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We present a finite deformation generalization of the finite thickness embedded disconti-
nuity formulation presented in our previous paper [A.E. Huespe, A. Needleman, J. Oliver, P.J.
Sánchez, A finite thickness band method for ductile fracture analysis, Int. J. Plasticity 25
(2009) 2349–2365]. In this framework the transition from a weak discontinuity to a strong
discontinuity can occur using a single constitutive relation which is of importance in a
range of applications, in particular ductile fracture, where localization typically precedes
the creation of new free surface. An embedded weak discontinuity is introduced when
the loss of ellipticity condition is met. The resulting localized deformation band is given
a specified thickness which introduces a length scale thus providing a regularization of
the post-localization response. The methodology is illustrated through several example
problems emphasizing finite deformation effects including the development of a cup-cone
failure in round bar tension.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Predicting the creation of new free surface necessarily involves introducing a length scale if only from dimensional con-
siderations since, for example, the work of separation of two surfaces has the dimensions of J/m2. For ductile fracture, there is
another issue since the creation of new free surface is often preceded by the localization of deformation into a narrow band
and a length scale is needed to set the band width.

A variety of ways to introduce a length scale into continuum formulations have been proposed. One way is by introducing
higher order terms into the constitutive relation for plastic flow based on considerations related to the micromechanics of
deformation, as for example in Fleck and Hutchinson (1997) and Gao et al. (1999). Approaches to introducing a length scale
in ductile fracture modeling are presented in Mediavilla et al. (2006), Bargellini et al. (2009), Cazes et al. (2010), and Huespe
et al. (2009).

In Huespe et al. (2009), we presented a finite element method with a finite thickness embedded weak discontinuity to
analyze ductile fracture problems that was restricted to small geometry changes. An embedded weak discontinuity was
introduced when the loss of ellipticity condition was met. A material length scale was introduced to give the resulting local-
ized deformation band a specified thickness. Within the band, the deformation is specified to be homogeneous and is gov-
erned by the pre-localization constitutive relation. As a consequence, convergent calculations of the history of deformation
through localization and the creation of new free surface can be carried out. It was also shown that in the limit of vanishing
band thickness a cohesive surface formulation is approached with the important difference that for a finite band width the
. All rights reserved.
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separation relation can be hydrostatic stress dependent. In essence, the methodology allows for a unified framework for ana-
lyzing the transition from a weak discontinuity to a strong discontinuity.

Here, we extend the formulation in Huespe et al. (2009) to finite deformations. This is of importance in ductile fracture
analyses since large strains generally occur prior to fracture, at least locally. As in our small deformation analyses, the cal-
culations carried out are based on the rate independent constitutive relation for progressively cavitating solids introduced by
Gurson (1975) and as modified by Tvergaard (1981, 1982) and Tvergaard and Needleman (1984). Recent comparisons of
numerical predictions with experiments are presented in Gao et al. (2011) and Li et al. (2011). A number of recent studies,
for example Benzerga and Leblond (2010) and Pardoen et al. (2010), have been carried out aimed at developing more accu-
rate models of void nucleation, growth and coalescence. Other studies have been aimed at improving predictions for the
dependence on stress state, particularly at low values of the stress triaxiality, Nashon and Hutchinson (2008) and Gao
et al. (2011), but the basic framework remains.

It is, however, worth noting that the present general formulation can be applied to any rate independent constitutive rela-
tion that gives rise to localized deformation and, possibly, creation of new free surface.

2. Governing equations

2.1. Field equations

Consider a body occupying the domain X(t) at time t, which is subjected to a quasi-static loading condition. The body
position at time t ¼ 0 : ðX0 ¼ Xð0ÞÞ is adopted as the reference configuration. Given the deformation map: x = u(X),
X0 ? X(t), where x denotes the position of a material point in the current configuration and X the position of that material
point in the reference configuration, the principle of virtual work, with body forces neglected, is written as
Z

X0

JrF�T : rXdudX0 �
Z

Cr

t � dudC ¼ 0; 8du 2 V0; ð1Þ
whererX is the (material) gradient operator, F is the gradient of u : F =rXu, J is its Jacobian: J = det(F), r is the Cauchy stress
and t are tractions applied on the boundary Cr with normal vector m. The virtual admissible displacement field du satisfies
the kinematical constraint du = 0 on the boundary Cu where displacements are imposed.

The finite strain kinematics are based on a decomposition of the deformation gradient, F, into elastic, Fe, and plastic, Fp

components, via
F ¼ FeFp ð2Þ
with the corresponding Jacobian decomposed into elastic and plastic parts, Je and Jp, respectively, by
J ¼ JeJp; Je ¼ detðFeÞ; Jp ¼ detðFpÞ: ð3Þ
The velocity gradient, l, is written as the sum of elastic and plastic parts, denoted by le and lp,
l ¼ _FF�1 ¼ _FeFe�1 þ Feð _FpFp�1|fflfflffl{zfflfflffl}
Lp

ÞFe�1 ¼ le þ lp
; ð4Þ

le ¼ _FeFe�1
; lp ¼ FeLpFe�1

: ð5Þ
Also, the strain rate, d, is decomposed into elastic and plastic components, denoted as de and dp which are defined by
d ¼ de þ dp
; de ¼ 1

2
½le þ ðleÞT �; dp ¼ 1

2
½lp þ ðlpÞT �: ð6Þ
The constitutive relation will specify expressions for de and dp. The spin, the antisymmetric part of l, is not constitutively
specified.

2.2. Constitutive relation

The constitutive relation used is the micromechanically based material model for progressively cavitating plastic solids
introduced by Gurson (1975) and subsequently modified, Tvergaard (1981, 1982) and Tvergaard and Needleman (1984).
Here, this constitutive relation is briefly presented in the notation we use. Background and a more complete description
of the constitutive framework are given in Tvergaard (1990).

Although elastic strains almost always remain small in the quasi-static ductile fracture problems of interest, possible fi-
nite elastic strains are accounted for in the formulation here. The elastic response of material is taken to be isotropic with the
Cauchy stress, r, expressed as a function of the elastic left stretch tensor Ve;Ve ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
FeFeT

p
, through
r ¼ s

Je ¼
1
Je

E
ð1þ mÞ ln V e þ m

ð1� 2mÞ trðln V eÞ1
� �

; ð7Þ



A.E. Huespe et al. / International Journal of Plasticity 28 (2012) 53–69 55
where s is the second Piola–Kirchhoff stress tensor, E is Young’s modulus and m is Poisson’s ratio. In rate form, this gives
LeðsÞ ¼ ce : de ð8Þ
relating the convected rate of the (Kirchhoff) stress tensor, LeðsÞ ¼ _s� les� sðleÞT , to the elastic strain rate de through the
tensor of the elastic moduli ce.

With the spectral decomposition of Ve according to: Ve = kI(rI � rI), being kI and rI its I-th principal value and principal
stretch direction respectively; the tensor ce, consistent with the elastic relation Eq. (7), is expressed in the direction of prin-
cipal stretches, which is a convenient form for numerical implementation, see e.g. Simo (1998):
ce ¼ ½�c�IJðrI � rI � rJ � rJÞ þ h; I; J ¼ 1;2 ðinR2Þ ð9Þ
for the two dimensional problems considered here (the generalization to three dimensions is straightforward).
The term �c is given by:
�c ¼ E
ð1þ mÞ I þ m

ð1� 2mÞ 1� 1

� �
ð10Þ
with 1 ¼ f1;1g (in R2), I is the identity tensor, and the tensor h is given by
h ¼
hIIII ¼ �2sI;

hIJIJ ¼ sIkJ�sJkI

kI�kJ
; for I – J;

(
ð11Þ
where sJ is the value of the J-th principal Kirchhoff stress (in R2). The change in the principal directions of stress with defor-
mation gives rise to the h term, see for example Hill (1978).

In the context of the multiplicative decomposition, Eq. (2), consistency between the definition of the strain rates in Eqs.
(6) and (8) is obtained by consideration of an appropriate intermediate configuration, as discussed e.g. in Lubarda (2002).

The plastic strain rate dp is given by the plastic flow rule
dp ¼ Kp; p ¼ rr/; ð12Þ
where K is the plastic multiplier, and the yield function, /, taken to be, Tvergaard, 1981, 1982, Tvergaard and Needleman
(1984), and Tvergaard (1990),
/ðr; ��; f Þ ¼ /
s

Je ;re; ��; f
� �

¼ r2
e

�r2 þ 2q1f � cosh
3q2rm

2�r

� �
� ðq1f �Þ2 � 1; ð13Þ
where rm ¼ 1
3 trðrÞ is the mean Cauchy stress, re ¼ 3

2 ðS : SÞ
� 	1

2 is the equivalent stress with S the Cauchy stress deviator
(S ¼ r� rm1); q1 and q2 are material parameters and �r is the tensile flow strength of the matrix taken to be a function of
the matrix equivalent plastic strain �� through the hardening relation
�r ¼ �rð��Þ ¼ ry 1þ
��
�0

� �N

ð14Þ
with ry and N being the initial matrix yield strength and the hardening exponent, respectively, and �0 is a parameter nor-
malizing the matrix equivalent plastic strain.

The function f⁄, which was introduced in Tvergaard and Needleman (1984) to account for an increased void growth rate
near coalescence is specified as
f � ¼
f for f 6 fc;

fc þ
1

q1
�fc

ff�fc
ðf � fcÞ for f c < f 6 ff ;

8<: ð15Þ
where fc is the void volume fraction at which coalescence starts and f⁄(ff) = 1/q1 is the void fraction at which the material
loses all stress carrying capacity, i.e. / = 0, such that rm = 0 and re = 0.

The evolution of the void volume fraction is governed by
_f ¼ ð1� f ÞtrðdpÞ þAmð��Þ _�� ð16Þ
with the first term accounting for the change in void volume fraction due to the growth of existing voids and the second term
for the change in void volume fraction due to the nucleation of new voids via strain controlled nucleation with Amð��Þ given
by, Chu and Needleman (1980),
Amð��Þ ¼
fN

sN

ffiffiffiffiffiffiffi
2p
p exp �1

2
��� ��N

sN

� �2
" #

; ð17Þ



56 A.E. Huespe et al. / International Journal of Plasticity 28 (2012) 53–69
where fN, sN and ��N are material parameters.
The matrix plastic strain rate is given by
_�� ¼ r : dp

ð1� f Þ�r : ð18Þ
The loading–unloading conditions are
/ðr; ��; f Þ 6 0; K P 0; K/ðr; ��; f Þ ¼ 0; ð19Þ
where, for plastic loading, the plastic multiplier K in Eq. (12) is
K ¼ p : _r
h

; ð20Þ
where
h ¼ � ð1� f Þ @/
@f

trðpÞ þ @/
@f

Am þ
@/
@�r

�h
� �

r : p
ð1� f Þ�r

� �
ð21Þ
with
�h ¼ d�r
d��

: ð22Þ
In Eq. (20), the coaxiality between p and r assures the frame-invariant property of the product ðp : _rÞ.
By following a standard procedure, where the plastic strain rate tensor, dp, defined in Eq. (12), is substituted into Eq. (8)

and using the consistency condition, / � 0 during plastic loading, gives the expression relating the stress convective rate
LðsÞ ¼ _s� ls� slT ð23Þ
and strain rate d, through
LðsÞ ¼ cep : d: ð24Þ
The expression for the tangent modulus cep is
cep ¼ ce � ða
e : p� ð½ae þ s� 1� : pÞÞ

p : ½ae þ s� 1� : pþ Jeh
ð25Þ
with
ðaeÞijkl ¼ ðceÞijkl þ
1
2
ðdiksjl þ djksil þ dilsjk þ djlsikÞ: ð26Þ
Here, ae is the modified elastic moduli tensor relating the Jaumann rate of the Kirchhoff stress (defined through the total
spin) with the elastic strain rate tensor, dik is the Kronecker delta and indices i, j = 1, 2.

Note that in general cep is not symmetric since the flow potential, Eq. (13), is expressed in terms of the Cauchy stress and
volume changes do not necessarily remain small because of void nucleation and growth.

2.3. Material bifurcation condition

As shown by Hadamard (1903), Hill (1962), Rice (1976), a bifurcation corresponding to localization of deformation occurs
when the determinant of the acoustic tensor vanishes.

A body X is divided into two parts: X+ and X� by the material surface S with unit normal vector N in the reference con-
figuration. We analyze the mechanical conditions which permit the possibility of a discontinuous deformation gradient rate
through S, given by _Fþ � _F� ¼ s _Ft ¼ g � N, with g an arbitrary velocity vector, and such that _F� ¼ _�F is defined in X� and
_Fþ ¼ _�F þ g � N in X+.

The equilibrium condition on S requires the rate of the traction vector, _t ¼ _PN, with P = sF�T the first Piola–Kirchhoff
stress tensor, to be continuous across S:
s_tt ¼ s _PtN ¼ sðLðsÞ þ lsÞt�e ¼ 0; ð27Þ
where, we have used the identity �e ¼ ðF�Þ�T N ¼ ðFþÞ�T N. Writing the velocity gradient in X� and X+, as
l� ¼ �l ¼ _�F�F�1; lþ ¼ �lþ 1
1þ g � �e ðLðgÞ �

�eÞ; LðgÞ ¼ _g ��lg; ð28Þ
where the convective rate of the vector g is denoted LðgÞ. Substituting the constitutive relation Eq. (24) into Eq. (27) and
assuming continued plastic loading in both X+ and X� so that (cep)+ = (cep)� = cep, we obtain
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�e � cep � �eþ ð�es�eÞ1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Qep

264
375 � LðgÞ ¼ 0; ð29Þ
which expresses the condition that a non-null vector LðgÞ exists only if the acoustic tensor Q epð�eÞ is singular.

3. Weak discontinuity band kinematics

The kinematical description of a displacement field with a weak discontinuity is given in Hadamard (1903), Hill (1962),
and Rice (1976). In Huespe et al. (2009), the kinematical description was modified to allow for a finite width band, but lim-
ited to the context of small deformation theory. Here, we provide the generalization to finite deformations for finite width
bands.

A displacement field u with a discontinuity in the deformation gradient field (weak discontinuity) across a material band
XD

0 is considered. The band has finite width D0 in the reference configuration, as shown in Fig. 1(a). For simplicity, we assume
that XD

0 is bounded by two parallel straight lines. This displacement field representation admits strain localization, into this
finite band width.

In the figure, N is the unit orthogonal vector to the mean surface S0 of XD
0 . The complementary part XnXD

0 of the body, is
divided in two domains, which are denoted: X+ (in the positive direction of N) and X�.

A displacement field with weak discontinuities can be written as
uðX; tÞ ¼ �uðX; tÞ þHDðX; tÞb; ð30Þ
where �uðX; tÞ is a smooth displacement component and the second term accounts for the jumps in the displacement gradient
field. The function HDðX; tÞ is defined as
HD ¼
1 8 X 2 Xþ;
N�ðX�X0Þ

D0
8 X 2 XD

0 ;

0 8 X 2 X�

8><>: ð31Þ
with D0 being the initial width of the discontinuity band, X0 being an arbitrary point in the intersection of XD
0 \ ðX

�Þ. The
vector b represents a displacement jump across the band XD

0 . The material gradient of the term HDb is
rXðHDbÞ ¼ lD

D0
ðb� NÞ; lD ¼

1 8 X 2 XD
0 ;

0 8 X 2 X nXD
0 :

(
ð32Þ
Hence, the deformation gradient can be written in the form (see Fig. 2 (a))
F ¼ F þ lD
b� N

D0
¼ eFF; ð33Þ

eF ¼ 1þ lD
b� �e

D0

� �
; ð34Þ

F ¼ 1þrX �u; ð35Þ
which can be seen as a multiplicative decomposition of the deformation gradient (Armero and Garikipati, 1996), defining an
intermediate configuration given by the deformation map �uðX; tÞ : X0 ! X, whose displacement field is �uðX; tÞ and deforma-
tion gradient: F. The orthogonal vector to the discontinuity surface, �e, in the intermediate configuration, X, is
�e ¼ F�T N: ð36Þ
With these expressions, it can be shown that the finite band width, Dt, in the current configuration is given by
Dt ¼ D0 þ b � �e: ð37Þ
Fig. 1. Weak discontinuity kinematics. (a) The displacement field. (b) The gradient of the displacement field.



Fig. 2. Finite deformation weak discontinuity kinematics. (a) The multiplicative decomposition of the deformation gradient. (b) A quadrilateral finite
element with an embedded weak discontinuity. (c) Quadrature points within a quadrilateral finite element.
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Thus, a localized deformation band representing a shear band is described by a deformation mode having displacement
jumps, b, orthogonal to �e. Once formed, the discontinuity band width remains unchanged and the deformation state within
the band is required to remain homogeneous. Alternatively, a localized deformation band with displacement jumps, b, par-
allel to �e represents a failure mode which is opening in mode I. Mixed failure modes are represented by localized deforma-
tion bands having arbitrary directions of b, which are neither orthogonal nor parallel to �e.

The Jacobian of the band deformation is given by
J ¼ J
Dt

D0
; ð38Þ
where J ¼ detðFÞ.
4. Finite element model

A number of finite element techniques have been proposed in the past specially designed to simulate strain localization
and fracture problems. Basically, these techniques add one enriched kinematic mode to a underlying finite element, that al-
lows for capturing weak discontinuities, such as in Ortiz et al. (1987), Dvorkin et al. (1990), or strong discontinuities, such as
in Belytschko et al. (2001), Alfaiate et al. (2003), Armero and Garikipati (1996), Oliver (1996), etc. A recent review of two
finite element classes applicable to material modelling problems involving strong discontinuities, such as fracture, is re-
ported in Belytschko et al. (2009).

The numerical procedure we adopt here is based on a finite element methodology with embedded weak discontinuities
that closely follows the approach presented in Huespe et al. (2009) for small deformations. As in Huespe et al. (2009) the
implementation is carried out for two dimensional problems.

The discretization of the reference configuration X0, is performed by means of a quadrilateral finite element mesh. In
Fig. 2(b), a finite element is denoted Xe and the intersection of the localization band with this finite element is denoted
Xe

D. The complementary parts of the finite element are denoted by (X+)e and (X�)e.
In each finite element, the displacement field (30) is interpolated by
uðX; tÞ ¼ NiðXÞqi þMe
DðXÞbe; ð39Þ
where Ni(X), i = 1,2, . . . ,4 are the standard bilinear quadrilateral shape functions and qi are the nodal displacements. The sec-
ond term accounts for the deformation gradient discontinuity, and is written as
Me
DðXÞbe ¼ ðHe

DðXÞ � NsolðXÞÞbe; ð40Þ
where He
DðXÞ is defined in a similar way as the expression in Eq. (31), restricted to the element domain. Also, Nsol(X)) is the

addition of the shape functions Ni associated to the element nodes nþe

 �

lying in (X+)e. The addition of the term Nsol(X) facil-
itates the imposition of natural boundary conditions in the discrete boundary value problem.
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In the approximation of the displacement enriching mode defined by (40), be is a vectorial parameter, constant in the fi-
nite element, which allows for an inexpensive element-wise condensation of these degrees of freedom.

In order to avoid the numerical locking effects due to possible near isochoric deformations in the plastic regime, we
adopt an underlying finite element which is based on a strain enhanced methodology, such as that proposed by Simo
(1998).

4.1. Discrete equilibrium equations

The variational equilibrium Eq. (1) can be discretized using a Petrov–Galerkin approach, see Oliver et al. (2003), which can
be written as
Z

X0

BT
ur JdX0 ¼ Gext; ð41Þ

1
Xe

D

Z
Xe

D

r � ðF�T NÞ JdXe
D �

1
Xe

c

Z
Xe

c

r � ðF�T NÞ JdXe
c ¼ 0; ð42Þ
where Gext is the discrete external force and Bu is a spatial matrix representing the linearized strain–displacement operator,
and is defined according to the enhanced finite element formulation of Simo (1998). Eq. (42) is elementwise imposed only in
those elements where embedded localization bands have been introduced. In the second term of that equation, the integra-
tion domain, Xe

c , is the complementary part of the embedded discontinuity band: Xe
c ¼ Xe nXe

D.
Eq. (41) is standard in finite element procedures, while Eq. (42) imposes a weak force balance across the discontinuity

band.

4.2. Algorithmic implementation details

Specific algorithmic aspects in the present context of large deformation kinematics, are noted here.

(i) In each finite element, the numerical integration of the terms in Eqs. (41) , (42) are performed through six quadra-
ture points, see Fig. 2(c). Points 1 to 4 correspond to the standard Gauss points defined for the bilinear quadrilateral
element. The fifth and sixth quadrature points are located at the central point of the finite element. Quadrature
points 1 to 5 represent the regular part of the element, where lD = 0 for those expressions defining the kinematics
in Section 3, and the sixth Gauss point represents the interior of the discontinuity band with lD = 1, see Eq. (32). The
deformation gradient at a regular quadrature point M is denoted by FM, with indices M ranging from 1 to 4, and eval-
uated through
FM ¼ J1=3
0 F iso

M ; ð43Þ

where J0 is the determinant of the deformation gradient at the element central point, the fifth quadrature point, and

F iso
M ¼ J�ð1=3Þ

M FM , such that det F iso
M ¼ 1. The stress tensor at quadrature point M, rM, is determined by the deformation

gradient FM using the constitutive relation in SubSection 2.2. Integration of Eq. (41) is carried out using the standard
Gauss points 1 to 4, and the matrix Bu is defined according to the enhanced finite element formulation of Simo (1998).
Eq. (42) is evaluated point-wise, by using the fifth and sixth integration points.
(ii) The determinant of the acoustic tensor in Eq. (29) is evaluated in the current configuration at the central integration
point of every finite element. The localization mode is activated when the acoustic tensor becomes singular. The cor-
responding eigenvectors give two possible localization directions. Once localization initiates in some finite element
for some unit vector �e0, the enriching mode in Eq. (39) is activated in that element. The numerical detection of the
singularity of the acoustic tensor, is determined using the iterative algorithm in Oliver et al. (2010).
Once determined �e0, its normalized pull back transformation to the reference configuration is then given by
N ¼ FT�e0=ðkFT �e0kÞ. With N defined in every point of this configuration, we trace the complete set of possible discon-
tinuity paths according to the procedure reported in Oliver et al. (2004). This procedure evaluates the envelopes of the
tangent vector field T, orthogonal to N, and requires the definition of a unique normal vector for every material point.
However, eq. (29) provides, in general, two eigenvectors at each point. Both eigenvector solutions may be associated
with different, and admissible, localization modes. We have not yet developed a general criteria for selecting one spe-
cific eigenvector solution for evaluating the crack path. Therefore, in the calculations a heuristic criterion is used to
obtain the localization direction.

(iii) An Impl-Ex scheme, see Oliver et al. (2008), Sánchez et al., 2008, is used in order to integrate, in time, the evolution
equations of the problem. Box 1 present a sketch of the proposed scheme, where Dun+1 is the incremental displace-
ment at step (n + 1). After evaluating trial values, Point 1 in the Box, two sequence of variables are calculated per time
step: (1) an implicit sequence (denoted with the symbol: ð̂�Þ) which is presented in Point 2 of the Box; and (2) a semi-
explicit sequence (denoted with the symbol: ð~�Þ) and presented in Point 3 of the Box. The Jacobian of the elastic defor-
mation of the previous step Je

n


 �
is used in Point 1.4 to calculate the trial Cauchy stress, and remain fixed during the



Fig. 3. The function f⁄ in Eq. (44) compared with the bilinear expression in Eq. (15).
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iterative process for evaluating the implicit Cauchy stress in Point 2.2. The Impl-Ex Cauchy stress (Points 3.3 and 3.4)
is calculated by using the principal directions of V trial

nþ1, while the principal values are obtained through a particulari-
zation of the procedure presented in the Point 3, Box 2 of Sánchez et al. (2008). This Impl-Ex Cauchy stress is used to
evaluate the discrete equilibrium Eqs. (41) and (42). With this procedure, the resulting Impl-Ex stresses do not exactly
satisfy the plastic consistency condition and remain a non-linear function of the displacements. However, due to the
explicit extrapolation of internal variables, the algorithmic tangent tensor resulting from the integration in Box 1 is
positive definite, and therefore, the characteristic robustness of the Impl-Ex scheme is preserved.

(iv) In those elements where the void fraction value becomes larger than a specified value fx, the values of the void volume
fraction f and the matrix plastic strain �� are kept fixed. Typically, at least in the calculations we have carried out, this
occurs inside a localization band, i.e. at the sixth quadrature point of a finite element with an embedded discontinuity
mode. Thus, once f > fx, the yield function remains unchanged forcing the stresses on this surfaces to be close to zero.
Therefore, there is almost no contribution from this quadrature point to the internal nodal forces. With this approach
finite elements do not need to be removed from the mesh during the course of the numerical simulation. We have
taken fx = 0.55.

(v) The function f⁄, defined in expression (15), is implemented by introducing an exponential smooth transition in the
upper limit of the void fraction value ff, see Fig. 3, as follows:
f � ¼

f for f 6 fc;

fc þ
1

q1
�fc

ff�fc
ðf � fcÞ for f c < f 6 fi;

0:95
q1
� fs

� 

1� exp � f�fi

ff�fi

� 
� 

þ fs for f i < f ;

8>>><>>>: ð44Þ
where fi is the value of f at which the transition from the linear function to the exponential one takes place,
fi = 0.75(ff � fc) + fc and fs is the value f⁄(fi) given by the second of Eq. (15).
In this way, f 2 [0,1), and we can preserve the numerical treatment described in item (iv), when f > fx. A similar
smoothing of the function f⁄(f) was used in Mathur et al. (1994).
5. Numerical examples

Numerical examples are presented to illustrate the applicability of the methodology in cases exhibiting a variety of failure
modes. The examples considered are: (i) plane strain tension of a rectangular bar leading to a shear failure, SubSection 5.1;
(ii) axisymmetric tension of a cylindrical bar giving a cup-cone failure, SubSection 5.2; and (iii) plane strain tension of a
notched bar where failure involves a shear mode that changes direction, SubSection 5.3. In several cases, results for different
mesh resolutions and for different values of the band thickness D0 are compared. Also, in some cases the results obtained are
compared with previous solutions taken from the literature.
5.1. Plane strain tension

In plane strain tension, the predicted failure mode with porous plasticity is a shear band mode, see for example Becker
and Needleman (1986), Besson et al. (2003). Here, we carry out the calculations for the rectangular bar sketched in Fig. 4(a)
with L/em = 3.5. A geometrical imperfection is introduced to induce the initiation of the localization band to lie in the bar
central zone. It consists of a linear decrease of the bar net section with a maximum reduction area of 2% (e0 = 0.98em).
The width e0 defines the reference area in the following results.
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Box 1: The Impl-Ex numerical integration algorithm.
Integration step: (n + 1) with time increment: (Dtn+1)

GIVEN: Fn; Dun+1; and the implicit values of the previous step: bF e
n; bF p

n; �̂�n; f̂ n

(1) Find trial values:
(1.1) F trial

nþ1 ¼ FðDunþ1ÞF̂e
n; FðDunþ1Þ ¼ 1þ @Dunþ1

@xn

(1.2) V trial
nþ1 ¼ ½F

trial
nþ1ðF

trial
nþ1Þ

T �1=2 and its spectral decomposition:
(1.3) V trial

nþ1 ¼
P3

I¼1k
trial
I rnþ1

I � rnþ1
I


 �
Evaluate the trial Cauchy stress using Eq. (7)

(1.4) rtrial ¼
P3

I¼1rtrial
I ðrnþ1

I � rnþ1
I Þ where: rtrial

I ¼ 1
Je
n

E
1þm ln ktrial

I

� 

þ m

1�2m
P3

K¼1 lnðktrial
K Þ

� 
h i� 

(2) In the space of principal stresses, evaluate the following implicit values: (use a return mapping scheme,

similar to that of BOX 1 in Sánchez et al., 2008)
(2.1) bKnþ1; ðr̂IÞnþ1; �̂�nþ1; f̂ nþ1; F̂e

nþ1; F̂p
nþ1; such that:

(2.2) ðr̂IÞnþ1 ¼ rtrial
I � bKnþ1�cIJ@rJ /nþ1 and /nþ1ððr̂KÞnþ1; �̂�nþ1; f̂ nþ1Þ ¼ 0; the tensor �c is defined in Eq. (10) (here

expressed in R3)

(3) Evaluate the Impl-Ex internal variables: (use a scheme, similar to that of BOX 2 in Sánchez et al. (2008))
(3.1) eK ¼ bKn

Dtnþ1
Dtn

;
(3.2) ~��nþ1 ¼ �̂�n;
(3.3) ~f nþ1 ¼ f̂ n; and the principal values of the Impl-Ex stress,
(3.3) ð~rIÞnþ1; Evaluate Impl-Ex stress:
(3.4) ernþ1 ¼

P3
I¼1ðerIÞnþ1ðrnþ1

I � rnþ1
I Þ

OUTPUT: bF e
nþ1; bF p

nþ1; �̂�nþ1; f̂ nþ1; ernþ1

The material parameters used are the same as in Besson et al. (2003). Young’s modulus E = 210 GPa, Poisson’s ratio m = 0.3,
the initial volume void fraction is f0 = 1.5 � 10�4, q1 = 1.5, q2 = 1.15, fN = 4 � 10�6 (so that void nucleation plays a negligible
role), ��N ¼ 0:3; sN ¼ 0:10, and with ry = 377 MPa, �0 = 0.0018, and N = 0.12 in Eq. (14) (N = 0.13 in Besson et al. (2003)). In
addition, f⁄ = f is used in these calculations. The problem analyzed here is referred to as model ‘‘G’’ in Besson et al. (2003)
and we compare with results in Fig. 8 of Besson et al. (2003).

Three quadrilateral finite element Meshes 1, 2 and 3, as shown in Fig. 4(c), are used. They have a uniform distribution of
elements in the necking zone of height L/7, with 48 � 36, 24 � 18 and 12 � 24 quadrilaterals and aspect ratios of h/b = 1.5,
1.5 and 4.0, respectively.

The deformed finite element meshes together with the void fraction distributions are shown in Fig. 4(c) at the end of the
analysis. A very similar shear band mode occurs for all three meshes. There are two possible localization band directions. At
the central point of the bar, the angles between the critical localization directions and the horizontal symmetry axis are
±44.5� in the deformed configuration, which are in agreement with those reported in Besson et al. (2003). In the reference
configuration, these angles are ±12.5�. In the calculations here, we arbitrarily choose to introduce one of these possible band
orientations.

Fig. 4(b) shows the void volume fraction distribution, in the deformed configuration, when the first bar material point
satisfies the bifurcation condition.

Overall nominal traction (force F/unit reference area S0, with S0 = 2e0 assuming unit thickness), versus the area reduction
at the minimum section jDej/e0 is shown in Fig. 4(d) for the three finite element meshes with D0/e0 = 0.0033. The results are
compared with those in Besson et al. (2003). The overall responses even after localization are rather independent of the num-
ber of finite elements in the mesh. Although the widths of the regions with a high void volume fraction f in Fig. 4(c) clearly
depend on the mesh resolution, in each case the main dissipation actually occurs with a localization band of width D0 so that
the dissipation is relatively mesh independent. Fig. 4(e) illustrates the dependence of the response on the band width D0 with
a fixed finite element mesh. The post-localization response does depend on D0 since the band width determines the dissi-
pation during localization.

Fig. 5 compares the solution obtained with an unstructured mesh with that obtained using the structured Mesh 1 having
48 finite elements across the bar width. The overall traction-area reduction curves essentially coincide, Fig. 5(a). Figs. 5(b)
and (c) show the shear band orientation in the deformed and undeformed unstructured meshes, respectively. The band ori-
entation in Fig. 5(b) is in very good agreement with those seen in Fig. 4(c).

5.2. Axisymmetric tension

In contrast to plane strain, the predicted failure mode for a porous plastic solid in axisymmetric tension is a cup-cone
mode, as is also seen experimentally, Tvergaard and Needleman (1984) and Besson et al. (2001). We carry out calculations



Fig. 4. Localization and failure in a plane strain specimen. (a) A sketch illustrating the boundary value problem. (b) Void volume fraction distribution, in the
deformed configuration, when the first material point (which is at the specimen center) satisfies the bifurcation condition. (c) Contours of void volume
fraction in the deformed configuration for finite element Meshes 1, 2 and 3, with 48, 24 and 12 finite element in the horizontal direction, respectively. (d)
The specimen load versus normalized width reduction obtained using the three meshes. (e) A comparison of the specimen load versus normalized width
reduction curves obtained with three values of band width D0.
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of axisymmetric tensile specimens for two cases; in one case there is an initial volume fraction of voids with a low volume
fraction of void nucleating particles, as considered by Besson et al. (2001), and with f⁄ = f. In the other case, there are no initial
voids, f0 = 0, and the volume fraction of void nucleating particles is much larger. Also, the void coalescence function f⁄ is used
as in Tvergaard and Needleman (1984) but with the modification of Eq. (44).

We first consider the case with a low volume fraction of void nucleating particles fN = 4 � 10�6 and with f0 = 1.5 � 10�4, as
in Besson et al. (2001). Other material parameters are: Young’s modulus E = 210 GPa, Poisson’s ratio
m ¼ 0:3; q1 ¼ 1:5; q2 ¼ 1:15; ��N ¼ 0:3; sN ¼ 0:10; ry ¼ 377 MPa, �0 = 0.0018, and N = 0.12. Fig. 6(a) shows the specimen
analyzed which has an initial specimen length, L, to radius, rm, ratio of L/rm = 3.5. A geometrical imperfection is introduced
to induce the initiation of the localization band to lie in the central zone of the bar. The geometrical imperfection consists of a
decrease of the bar net section, in the central zone of height L/7, following a circular profile as shown in Fig. 6(a), with a max-
imum radius reduction: r0 = 0.98rm. In the following analysis, the reference bar radius is r0.

The quadrilateral finite element meshes used are shown in Fig. 6(b). Mesh 1 has 35 � 95 uniform elements in the neck
region, of height L/7, and a total of 3985 quadrilateral elements; Mesh 2 has 25 � 69 uniform elements in the neck region
and a total of 2180 quadrilateral elements; and Mesh 3 has 23 � 43 uniform elements in the neck region and a total of
1824 quadrilateral elements. In the neck region, the elements have an initial aspect ratio of h/b = 5.4, with h and b the ele-
ment width and height respectively for Meshes 1 and 2 and h/b = 3.7 for Mesh 3. The material parameters for the case con-
sidered in Fig. 6 are identical to those used in the plane strain tension case in SubSection 5.1.

Void volume fraction contours for the three meshes are displayed in the deformed configuration in Fig. 6(b). The dark
elements are those with a void volume fraction f greater than 0.2. Failure initiates at the specimen center and initially prop-
agates along a zig-zag path that is approximately perpendicular to the tensile axis as discussed by Tvergaard and Needleman
(1984). Once the failure region extends over about 30% of the specimen cross section, the failure mode changes to a shear
mode giving rise to the final cup-cone failure. The localization bifurcation analysis has two possible (symmetric) shear local-
ization directions and in the calculations one is chosen arbitrarily.



Fig. 5. Localization and failure in a plane strain specimen. (a) Specimen load versus normalized width reduction curves obtained with an unstructured finite
element mesh compared with the solution obtained with a structured mesh (Mesh 1 of Fig. 4). (b) Contours of void volume fraction at the end of the analysis
and the deformed configuration for the calculation using the unstructured mesh. (c) Contours of void volume fraction in the undeformed configuration for
the calculation using the unstructured mesh.

Fig. 6. Development of the cup-cone fracture mode in axisymmetric tension with fN = 4 � 10�6. (a) A sketch illustrating the boundary value problem. (b)
Finite element meshes and contours of void fraction f at the end of the analysis displaying the fracture surface for three deformed meshes (jDrj/r0 = 0.518).
The notations (35FE) for Mesh 1, (25FE) for Mesh 2 and (23FE) for Mesh 3 refer to the number of quadrilateral finite elements in the radial direction. The
initial element aspect ratio, h/b, is also noted.
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Figs. 7(a) and (b) show curves of traction (force F/initial cross sectional area S0) versus magnitude of the radius reduction,
jDrj/r0, at z = 0. In Fig. 7(a), results are shown for all three finite element meshes with a fixed localization band width of D0/
r0 = 0.003. Also, for comparison purposes results from Besson et al. (2001) are shown. Our results have a somewhat larger
strain at which failure occurs. In Fig. 7(b), Mesh 2 is used with two values of the localization band width, D0/r0 = 0.0033
and D0/r0 = 0.0066. At least in this case, doubling the band width has only a small effect on the result. The sharp drop in trac-
tion occurs when failure initiates at the specimen center and the change in area reduction between the initiation of failure
and the complete loss of stress carrying capacity is very small.

The evolution of the fracture process obtained with the present numerical method is shown in Fig. 8. Fig. 8(a) displays the
development of the localization bands during the loading process. Every band, which is introduced when the acoustic tensor,
Eq. (29), becomes singular at the central point of a finite element, is represented by a different shade of gray, and plots B and
C display the formation of bands denoted 1–5 which indicates the order in which they occur. Whenever the failure



Fig. 7. Axisymmetric tension with fN = 4 � 10�6. (a) Curves of load (Force F/reference area S0) versus the magnitude of the radius reduction using Meshes 1,
2 and 3 in Fig. 6 and a localization band width D0/r0 = 0.003. (b) Curves of load versus the magnitude of the radius reduction using Mesh 2 and two
localization band widths D0/r0 = 0.0033 and D0/r0 = 0.0066.
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Fig. 8. Axisymmetric tension with fN = 4 � 10�6. (a) Development of the localization band pattern during the loading process and the final set of active
localization bands (marked with dots) showing the failure path for Mesh 1. The states A, B, C, D and E correspond to the points marked in Fig. 7(a) and k is
the logarithm of the average bar stretching, k = log(1 + DL/L). (b) Evolution of the void volume fraction at states A, B, C, D and E. (c) The distribution of void
volume fraction at stage E in the reference configuration.
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mechanism involves a zig-zag failure mode, as in the present case, the shear localization band directions should change
alternatively during failure propagation. Since we only allow for one of the two possible localization directions, the only pos-
sibility for capturing a zig-zag failure mode is by the coalescence of two closely spaced parallel bands. This induces an error
because the finite elements lying between parallel bands are not enhanced with the weak discontinuity mode.

As in the plain strain case, there are two possible localization band directions and we arbitrarily choose one of them. In
the central point of the bar, the critical angles during the onset of the first localization band, denoted 1 in Fig. 8(a), are ±21�
between the localization band and the horizontal direction. The critical angle of the second localization band is ±24�, while
the final failure has an angle of approximately ±33� with the horizontal direction, as can be seen in Fig. 8(a), stage E.

Defining a band as active when _f > 0 in the band, Fig. 8(b) shows that not all bands remain active during the loading pro-
cess, such as those denoted by 3, 4 and 5. The first band, 1, arrests shortly after its activation. Then, a new band initiates close
to the first one, and then coalesces with the arrested band. This process continues with the formation of new localization
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bands leading to an almost horizontal (in an average sense) zig-zag localization band until reaching a fraction of the bar ra-
dius where the axisymmetric constraint is relaxed and shear localization occurs. In Fig. 8(c) the contours of void volume frac-
tion f are shown in the reference configuration. this plot shows that failure occurs mainly in a tensile mode for r < r0/3 and
mainly in a shear mode for the remainder of the cross section.

We now consider a case with no initial voids, f0 = 0, and a larger volume fraction of void nucleation particle, fN = 0.04, as in
Tvergaard and Needleman (1984). The material parameters used are: E = 210 GPa, m ¼ 0:3; q1 ¼ 1:5; q2 ¼ 1; ��N ¼ 0:3;
sN ¼ 0:10; ry ¼ 300 MPa; �0 ¼ ry=E; N ¼ 0:1. We also use Eq. (44) with fc = 0.15, ff = 0.25, fi = 0.225 and take D0/r0 = 0.0033.

Fig. 9(a) compares the nominal traction versus the magnitude of the radius reduction at the mid-section for the same
three meshes as shown in Fig. 6, namely Meshes: 1, 2 and 3. There is relatively little mesh dependence over the range com-
puted. Fig. 9(b) compares the nominal traction versus the magnitude of the radius reduction at the mid-section using Eq. (44)
with a case using the same material parameters but with f⁄ � f. As expected, the response of the two cases coincides until the
earlier onset of the load drop that takes place when the coalescence expression Eq. (44) is used.

Fig. 10 shows the development of the cup-cone failure mode. Contours of void volume fraction f are shown at the six
points marked in Fig. 9(b) for the calculation using Mesh 1. As in the case with a small volume fraction of void nucleating
particles, not all localization bands remain active throughout the analysis. Comparing Figs. 8(b) and 10, shows that although
Fig. 9. Axisymmetric tension with fN = 0.04. (a) Curves of specimen load versus the magnitude of the radius reduction at the minimum section obtained
with Meshes 1, 2 and 3 in Fig. 6(b) using f⁄ from Eq. (44) and with D0/r0 = 0.0033. (b) A comparison of the curves of specimen load versus the magnitude of
the radius reduction at the minimum section obtained with Mesh 1 in Fig. 6(b) using f⁄ in Eq. (44) and using f⁄ � f.

Fig. 10. Axisymmetric tension with fN = 0.04., f⁄ as defined in Eq. (44) and Mesh 1: void fraction distribution during the loading process, stages A, B, C, D, E
and F correspond to the points displayed in Fig. 9 (b), k is the logarithm of the average bar stretching (k = log[1 + DL/L]).
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a larger value of fN gives earlier failure, the main features of the cup-cone failure mode are independent of the value specified
for the volume fraction of void nucleating particles, at least in the circumstances analyzed here.

The critical angles between the localization band and the horizontal direction, in the central point of the bar during the
onset of the first localization band, are ±29�. The magnitude of these angles is greater than those for the material having a
lower value of fN. However, the final failure mode has an angle of approximately 33�, Fig. 10, which is close to that observed
in Fig. 8(a), stage E, calculated for a material having a lower value of fN.
5.3. Plane strain notched bar

Calculations are carried out for the plane strain tensile response of a notched rectangular bar similar to those reported in
Needleman and Tvergaard (1984) for a D-notched bar. The specimen geometry is shown in Fig. 11(a). One half of the bar is
modeled. The numerical solutions are obtained using two quadrilateral finite element meshes: Mesh 1 and 2, as shown in
Fig. 11(b) and (c), having a total of 4816 and 1011 finite elements respectively. These are structured meshes in the zone
of height L/5 close to the notch.

The material parameters are similar to those in Needleman and Tvergaard (1984) and they are: ry/E = 0.0033, Poisson’s
ratio m = 0.3, hardening exponent N = 0.1, and q1 = 1.5 and q2 = 1.0. Also, in these calculations we take f⁄ � f.

Void nucleation is taken to be strain controlled as described by Eqs. (16) and (17), with fN = 0.04, �N = 0.3 and sN = 0.1. The
initial void volume fraction distribution is taken to be f0 = 0.0001.

Fig. 12(a) compares load versus displacement curves obtained with the two meshes, both with D0/L = 0.0015 (D0 is nor-
malized by the half length of the specimen). For comparison purposes a solution obtained with Mesh 1 but without any weak
discontinuity mode is also shown in Fig. 12(a). The solutions with the two finite element meshes including the weak discon-
tinuity mode (having the same value of D0), compare well over the entire range computed, illustrating the regularization
effect obtained by including the enhanced mode. Without any enhanced mode, the development of failure is delayed and
the results are strongly influenced by finite element mesh parameters (with quadrilateral finite element meshes), such as
the size and aspect ratio of the elements.

Fig. 12(b) shows the fracture mode captured by Mesh 1 including the weak discontinuity modes. A localization instability
first occurs at the notch root and a shear band initiates there. The failure mode consists of a shear band, starting at the notch
root, which then propagates at an angle of approximately 125�. This shear band arrests and a shear band develops, at 40� to
45�with the horizontal direction, that intersects the center of the specimen.

The more dissipative response of the solution without discontinuity modes can be understood better by analyzing the
development of the failure mode as shown in Fig. 13. Figs. 13(a) and (b) show results from calculations carried out for half
of the specimen, the shaded region in Fig. 11(a), while for the calculation in Fig. 13(c) symmetry about the notch mid-plane
was also imposed. Fig. 13(a) shows one configuration of the full specimen width consistent with the imposed boundary con-
ditions. Another possible configuration of the full specimen, based on the same half-specimen calculation, has the shear
bands emanating from both notches in the upper half of the specimen. The loss of symmetry between the two shear bands
at each notch is due to the unsymmetric perturbation we introduced to force the development of one of the two possible
shear band modes at the notch root (±125�). When discontinuity modes are not included, the initial band at 125� is not well
developed, Fig. 13(b). A horizontal band then develops close to the notch surface. This gives a delay in shear band formation
and consequently an increase in energy dissipation.

Fig. 13(c) shows a calculation in which shear band formation at the notch root was prescribed to occur at �125� and the
calculation was carried out for one quarter of the specimen. Comparing the overall load versus engineering strain curves in
Fig. 12(b) shows that the failure strain and overall dissipation are nearly the same for the two failure modes shown in
Figs. 13(a) and (c). This indicates that the increased dissipation seen for the symmetric failure mode obtained when no dis-
continuity modes were included is not a consequence of the failure mode symmetry.
Fig. 11. (a) Sketch illustrating the boundary problem for the plane strain D-notched specimen. (b) The finer finite element Mesh 1 in the notch vicinity. (c)
The coarser finite element Mesh 2 in the notch vicinity.



Fig. 12. Plane strain D-notched specimen. (a) Comparison of the specimen load versus strain curves for the meshes in Figs. 11(b) and (c). Also, shown is the
response predicted using Mesh 1 without use of weak discontinuity modes. (b) Specimen load versus strain curves. The responses obtained by analyzing
one half and one quarter of the specimen are compared. Contours of void volume fraction showing the evolution of the failure mode for the calculation of
one half of the specimen using Mesh 1 with the discontinuity modes are also shown.

Fig. 13. Plane strain D-notched specimen. (a) The void volume fraction distribution obtained using Mesh 2 in Fig. 11(c) and modeling one half of the
specimen. (b) The void volume fraction distribution obtained using Mesh 1 in Fig. 11(b) and modeling one half of the specimen. No weak discontinuity
modes included. (c) The void volume fraction distribution using Mesh 1 in Fig. 11(b) and modeling one quarter of the specimen.
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6. Concluding remarks

We have presented a finite deformation generalization of the finite band formulation of Huespe et al. (2009). This method
provides a unified framework for modeling the transition from a weak, localization discontinuity to a strong, fracture discon-
tinuity with the accompanying loss of material stress carrying capacity. The same constitutive relation is used throughout
the analysis with a specified localization band thickness serving as a characteristic length. The computed responses were
rather independent of the finite element mesh design, including the orientation and the aspect ratio of the quadrilateral ele-
ments. Examples were presented using both structured and unstructured meshes. The numerical examples have shown that
rather complex failure modes such as a cup-cone fracture can be represented.

Typically in structural applications, as in the examples here, the band width will be smaller than the element mesh size. In
principle, however, the mesh size could be reduced so that it was smaller than the band width. In this case, consistent with
the localization bifurcation analysis, the deformation state in the band needs to be taken to be constant through the band
thickness. With this constraint, convergence could be obtained with increasing mesh refinement.

Key issues for further development are the extension to three dimensions and the automatic selection of the critical band
orientation. It is worth emphasizing that, as in the small deformation case, the methodology here can be used with any rate
independent constitutive relation that involves a localization instability possibly leading to a complete loss of stress carrying
capacity.
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