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a b s t r a c t

In the first part of this work, the theoretical basis of a frictional contact domain method for two-dimen-
sional large deformation problems is presented. Most of the existing contact formulations impose the
contact constraints on the boundary of one of the contacting bodies, which necessitates the projection
of certain quantities from one contacting surface onto the other. In this work, the contact constraints
are formulated on a so-called contact domain, which has the same dimension as the contacting bodies.
This contact domain can be interpreted as a fictive intermediate region connecting the potential contact
surfaces of the deformable bodies. The introduced contact domain is subdivided into a non-overlapping
set of patches and is endowed with a displacement field, interpolated from the displacements at the con-
tact surfaces. This leads to a contact formulation that is based on dimensionless, strain-like measures for
the normal and tangential gaps and that exactly passes the contact patch test. In addition, the contact
constraints are enforced using a stabilized Lagrange multiplier formulation based on an interior penalty
method (Nitsche method). This allows the condensation of the introduced Lagrange multipliers and leads
to a purely displacement driven problem. An active set strategy, based on the concept of effective gaps as
entities suitable for smooth extrapolation, is used for determining the active normal stick and slip
patches of the contact domain.

� 2009 Elsevier B.V. All rights reserved.
1. Motivation

Despite the substantial progress achieved in the last years, sim-
ulating technical problems involving contact of various deformable
parts still poses challenges in non-linear structural mechanics,
mainly when it is intended to obtain robust and accurate results
at a reduced computational cost using implicit methods. For the
development of a contact formulation, two main ingredients may
be basically chosen:

� A scheme to enforce the contact constraints.
� A technique to discretize the contact surfaces or the interface.

Several different methods for the variational enforcement of the
contact constraints have been developed in the past. The most
prominent of them are: (a) the penalty method, (b) the Lagrange
multiplier method and (c) the augmented Lagrange method. These
methods have been used together with specific collocation meth-
ods to enforce the contact constraints at some discrete nodal points
(e.g. [13,21,25,29]), as well as with discretization schemes based
on a continuous treatment of the contact constraints (e.g.
ll rights reserved.
[20,24,32]). An overview of various methods for the contact con-
straint enforcement with respect to different discretization strate-
gies is given in Wriggers [27]. Recently a different approach based
on a formulation for the matching of different meshes, introduced
by Nitsche [19], was utilized for the formulation of frictionless,
small deformation contact problems by Wriggers and Zavarise
[30]. Instead of introducing a Lagrange multiplier, the calculation
of the stresses in the contact interface is based on the stress field
of the contacting bodies. The formulation necessitates a stabiliza-
tion term, which looks very similar to the penalty method, but
exhibits less influence on the solution than the classical penalty
approach. Another approach based on the Nitsche method was
introduced by Heintz and Hansbo [14] for small deformation
frictional contact problems. Starting from a classical Lagrange mul-
tiplier method, they introduce a stabilization term, connecting the
Lagrange multipliers with the stress field of the contacting bodies
at the contact boundary, in order to be able to condense the intro-
duced Lagrange multipliers. In this work, the formulation
presented in [14] is generalized to the contact domain method
for large deformation frictional contact problems.

Many existing contact formulations developed in the past en-
force the contact constraints at specific collocation points. The
most popular discretization strategy in the context of large
deformation contact problems is the node-to-segment approach

mailto:xavier.oliver@upc.edu
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developed by Hallquist et al. [11]. Its main idea is that a specific
node on the slave side must not penetrate the opposing master
side segment. This approach can be applied in a single pass algo-
rithm, where only nodes on the slave side are checked against pen-
etration into the master segment, and the nodes on the master side
are free to penetrate the slave segments. As the single pass method
does not pass the contact patch test [7,20], the so-called two pass
algorithm displays an alternative for the simulation of flexible
body contact. The two pass algorithm performs the nodal contact
search twice and solves the contact patch test in 2D, but it is prone
to lock due to overconstraining of the displacements on the contact
surface. In recent years other discretization schemes were devel-
oped, based on a continuous treatment of the contact constraints.
Many of the lately proposed segment-to-segment discretization
strategies are based on the so-called mortar method, initially intro-
duced in the context of domain decomposition methods [3–5]. This
method is particularly well suited to exchange information of two
discretized domains along common, in general non-conforming,
surface grids. In contrast to the node-to-segment discretization,
the continuity constraints are not enforced at discrete nodal points
but are formulated along the entire coupling boundary in a weak
integral sense. On basis of the mortar method, various contact for-
mulations have been developed in recent years. For a more math-
ematical treatment the works of Belgacem et al. [2], Hild [15],
Wohlmuth and Krause [26] or Hüeber and Wohlmuth [16] may
be named. Furthermore several approaches in the engineering
community appeared recently, e.g. Yang et al. [31], Puso and Laur-
sen [22,23], Fischer and Wriggers [8,9].

No matter whether using a node-to-segment or a segment-to-
segment contact discretization strategy, nearly all of the proposed
methods have in common, that they project somehow one contact-
surface/point (slave/non-mortar) onto the other contact-surface
(master/mortar), to formulate the necessary contact conditions.
Therefore, the contact problem is defined on a subdomain, which
is usually one dimension lower than the domain of the contacting
bodies (see Fig. 1a). In this paper, a so-called contact domain is uti-
lized to formulate the contact constraints. It is an intermediate do-
main of the same dimension than the contacting bodies, which
connects potential contact boundaries. The contact domain will
be approximated with a set of non-overlapping patches (see
Fig. 1b) and endowed with a displacement field, interpolated from
the displacements of the boundaries of the contacting bodies. Con-
sequently, the measurements of the normal and tangential gaps as
well as the introduced Lagrange multipliers are defined within the
whole contact domain, and not only along the contacting surfaces.

This leads to a contact algorithm formulated in terms of dimen-
sionless, strain-like measures based on the incremental motion of
the contact domain, for the normal and tangential gaps, whose
necessary variations and linearizations can be performed utilizing
Fig. 1. Imposition of contact constraints on the contacting bod
standard manipulations of strain measures in classical continuum
mechanics.

A key issue of the contact discretization via a contact domain is
the fact, that the resulting pairing of the contact surfaces is com-
plete and continuously defined. To illustrate this, Fig. 2 sketches
two discretized contact surfaces and its corresponding contact
pairings, either with a classical node-to-segment approach with a
nodal non-penetration condition (Fig. 2a) or with the contact do-
main, utilizing triangular patches (Fig. 2b). There, for the node-
to-segment pairing two obvious things can be checked: first, it
strongly depends on the choice of the master and slave sides
and, second, it might discard (void regions in Fig. 2a) or over-con-
strain (overlapping regions in Fig. 2a) some specific pairings. These
facts can pose difficulties to the method to pass the patch test. In
contrast, the contact domain displays full and non-overlapping
pairings (see Fig. 2b), which, as it will be shown later, lead to a con-
tact algorithm that passes the contact patch test for arbitrary not
matching meshes.

This work focuses on a two-dimensional version of the contact
domain method in contact problems. This first part deals with the
fundamental geometrical, mechanical and mathematical aspects,
thus emphasizing the theoretical aspects of the method. The sec-
ond part [12] is focused on ensuring the reproducibility of the work
by fully detailing the numerical and algorithmic aspects of the
method and providing a suitable number of assessing examples.

This paper will be organized as follows: In Section 2 the geo-
metrical aspects of the utilized contact domain, including necessary
definitions for the applied normal and tangential gaps will be spec-
ified for the use of linear triangular contact patches. The boundary
value problem of the large deformation frictional contact problem
as well as the necessary contact constraints are then given in Sec-
tion 3. Section 4 focuses on the introduction of a stabilized weak
form of the boundary value problem as basis for solving it by
means of the finite element method. An appropriate active set
strategy, based on so-called effective gaps and active set indicators
is presented in Section 5, in order to translate the underlying
inequality constrained problem into an equality one. The paper
closes with some concluding remarks in Section 6.

2. Geometrical aspects

2.1. Contact domain

Consider two contacting bodies BðaÞ, a = 1, 2, which undergo
large deformations (see Fig. 3). Let then /

ðaÞ
t ðXÞ � /ðaÞðX; tÞ :

BðaÞ � ½0; T� ! XðaÞ denote the associated deformation maps at time
t 2 [0,T], where /

ðaÞ
t maps material points X(a) 2 B(a) at the refer-

ence configuration onto points xðaÞ ¼ /
ðaÞ
t ðXðaÞ) at the current con-

figuration. Furthermore the total displacement field U
ðaÞ
t ðXðaÞÞ is
ies: (a) classical methods and (b) contact domain method.



Fig. 2. Contact pairing: (a) node-to-segment and (b) contact domain.

Fig. 3. Definition of the contact domain Dn between two contacting bodies X(a) and its subdivision into patches DðpÞn .
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considered, which connects the coordinates of a particle in the ref-
erence and the current configuration via

xðaÞ ¼ /
ðaÞ
t ðXðaÞÞ ¼ XðaÞ þU

ðaÞ
t ðXðaÞÞ: ð1Þ

Assume that the time domain t 2 [0,T] is subdivided in discrete
intervals with [tn, tn+1] being the current time increment of length
Dtn+1 = tn+1 � tn. Then XðaÞn ¼ /

ðaÞ
tn
ðBðaÞÞ � /ðaÞn ðB

ðaÞÞ and XðaÞnþ1 ¼
/
ðaÞ
tnþ1
ðBðaÞÞ � /

ðaÞ
nþ1ðB

ðaÞÞ are the configurations at time tn and tn+1.
From now on tn and tn+1 will be termed the previous and the
current times, and XðaÞn and XðaÞnþ1 the previous and current configura-
tions, respectively. Specification of Eq. (1) for tn and tn+1 allows
defining:

x
ðaÞ
nþ1 ¼ /

ðaÞ
nþ1ðX

ðaÞÞ
x
ðaÞ
n ¼ /ðaÞn ðXðaÞÞ

)
)

x
ðaÞ
nþ1 ¼ /

ðaÞ
nþ1 /ðaÞn

� ��1
x
ðaÞ
n

� �� �
¼ /ðaÞ x

ðaÞ
n

� �
8xðaÞn 2 XðaÞn ;

ð2Þ

where /(a), obtained from elimination of the material coordinates
X(a) in Eq. (2), defines the incremental motion of the contacting
bodies in the current time interval. From this incremental motion,
the incremental displacement field can be defined as:

uðaÞ xðaÞn

� �
¼ /ðaÞ xðaÞn

� �
� xðaÞn ¼ x

ðaÞ
nþ1 � xðaÞn 8xðaÞn 2 XðaÞn : ð3Þ
Let oXðaÞn be the boundary of XðaÞn at the previous configuration and
m
ðaÞ
n the corresponding outward normal (see Fig. 3). Then, a so-called

contact domain Dn, with boundary oDn, joining part of the bound-
aries oXðaÞn , i.e. CðaÞD ¼ oXðaÞn \ oDn, is defined. Assume that CðaÞD are
large enough to contain those parts of oXðaÞn that are coming into
contact at the end of the current time interval [tn, tn+1] (thus at time
tn+1).

Assume that there may be a suitable number of vertices V ðaÞi

conveniently placed in the contacting boundaries CðaÞD and that,
on base of these vertices, the contact domain Dn can be approxi-
mated by a domain Dl

n (where superscript l refers to the typical va-
lue of the vertices separation) partitioned in np patches DðpÞn such
that

Dn � Dl
n ¼

[np

p¼1

DðpÞn : ð4Þ

Remark 2-1. Although the vertices V ðaÞi might be, in principle,
chosen independently of the discretization of the contacting bodies
BðaÞ, in the context of the finite element method the natural choice
is that they coincide with the finite element nodes on the
contacting boundaries CðaÞD .
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This partition has the following properties:

(a) It consists of a unique layer of patches.
(b) The contact patches DðpÞn do not overlap, and Dl

n converges to
the contact domain Dn as the number of vertices increases
(or, equivalently, l ? 0).

2.2. Contact patches for two-dimensional problems

Assuming, that the vertices V ðaÞi to approximate the contact do-
main coincide with finite element nodes placed on CðaÞD (see Remark
2-1), various types of contact patches might be defined. Some pos-
sibilities for two-dimensional problems are sketched in Fig. 4.

In principle, a contact patch may have a quadrilateral (see Fig. 4a
and c) or a triangular (see Fig. 4b and d) shape, regardless of the uti-
lized finite element formulation in the contacting bodies (linear,
quadratic or higher order elements).

Having in mind the explicit construction of these patches as
well as the resulting contact formulation, the triangular linear–lin-
ear shaped variant seems to have some advantages:

(a) The construction of linear triangular shaped patches may be
done by means of a simple constrained Delaunay triangula-
tion [10] on basis of the cloud of vertices V ðaÞi and the corre-
sponding outward normals m(a). This method fulfills the
requirements stated in Section 2.1 above.

(b) Anticipating subsequent results (see Section 5.2), the result-
ing contact formulation within one contact patch will be
easier, but this not necessarily meaning a loss of
effectiveness.

Due to these considerations, in the main body of this work
the authors have chosen linear triangular shaped patches to
approximate the contact domain. However, in order to be
explored out of this work, specific geometrical definitions for the
use of a linear–quadratic triangular contact patch are given in
Appendix B.

Remark 2-2. It has to be emphasized that utilizing linear trian-
gular shaped patches for the approximation of the contact domain
does not imply any limitation in the type of elements utilized in
the discretization of the contacting bodies, which can be triangular
or quadrilateral finite elements of any order.
Fig. 4. Possible patch definitions for tw
2.3. Linear triangular contact patch

2.3.1. Incremental motion
Although the incremental motion /(a) and the incremental dis-

placements u(a), in Eqs. (2) and (3), are only defined in the domains
XðaÞn , the contact domain Dl

n is endowed with an extension of this
incremental displacement field, u(D), for the purpose of supplying a
mathematical expression to the gap based in classical strain measures
(see Section 2.4.1). Thus, the incremental motion /(D) of the contact
domain Dl

n may be written as

/ðDÞ : Dl
n ! Dl

nþ1;

/ðDÞ xnð Þ � xnþ1 xnð Þ ¼ xn þ uðDÞ xnð Þ 8xn 2 Dl
n;

ð5Þ

where the current contact domain Dl
nþ1 is the convected one of Dl

n

through /(D), i.e. Dl
nþ1 ¼ /ðDÞ Dl

n

� �
(see Fig. 5). Also, the contacting

domains in the current configuration are cðaÞD ¼ /ðDÞ CðaÞD

� �
; ða ¼ 1;2Þ.

The incremental displacement field u(D) is linearly interpolated
from the corresponding incremental displacements of the bound-
aries, thus for a linear triangle contact patch it can be specified
with

uðDÞðxnÞ � uðpÞðxnÞ ¼
X3

i¼1

NiðxnÞdðDÞi 8xn 2 DðpÞn ; ð6Þ

where Ni are the standard linear interpolation functions for triangu-
lar finite elements [33] and d

ðDÞ
i are the incremental displacements at

the vertices 1, 2, 3 of patch p. Due to the linear format of the incre-
mental motion in Eq. (6), the convected contact domain Dl

nþ1 is also
a linear triangulation, approximating the current contact domain
Dn+1. According to the incremental motion /(D) given in Eq. (5),
one can now define strain measures of this motion, in particular
the incremental gradient of deformation tensor:

f ðDÞ ¼ GRADð/ðDÞðxnÞÞ ¼
oxnþ1

oxn
¼ 1þ GRADðuðDÞÞ; ð7Þ

where 1 stands for the second order unit tensor and Eq. (5) has been
considered.

Remark 2-3. Notice that, due to the linear character of the
incremental displacement field in Eq. (6), GRAD(u(D)) and f (D) are
constant within every contact patch, i.e.:

f ðDÞðxnÞ � f ðpÞ ¼ constant 8xn 2 DðpÞ: ð8Þ
o-dimensional contact problems.



Fig. 5. Linear triangle contact patch in previous and current configuration.
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2.3.2. Normal and tangential vectors
Fig. 5 displays a linear triangular contact patch, DðpÞn , in the pre-

vious configuration. Vector N(p) is defined as the unit vector normal
to the base-side (placed on CðaÞD ) in the sense of the corresponding
outward normal m

ðaÞ
n of the connected contacting body (i.e.

NðpÞ ¼ m
ðaÞ
n ). Accordingly, the tangential vector T(p) is defined as

the anti clockwise unit vector:

TðpÞ ¼ ê3 �NðpÞ; ð9Þ

where ê3 stands for the out-of-plane unit vector so that the

NðpÞ;TðpÞ; ê3
� �

is a direct triplet of unit vectors. Considering now

the convected patch DðpÞnþ1 ¼ /ðDÞ DðpÞn

� �
, the current tangent vector

t(p) and the unit normal vector n(p) are defined, respectively, as
the (unit) tangent vector convected from T(p) and the corresponding
orthogonal unit vector:

tðpÞ ¼
/ðDÞ TðpÞ

� �
/ðDÞ TðpÞ

� ��� �� ¼ f ðpÞ � TðpÞ

f ðpÞ � TðpÞ
�� �� ;

nðpÞ ¼ tðpÞ � ê3

ð10Þ

so that fnðpÞ; tðpÞ; ê3g is also a direct triplet of unit vectors. It can be
readily proven that the definition of n(p) in Eq. (10) preserves its
outward character with respect to cðaÞD (i.e. nðpÞ ¼ m

ðaÞ
nþ1).

Remark 2-4. Notice, from the procedure for their construction in
Eq. (10), that n(p) and t(p) are constant in the convected patch
DðpÞnþ1 ¼ /ðDÞ DðpÞn

� �
. However, the definition of the normal and

tangential vectors N(p) and T(p), is done locally within every contact
patch DðpÞn on basis of its base-side (see Fig. 5). Therefore the normal
and tangential vector fields n(p) and t(p) may be discontinuous from
patch to patch within the current contact domain Dl

nþ1.
2.4. Gap definition

2.4.1. Geometrical gap
Starting from the previous configuration, the initial normal gap

gð0ÞN will be defined for every given point of a contact patch
xn 2 DðpÞn as the signed distance from its N-projection on the base-
side �xn 2 CðaÞD (see Fig. 5), i.e.:

gð0ÞN ðxnÞ ¼ ðxn � �xnÞ �NðxnÞ: ð11Þ

In the contact patch DðpÞnþ1, at the current contact domain, the final
gap vector g(xn) is defined with

gðxnÞ ¼ xnþ1 � �xnþ1 ¼ /ðDÞðxnÞ � /ðDÞð�xnÞ; ð12Þ

where xn+1 = /(D)(xn) and �xnþ1 ¼ /ðDÞð�xnÞ are the convected points of
xn and �xn, respectively. The definitions for the normal and tangen-
tial gaps (gN,gT) can then be given as the projections of the final
gap vector g(xn) onto the current normal and tangential directions

gðxnÞ ¼ gNðxnÞnðpÞ þ gTðxnÞtðpÞ )
gNðxnÞ ¼ gðxnÞ � nðpÞ;
gTðxnÞ ¼ gðxnÞ � tðpÞ:

(
ð13Þ

Remark 2-5. Notice that the definition of the normal gap in Eq.
(13) is completely equivalent to the (signed) distance from a point
xn+1 to the base-line of the corresponding contact patch DðpÞnþ1.
Negative values of gN indicate penetration of the considered point.
The tangential gap gT can also be identified as the slid distance
(during the current time step) of the projection of the point on that
base-line in the sense of t(p).

Now, considering the Taylor’s expansion:

xnþ1 ¼ /ðDÞðxnÞ ¼ /ðDÞ �xn þ gð0ÞN ðxnÞNðpÞ
� �

¼ /ðDÞ �xnð Þ þ GRAD /ðDÞ
� �

� gð0ÞN ðxnÞNðpÞ
� �

¼ �xnþ1 þ gð0ÞN ðxnÞf ðpÞ �NðpÞ; ð14Þ

where higher order terms are exactly zero due to the constant
character of f (p) (see Remark 2-3 and Eq. (8)). Then the final gap
vector g(xn) (in Eq. (12)) can be written as

gðxnÞ ¼ xnþ1 � �xnþ1 ¼ gð0ÞN ðxnÞf ðpÞ �NðpÞ

¼ gð0ÞN ðxnÞð1þ GRADðuðpÞÞÞ �NðpÞ ð15Þ
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which leads to the expressions for the normal and tangential gaps in
Eq. (13):

gNðxnÞ ¼ nðpÞ � gðxnÞ ¼ gð0ÞN ðxnÞnðpÞ � f ðpÞ �NðpÞ

¼ gð0ÞN ðxnÞnðpÞ � ðNðpÞ þ GRADðuðpÞÞ �NðpÞÞ; ð16Þ
gTðxnÞ ¼ tðpÞ � gðxnÞ ¼ gð0ÞN ðxnÞtðpÞ � f ðpÞ �NðpÞ

¼ gð0ÞN ðxnÞtðpÞ � ðNðpÞ þ GRADðuðpÞÞ �NðpÞÞ:

Remark 2-6. After some algebraic manipulation, it can be proven
that the mathematical expressions of the gaps in Eq. (16) coincide,
with the ones in classical node-to-segment formulations [28] if xn

is considered the (slave) node, and the base-side of the triangle is
considered the (master) segment (see also Section 5.2). However,
there are some remarkable differences emerging from Eq. (16):
(a) The gaps are here defined for all points of the contact patch DðpÞn
and not only for the vertices (nodes) in the contacting
boundaries CðaÞD . This is going to be exploited for the mathe-
matical and numerical formulation of the contact problem.

(b) The gaps are defined in terms of strain measures (f (p),
GRAD(u(p))) of the incremental displacement motion
endowed to the contact domain. This makes straightforward
the generalization of those expressions to wider contexts to
be explored: i.e.: non-triangular partitions of the contact
domain, non-linear character of the displacement field in
the contact domain (see Appendix B for an example for a
quadratic triangular patch), and extensions to 3D cases,
where pairing scenarios other than node-to-surface appear in
the contact domain method. For instance, when linear tetra-
hedra are used for partitioning 3D domains, segment-to-seg-
ment pairings appear in addition to node-to-surface pairings.

2.4.2. Gap intensities
It can be anticipated that, when using a contact domain method,

the basic gap measures appearing in the variational formulation
are dimensionless entities (see Section 4). Therefore the dimen-
sionless gap intensities �gN and �gT are introduced, being the values
of the current gaps per unit of the initial normal gap:

�gNðxnÞ ¼
gNðxnÞ
gð0ÞN ðxnÞ
			 			 and �gTðxnÞ ¼

gTðxnÞ
gð0ÞN ðxnÞ
			 			 : ð17Þ

From Eq. (17) the following relations hold:

�gNðxnÞP 0) gNðxnÞ ¼ gð0ÞN ðxnÞ
			 			�gNðxnÞP 0

sign �gTðxnÞð Þ ¼ sign gTðxnÞð Þ

)
8xn 2 DðpÞn : ð18Þ

Therefore, imposition of the non-penetration condition in terms of
the normal gap intensity (�gNðxnÞP 0) is equivalent to the imposi-
tion of this condition in terms of the normal gap (gN (xn) P 0) at
all points of a contact patch. In addition, a friction law based on
the sign of the tangential gap gT, is equivalent to the one in terms
of the sign of the tangential gap intensity �gT . In summary, imposition
of the mechanical contact (friction) conditions is going to be done in
terms of the gap intensities �gN and �gT , being equivalent to its imposi-
tion in terms of the geometrical gaps gN and gT.

Remark 2-7. In view of Eq. (17) one could wonder about the
singularity of the gap intensities �gN and �gT when gð0ÞN ðxnÞ ¼ 0 8xn 2
DðpÞn (perfect normal contact in the patch at the previous config-
uration). Then, �gN and �gT could become unbounded, this possibly
translating into ill conditioning of the formulation. In fact, it can be
anticipated that, in the variational formulation of the problem in
Sections 4 and 5, the gap intensities �gN and �gT appear in integral
expressions of the type:
Z

DðpÞn

ð�Þ�gNðxnÞdD;

Z
DðpÞn

ð�Þ�gTðxnÞdD; ð19Þ

where (�) are bounded entities. When there is a perfect normal con-
tact in the patch at the previous configuration (the triangular patch
DðpÞn is perfectly flat) the measure of the integration domain is

meas DðpÞn

� �
¼ 0. Therefore, the integrals in Eq. (19) have unbounded

kernels and a null measure of the integration domain. However, it
will be shown (see Remark 5-3 below) that those integrals are con-
vergent to bounded values and, thus, that the unbounded character
of the gap intensities �gN and �gT does not translate into ill condition-
ing of the problem.

Inserting the geometrical gap definitions in Eq. (16), the gap
intensities defined in Eq. (17) can be written as

�gðpÞN ¼
gNðxnÞ
gð0ÞN ðxnÞ
			 			 ¼ sign gð0ÞN ðxnÞ

� �
nðpÞ � NðpÞ þ GRADðuðpÞÞ �NðpÞ

� �
;

�gðpÞT ¼
gTðxnÞ
gð0ÞN ðxnÞ
			 			 ¼ sign gð0ÞN ðxnÞ

� �
tðpÞ � NðpÞ þ GRADðuðpÞÞ �NðpÞ

� �
ð20Þ

Remark 2-8. Notice, from Eq. (20), and Remarks 2-3 and 2-4, that
�gðpÞN and �gðpÞT are constant in every linear triangular patch DðpÞn of the
contact domain. This is why, in Eq. (20), superscript (�)(p) identifies
the constant entitites for the whole contact patch p.
2.4.3. Variations of gap intensities
For subsequent numerical implementation, it is necessary to de-

rive the Gâteaux variations of the gap intensities in Eq. (20). De-
tailed derivations, based on standard manipulation of strain
measures in classical continuum mechanics [6], can be found in
Appendix A.1. In the following, a summary of the most relevant
expressions is provided. For a more compact writing, the super-
script (�)(p) will be omitted.

The variations of the current normal and tangent vectors in Eq.
(10) read:

dn ¼ � n � gradðduÞ � tð Þt ¼ �ðt	 nÞ � odu

ot
;

dt ¼ n � gradðduÞ � tð Þn ¼ n	 nð Þ � odu

ot
;

ð21Þ

where gradð�Þ ¼ oð�Þ
oxnþ1
¼ GRADð�Þ � f �1 stands for the spatial gradient

of entity (�) and oð�Þ
ot ¼ gradð�Þ � t is the corresponding spatial t-direc-

tional derivative. With the expressions Eq. (21) the variation of the
normal and tangential gap intensities in Eq. (20) can be derived as:

d�gN ¼ �gNn � gradðduÞ � n;
d�gT ¼ �gN n � gradðduÞ � tþ t � gradðduÞ � nð Þ þ �gT t � gradðduÞ � t:

ð22Þ
2.4.4. Linearization of the gap intensities and their variations
For the purposes of using them in an implicit Newton–Raphson

solution scheme the corresponding linearized expressions, denoted
as D(�) and derived in Appendix A.1, are given next:

D�gN ¼ �gNn � gradðDuÞ � n;
D�gT ¼ �gN n � gradðDuÞ � tþ t � gradðDuÞ � nð Þ þ �gT t � gradðDuÞ � t;

ð23Þ
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Dd�gNðdu;DuÞ ¼ ��gN n � odu

ot


 �
n � oDu

ot


 ��
þ n � odu

ot


 �
t � oDu

on


 �

þ t � odu

on


 �
n � oDu

ot


 �
; ð24Þ

Dd�gTðdu;DuÞ ¼ �gN n � odu

ot


 �
n � oDu

on


 �
þ n � odu

on


 �
n � oDu

ot


 �� 

� �gN t � odu

ot


 �
n � oDu

ot


 �
þ n � odu

ot


 �
t � oDu

ot


 �� 

þ �gT n � odu

ot


 �
n � oDu

ot


 �
:

ð25Þ
Remark 2-9. Notice the symmetries of the expressions in Eqs. (24)
and (25) with respect to variation (du) and linearization (Du), i.e.:
Dd�gNðdu;DuÞ ¼ Dd�gNðDu; duÞ.
3. Contact constraints and boundary value problem

The contact restrictions may be split into normal and tangential
contact constraints.

3.1. Normal contact constraints

Let P(a)(xn, tn+1) denote the first Piola–Kirchoff stress, at the cur-
rent time tn+1, measured with respect to the previous (XðaÞn ) config-
uration and

tcðxn;NÞ ¼ PðaÞ �N 8xn 2 CðaÞD ð26Þ

the traction vector acting onto the N-oriented contacting surface
CðaÞD (see Fig. 3) where the normal N is patch-wise defined in the pre-
vious contact domain Dl

n (see Fig. 5). Assuming that adhesion is ex-
cluded in the contact area, the normal contact traction

tðaÞN ðxnÞ ¼ n � tc ¼ n � PðaÞ �N 8xn 2 CðaÞD ð27Þ

must be negative (tðaÞN 6 0). In Eq. (27) n is the patch-wise defined
normal in the current contact domain Dl

nþ1 described in Fig. 5.
Additionally the geometrical impenetrability constraint

�gNðxnÞP 0 8xn 2 Dl
n ð28Þ

must be satisfied in the contact domain Dl
n. As the normal contact

traction tðaÞN only lives on the contacting boundaries CðaÞD , a normal La-
grange multiplier kNðxnÞ 8xn 2 Dl

n is introduced, living in the whole
previous contact domain and fulfilling

kNðxnÞ ¼ tðaÞN ðxnÞ 8xn 2 CðaÞD : ð29Þ

Therefore, the normal contact constraints may be summarized in
form of the classical Karush–Kuhn–Tucker conditions [28], using
the introduced normal Lagrange multiplier

kN 6 0; �gN P 0; kN�gN ¼ 0 in Dl
n: ð30Þ
3.2. Tangential contact constraints

The formulation of the tangential contact constraints necessi-
tates the definition of an appropriate friction law. In this work,
the classical Coulomb model is used, which limits the allowable
tangential contact stress with

tTk k 6 l tNj j; ð31Þ

where l is the coefficient of friction. The tangential stress tT is given
by the projection of the traction vector tc in Eq. (26) onto the tan-
gent plane, which simplifies for two dimensional problems to
tðaÞT ðxnÞ ¼ t � tc ¼ t � PðaÞ �N 8xn 2 CðaÞD ð32Þ

with t being the current unit tangent vector in Fig. 5. As before, a
tangential Lagrange multiplier kTðxnÞ 8xn 2 Dl

n, fulfilling

kTðxnÞ ¼ tðaÞT ðxnÞ 8xn 2 CðaÞD ð33Þ

is introduced. To distinguish between the stick and slip state, the
slip function

U ¼ kTj j � l kNj j
< 0! stick;

¼ 0! slip

�
ð34Þ

is defined. In analogy to a plasticity-like formulation, the non-asso-
ciated slip rule can be written as

�gT ¼ �c
kT

kTj j
¼ �csign kTð Þ: ð35Þ

Similarly to the normal contact constraints, the tangential contact
conditions can then be summarized in form of the Karush–Kuhn–
Tucker conditions

c P 0; U 6 0; cU ¼ 0 in Dl
n: ð36Þ

From this one can extract the slip constraint

kT ¼ lsign kTð Þ kNj j ¼ �lsignð�gTÞ kNj j ð37Þ

by using Eq. (34)

U ¼ 0! kTj j � l kNj j ¼ 0! kT ¼ lsign kTð Þ kNj j ð38Þ

and (35)

�gT ¼ �csign kTð Þ ! sign �gTð Þ ¼ �sign kTð Þ as c P 0 ð39Þ

as well as the stick constraint

U < 0! c ¼ 0) �gT ¼ 0: ð40Þ
3.3. Inequality constrained boundary value problem

As the geometrical definitions given in Section 2 are based on
the incremental displacements uðaÞðxðaÞn Þ in Eq. (3), the inequality
constrained boundary value problem will be written in a consistent
way, taking those displacements as primal unknowns, i.e.:

FIND :

uðaÞðxðaÞn Þ : Xn ! R2;

kNðxnÞ : Dn ! R;

kTðxnÞ : Dn ! R;

8><
>:

FULFILLING :

ð41Þ

Momentum Equation qðaÞ€uðaÞ ¼ DIVPðaÞ þ bðaÞ in XðaÞn ; ð42Þ
Constitutive model PðaÞ ¼ RðaÞðuðaÞÞ in XðaÞn ; ð43Þ
Dirichlet’s boundary conditions uðaÞ ¼ ûðaÞ in CðaÞu ; ð44Þ
Neumann’s boundary conditions PðaÞ � mðaÞ ¼ t̂ðaÞ in CðaÞr ; ð45Þ

Lagrange multiplier identification
kN ¼ tðaÞN

kT ¼ tðaÞT

)
in CðaÞD ; ð46Þ

Normal contact constraints

kN 6 0; �gNðuðDÞÞP 0; kN �gNðuðDÞÞ ¼ 0 in Dn; ð47Þ
Tangential contact constraints

c P 0; U 6 0; cU ¼ 0 in Dn: ð48Þ

Herein P(a) and b(a) are the first Piola–Kirchhoff stress tensor (mea-
sured at the previous configuration XðaÞn and given via an appropri-
ate constitutive relation in Eq. (43)), and the body forces on X(a),
respectively. Furthermore, €uðaÞ and q(a) represent, respectively, the
material acceleration field and the density of bodies BðaÞ. The appro-
priate boundary conditions are given by the prescribed
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displacements ûðaÞ and tractions t̂ðaÞ, acting on the correlated bound-
aries CðaÞu and CðaÞr . The gap expression �gNðuðDÞÞ in Eq. (47), is the one
in Eq. (20)1. Then, the incremental displacements at the contact do-
main u(D) � u(p), are explicitly defined via Eq. (6), in terms of the
incremental displacements at the vertices of the triangulation,
d
ðDÞ
i ðuðaÞÞ, which, in turn, are implicitly defined in terms of the primal

unknowns u(a)(xn).

Remark 3-1. The boundary value problem (BVP) given in Eqs.
(41)–(48) is written in an incremental manner, which means, that
the previous configuration is taken to be the reference configura-
tion. For example the first Piola–Kirchhoff stress tensor P(a) is not
based on the initial, undeformed configuration but on the previous
one. However, one could have written the motion for the deform-
able bodies in the classical total Lagrangean manner as well (taking
the initial configuration as the reference one) and restrict the
incremental setting to the contact part of the problem. Neverthe-
less, for the sake of clearness and simplicity in the explanation, the
authors have decided to write the whole boundary value problem
in that incremental manner.
3.4. Equality constrained boundary value problem

In the context of large deformation frictional contact problems
the size and position of the contact interface may change perma-
nently. Therefore an active set strategy is utilized to identify the
present contact area, as well as the distinction between stick and
slip on basis of the normal and tangential Karush–Kuhn–Tucker
conditions given in Eqs. (47) and (48).

Hence it will be assumed that both the domains DðNÞn (active nor-
mal contact domain) and DðTÞn (active stick domain) are known (or
predicted) in advance (see Fig. 6) as a result of an active set strategy
(described in Section 5) based on the following criteria:

DðNÞn :¼ fxnjkNðxnÞ < 0g ð49Þ

for the active normal contact domain, and

DðTÞn :¼ fxnjUðxnÞ < 0g ð50Þ

for the active tangential stick domain, which, in view of the equal-
ities kN�gN ¼ 0 and cU = 0 in Eqs. (47) and (48), imply:

�gNðxnÞ ¼ 0 8xn 2 DðNÞn ;

cðxnÞ ¼ 0 8xn 2 DðTÞn ) �gTðxnÞ ¼ 0 8xn 2 DðTÞn ;
ð51Þ

where Eq. (35) has been considered. Definitions of the active do-
mains in Eqs. (49) and (50) provide the following trivial solutions
for kN and kT in the complementary domains Dn n DðNÞn and Dn n DðTÞn :
Fig. 6. Active normal and stick domain.
kNðxnÞ 6 0 8xn 2 Dn

kNðxnÞ < 0 8xn 2 DðNÞn

)
) kNðxnÞ ¼ 0 8xn 2 Dn n DðNÞn ð52Þ

and

UðxnÞ 6 0 8xn 2 Dn

UðxnÞ < 0 8xn 2 DðTÞn

)
) UðxnÞ ¼ 0 8xn 2 Dn n DðTÞn : ð53Þ

In addition, in Appendix C the proposition DðTÞn 
 DðNÞn is proven.
Then, Eq. (53) with Eqs. (38) and (39) gives:

T � kT ¼ �l signð�gTÞjkNj 8xn 2 Dn n DðTÞn : ð54Þ

Eqs. (52) and (54) provide closed form solutions for the Lagrange
multipliers kN and kT at the complementary domains Dn n DðNÞn

and Dn n DðTÞn , respectively. Therefore, these domains can be
excluded from the domains where these unknowns live in Eq.
(41), which now read:

FIND :

uðaÞðxðaÞn Þ : Xn ! R2

kNðxnÞ : DðNÞn ! R�;

kTðxnÞ : DðTÞn ! R:

8><
>: ð55Þ

Additionally, Eqs. (47) and (48) of the original problem now change
to:

Coulomb’s friction law

T � kT ¼ �lsignð�gTÞjkN j in DðNÞn n DðTÞn ; ð56Þ

Constraint conditions
�gN ¼ 0 in DðNÞ;
�gT ¼ 0 in DðTÞ;

ð57Þ

where now Eq. (57) are equality constraints in terms of the normal
and the tangential gap intensities �gN and �gT , respectively.
4. Weak form of the frictional contact problem

As a mathematical basis for the numerical solution of the equal-
ity constrained boundary value problem given in Section 3.4 (de-
fined by Eqs. (55), (42), (43), (44), (45), (46), (56) and (57)), a
weak form of the frictional, large deformation contact problem is
introduced. It basically consists of two parts, namely the virtual
work principle and the variational constraint equations.

4.1. Virtual work principle

To state the virtual work, first solution and weighting spaces V

and V0 are defined, consisting of solutions u and their variations du
according to

V :¼ fuðaÞ 2 H1ðXðaÞÞ; uðaÞ ¼ ûðaÞ on CðaÞu g ð58Þ

and

V0 :¼ fduðaÞ 2 H1ðXðaÞÞ; duðaÞ ¼ 0 on CðaÞu g; ð59Þ

where H1(X(a)) represents the Sobolev space of functions which
have square integrable derivatives. Furthermore the Lagrange mul-
tiplier spaces LN and LT are introduced with

LN :¼ flN : D! R�jlN 2 L2ðDÞg ð60Þ

and

LT :¼ flT : D! RjlT 2 L2ðDÞg; ð61Þ

where L2(D) represents the Lebesgue space of square integrable
functions. Given these spaces, the virtual work principle for the
large deformation, frictional contact problem can be written as:
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FIND : uðaÞ 2 V and k ¼ ½kN; kT � 2LN �LT ; ð62Þ
FULFILLING :

dPmechðu; k; duÞ :¼ dPint;extðuðaÞ; duðaÞÞ þ dPcontðuðaÞ; k; duðaÞÞ ¼ 0

8duðaÞ 2 V0; ð63Þ

where dPmech stands for the variation of the total mechanical work.
In Eq. (63) dPint,ext(u(a), du(a)) is the sum of the internal and external
virtual work done by the two contacting bodies

dPint;extðuðaÞ; duðaÞÞ ¼ dPintðuðaÞ; duðaÞÞ � dPextðduðaÞÞ ð64Þ

with

dPintðuðaÞ; duðaÞÞ ¼
X2

a¼1

Z
XðaÞn

ðqðaÞ€uðaÞ � duðaÞ þ PðaÞ : GRADðduðaÞÞÞdX

( )

ð65Þ

and

dPextðduðaÞÞ ¼
X2

a¼1

Z
XðaÞn

bðaÞ � duðaÞ dXþ
Z

CðaÞr

t̂ðaÞ � duðaÞ dC

( )
ð66Þ

while dPcont(u(a),k,du(a)) denotes the contact virtual work of the
Lagrange multipliers along the variation of the gap intensities in
normal and tangential directions, given with

dPcontðuðaÞ; k; duðaÞÞ ¼
Z

DðNÞn

kNd�gNðuDÞdD|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
normal contact

þ
Z

DðTÞn

kTd�gTðuDÞdD|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
stick

þ
Z

DðNÞn nD
ðTÞ
n

Td�gTðuDÞdD|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
slip

: ð67Þ

As it can be seen in Eq. (67), the contact virtual work expression
consists of three different portions defined by integrals over the ac-
tive normal contact domain DðNÞn , the active stick domain DðTÞn and the
slip domain DðNÞn n DðTÞn .

4.2. Constraint variational equations

The solution of the virtual work expression given in Eq. (63) is
constrained by two additional variational equations, stemming
from the contact constraints given in Eq. (57), namely

dPkN ðuðDÞ; dkNÞ ¼
Z

DðNÞn

dkN�gNðuðDÞÞdD ¼ 0 8dkN 2LN ð68Þ

and

dPkT ðuðDÞ; dkTÞ ¼
Z

DðTÞn

dkT �gTðuðDÞÞdD ¼ 0 8dkT 2LT : ð69Þ

Remark 4-1. It can be proven that:

� Eqs. (42), (43), (44), (45), (46) and (56) are the Euler–Lagrange
equations of the virtual work principle (63).

� Eq. (57)are the Euler–Lagrange equations of the constraint vari-
ational Eqs. (68) and (69)

and, therefore, the variational Eqs. (67)–(69) are the weak form of
the equality constrained B.V.P. of Section 3.4.
4.3. Discretization

A detailed specification of the spatial discretization of the con-
tacting bodies is not aimed at this point. Indeed, various finite ele-
ment formulations given in the literature may be employed. So
that, consider a Galerkin-based discretization: a matrix formula-
tion of the internal and external virtual work done by the contact-
ing bodies (see Eq. (64)) may be stated with the internal–external
residual forces vector Gint;extðdÞ emerging from the virtual work of
the internal and external forces:

dPint;extðu; duÞ � dPh
int;extðd; ddÞ ! Gint;extðdÞ

¼
X2

a¼1

MðaÞ€dðaÞ þ F
ðaÞ
intðd

ðaÞÞ � F
ðaÞ
ext

n o
; ð70Þ

where M(a) is the mass matrix, F
ðaÞ
intðd

ðaÞÞ is the vector of deformation
dependent internal forces, F

ðaÞ
ext is the vector of external forces and

d(a) and €dðaÞ represent the discrete nodal displacements and acceler-
ations of body a, respectively, and d = {d(1),d(2)} stands for the total
set of nodal displacements.

The discretization of the contact virtual work Eq. (67) and the
variational constraint Eqs. (68) and (69), necessitates the consider-
ation of interpolations for the Lagrange multipliers, and the dis-
placement field endowed to the contact domain, as well as for
their variations, i.e.:

uðDÞðxn; dÞ ¼
X

NiðxnÞdðDÞi 8xn 2 Dn;

duðDÞðxn; ddÞ ¼
X

NiðxnÞdd
ðDÞ
i 8xn 2 Dn

ð71Þ

and

kN=Tðxn;KÞ ¼
X

j

wjðxnÞKN=Tj
8xn 2 Dn;

dkN=Tðxn; dKÞ ¼
X

j

wjðxnÞdKN=Tj
8xn 2 Dn:

ð72Þ

Then, the discretization of the contact virtual work expression (67)
leads to the contact residual forces vector Gcontðd;KÞ:

dPcontðu; k; duÞ � dPh
contðd;K; ddÞ ! Gcontðd;KÞ ð73Þ

which depends upon the discrete nodal displacements d and the
discrete values of the Lagrange multipliers K. Then, the virtual work
principle (63) leads to the mechanical residual forces:

dPmechðu; k; duÞ � dPh
mechðd; k; ddÞ

! Gmechðd;KÞ ¼ Gint;extðdÞ þGcontðd;KÞ: ð74Þ

Furthermore, the discretization of the constraint Eqs. (68) and (69)
leads to following constraint residual vectors:

dPkN ðuðDÞ; dkNÞ � dPh
kN
ðd; dKÞ ¼ 0 8dKN ! CNðdÞ ¼ 0 ð75Þ

and

dPkT ðuðDÞ; dkTÞ � dPh
kT
ðd; dKÞ ¼ 0 8dKT ! CTðdÞ ¼ 0: ð76Þ

The specification of the residual vectors Gmech, CN and CT will not be
detailed here, as the authors only want to emphasize the dependen-
cies of these quantities on the problem unknowns. With these vec-
tors at hand, the discretized problem to be solved can be expressed
in terms of the discrete nodal displacements d and the discrete val-
ues of the Lagrange multipliers K as:

FIND d and K FULFILLING :

Gmechðd;KÞ :¼ Gint;extðdÞ þGcontðd;KÞ ¼ 0;

GconstðdÞ :¼
CNðdÞ;
CTðdÞ:

� �
¼ 0

ð77Þ

This system of non-linear equations may be solved iteratively using
a Newton–Raphson method, which necessitates the linearization of
Eq. (77) as:
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Gmechðd;KÞ
GconstðdÞ

� 
þ

oGmechðd;KÞ
od

oGmechðd;KÞ
oK

oGconstðdÞ
od

0

" #
Dd

DK

� 
¼

0

0

� 
: ð78Þ

Remark 4-2. Typically, for Lagrange multiplier formulations, zeros
appear on the diagonal of the stiffness matrix, which precludes the
direct elimination of the Lagrange multipliers. This translates into
high computational solution costs, since the extended system is
large and sparse, and the number of discrete Lagrange multipliers
may change permanently from time step to time step according to
the active contact set. Most importantly: the problem can be prone
to exhibit locking or instabilities if the BBL condition [33] is not
fulfilled by the used discretizations.
4.4. Lambda-solvability. Stabilization

In order to circumvent the problems described in Remark 4-2 a
procedure that can be inserted in the context of the Nitsche method
[19] or the interior penalty methods [1,14,18] is proposed. This pro-
cedure can be considered as a generalization of the stabilization
method presented in [14] for the linear kinematics case. The basic
idea is to add stabilization terms to the variational constraint Eqs.
(68) and (69), such that their discretized counterparts (CN and CT in
Eqs. (75) and (76)) display a dependency upon the discrete values
of the Lagrange multipliers K. The motivation of the method is Eq.
(46):

kN ¼ tðaÞN

kT ¼ tðaÞT

)
in CðaÞD ð79Þ

which is one of the Euler–Lagrange equations emerging from the
virtual work principle in Eq. (63). Then, Eqs. (79) are added in weak
form into the variational constraint Eqs. (68) and (69), leading to

dPkN ðu;kN ;dkNÞ ¼
Z

DðNÞn

dkN�gNðuðDÞÞdD

þ
Z

oDðNÞn \C
ðaÞ
D

dkNsðtNðuðaÞÞ� kNÞdC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
additional term

¼ 0 8dkN 2LN

ð80Þ

and

dPkT u;kT ;dkTð Þ ¼
Z

DðTÞn

dkT �gT uðDÞ
� �

dD

þ
Z

oDðTÞn \C
ðaÞ
D

dkTsðtTðuðaÞÞ � kTÞdC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
additional term

¼ 0 8dkT 2LT :

ð81Þ

Herein, s > 0 is a suitable parameter introduced in order to adjust
the dimension of the additional term. This modification now leads
to constraint residual vectors CN and CT, that depend on both sets
of variables (d,K). Thus, the linearized system of Eq. (78) changes to

Kdd KdK

KKd KKK

� 
Dd

DK

� 
¼ �

Gmechðd;KÞ
Gconstðd;KÞ

� 
ð82Þ

with a full Hessian (stiffness matrix)

Kdd KdK

KKd KKK

� 
¼

oGmechðd;KÞ
od

oGmechðd;KÞ
oK

oGconstðd;KÞ
od

oGconstðd;KÞ
oK

" #
ð83Þ

that allows for the condensation of the Lagrange multipliers. The fi-
nal system of equations to solve within one Newton iteration then
reads:
K�TDd ¼ �G� ð84Þ

with

K�T ¼ Kdd � KdKK�1
KKKKd ð85Þ

and

G� ¼ Gmech � KdKK�1
KKGconst : ð86Þ

Finally, the Lagrange multipliers can then be condensed out as
with

DK ¼ �K�1
KKðGcont þ KKdDdÞ: ð87Þ

Remark 4-3. The role of s could be also regarded as that of a
penalty factor, penalizing the terms (tN(u(a)) � kN) and
(tT(u(a)) � kT) in Eqs. (80) and (81). This motivates the character
of interior penalty method of the proposed procedure. However,
since that penalized term is part of the Euler–Lagrange equations
of the variational principle (63), mesh refinement will automati-
cally force the penalized term to tend to zero. Therefore, the
procedure could be qualified as a consistent penalty method, and,
unlike in non-consistent penalty methods, the penalty factor s can
be made small (or even very small) without affecting, necessarily,
the quality of the obtained results.

Remark 4-4. The introduction of stabilization terms only in the
constrained variational Eqs. (80) and (81) will result in a matrix
system that is not symmetric. Although Heintz and Hansbo [14]
have as well proposed a consistent symmetric version of stabiliza-
tion, the authors have decided to use the stabilization only in the
constrained equations, as the Coulomb’s friction law makes the
problem non-symmetric anyway. Further investigations will be
made to explore the benefits arising from a symmetric stabilization
procedure.

Remark 4-5. As the stabilization terms in Eqs. (80) and (81)
necessitate the stress field at the boundary of the contacting
bodies in terms tN and tT (see also Eqs. (27) and (32)), the result-
ing contact stiffness contributions will involve degrees of freedom
of finite element nodes not lying on the contact boundaries CðaÞD ,
which will slightly increase the bandwidth of the resulting matri-
ces. Furthermore, the stress field in the bodies depends upon the
constitutive law utilized in the solids. This has to be taken into
account carefully when implementing the proposed stabilization
method.
5. Active set strategy

The frictional, large deformation problem described in Section
3.4 displays an equality-constraint problem, assuming that the do-
mains DðNÞn and DðTÞn , defined in Eqs. (49) and (50), are known in ad-
vance. In this section, a specific methodology to determine those
domains at the current time step, based on an active set strategy,
is presented.

5.1. Discretization

To solve the aforementioned problem in the variational Eqs.
(63), (80) and (81) the deformable bodies X(a) are considered dis-
cretized using Galerkin-based finite elements, the type and the or-
der of these elements being irrelevant (see also Remark 2-2).
Furthermore, the incremental displacement field u(D) in the contact
domain Dn is approximated on basis of the contact patches as indi-
cated in Eq. (6).
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Now, the Lagrange multipliers kN and kT are specified as patch-
wise constant in terms of appropriated interpolation functions w(p).
This reads:

kN � kh
N ¼

XnN

p¼1

w pð ÞKðpÞN ; kT � kh
T ¼

XnT

p¼1

w pð ÞK pð Þ
T ;

wðpÞðxnÞ ¼
1 8xn 2 DðpÞ;
0 8xn R DðpÞ:

(
ð88Þ

where nN and nT stand, respectively, for the number of patches of
DðNÞn and DðTÞn .

5.2. Numerical gaps

As it was shown in Section 2.3 (see also Remark 2-3), the usage of
linear triangular contact patches leads to patch-wise constant nor-
mal and tangential vectors (n(p),t(p)) and gap intensities ð�gðpÞN ; �gðpÞT Þ.
Together with the local support of the interpolation functions
w(p)(xn) given in Eq. (88), this allows a decoupled, patch-by-patch
solution of the modified variational constraint Eqs. (80) and (81), i.e.:

dPh
kðpÞN

ðd;KðpÞN ; dKðpÞN Þ �
Z

DðpÞ
dKðpÞN

�gðpÞN ðd
ðDÞÞdD

þ
Z

CðpÞ
D

dKðpÞN sðpÞðtNðdðaÞÞ � KðpÞN ÞdC ¼ 0

8dKðpÞN p 2 f1; . . . ;nNg ð89Þ

and

dPh
kðpÞT

ðd;KðpÞT ; dKðpÞT Þ �
Z

DðpÞ
dKðpÞT

�gðpÞT ðd
ðDÞÞdD

þ
Z

CðpÞD

dKðpÞT sðpÞðtTðdðaÞÞ � KðpÞT ÞdC ¼ 0

8dKðpÞT p 2 f1; . . . ;nTg; ð90Þ

where CðpÞD ¼ oDðpÞn \ CðaÞD is the base-side of the patch (see Fig. 5) and
a patch-wise constant value of the penalty multiplier s � s(p) is con-
sidered. The solution of Eqs. (89) and (90) read:Z

DðpÞ
�gðpÞN dDþ

Z
CðpÞD

sðpÞðtN � KðpÞN ÞdC ¼ 0 p 2 f1; . . . ;nNg ð91Þ

andZ
DðpÞ

�gðpÞT dDþ
Z

CðpÞD

sðpÞ tT � KðpÞT

� �
dC ¼ 0 p 2 f1; . . . ;nTg: ð92Þ

The integration of Eqs. (91) and (92) can be performed usingZ
DðpÞ

dD ¼ 1
2

LðpÞHðpÞ and

Z
CðpÞ

D

dC ¼ LðpÞ; ð93Þ

where L(p) is the length of the base-side and HðpÞ ¼ gð0ÞN ðx3Þ
			 			 is the

absolute value of the initial normal gap of the vertex node 3, that
is, the height of the contact patch DðpÞn in the previous contact config-
uration (see Fig. 5).

If the normal and tangential stress measures tN and tT, obtained
from the element adjacent to DðpÞn in the corresponding contacting
body, are constant along the boundary CðpÞD , utilizing Eq. (93) the
integration of Eqs. (91) and (92) yields:

1
2

HðpÞ�gðpÞN þ sðpÞðtN � KðpÞN Þ ¼ 0 p 2 f1; . . . ;nNg

1
2

HðpÞ�gðpÞT þ sðpÞðtT � KðpÞT Þ ¼ 0 p 2 f1; . . . ;nTg
ð94Þ

Remark 5-1. The assumption, that t and t are constant along the
N T

boundary CðpÞD is exact whenever the discretization of the contact-
ing bodies is based on linear triangle finite elements. In fact, CST
(constant strain triangle) elements are utilized in the numerical
implementation of the method done in this work (see Part 2 [12]).
However, this does not imply a major restriction for the use of the
present formulation. Indeed, if tN and tT, are not constant along CðpÞD ,
the integration of the variational constraint Eqs. (91) and (92) has
to be performed numerically. Alternatively, a mean value of tN and tT

along CðpÞD may be used.

Due to the use of linear triangular patches, the patch-wise
constant gap intensities in Eq. (20) can be alternatively expressed
with

�gðpÞN ¼
gNðx3Þ
gð0ÞN ðx3Þ
			 			 ¼

ðgNÞ3
HðpÞ

and �gðpÞT ¼
gTðx3Þ
gð0ÞN ðx3Þ
			 			 ¼

ðgTÞ3
HðpÞ

; ð95Þ

where (gN)3 = gN(x3) and (gT)3 = gT(x3) are the normal and tangential
physical gaps for the vertex 3, respectively (see Fig. 5). Inserting Eq.
(95) into Eq. (94) leads to the following numerical constraint
equations:

gnum:ðpÞ
N ¼ 0 p 2 f1; . . . ;nNg

gnum:ðpÞ
T ¼ 0 p 2 f1; . . . ;nTg

ð96Þ

with the definition of the numerical normal and tangential gaps:

gnum:ðpÞ
N � ðgNÞ3 þ 2sðpÞðtN � KðpÞN Þ;

gnum:ðpÞ
T � ðgTÞ3 þ 2sðpÞðtT � KðpÞT Þ:

ð97Þ
Remark 5-2. The piece-wise constant numerical normal, gnum:ðpÞ
N ,

and tangential, gnum:ðpÞ
T , gaps in Eq. (97) are computed as the sum of

the actual normal and tangential geometrical gaps (gN)3 and (gT)3 of

the vertex 3 plus an additional term ðtN=T � KðpÞN=TÞ penalized by the

stabilization parameter s(p). A null value of s(p) will translate into
numerical gaps equal to the geometrical gaps, and, therefore, into
an exact imposition of the vertex 3 to segment (1,2) contact in
every contact patch p (see Fig. 5). Small non-zero values of s(p),
necessary for the lambda-solvability issues, will perturb slightly
that exact imposition of the geometrical constraints. Additionally,
mesh refinement will also make the penalized terms ðtN=T � KðpÞN=TÞ
tend to zero, according to Eq. (46), and, again, the numerical and
geometrical gaps will coincide, regardless of the size of the penalty
value s(p) (consistent penalty).

Remark 5-3. Notice that the final constraint Eq. (96) are indepen-
dent of the value of the initial normal gap gð0ÞN ðxnÞ in Eq. (17), which
could eventually be null. In fact, the only relevant aspect for determi-
nation of the gap intensities in a given contact patch p is the connec-
tivity of the three vertices (1,2,3) of the patch and the position of the
projection of vertex 3 onto the base-side. This will be conveniently
recalled for numerical implementation purposes in the second part
of this work.

5.2.1. Effective gaps
With the definition of the numerical gaps in Eq. (97) and

accounting for the discrete constraint Eq. (96), one can solve for
the patch normal and tangential Lagrange multipliers as:

KðpÞN ¼ tN þ
1

2sðpÞ
gNð Þ3

KðpÞT ¼ tT þ
1

2sðpÞ
gTð Þ3

ð98Þ

where the role of s(p) > 0 to allow for the, element by element, lamb-
da solvability is clearly displayed. By multiplying Eq. (98) times 2s(p)

one gets the, from now on termed, effective gaps:
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geff :ðpÞ
N � gNð Þ3 þ 2sðpÞtN ¼ 2sðpÞKðpÞN ;

geff :ðpÞ
T � gTð Þ3 þ 2sðpÞtT ¼ 2sðpÞKðpÞT :

ð99Þ

Remark 5-4. The most relevant features of the effective gaps geff :ðpÞ
N

and geff :ðpÞ
T defined in Eq. (99) are:

� Since s(p) > 0 they have the same sign as the discrete Lagrange
multipliers KðpÞN and KðpÞT i.e.:

sign geff :ðpÞ
N

� �
¼ sign KðpÞN

� �
sign geff :ðpÞ

T

� �
¼ sign KðpÞT

� � ð100Þ

Therefore, they are displacement-based indicators of the sign of
the Lagrange multipliers.

� They are constructed on basis of the values of the geometrical
gaps, (gN)3 and (gT)3, and the contact (friction) tractions tN and
tT. Due to this, they exhibit suitable smoothness properties
along situations involving change of the contact/friction sce-
nario, i.e.: contact-to-release and stick-to-slip. This fact will
be crucially used in the specific algorithm for determining
the active contact/friction sets (see also Remark 5-5 below).
5.3. Active constraint indicator

According to the definitions of the active domains DðNÞn and DðTÞn

in Eqs. (49) and (50), the values of KðpÞN and U(p) are used to decide,
whether a patch p belongs to D(N) or to D(T), i.e.:

KðpÞN < 0() DðpÞn 
 DðNÞn ! active normal contact;

UðpÞ < 0() DðpÞn 
 DðTÞn ! active stick
ð101Þ

Now, in view of Eq. (100), an active normal contact patch is given
with

DðpÞn 
 DðNÞn ()
KðpÞN < 0;

sign KðpÞN

� �
¼ sign geff :ðpÞ

N

� �
8<
: () geff :ðpÞ

N < 0:

ð102Þ

Then, from the definition of U in Eq. (34) and with Eq. (99) an active
tangential stick contact patch fulfills

DðpÞn 
 DðTÞn

() U ¼ KðpÞT

			 			� l KðpÞN

			 			 < 0

() 1
2sðpÞ

jgeff :ðpÞ
T j � ljgeff :ðpÞ

N j
� �

< 0

() jgeff :ðpÞ
T j � ljgeff :ðpÞ

N j < 0

ð103Þ

where the fact that s(p) > 0 has been considered. Finally from Eqs.
(102) and (103) the following suitable (displacement-based) active
constraint indicators bN and bT may be obtained:

DðpÞn 
 DðNÞn () bN � geff :ðpÞ
N < 0! active normal contact;

DðpÞn 
 DðTÞn () bT � jg
eff :ðpÞ
T j � ljgeff :ðpÞ

N j < 0! active stick
ð104Þ
5.4. Iterative solution algorithm

The iterative solution algorithm, focussing on the update of the
active contact set is shown in Box 1 for the current time step
[tn, tn+1]. Herein K�TðdðiÞÞ and G*(d(i)) represent the global tangent
stiffness matrix and the residual vector of the linearized, con-
densed system of equations (see Eqs. (85) and (86)) and d(i) stands
for the nodal incremental displacement values at iteration i.
Their specifications will be given in the second part of this work
[12].

To accelerate the active set strategy algorithm, the update of
the active contact set is performed within each step of the NEW-
TON iteration. The rate of convergence of the active contact set
crucially depends on the appropriate prediction of the active
set made in the first iteration. Therefore the active contact set
in the first iteration is defined, computing the active constraint indi-
cators on basis of a first order extrapolation of the values of the
effective gaps of previous time steps:

bð1ÞN ¼ ~geff :ðpÞ
N and bð1ÞT ¼ j~g

eff :ðpÞ
T j � lj~geff :ðpÞ

N j ð105Þ

with

~geff :ðpÞ
N=T ðtnþ1Þ ¼ geff :ðpÞ

N=T ðtnÞ þ
Dtnþ1

Dtn
Dgeff :ðpÞ

N=T : ð106Þ

Herein Dtn+1 and Dtn are the current and the previous time incre-
ments and Dgeff :ðpÞ

N=T are the effective normal and tangential gap
increments

Dgeff :ðpÞ
N=T ¼ geff :ðpÞ

N=T tnð Þ � geff :ðpÞ
N=T tn�1ð Þ: ð107Þ

Box 1: Solution algorithm with active set strategy for one time
step

LOOP over NEWTON ITERATION: i = 1, . . . ,convergence
LOOP over all contact patches p

IF (i = 1) THEN
Define the ACTIVE SET based on extrapolated indicators
bð1ÞN ¼ ~geff :ðpÞ

N and bð1ÞT ¼ j~g
eff :ðpÞ
T j � lj~geff :ðpÞ

N j
ELSE IF (i > 1)

Define the ACTIVE SET based on updated indicators
bðiÞN ¼ bNðdðiÞÞ and bðiÞT ¼ bTðdðiÞÞ

END IF
IF bðiÞN < 0 THEN

DðpÞn 
 DðNÞn

IF bðiÞT < 0 THEN DðpÞn 
 DðTÞn ELSE DðpÞn 
 DðNÞn n DðTÞn END IF
END IF

END LOOP over contact patches
Solve the equality constrained problem
K�TðdðiÞÞDdðiÞ ¼ �G�ðdðiÞÞ
Update incremental displacements
d(i+1) = d(i) + Dd(i)

Check for convergence: kG*(d(i+1))k 6 TOL) STOP
END LOOP over NEWTON ITERATION
Remark 5-5. Due to the smoothness of the effective gaps geff :ðpÞ
N=T

along the process (see Remark 5-4), their extrapolation provide
good predictive properties. Thus, in many cases, the active set
strategy part of the iteration algorithm in Box 1 converges in very
few, if not in a unique, iterations.
6. Concluding remarks

Along this work, the theoretical aspects of a contact domain
method for two-dimensional, large deformation, frictional contact
problems have been presented. The presented approach displays
some distinguishing features with respect to more classical ones,
namely:
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� The contact virtual work as well as the contact constraint equa-
tions are formulated on basis of a two-dimensional domain,
called contact domain. This domain displays a unique, non-over-
lapping, pairing between the contacting boundaries and, as the
simplest but not the unique possibility, is generated via a con-
strained Delaunay triangulation.

� The contact domain is endowed with a displacement field inter-
polated from the incremental displacements of the contacting
boundaries. This allows the formulation of the geometrical con-
tact constraints via dimensionless, strain-like quantities, called
the normal and tangential gap intensities. They are defined for
every point in the contact domain, and emerge to be constant
within a linear triangular contact patch. Furthermore, the gap
intensities, and their variation and linearization, can be
expressed in terms of strain measures of the incremental motion
of the contact patch.

� The contact constraint enforcement is based on a generalization
of the stabilized Lagrange multiplier formulation, presented by
Heintz and Hansbo [14] for small deformation, frictional contact
problems. Starting from a classical Lagrange multiplier formula-
tion, the variational constraint equations are enhanced with
consistent stabilization terms, which allow for the condensation
of the previously introduced Lagrange multipliers. As the stabil-
ization terms involve the stress field at the boundaries of the
contacting bodies, the resulting contact stiffness contributions
will involve finite element nodes in the interior of the contacting
bodies. This will be discussed in more detail in the second part of
this work [12].

� The determination of the active contact/friction sets in the con-
tact domain is made via an active set strategy. Therefore, the
concept of effective gaps, as mechanical entities involving the
geometrical gaps and the contact stresses, exhibiting suitable
smoothness properties for predictive strategies, is introduced
and used for such purpose.

For linear triangular patches, the method finally imposes the
contact friction restrictions at the nodes of every triangular patch
(see Eqs. (96) and (97)). In view of this one could wonder if the
use of a contact domain method leads to the same results than a
stabilized node-to-segment method or, in other words, if both
methods are the same method written in a different format. In-
deed, at the patch level, the contact restrictions for a linear triangu-
lar patch coincide with those of a (stabilized) node-to-segment
contact element. However, the contact domain method as a general
contact strategy provides some important differences, that stem
from the approximation of the contact domain via a constraint Del-
aunay triangulation:

� The generation of contact patches is independent of the choice
of a slave or a master side (see Fig. 2).

� The contact elements are uniquely defined, not suffering from
possible problems involved when using the widely used closest
point projection procedure [17].

� The contact domain is approximated with a full set of non-over-
lapping contact patches, that allows this method to pass the
contact patch test for arbitrary non-conforming surface grids
(see Part 2 of this work [12]).

In addition, when considered for 3D cases, the method seems to
provide in a natural way pairing scenarios not considered in node-
to-surface methods, e.g. that of a tetrahedron with one side at
every contacting surface (see also Remark 2-6). These facts will
be explored in a subsequent work.

Details on the numerical and implementation aspects of the ap-
proach, as well as numerical simulations and comparison studies
to prove its computational efficiency are provided in the second
part of this work [12].
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Appendix A. Variations and linearizations

A.1. Variation and linearization of current tangent vector

Starting from Eq. (10)1

t ¼ f � T
b

with b ¼ f � Tk k ð108Þ

and utilizing

dt � t ¼ 0() dt ¼ dcn ð109Þ

the variation of the current tangent vector is derived with

bt ¼ f � T
! dbtþ bdt ¼ df � T
! db t � n|{z}

0

þb dt � n|ffl{zffl}
dc

¼ df � Tð Þ � n

! dc ¼ 1
b

n � df � Tð Þ ¼ 1
b

n � GRADðduÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
gradðduÞ�f

�T

¼ 1
b

n � gradðduÞ � f � T|ffl{zffl}
bt

¼ n � gradðduÞ � tð Þ

) dt ¼ dcn ¼ n � gradðduÞ � tð Þn ¼ n	 nð Þ � odu

ot
:

ð110Þ

As the linearization takes the same form as the variation:

Dt ¼ n	 nð Þ � oDu

ot
: ð111Þ
A.2. Variation and linearization of current normal vector

From Eq. (10)2 follows

n ¼ t� ê3 ) dn ¼ dt� ê3 and Dn ¼ Dt� ê3 ð112Þ

and hence with (110) and (111)

dn ¼ �ðt	 nÞ � odu

ot
and Dn ¼ �ðt	 nÞ � oDu

ot
: ð113Þ
A.3. Variation of normal gap intensity

Starting from Eq. (20)1

�gN ¼ sign gð0ÞN

� �
n � f �N

) d�gN ¼ sign gð0ÞN

� �
dn � f �Nþ n � df �Nð Þ ð114Þ

and using Eq. (113)

d�gN ¼ sign gð0ÞN

� �
n � GRADðduÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

gradðduÞ�f

�N� n � odu

ot


 �
t � f �Nð Þ|fflfflfflfflffl{zfflfflfflfflffl}

sign gð0ÞNð Þ�gT

2
664

3
775: ð115Þ
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Using Eqs. (15) and (13)

gðxnÞ ¼ gð0ÞN f �N ¼ gNðxnÞnþ gTðxnÞt: ð116Þ

Leads to

f �N ¼ gNðxnÞ
gð0ÞN

nþ gTðxnÞ
gð0ÞN

t ¼ sign gð0ÞN

� �
�gNnþ sign gð0ÞN

� �
�gT t: ð117Þ

Inserting (117) into (115) gives

d�gN ¼ �gNn � gradðduÞ � n: ð118Þ
A.4. Variation of tangential gap intensity

Starting from Eq. (20)2

�gT ¼ sign gð0ÞN

� �
t � f �N

) d�gT ¼ sign gð0ÞN

� �
dt � f �Nþ t � df �Nð Þ ð119Þ

using Eq. (110)

d�gT ¼ sign gð0ÞN

� �
t � GRADðduÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

gradðduÞ�f

�Nþ n � odu

ot


 �
n � f �Nð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

sign gð0ÞNð Þ�gN

2
664

3
775 ð120Þ

and Eq. (117) gives

d�gT ¼ �gN n � gradðduÞ � tþ t � gradðduÞ � nð Þ þ �gT t � gradðduÞ � t: ð121Þ
A.5. Linearization of the variation of the normal gap intensity

Starting from Eq. (118), the linearization reads

Dd�gN ¼ D�gNn � odu

on
þ �gNDn � odu

on
þ �gNn � D odu

on


 �
; ð122Þ

where the linearization of the normal gap intensity has the same
structure as Eq. (118)

D�gN ¼ �gNn � gradðDuÞ � n ð123Þ

and the linearization of the current normal vector is given in Eq.
(113). The linearization of the n-directional derivative reads

D
odu

on


 �
¼ D gradðduÞ � nð Þ ¼ D gradðduÞð Þ � nþ gradðduÞ � Dn ð124Þ

with

D gradðduÞð Þ ¼ D GRADðduÞ � f �1� �
¼ GRADðduÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

gradðduÞ�f

� Df �1|ffl{zffl}
�f �1 �gradðDuÞ

) D gradðduÞð Þ ¼ �gradðduÞ � gradðDuÞ: ð125Þ

Inserting (113) and (125) into (124) leads, after some standard alge-
braic transformations, to

D
odu

on


 �
¼ � odu

on


 �
n � oDu

on


 �
� odu

ot


 �
t � oDu

on
þ n � oDu

ot


 �
: ð126Þ

Using this expression, the linearization of the variation of the nor-
mal gap intensity finally (Eq. (122)) reads
Dd�gN ¼ ��gN n � odu

ot


 �
n � oDu

ot


 �
þ n � odu

ot


 �
t � oDu

on


 ��

þ t � odu

on


 �
n � oDu

ot


 �
: ð127Þ
A.6. Linearization of the variation of the tangential gap intensity

Starting from Eq. (121), the linearization reads

Dd�gT ¼ D�gNn � odu

ot
þ �gNDn � odu

ot
þ �gNn � D odu

ot


 �

þ D�gNt � odu

on
þ �gNDt � odu

on
þ �gNt � D odu

on


 �

þ D�gT t � odu

ot
þ �gTDt � odu

ot
þ �gT t � D odu

ot


 �
; ð128Þ

where the linearization of the tangential gap intensity has the same
structure as Eq. (121)

D�gT ¼ �gN n � gradðDuÞ � tþ t � gradðDuÞ � nð Þ þ �gT t � gradðDuÞ � t ð129Þ

and the linearization of the t-directional derivative reads

D
odu

ot


 �
¼ D gradðduÞ � tð Þ ¼ D gradðduÞð Þ � tþ gradðduÞ � Dt: ð130Þ

Inserting (111) and (125) into (130) leads after some standard alge-
braic transformations to

D
odu

ot


 �
¼ � odu

ot


 �
t � oDu

ot


 �
: ð131Þ

Inserting this expression together with (123), (113), (111), (126),
(129) into Eq. (128) leads finally to the linearization of the variation
of the tangential gap intensity

Dd�gT ¼ �gN n � odu
ot


 �
n � oDu

on


 �
þ n � odu

on


 �
n � oDu

ot


 �� 

� �gN t � odu
ot


 �
n � oDu

ot


 �
þ n � odu

ot


 �
t � oDu

ot


 �� 

þ �gT n � odu
ot


 �
n � oDu

ot


 �
: ð132Þ
Appendix B. Quadratic triangular contact patch

In Fig. 7 a quadratic triangular contact patch is shown in the
previous and current configuration. The initial gap for a specific
particle xn 2 DðpÞn is then calculated according to Eq. (11) in the pre-
vious configuration. Due to the motion of the contact patch, the
necessary current normal and tangent vectors are given with

t ¼ tðxnÞ ¼ tð~xnþ1Þ;
n ¼ nðxnÞ ¼ tð~xnþ1Þ � ê3;

�t ¼ tð�xnÞ ¼
f ð�xnÞ � TðxnÞ
f ð�xnÞ � TðxnÞk k :

ð133Þ

The final gap vector g(xn) is then calculated using Eq. (12)

g ¼ gðxnÞ ¼ xnþ1 � �xnþ1 ¼ /ðDÞðxnÞ � /ðDÞ �xnð Þ: ð134Þ

Due to the quadratic approximation of the base-side, the normal
and tangential gaps can be calculated with (see Fig. 8)

gN ¼ gNðxnÞ ¼ n � g� a

gT ¼ gTðxnÞ � t � g 1þ 1
2

n ��tð Þ2

 � ð135Þ

with

2a ¼ ðn ��tÞðt � gÞ: ð136Þ

In Eq. (135)2 some minor approximations have been used, that stem
from the analytic integration of the curved length L (see Fig. 8)
which is given with



Fig. 7. Quadratic triangular contact patch in previous and current configuration.

Fig. 8. Quadratic triangular contact patch: geometric gaps in current configuration.
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L ¼
Z l

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0ðxÞð Þ2

q
dx ð137Þ

with

f ðxÞ ¼ � a

l2 x2 þ 2a
l

x and f 0ðxÞ ¼ �2a

l2 xþ 2a
l
: ð138Þ

The exact integration of (137) yields

L ¼ l2

4a
2a
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a
l


 �2

þ 1

s
þ ln

2a
l
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a
l


 �2

þ 1

s0
@

1
A

2
4

3
5: ð139Þ

Inserting

a ¼ 1
2
ðn ��tÞðt � gÞ and l ¼ t � g) 2a

l
¼ ðn ��tÞ: ð140Þ

Gives

gT ¼
t � g
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn ��tÞ2 þ 1

q
þ t � g

2ðn ��tÞ ln ðn ��tÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn ��tÞ2 þ 1

q
 �
: ð141Þ

For reasonable small changes between the two tangents t and �t the
following approximation can be introduced:
n ��t ¼ sin a; a ¼ ½t;�t�

ln sin aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin aÞ2 þ 1

q
 �
� sin a;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn ��tÞ2 þ 1
q

þ 1 � ðn ��tÞ2 þ 2

ð142Þ

which finally leads to the tangential gap in Eq. (135)2. It can be
shown, that the error, introduced by these two approximations is
less than 5%, once the anlge a within one quadratic triangular con-
tact patch is smaller than 25�. Thus the gap intensities for a qua-
dratic triangular contact patch are computed, dividing the
definitions for the geometric gaps in Eq. (135) with the absolute va-
lue of the initial normal gap (see Eq. (17)).

�gNðxnÞ ¼
nðxnÞ � gðxnÞ þ 1

2 ðtðxnÞ � gðxnÞÞðnðxnÞ � tð�xnÞÞ
ðxn � �xnÞ �NðxnÞj j ;

�gTðxnÞ ¼
tðxnÞ � gðxnÞ þ 1

2 ðtðxnÞ � gðxnÞÞðnðxnÞ � tð�xnÞÞ2

ðxn � �xnÞ �NðxnÞj j

ð143Þ

In contrast to the linear triangular contact patch discussed in Sec-
tion 2.3, these gap intensities now vary within on quadratic triangu-
lar contact patch. Thus these values have to be evaluated at a
number of quadrature points when performing the numerical
integration.
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Appendix C

Let us assume the proposition D(T) \ D(N) – D(T). Therefore, from
Eqs. (101) and (102) there should exist some xn such that:

xn 2 DðTÞ ) UðxnÞ < 0

xn R DðNÞ ) kNðxnÞ ¼ 0

)
) kTðxnÞj j � l kNðxnÞj j ¼ kTðxnÞj j < 0

ð144Þ

which is not possible. Therefore

DðTÞ \ DðNÞ ¼ DðTÞ ) DðTÞ 
 DðNÞ: ð145Þ
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