shown in Figure 5, 6, 7 and 8, respectively.  
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Figure 2: Summary of the results for the apparent ILSS of each material system under dry, wet and organic-wet conditions 

There is a clear separation in terms of the “dry” performance – the EP and TP exhibit comparable 

high values while the VE and PE have comparable, lower values. The SBS test is designed to give 

information regarding the interlaminar shear strength, which is directly influenced by the mechanical 

strength of the fibre/matrix interface. The largest reduction in ILSS due to immersion in water is in the TP 

system (37%) and is a clear indication of the negative effect of the water on the fibre-matrix interface. This 

is evident from the SEM images (Figure 8) showing the fracture in the dry, wet and organic-wet TP SBS 

specimens; the dry specimen fails due to matrix-dominant crack growth, while the failure occurs along the 

weakened fibre-matrix interface in both wet and organic-wet immersed specimens.  The PE and EP systems 

also experience significant reductions in ILSS (21% and 16%, respectively). To this end, the benefit of the 

tailored sizing of the LEO fabric is noticeable – the VE composite specimens experience the smallest change 

(2%) in ILSS despite the immersion period. The TP specimens are the only specimens to exhibit a change 

in failure location from matrix to fibre-matrix interface. This would suggest that the performance could 

potentially be improved if the infusible thermoplastic resin is used in conjunction with a fibre carrying a 

sizing that is specifically tailored to be chemically compatible with an acrylic-based thermoplastic resin. 

Boufaida et al. [20] found that the application of a coupling agent specifically developed for promoting the 

bond between glass fibres and acrylic resins improved the composite mechanical properties. The failure 

mode for VE (Figure 6) and PE (Figure 7) specimens was similar; cracks were present in the 90° fibre 

bundles. Large changes in direction of the fibres within a laminate create stress concentrations due to 

localised variations in elastic properties. Dry EP specimens (Figure 5) consistently failed due to buckling 

in the upper ply of the specimen. This indicates a strong interfacial bond as the specimens fail due to 

EP VE PE TP

Dry 58.04 38.11 37.89 56.87
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Flammable 54.57 41.45 31.2 54.52
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buckling/kinking of the plies on the compression-side of the specimen. Wet and organic-wet EP failed 

specimens also exhibited buckling and, due to conditioning in both mediums, mid-plane cracks. This 

indicates that the interface has weakened due to the presence of water or organic liquid. While buckling is 

still occurring at the compressive side of the specimen, the interface has been weakened sufficiently for the 

shear force at the mid-plane to cause cracking in the wet and organic-wet EP specimens. 

The effect of the organic liquid on the ILSS is low (approximately 5% change from the “dry” value) 

in all systems except for the PE system. This could again be potentially linked to the negative change in 

mass reported in Section 3.1, which suggested that some degradation might be occurring during immersion. 

The SEM images in Figures 5-8 show that the organic-wet specimens invariably showed a similar failure 

mode to the wet specimens. However, organic-wet specimens experienced failure in multiple locations with 

shorter cracks throughout the specimen whereas dry and wet specimens typically failed in one location due 

to a relatively long crack. The location of the cracks in the organic-wet specimens also indicates a 

weakening of the fibre-matrix interface. In specimens with high interlaminar strength (e.g. dry EP in Figure 

5) the critical damage will occur at the compressive side of the specimen; however, as previously 

mentioned, immersion in organic liquid weakens the interface and the critical damage starts to also appear 

at the mid-plane where the interfacial shear is highest. 



 

Epoxy Dry (100%) Epoxy Wet (84%) Epoxy Organic-Wet (94%) 

   

   

Cracking within top ply and intraply cracking 

in ply 1 

Kinking within top ply and intraply cracking 

in ply 2 

Kinking within top ply and large midplane 

crack 

Figure 3: SEM images of tested epoxy SBS specimens under dry, wet and organic wet conditions. The damage observed in each specimen is illustrated schematically and described 
briefly. The area captured in the SEM image is highlighted in the red box on the SBS schematic. The percentage indicates the percentage of the dry ILSS value at which the sample 
failed.  

  



 

 

Vinylester Dry (100%) Vinylester Wet (98%) Vinylester Organic-Wet (108%) 

   

   

Midplane crack at 0° and 90° interface 
Midplane intratow crack at 0° and 90° 

interface 

Midplane intratow crack at 0° and 90° 

interface, interply (ply 1 – top ply – and 2) 
and intraply cracks  (ply 3) 

Figure 4: SEM images of tested vinylester SBS specimens under dry, wet and organic wet conditions. The damage observed in each specimen is illustrated schematically and 
described briefly. The area captured in the SEM image is highlighted in the red box on the SBS schematic. The percentage indicates the percentage of the dry ILSS value at which 
the sample failed 

 

 

 

 



 

Polyester Dry (100%) Polyester Wet (79%) Polyester Organic-Wet (82%) 

   

   

Intratow crack in top ply,  

90°fibre bundle 

Intratow, 90°fibre bundle, crack between top  

and second ply 

Multiple intratow cracks,  

90°fibre bundle 

Figure 5: SEM images of tested polyester SBS specimens under dry, wet and organic wet conditions. The damage observed in each specimen is illustrated schematically and described 
briefly. The area captured in the SEM image is highlighted in the red box on the SBS schematic. The percentage indicates the percentage of the dry ILSS value at which the sample 
failed 

  



 

 

Thermoplastic Dry (100%) Thermoplastic Wet (63%) Thermoplastic Organic-Wet (96%) 

   

   

Matrix-dominated midplane crack 
Intraply crack in second ply from top at 

fibre-matrix interface 

Intraply crack in second ply and interply 

crack between third and fourth plies from top 
at fibre-matrix interface 

Figure 6: SEM images of tested thermoplastic SBS specimens under dry, wet and organic wet conditions. The damage observed in each specimen is illustrated schematically and 
described briefly. The area captured in the SEM image is highlighted in the red box on the SBS schematic. The percentage indicates the percentage of the dry ILSS value at which 
the sample failed
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4 Conclusion 

The aim of this study was to evaluate the performance of a range of thermosetting resins and a novel 

infusible thermoplastic resin as part of a comprehensive down-selection to identify suitable commercially 

available resin systems for the manufacture of marine vessels greater than 50 m in length. It was of interest 

to investigate if the infusible thermoplastic exhibits mechanical properties that are comparable to the matrix 

materials most commonly used in marine structures (i.e. epoxy, vinyl ester and polyester) as it has the 

potential to reduce the end-of-life environmental impact of the composite material. Apparent ILSS and 

DMTA properties were assessed under dry conditions and after a period of immersion in distilled water and 

an organic liquid. The key findings of this study are: 

 The materials have similar cured ply thickness and similar FVF in the range of 52-55%, which is 

typical for the VaRTM manufacturing method. EP had an uptake 24% higher than that of the TP 

specimens, which was similar to published results. VE and PE had the lowest water uptake of all 

materials – their values were similar and almost half of EP water uptake value. Organic liquid 

uptake was similar for all materials. 

 In terms of performance in the dry condition, the TP showed comparable properties to, and even 

exceeded the performance of the EP. The TP had the highest onset temperature and Tg indicating 

that it can maintain stiffness to higher temperatures than the other materials, while the EP had the 

lowest of both temperatures. The EP and TP exhibit comparable high ILSS values while the VE 

and PE have comparable, lower values. SEM showed that the failure in the EP specimens occurred 

due to buckling on the compressive face of the SBS specimen, which occurs when the interfacial 

strength is high and the specimen fails due to buckling instead of at the mid-plane where interfacial 

shear is highest. TP specimens failed at the mid-plane with the failure being matrix-dominated and 

the PE and VE specimens failed at the intersection of 0° and 90° fibres due to a stress concentration 

caused by the sudden change in directional material properties. 

 In terms of performance in the wet condition, VE specimens showed no significant changes in onset 

temperature, Tg, or ILSS. The failure mode in the SBS specimens was observed in SEM to remain 

the same as that observed for the dry specimens. This was attributed to the VE specimens having a 

strong fibre-matrix interface as the resin and fabric are part of a commercially available composite 

system and are designed to be compatible with one another. The EP and PE specimens had large 

(~20%) drops and the TP had a moderate (11%) reduction in onset temperature due to the presence 

of moisture which could indicate matrix plasticisation. The PE and EP systems also experience 

significant reductions in ILSS (21% and 16%, respectively) however, the largest reduction was 
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observed in the TP specimens (37%). This was attributed to a poor fibre-matrix interface as the 

failure was observed to transition from matrix-dominated in the dry state to interfacial in the wet 

state. 

 There was no significant change in onset temperature or Tg due to immersion in organic liquid 

except in the case of PE, which was the only material to record a reduction in mass after immersion. 

There was no significant change in the ILSS (except in the case of PE, which could potentially have 

undergone degradation during the immersion period) however, large-scale damage was observed 

in SEM images of the SBS specimens in the form of multiple short cracks. In contrast to this, dry 

and wet SBS specimens consistently had only one long crack in the tested specimens. In addition, 

organic wet EP specimens exhibited failure at the mid-plane (due to high interfacial shear) as 

opposed to primarily compressive failure in the dry and wet specimens, suggesting a reduction in 

interfacial strength. 

Overall, the infusible TP exhibited good material properties and compared well with the EP in the dry 

condition. However, poor interfacial strength observed particularly in the wet specimens meant that there 

were large reductions in ILSS. Despite the large reductions after the immersion period, the performance of 

the wet specimens was still comparable with the VE and PE in the SBS tests. The benefits of using a 

specifically tailored interface was exhibited in the performance of the VE across the three test conditions, 

hence the performance of the TP could potentially be improved if coupled with a fibre that is sized to be 

compatible with acrylic-based resin systems. It has been demonstrated that the infusible TP system could 

be a candidate for use in marine structures – with the added benefit of reuse at end-of-life – provided the 

fibre-matrix interface can be tailored to improve performance over a range of environmental conditions. A 

comprehensive testing and qualification programme including fire resistance would of course be required 

before any wider endorsement and adoption of the promising TP acrylic matrix.  
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