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A study on �nite elements for capturing strong discontinuities
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SUMMARY

The work focuses on the presently existing families of �nite elements with embedded discontinuities
and explores the possibilities of obtaining symmetric statically consistent �nite elements that alleviate
the stress-locking problem. For this purpose, mixed (reduced integration) and assumed enhanced strain
techniques are applied to the basic symmetric four-noded element. Numerical simulations show the
e�ectiveness of the proposed measures. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. MOTIVATION

In recent years, the so called �nite elements with embedded discontinuities have been the
subject of increasing study and development [1–12]. Its rising popularity comes from the fact
that, by using these elements, a displacement discontinuity model can be introduced in the
bulk of the element (and therefore regardless of the orientation of its sides) in combination
with appropriate propagation mechanisms. Moreover, it has been shown [6] that in strain
localization scenarios, some of those elements completely overcome the well-known problem
of the spurious mesh size and mesh orientation dependence of the results [13].
Although there are quite di�erent families of such elements, apparently, not all of them

behave in the same way. A fairly comprehensive study of the di�erent families can be found
in Reference [14]. They can be classi�ed into three di�erent groups:

(i) Symmetric statically consistent elements. Traction continuity across the discontinuity
interface is introduced in a fully consistent variational environment that results in a
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symmetric formulation. However, the way of introducing the discontinuous kinematics
does not guarantee free rigid body relative motions of the two portions of the element
split up into by the discontinuity.§ A description of such formulation can be found in
Reference [8].

(ii) Symmetric kinematically consistent elements. The kinematics is introduced in a way
that does not restrict the rigid body relative motions of the two portions of the element.
However, traction continuity across the discontinuous interface is not guaranteed at
elemental level. A typical triangular element based on this formulation can be found
in Reference [5].

(iii) Non-symmetrical statically and kinematically consistent elements. Both the rigid body
relative motions and the traction continuity are introduced at the elemental level,
but the second is introduced in a strong form that makes the resulting formula-
tion non-symmetrical. Typically, these are the formulations used in References [6]
and [7].

From the authors’ experiences the last family of elements (iii) is the one that provides
more robust and reliable results and they have used it successfully for numerical simulations
in many di�erent settings [15–21]. Family (ii) exhibits also a robust behaviour although a
much slower convergence with mesh re�nement, whereas family (i), as will be shown below,
exhibits in many cases the well-known stress locking phenomenon.
However, although the fact that formulation (iii) is not symmetric is neither a funda-

mental drawback nor a source of unbearable computational costs, the variational consistency
of formulation (i) agrees with the traditional �nite element technology in Computational
Solid Mechanics and confers additional appeal upon it. More important, the symmetric el-
ements of family (i) can be theoretically derived without the necessity of the tracking al-
gorithm concept which appears to be a fundamental issue on the other two families and
sets practical di�culties to generalize its use for capturing multiple cracking and branching
phenomena.
This is why this paper is devoted to exploring and developing several new types of �nite

elements with embedded discontinuities belonging to this family. However, and since the
aforementioned stress locking phenomena makes the basic formulation unsuitable, speci�c
treatments are explored to face that problem. Mixed and assumed enhanced strain techniques
are envisaged as appropriated remedies, so that they are introduced in the basic element and
their e�ects on the stress locking are analysed.

1.1. The boundary value problem

Let us consider the body � of Figure 1(a), undergoing a (rate of) displacement discontinuity
<u̇=(x; t) across the material (�xed) surface S that splits the body into �+ (pointed by the
unit normal n to S) and �− such that �+ ∪�−=�\S.¶ The resulting velocity, u̇(x; t), and

§As will be shown in subsequent sections this can result in stress locking behaviour.
¶Notation A\B stands for the result of subtraction of domain B from domain A:
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FINITE ELEMENTS WITH EMBEDDED DISCONTINUITIES 2137

Figure 1. (a) Continuum body with a displacement discontinuity; and
(b) construction of the MS(x) function.

strain rate, U̇(x; t), �elds‖ can be expressed as in [20]:

u̇(x; t) = �̇u(x; t) +MS <u̇=(x; t)

<u̇== u̇|x∈@�+∩S − u̇|x∈@�−∩S; �̇u= u̇∗ in @u� (1)

U̇(x; t) =∇Su̇(x; t)= �̇U︸︷︷︸
regular
(bounded)

+ �S(<u̇=⊗ n)S︸ ︷︷ ︸
singular

(unbounded)

MS(x) =HS(x)− ’(x); ’(x)∈H1(�)=
{
1 ∀x∈�+\�h
0 ∀x∈�−\�h

(2)

where <u̇= stands for the velocity jump, @u� is the part of the external boundary of � (with
outward normal ]) where displacements are prescribed to u∗(x; t), HS is the Heaviside’s
jump function placed on S (HS(x)=1 ∀x∈�+ and HS(x)=0 ∀x∈�−), MS is a unit
jump function, whose support is a certain domain �h containing S (see Figure 1(b)) and
constructed as it is indicated in Equation (2), and �S is the Dirac’s delta function placed on
S that arises from the derivation of the discontinuous function MS(x).
The corresponding quasistatic boundary value problem (BVP) can be described, in rate

form, as the following three �eld, u–U–�, problem:

Find:



u̇(x; t)

U̇(x; t)

�̇(x; t)

satisfying:

‖The mathematical expressions of the resulting continuum format kinematics is referred to as strong discontinuity
kinematics [20].
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∇ · �̇+ ḃ= 0 in �\S (internal equilibrium) (3a)

U̇−∇Su̇= 0 in � (kinematical compatibility) (3b)

�̇ − �̇(U) = 0 in � (constitutive compatibility) (3c)

�̇ · ]= ṫext on @�� (external equilibrium) (3d)

�̇�+ · n − �̇�− · n︸ ︷︷ ︸
def=[[�̇]]�\S·n

= 0 on S (outer traction continuity) (3e)

�̇�+ · n − �̇S · n︸ ︷︷ ︸
def=[[�̇]]S·n

= 0 on S (inner traction continuity) (3f)

where �(x; t) stands for the stresses, b(x; t) are the body forces density, �(U) stands for the
constitutive function returning the stresses in terms of the strains U and @�� is the part of the
boundary of � where tractions text are prescribed. Equations (3e) and (3f) state the continuity
of the traction vector T= � ·n through the discontinuity interface S. After explicit imposition
of condition (3c) BVP (3) can be rewritten as a two �eld, u–U, problem:

Find:

{
u̇(x; t)

U̇(x; t)
satisfying:

∇ · �̇− ḃ= 0 in �\S (internal equilibrium) (4a)

U̇−∇Su̇= 0 in � (kinematical compatibility) (4b)

�̇ · ]= ṫext on @�� (external equilibrium) (4c)

�̇�+ · n − �̇�− · n︸ ︷︷ ︸
def=[[�̇]]�\S·n

= 0 on S (outer traction continuity) (4d)

�̇�+ · n − �̇S · n︸ ︷︷ ︸
def=[[�̇]]S·n

= 0 on S (inner traction continuity) (4e)

2. NON-SYMMETRIC (PETROV–GALERKIN) APPROACH

A weak form of the BVP (4) can be devised as follows. In view of the velocity �eld (1) let
us consider the functional spaces of the velocities, Vu, and virtual (kinematically admissible)
velocities, �V0

u :

Vu
def≡ {W(x)= �W+MS Q; �W∈ [H1(�)]ndim ; Q∈ L2(S)}

�V0
u
def≡ { �W0(x)∈ [H1(�)]ndim ; �W0|@u� = 0}

(5)
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FINITE ELEMENTS WITH EMBEDDED DISCONTINUITIES 2139

where ndim stands for the number of dimensions of the problem, H1(�) is the functional space
of functions de�ned in � with square integrable �rst derivatives and L2(S) the functional
space of square integrable functions de�ned in S.∗∗

Remark 1
Notice that spaces Vu and �V0

u di�er not only for the homogeneous boundary condition imposed
to the elements of �V0

u , but also for the intrinsic nature of their elements W(x)= �W+MS Q and
�W0(x), respectively. This fact entails the non-symmetric character of the resulting formulation.

In view of the preceding notation the weak form of the problem can be written:

Problem 1 (Continuous non-symmetric problem)

Find

u̇= �̇u+MS<u̇=; u̇∈Vu

U̇=∇Su̇= �̇U+ �s(<u̇=⊗ n)S
(6)

Such that

��u(�̇; �)=
∫
�\S

�̇(∇Su̇):∇SW d�−
∫
�\S

ḃ · W d� +
∫
@��
ṫ · W d	︸ ︷︷ ︸

Gext

= 0 ∀W∈ �V0
u (7)

Some standard calculations show that the strong form of Problem 1 is

��u(u; W)=0 ⇒



∇ · �̇+ ḃ= 0 in �\S
�̇ · ]= ṫext on @��

[[�̇]]�\S · n=0 on S

(8)

and, therefore, only condition (4e) remains to be ful�lled in the BVP de�ned by Equations
(4). This condition is going to be imposed via a di�erent procedure in the �nite element
formulation, essentially in strong form. In summary the BVP (4) is approached as:

��u(�̇( �̇u; <u̇=); W) = 0 ∀W∈ �V0
u (variational=weak form)

[[�̇S]] · n = 0 on S (strong form)
(9)

2.1. Finite element discretization (standard non-symmetric element: U4n)

Let us consider the material domain � discretized in a four-noded†† �nite element mesh with
nelem elements and nnode nodes crossed by the discontinuity interface S (see Figure 2(a)). Let
us assume that an available discontinuity tracking algorithm [6] determines the subset J of
the nJ elements that are crossed by S at the considered time t:

J := {e |�e ∩S 	= ∅}= {ei; : : : ; em; : : : ep; : : :} (10)

∗∗Roughly H1(·) contains continuous function de�ned in (·) with discontinuous �rst derivatives and L2(·) contains
piecewise discontinuous bounded functions de�ned in (·):

††For the sake of simplicity, from now on only two-dimensional problems will be considered.
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Figure 2. 2D discretization by using quadrilateral elements: (a) set J of elements intersected by
the discontinuity; (b) elemental discontinuity Se; (c) function MS; (d) regularized Delta’s function;

and (e) sampling points involved in the numerical integration.

For every element of J, the tracking algorithm‡‡ also provides the position of the elemental
discontinuity interface Se (see Figure 2(b) of length le which de�nes the domains �+e and
�−
e and the nodes i+ ∈{i+1 ; : : : ; i+n+e } and i

− ∈{i−1 ; : : : ; i−n−e }). Now, the following interpolation
of the velocity �eld u̇(e) inside a given element e is considered [6]:

u̇(e)(x; t)=
i=4∑
i=1
N (e)
i (x)ḋi(t)︸ ︷︷ ︸
�̇u (e)

+M
(e)
S (x) [[u̇]] e(t)︸ ︷︷ ︸

˙̃u (e)

(11)

where �̇u(e) is the standard C0 velocity �eld, interpolated by the shape functions {N (e)
1 ; N (e)

2 ;
N (e)
3 ; N

(e)
4 } of the linear isoparametric quadrilateral element [22], in terms of the nodal veloc-

ities di(t) at node i. The term ˙̃u(e), in Equation (11), captures the singular (discontinuous)
part of the velocity �eld (1) in terms of the elemental velocity jump [[u̇]] e and Me

S(x) is the
discrete counterpart of the unit jump function in Equation (2) de�ned as follows:

M
(e)
S (x)=




0 ∀e =∈J

H
(e)
S (x)− ’(e)

(’(e) =
n+e∑
i+=1

Ni+)


 ∀e∈J

(12)

where H
(e)
S is the step function. Figure 2(c) shows the M

(e)
S function and emphasizes its

elemental support.

‡‡This tracking algorithm is a crucial ingredient of the non-symmetric formulations and constitute one of their
most typical servitudes.
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From Equations (11) and (12), the discrete (rate of) strain �eld reads

U̇(e) =∇Su̇(e) =
i=4∑
i=1
(∇N (e)

i ⊗ ḋi)S − (∇’(e)⊗ [[u̇]] e)S + �S(<u̇= e⊗ n)S (13)

Notice that Equation (13) matches the strong discontinuity kinematics (1). In order to over-
come the numerical di�culties of treating with the Dirac’s delta function �S it is replaced
by a regularized§§ function �eS de�ned within the element e as

�(e)S =�(e)S

1
k

(14)

where �(e)S is a collocation function whose support is the domain Sk
e in Figure 2(d) de�ned

in terms of the regularization parameter k:

�(e)S (x) = 1 ∀x∈Sk
e

�(e)S (x) = 0 ∀x =∈Sk
e

(15)

By considering Equations (14) and (15) the regularized form of the strain rate �eld reads

U̇(e) =∇Su̇(e) =
i=4∑
i=1
(∇N (e)

i ⊗ ḋi)S − (∇’(e)⊗ [[u̇]] e)S + �(e)S

1
k
(n⊗ [[u̇]] e)S (16)

In order to integrate the discontinuous terms emerging from the second term of the right-
hand side of Equation (16), in addition to the standard sampling points of the linear quadri-
lateral (PG1 to PG4 in Figure 2(e)), the element is equipped with another integration point
(SSP in Figure 2(d)) placed at the centre of the element and whose associated area is (see
Figure 2(d))

measure(Sk
e )= kle (17)

The regularization parameter k has an arbitrary small value (as small as permitted by the
machine precision).
In this context the inner traction continuity condition in Equations (4e) and (9) can be

imposed on an element basis in terms of averages:

�̇�+ · n=(�̇�− · n)= �̇S · n→ 1
�e

∫
�e
�̇ · n d�︸ ︷︷ ︸

mean value on �\S

=
1
le

∫
Se

�̇ · n d�︸ ︷︷ ︸
mean value on S

(18)

⇒
∫
�e

(
�(e)S

1
k
− le
�e

)
n · �̇ d�= 0 ∀e∈J (19)

§§This procedure and the resulting formulation have been sometimes termed in the literature the regularized strong
discontinuity approach.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:2135–2161



2142 J. OLIVER, A. E. HUESPE AND E. SAMANIEGO

In view of the previous �nite element discretization, and by resorting to the classical �nite
element procedures, the discrete counterpart of the BVP in Equations (9) can be written as
follows:

Problem 2 (Discrete non-symmetric problem)

Given

Vh
u

def≡
{
Wh(x)=

i=nnode∑
i=1

Ni(x) Wi +
∑
e∈J

M
(e)
S (x)�e

}

�Vh0
u

def≡
{
Wh

0
(x)=

i=nnode∑
i=1

Ni(x) W0i ; W0i |@u� = 0
} (20)

Find

u̇h =
i=nnode∑
i=1

Niḋi +
∑
e∈J

M
(e)
S (x)[[u̇]] e; u̇h ∈ Vh

u

U̇h =∇Su̇h =
i=nnode∑
i=1

(∇Ni⊗ ḋi)S +
∑
e∈J

([
�(e)S

1
k
n −∇’(e)

]
⊗ [[u̇]]e

)S (21)

Such that

��u(�̇; �h)=
e=nelem∑
e=1

∫
�e

∇SWh : �̇(�h) d�−Gext = 0 ∀Wh ∈ �Vh0
u

[[�̇]]S · n= 0→
∫
�e

(
�(e)S

1
k
− le
�e

)
n · �̇ d�= 0 ∀e∈J

(22)

The structure of Equations (22) corresponds to a typical Petrov–Galerkin residual weighting
procedure [22] of the original BVP (4).

2.1.1. 2D implementation. For the two-dimensional case, in a cartesian coordinate system
(x; y), using the vector format for the strains {�}=[�xx; �yy;2�xy]T and the stresses {�}=[�xx;
�yy;�xy]T (where (·)T stands for the transpose of (·)), considering the four-noded quadrilateral
as underlaying element and using the standard �nite element B-format [22] Equations (22)
yield

��u(�̇; Wh)=0

[[�̇]]S · n= 0

}
→

e=nelem⋃
e=1

[ ∫
�e
B(e)

T · �̇({�}(e)) d�− Ḟext(e)
]
= 0 (23)

where Ḟext(e) stands for the classical elemental external forces vector and

{U̇}(e) =B∗(e) · ḋ(e)

ḋ
(e)
= [ḋ1; ḋ2; ḋ3; ḋ4; [[u̇]] e]T

(24)
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B(e) = [B(e)1 ; B
(e)
3 ; B

(e)
4 ; G

(e)]

B∗(e) = [B(e)1 ; B
(e)
2 ; B

(e)
3 ; B

(e)
4 ; G

∗(e) ]

B(e)i =



@xN

(e)
i 0

0 @yN
(e)
i

@yN
(e)
i @xN

(e)
i




G(e) =
(
�(e)S

1
k
− le
�e

) 
nx 0

0 ny

ny nx




G∗(e) = �(e)S

1
k



nx 0

0 ny

ny nx


−



@x’(e) 0

0 @y’(e)

@y’(e) @x’(e)




(25)

where
⋃
stands for the classical assembling operator and n=[nx; ny]T.

Remark 2
Notice that matrices B(e) and B∗(e) in Equation (25) di�er in terms G(e) 	=G∗(e) . This fact
makes the resulting tangent sti�ness matrix non-symmetrical as could be expected from the
original non-symmetric character of the approach stated in Remark 1.

Remark 3
The structure of Equations (23)–(25) suggests the introduction of an internal additional
�fth node for each element e that is activated only for the elements crossed by the dis-
continuity interface (e∈J) and whose corresponding degrees of freedom and associated
shape function are, respectively, the displacement jumps [[u]] e and M

(e)
S in Equations (11)

and (12). Since the support of M
(e)
S is only �e, those internal degrees of freedom can

be eventually condensed at the elemental level and removed from the global system of
equations.

3. SYMMETRIC ASSUMED ENHANCED STRAIN APPROACH

The assumed enhanced strain methods, which can be considered a particular case of the
more general assumed strain methods or mixed methods [23], provide a di�erent setting
to approach displacement discontinuities. In next sections the corresponding formulation is
presented following the guidelines in Reference [24].
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3.1. Assumed enhanced strain and stress �elds

Let us consider the displacements u(x; t); enhanced strains Ũ(x; t) and stresses �(x; t) to lie
in the following functional spaces:

Vu
def≡ {W(x)∈ [H1(�)]2}

V0
u

def≡ {W0(x)∈ [H1(�)]2; W0|@u� = 0}

ṼU
def≡ { ˜̂ (x)= �̂ + �S(Q⊗ n)S;



��ij ∈ L2(�); �i ∈ L2(S)∫
�

˜̂ : � d�=0 ∀�∈V�

V�
def≡ {�(x); �ij ∈ L2(�)}

(26)

where the orthogonality of ṼU with respect V� set through:∫
�

˜̂ : � d�=0 ∀ ˜̂ ∈ ṼU ∀�∈V� (27)

is motivated by the satisfaction of the patch test [24].
The variational assumed enhanced strain problem can be written as:

Problem 3 (Continuous assumed enhanced strain problem)

Find

u̇(x; t); u̇∈Vu (28a)

U̇(x; t)=∇Su̇+ ˙̃U︸︷︷︸
enhancement

˙̃U= �̇U+ �s(Ṙ⊗ n)S


 ; ˙̃U∈ ṼU (28b)

�̇(x; t); �̇∈V� (28c)

Such that

��u(�̇; W) =
∫
�\S

�̇(U) :∇SW d�−Gext = 0 ∀W∈V0
u (29a)

��Ũ(Ũ; �) =
∫
�

˙̃U : � d�=0 ∀�∈V� (29b)

���(�̇; �̇; ˜̂) =
∫
�
(�̇ − �̇) : ˜̂ d�=0 ∀ ˜̂ ∈ ṼU (29c)

Remark 4
By comparison of the structure of the strain �elds in Equations (1) and (28) the values R, in
the assumed strain �eld Ũ, approach the displacement jumps [[u]] of the strong discontinuity
kinematics (1).
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Some standard calculations on Equations (29a–b) show that their strong forms are:

(i)

��u(�̇; W)=0 ⇒



∇ · �̇(U)− ḃ= 0 in �\S
�̇ · ]= ṫ on @��

[[�̇]]�\S · n= 0 on S

(30)

(ii)

���̃(Ũ; �)=0 ⇒
∫
�

˙̃U : � d�=0 ⇒ ˙̃U=0 in � (31)

in a distributional sense¶¶ and, in view of Equation (28b)

U̇=∇Su̇+ ˙̃U︸︷︷︸
=0

=∇Su̇ ⇒ U̇−∇Su̇= 0 in � (32)

Finally, Equation (29c) can be rewritten as

(iii) ∫
�
(�̇ − �̇) : ˜̂ d� =

∫
�
�̇ : ˜̂ d�︸ ︷︷ ︸
=0

−
∫
�
�̇ : ˜̂ d�=0 (33)

⇒
∫
�
�̇(U) : ˜̂ d�=0 (34)

Clearly Equations (29a) and (29b) are weak forms of Equations (4a)–(4d). Therefore ˜̂ in
Equation (34) has to be chosen to enforce the remaining Equation (4e).

3.2. Finite element discretization (standard constant stress/enhanced strain element: S4n)

Given a �nite element discretization in four-noded elements (see Figure 2(a)), let us consider
the following discrete version of the spaces in Equation (26):

Vh
u
def≡
{
Wh(x)=

i=nnode∑
i=1

Ni(x)Wi
}

Vh0
u

def≡
{
Wh(x)=

i=nnode∑
i=1

Ni(x)Wi; Wi|@u� = 0
}

Vh
Ũ ≡

{
˜̂ h(x)=

e=nelem∑
e=1

(
�(e)S

1
k
− le
�e

)
	e(x)(Qe⊗ n)S

}
; 	e(x)=

{
1 for x∈�e
0 otherwise

(35)

¶¶Since, from Equation (28), ˙̃U= �̇U+ �s(Ṙ⊗ n)S is a distribution, the expression ˙̃U= 0 has to be understood in the
distributional sense.
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Vh
�
def≡
{
�h(x)=

e=nelem∑
e=1

	e(x)�e

}

It can be immediately noticed that the chosen expansions for the discrete assumed strain
�eld ˜̂h in Equation (35) ful�l the orthogonality condition (27) since∫

�

˜̂h : �h d�=
e=nelem∑
e=1

∫
�e

(
�(e)S

1
k
− le
�e

)
(Qe⊗ n)S : �e d�

=
e=nelem∑
e=1

∫
�e

(
�(e)S

1
k
− le
�e

)
d�︸ ︷︷ ︸

(le−le) = 0

(Qe⊗ n)S : �e=0 (36)

In this context the discrete counterpart of the continuum Problem 3 in Equation (28) to (29)
reads:

Problem 4 (Discrete assumed enhanced strain problem)

Find

u̇h(x; t)=
i=nnode∑
i=1

Niḋi ; u̇h∈Vh
u

U̇h(x; t)=∇Suh +
e=nelem∑
e=1

(
�(e)S

1
k
− le
�e

)
	e(x)(Ṙe⊗ n)S︸ ︷︷ ︸

˙̃Uh(enhancement)

˙̃U
h∈Vh

Ũ

�̇h(x; t)=
e=nelem∑
e=1

	e(x)�̇e �̇h∈Vh
�

(37)

Such that
(i)

��u(�̇; Wh)=0 ⇒
e=nelem∑
e=1

∫
�e

∇SWh : �̇(Uh) d�−Gext = 0 ∀Wh∈V0
u (38)

(ii)
���̃(Ũh; Uh)=0 ⇒ (trivially ful�lled; see Equation (36)) (39)

(iii)

���(�̇h; �̇; �̃h) = 0 ⇒



∑e=nelem

e=1

∫
�e
�̇ : �̃h d�

=
∑e=nelem

e=1

[∫
�e

(
�(e)S

1
k
− le
�e

)
�̇ · n d�

]
· �e=0 ∀�e

(40)

⇒
∫
�e

(
�(e)S

1
k
− le
�e

)
�̇ · n d�= 0 e∈{1 : : : nelem} (41)
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Remark 5
Equation (41) can be rewritten as∫

�e

(
�(e)S

1
kle

− 1
�e

)
�̇ · n d�= 0⇒

1
�e

∫
�e
�̇ d�︸ ︷︷ ︸

�̇�e (average in �e)

· n= 1
le

∫
le
�̇ dS︸ ︷︷ ︸

�̇Se (average in Se)

· n ⇒ �̇�e · n= �̇Se · n︸ ︷︷ ︸
� traction continuity

(in mean values)

(42)

which shows that Equation (41) is imposing the inner � traction continuity inside every
element.

In summary, the equations ruling the discrete symmetric problem (4) can be written as

��u(�̇; Wh)=0

���(�̇h; �̇; ˜̂
h
)=0

⇒




e=nelem⋃
e=1

∫
�e

∇SWh : �̇(U) d�−Gext = 0 ∀Wh∈V0
u∫

�e

(
�(e)S

1
k
− le
�e

)
· n · �̇ d�= 0 e∈{1 : : : nelem}

(43)

U̇(e) = ∇Su̇(e) +
(
�(e)S

1
k
− le
�e

)
(Ṙe⊗ n)S (44)

3.2.1. 2D implementation. For the two-dimensional case, considering the four-noded quadri-
lateral as underlaying element and the �nite element B-format, Equations (43) and (44) yield
to the symmetric system of equations:

��u(�̇; Wh)=0

���(�̇h; �̇; ˜̂ h)=0
⇒

e=nelem⋃
e=1

[∫
�e
B(e)

T · {
̇} d�− Ḟext(e)
]
= 0 (45)

{�̇}(e) = B(e) · ḋ(e)
(46)

ḋ
(e)
= [ ḋ1; ḋ2; ḋ3; ḋ4; Ṙe ]

T

B(e) = [B(e)1 ; B
(e)
2 ; B

(e)
3 ; B

(e)
4 ; G

(e) ]

B(e)i =



@xN

(e)
i 0

0 @yN
(e)
i

@yN
(e)
i @xN

(e)
i




(47)

G(e) =
(
�(e)S

1
k
− le
�e

)
nx 0

0 ny

ny nx



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As in the non-symmetric element (see Remark 3), the degrees of freedom, Re, in Equa-
tion (46) can be tackled as an internal element �fth node (incompatible mode [24]), condensed
at the elemental level and removed from the global system of equations.

4. NUMERICAL EXPERIMENT. STRESS LOCKING PHENOMENA

In order to check the performance of the elements previously described in Sections 2 and 3
the simple numerical test described in Figure 3(a) has been considered. A rectangular plate,
modelled in plane strain, is �xed at one side and uniformly stretched from the other side.
The material is modelled using the simple isotropic continuum damage model described in
Reference [25] and equipped with linear softening. The theoretical analysis shows a solution
for the problem consisting of a straight vertical discontinuity line crossing the plate from the
top to the bottom. The displacement jump is uniform and exhibits only a normal component.
Since the problem is homogeneous before bifurcation, the stress state is constant and the

position of the discontinuity line is not determined. For the purposes of the analysis, this
position is arti�cially �xed.
The numerical simulation is carried out using an arbitrary oriented mesh, as shown in

Figure 3(a), with the following �nite elements:

• Standard non-symmetric four-noded element U4n. This is the non-symmetrical statically
and kinematically consistent element based on the Petrov–Galerkin approach described
in Section 2.

• Standard symmetric four-noded element S4n. This is the symmetric statically consistent
element based on the assumed enhanced strain approach described in Section 3.

In Figure 3(b) the obtained stress–displacement curves, �xx–�, for both elements are plotted.
It can be readily checked that the U4n element provides the expected exact solution exhibiting,
beyond the peak stress, a linear softening branch up to the total stress relaxation.
The S4n element, instead, exhibits a hardening branch beyond the theoretical peak, that

rises the stress–displacement curve up to unphysical levels.
A deeper look at the numerical results shows that this unexpected structural hardening comes

out from the fact that material points at �\S which are supposed to behave elastically after

0

2
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0 0.5 1.5                         2.5

σ
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δ [10 m]

Damage Model (linear softening)

E= 30000.MPa
= 0ν 

Gf= 0.100 Nw/mm
u=10.MPaσ
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Symmetric (S4n)

-4

xx

(b)

1.[m]

0.
5

[m
]

(a)
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δ

A

x

y

Figure 3. Homogeneous plate: (a) geometrical data and �nite element mesh; and (b) stress �xx
(at point A) vs displacement � curves.
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the bifurcation, do not unload but, instead, load elastically after bifurcation.‖‖ This results
in the unexpectedly high stress levels observed in the �gure. This trend is not modi�ed by
using �ner meshes, and therefore, convergence to the exact solution is not achieved with
mesh re�nement. Clearly this is a typical stress-locking behaviour that actually makes the
S4n element unsuitable for any modelling purposes.
In order to look for remedies for this stress locking, its causes are analysed through the

following reasonings:

1. The strong discontinuity kinematics in Equation (1) splits the strains into a regular
(bounded) part that develops at �=S and a singular (unbounded) part that develops
at S

U̇=∇Su̇= �̇U︸︷︷︸
�̇�\S

regular (bounded)

+ �S(<u̇= ⊗ n)S︸ ︷︷ ︸
singular (unbounded)

(48)

2. It can be shown that, after the onset of the strong discontinuity, the whole inelastic
(rate of) strain component matches the singular part whereas the regular (rate of) strain
remains incrementally elastic∗∗∗ i.e.:

U̇�\S= �̇U= C−1 : �̇︸ ︷︷ ︸
elastic strain

⇒ �̇=C : U̇�\S (49)

where C stands for the elastic fourth-order constitutive tensor.
3. A glance at Equation (49) shows that, since the components of C (determined by the
normally high values of the elastic properties) are very large, the values of U̇�\S have
to be very small for �̇ to be in the physically expected range. In other words, if the
values of U̇�\S are unexpectedly large so will be the values of �̇, thus provoking locking
phenomena. As a particular case, at the �nal stages of the stress–displacement curve in
Figure 3(b) one can expect the regular strain to be practically zero.†††

�̇ � 0 ⇒ U̇�\S=C−1 : �̇ � 0 (50)

Now, looking at the elemental strain �eld modelled by the S4n element (see Equation
(37)) and the polynomial degree of its counterparts:

U̇(e)�\S= ∇Su̇(e)︸ ︷︷ ︸
linear

− le
�e
(Ṙe ⊗ n)S︸ ︷︷ ︸

(enhancement) constant

(51)

we realize that, except for very particular cases in which the term ∇Su̇(e) becomes con-
stant inside the element, for the very general case both terms will not cancel each other.
Thus, Equation (50) will not be ful�lled and stress locking will arise.

‖‖This theoretical incrementally elastic behaviour is algorithmically imposed at the bulk �\S after bifurcation.
∗∗∗Though intuitive this is not a trivial result. Its proof requires resorting to the so-called strong discontinuity
analysis [25].

†††At this stage, the element should be able to produce rigid body motions of the two portions split up by the
discontinuity at no stress and, therefore, at no elastic strain.
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These arguments explain, at least crudely, the reasons for the locking phenomena observed
in element S4n and also suggest two possible strategies as remedies:

(a) Decrease the polynomial degree of the term ∇Su̇(e) to zero (constant).
(b) Increase the polynomial degree of the enhancement term to one (linear polynomial).

Strategy (a) is followed in the mixed approach presented in Section 5 whereas strategy (b)
leads to the strain re-enhancement methodology presented in Section 6.‡‡‡

5. MIXED APPROACH

5.1. Assumed strain and stress �elds

Let us consider the following functional spaces:

Vu
def≡ {W(x)∈ [H1(�)]2} (52a)

V0
u
def≡ {W0(x)∈ [H1(�)]2; W0|@u� = 0} (52b)

VU
def≡ {^(x)= �̂ + �S(Q⊗ n)S; �̂ ij ∈L2(�); �i ∈ L2(S)} (52c)

V�
def≡ {�(x); �ij ∈ L2(�); [[�]]�\S · n=[[�]]S · n= 0} (52d)

The variational three �eld (u–U–�) mixed problem can we written as

Problem 5 (Continuous mixed problem)

Find

u̇(x; t) u̇∈Vu

U̇(x; t)= �̇U+ �s(Ṙ⊗ n)S U̇∈VU

�̇(x; t) �̇∈V�

(53)

Such that

��u(�̇; W) =
∫
�\S

�̇ :∇SW d�−Gext = 0 ∀W∈V0
u

��U(u̇; U̇; �) =
∫
�
(U̇−∇Su̇) : � d�=0 ∀�∈V�

���(�̇; �̇; ^) =
∫
�
(�̇ − �̇) : ^ d�=0 ∀^∈VU

(54)

‡‡‡Indeed, these strategies for alleviating the stress-locking problem can only be applied to �nite elements sensitive
to mixed=assumed strain or assumed enhanced strain technologies, like the four-noded quadrilateral. For instance,
strategies (a) and (b) cannot be applied, at elemental level, to linear triangles.
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Standard calculations on Equations (54) lead to the corresponding strong forms:

(i)

��u(�̇; W)=0 ⇒



∇ · �̇+ ḃ= 0 in �\S
�̇ · ]= ṫ on @��

[[�̇]]�\S · n= 0 on S

(55)

(ii)

���(u̇; U̇; �)=0 ⇒
∫
�
(U̇−∇Su̇) : � d�=0 ⇒ U̇ = ∇Su̇ in � (56)

(iii)

���(�̇; �̇; ^)=0 ⇒
∫
�
(�̇ − �̇) : ^ d� ⇒ �̇= �̇ in � (57)

Therefore, Equations (3a)–(3e) of the original BVP are ful�lled in weak form by the
variational Equations (54) whereas Equation (3f) is ful�lled from the particular choice
made for the space V� in Equation (52d).

5.2. Finite element discretization (constant stress=strain mixed element: M4n)

For the four-noded element discretization of Figure 2(a) let us consider the following discrete
counterpart of the spaces in Equation (52):

Vh
u
def≡
{
Wh(x) =

i=nnode∑
i=1

Ni(x)Wi
}

(58a)

V0
u
def≡
{
Wh(x) =

i=nnode∑
i=1

Ni(x)Wi; Wi|@u� =0
}

(58b)

VU
h def≡

{
^h(x) =

e=nelem∑
e=1

	e(x)
(
�̂
e + �

(e)
S

1
k
(Qe⊗ n)S

)}
; 	e(x)=

{
1 for x∈�e
0 otherwise

(58c)

Vh
�
def≡
{
�hP(x) =

e=nelem∑
e=1

	e(x)�e

}
(58d)

and the corresponding discrete problem:

Problem 6 (Discrete mixed problem)

Find

u̇h =
i=nnode∑
i=1

Niḋi; u̇h ∈Vh
u (59a)
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U̇h =
e=nelem∑
e=1

(
	e(x)�̇Ue + �(e)S

1
k
	e(x)(Ṙe⊗n)S

)
U̇h ∈VU (59b)

�̇h =
e=nelem∑
e=1

	e(x)�̇e �̇h ∈V� (59c)

Such that

��u(�̇; Wh) =
∫
�
�̇h :∇SWh d�−Gext = 0 ∀Wh ∈Vh0

u (60a)

��U(u̇h; U̇h; �h) =
∫
�
(U̇h −∇Su̇h) : �h d�=0 ∀�h ∈Vh

� (60b)

���(�̇h; �̇h; ^h) =
∫
�
(�̇h − �̇h) : ^h d�=0 ∀^h ∈VU

h (60c)

By inserting the strain rate �eld U̇h of Equation (59b) into Equation (60b) one gets

���(u̇h; U̇h) = 0⇒
e=nelem∑
e=1

∫
�e
(U̇h −∇Su̇h) : �e d�

=
e=nelem∑
e=1

(
�e �̇Ue + le(Ṙe⊗ n)S −

∫
�e

∇Su̇h d�
)
�e=0 ∀�e

⇒
(
�e �̇Ue + le(Ṙe⊗ n)S −

∫
�e

∇Su̇h d�
)
=0 e∈{1 : : : nelem}⇒ (61)

and solving for �̇Ue and, then, for �̇Uh in Equation (59b), we get

�̇Ue =
1
�e

∫
�e

∇Su̇h d�− le
�e
(Ṙe ⊗ n)S e ∈ {1 : : : nelem}⇒

�̇Uh =
e=nelem∑
e=1

	e(x)



1
�e

∫
�e

∇Su̇h d�︸ ︷︷ ︸
def=∇Su̇(e)

−
(
le
�e

− �(e)S

1
k

)
(Ṙe⊗ n)S


 (62)

where ∇Su̇(e) stands for the mean value of ∇Su̇h(x) inside the element e. In summary,

���(u̇h; U̇h : �h)=0→ U̇h =
e=nelem∑
e=1

	e(x)
[
∇Su̇(e) +

(
�(e)S

1
k
− le
�e

)
(Ṙe⊗ n)S

]
(63)
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Now, from Equation (60c) and the expansion of ^h(x) in Equation (58c)

���(�̇h; �̇; ^h) = 0⇒
e=nelem∑
e=1

∫
�e
(�̇e − �̇) : ^h d�

=
e=nelem∑
e=1

∫
�e
(�̇e − �̇) :

(
�̂
e + �

(e)
S

1
k
(Qe⊗ n)S

)
d� (64)

=
e=nelem∑
e=1

([
�e�̇e −

∫
�e
�̇ d�

]
: �̂e +

[
le�̇e · n −

∫
Se

�̇ · n dS
]
· Qe
)

= 0 ∀ �̂e ∀Qe

⇒

[
�e�̇e −

∫
�e
�̇ d�

]
=0[

le�̇e · n −
∫
Se

�̇ dS · n
]

 e∈{1 : : : nelem} (65)

and solving for �̇e in Equation (65), we get

�̇e =
1
�e

∫
�e
�̇ d� = �̇�e (66a)

�̇e · n= 1
le

∫
Se

�̇ dS · n= �̇S · n (66b)

where �̇�e =
1
�e

∫
�e
�̇ d� and �̇S = 1

le

∫
S e�̇ dS are, respectively, the mean values of �̇(U(x))

in �e and Se. From Equation (66) it trivially follows

�̇�e · n = �̇S · n (67)

which states the inner traction continuity condition (4e) in terms of the mean values of �̇.
Equation (66b) can be rewritten in a more convenient format:

1
le

∫
Se

�̇ dS · n − 1
�e

∫
�e
�̇ d� · n =

∫
�e

(
�(e)S

1
k
− le
�e

)
�̇ · n d� = 0 (68)

In summary, from Equations (64) and (68)

���(�̇h; �̇; ^h) = 0 →
∫
�e

(
�(e)S

1
k
− le
�e

)
�̇ · n d� = 0 ∀e ∈ {1 : : : nelem} (69)

Finally, standard algebraic operations on Equation (60a), taking into account Equations (66)
lead to

��u(�̇h; Wh) = 0→
e=nelem⋃
e=1

∫
�e
�̇e :∇SWh d�−Gext
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=
e=nelem⋃
e=1

∫
�e
�̇�e :∇SWh d�−Gext

=
e=nelem⋃
e=1

�̇�e :
∫
�e

∇SWh d�︸ ︷︷ ︸
=�g∇SW(e)

−Gext

=
e=nelem⋃
e=1

�e�̇�e︸ ︷︷ ︸∫
�e
�̇ d�

:∇SW (e) −Gext = 0 (70)

⇒
e=nelem⋃
e=1

∫
�e

∇SWh : �̇(Uh) d�−Gext = 0 ∀Wh ∈ V0
u (71)

Remark 6
Notice from Equation (63) that the mixed approach recovers the same enhanced strain coun-
terpart ˙̃U = (�(e)S

1
k − le

�e
)(Ṙe ⊗ n)S postulated in Equation (37) for the assumed enhanced strain

approach. However, in the mixed approach the term ∇Su̇
(e)
in Equation (63) is constant and,

therefore, so is the component ∇Su̇(e) ≈ ∇Su̇
(e)
in Equation (51). This fact is expected to fa-

cilitate the cancellation of the elemental bulk strain U̇(e)�\S = ∇Su̇(e)− le
�e
(Ṙe⊗n)S and contribute

to alleviating the stress-locking phenomenon.

5.2.1. 2D implementation. Again, for the two-dimensional case and the four-noded quadri-
lateral element, the B-format formulation of the �nite element method, from Equations (63),
(69) and (71) reads

��u(�̇; Wh) = 0

���(�̇h; �̇; ^h) = 0
⇒

e=nelem⋃
e=1

[∫
�e

�B(e)
T · {�̇} d�− Ḟext(e)

]
= 0 (72)

{U̇}(e) = �B(e) · ḋ(e)

(73)
ḋ(e) = [ḋ1; ḋ2; ḋ3; ḋ4; Ṙe]T

�B(e) = [ �B(e)1 ; �B
(e)
2 ; �B

(e)
3 ; �B

(e)
4 ; G

(e)]

(74)

�B(e)i =



@xN

(e)
i 0

0 @yN
(e)
i

@yN
(e)
i @xN

(e)
i


 ; �(·)(e) def= 1

�e

∫
�e
(·) d�︸ ︷︷ ︸

mean value of (·) on �e

G(e) =
(
�(e)S

1
k
− le
�e

)
nx 0

0 ny

ny nx



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Remark 7
For practical purposes the computation of the mean elemental values �(·)(e) referred to in
Equation (74) can be approximately (or even exactly, for undistorted elements) computed,
for the quadrilateral element, through sampling at the centre of the element. Consequently,
by comparison of Equations (47) and (74) the mixed M4n element can be retrieved from
the symmetric S4n element by reducing the four regular sampling points (PG1–PG4 in Fig-
ure 2(e)) to one placed at the centre of the element (RSP in that �gure). Therefore, the
classical link between mixed elements and reduced integration [26] is also recovered for �nite
elements with embedded discontinuities.

6. STRAIN RE-ENHANCEMENT: ELEMENT E4n

Next strategy is based on providing new terms to the enhanced strain component (˙̃U in
Equation (28)) of the symmetric element S4n. Two conditions are required on this
enhancement:

(i) Ful�l the orthogonality condition (27):

∫
�

˙̃U : � d�=0 ∀˙̃U∈ ṼU ∀�∈V� (75)

(ii) Include linear polynomial terms to contribute to alleviate the stress-locking
phenomenon.

With these conditions in mind, the following strain enhancement is proposed:

˙̃Uh
(e)
=
(
�(e)S

1
k
− le
�e

)
(Ṙe ⊗ n)S︸ ︷︷ ︸

˙̃U(e)1

+
1
J
sṠe +

1
J
tṪe︸ ︷︷ ︸

˙̃U(e)2

(76)

where s and t stand for the isoparametric coordinates of the standard four-noded quadrilateral
and J is the jacobian of the isoparametric transformation relating di�erential areas in the
regular and isoparametric spaces through

d�= J ds dt (77)

In Equation (76) ˙̃U(e)1 is the basic strain enhancement, already present in the basic S4n
element, and ˙̃U(e)2 is a re-enhancement of the strain �eld that supplies the required linear
polynomial components to the elemental bulk strain. The values {Ṡe}=[Ṡxx; Ṡyy; Ṡxy]Te and
{Ṫe}=[Ṫxx; Ṫyy; Ṫxy]Te are (constant) intensity factors that constitute six (for the 2D prob-
lem) additional degrees of freedom of the element. From expression (76) it is clear that
the orthogonality condition (75) is ful�lled for the elementwise constant assumed stress �eld
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in Equation (35) since∫
�e

˙̃U(e)1 : �e d�=
∫
�e

(
�(e)S

1
k
− le
�e

)
(Ṙe ⊗ n)S : �e d�

=
∫
�e

(
�(e)S

1
k
− le
�e

)
d�︸ ︷︷ ︸

le−le = 0

(Ṙe ⊗ n)S : �e=0 (78)

∫
�e

˙̃U(e)2 : �e d�=
∫
�e

1
J
(s Ṡe + tṪe) : �e d�

=
∫ +1

−1

∫ +1

−1
s ds dt︸ ︷︷ ︸

= 0

Ṡe : �e +
∫ +1

−1

∫ +1

−1
t ds dt︸ ︷︷ ︸

= 0

Ṫe : �e=0 (79)

6.1. 2D implementation

In view of the preceding formulation, the 2D implementation of element E4n becomes similar
to that of the element S4n in Equations (45) and (47) but including the additional enhanced
strain terms in Equation (76). That is

��u(�̇; Wh)=0

���(�̇h; �̇; ^h)=0
⇒

e=nelem⋃
e=1

[∫
�e
B(e)

T · {
̇} d�− Ḟext(e)
]
= 0 (80)

{U̇}(e) = B(e) · ḋ(e)
(81)

ḋ
(e)
= [ḋ1; ḋ2; ḋ3; ḋ4; [Ṙe; {Ṡe}; {Ṫe}]]T

B(e) = [B(e)1 ; B
(e)
2 ; B

(e)
3 ; B

(e)
4 ; G

(e)]

B(e)i =



@xN

(e)
i 0

0 @yN
(e)
i

@yN
(e)
i @xN

(e)
i




(82)

G(e) =




nx 0

0 
ny


ny 
nx︸ ︷︷ ︸
˙̃U1

s 0 0 t 0 0

0 s 0 0 t 0

0 0 s 0 0 t




︸ ︷︷ ︸
˙̃U2


 =
(
�(e)S

1
k
− le
�e

)

where the eight internal degrees of freedom [Ṙe; {Ṡe}; {Ṫe}] can be condensed at elemental
level.
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Figure 4. Homogeneous plate: stress �xx vs displacement � curves for di�erent elements.

7. NUMERICAL TESTS

7.1. Homogeneous plate

The basic test of Section 4 and Figure 3 is now repeated using the modi�ed elements M4n
and E4n. The results, again in terms of �xx–� curves, are presented in Figure 4 together with
the ones obtained with the original element S4n and the exact result (U4n).
It can be observed the dramatic reduction in the stress-locking e�ect obtained with the new

elements which prove the e�ectiveness of the adopted strategies. Besides, one can observe
that the results obtained with element M4n (mixed strategy) and element E4n (re-enhancement
strategy) are very similar to each other, which shows that the improvement reasoning based
on the cancellation of the bulk strain, stated in Section 4 and implemented in two di�erent
strategies, was essentially correct.

7.2. Notched specimen

In order to assess the performance of the proposed strategies in more complex problems,
the test of Figure 5(a) is also considered. It is a notched specimen whose experimental
testing is reported in Reference [27]. The couples of forces F1 and F2 are progressively
applied, as it is indicated, in Figure 5(b) in order to induce a mixed mode crack which
develops from the notch tip with an inclination angle of 71◦ (see Figure 5(c)). For the
numerical simulation the same material model (isotropic continuum damage with linear soft-
ening) as in the previous case has been adopted, with the following parameters: the elastic
modulus and Poisson’s ratio are E=30580 Mpa and �=0:2 respectively, the fracture energy
Gf = 100N=m and the tensile strength is assumed to be �u=3MPa. The width of the specimen
is t=50:8 mm.
The results, in terms of the applied force versus the CMOD, obtained with the U4n ele-

ment, the original S4n element and the modi�ed symmetric M4n and E4n elements, as well
as the experimental values from the above reference, are presented in Figure 5(d). Again
the dramatic improvement, in terms of the numerical stress-locking e�ect, obtained with the
devised strategies in comparison with the original symmetric element S4n can be observed.
Also the iso-displacement curves shown in Figure 5(e) display a modelled discontinuity that
matches very well the experimental crack.
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Figure 5. Notched specimen: (a) geometrical model; (b) imposed external loading along time; (c)
observed crack in the experimental test; (d) load F1 vs opening displacement d for di�erent �nite

elements; and (e) displacement contours (d=0:04 mm).

7.3. Three point notched beam

We consider now the three point notched concrete beam, in plane strain, shown in Figure 6(a).
Experimental data for this test have been presented by Peterson [28].
The concrete post-critical behaviour is modelled by the same isotropic continuum damage

model than in Reference [15]. The material parameters are taken: E=30580Mpa; �=0:2 and
the fracture energy Gf = 126 N=m. The tensile strength is taken �u=3:4 MPa. The width of
the specimen is t=100 mm. The mesh consists of 615 quadrilaterals re�ned near the notch
tip.
A crack opening in mode I is expected to develop from the notch tip, propagating in the

vertical direction through the beam, as shown in Figure 6(b). The plots in Figure 6(c) and
(d) correspond, respectively, to the load F vs the vertical displacement � curves using linear
and exponential softening laws.
Once again the striking behaviour already observed in the previous simulations can be no-

ticed: the M4n and E4n elements dramatically reduce the stress-locking phenomenon exhibited
by the original S4n element, and provide a response that is very close to the one obtained
with the non-symmetric (U4n) element.
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Figure 6. Three points notched beam: (a) geometrical model; (b) discontinuity path; (c) results for
linear softening; and (d) results for exponential softening.

8. CONCLUDING REMARKS

Throughout this work we have explored the possibility of using statically consistent symmet-
ric elements with embedded discontinuities to capture strong discontinuities. As a matter of
fact it has been shown that the use of mixed (M4n element) or assumed enhanced strain
(E4n element) techniques contribute to substantially alleviate the strain-locking phenomenon
appearing in the original S4n element.
In essence these techniques are intended for recovering the capacity of the non-symmetric

element U4n to reproduce rigid body motions of the portions of the elements split up into
by the discontinuity, while keeping the symmetric character and variational consistency of the
original symmetric S4n element.
An important issue, that has not been addressed so far, is the stability properties of the

derived elements. It is well-known in the literature that the use of mixed element techniques
[28] and assumed enhanced strain techniques [24] may introduce spurious singular modes
whose propagation through the �nite element mesh can destroy both the reliability of the
solution and the convergence of the non-linear problem. For instance: it is known that the
four-noded element with reduced integration (one sampling point) considered here in element
M4n, leads to the development and propagation of the so called hour-glass spurious modes
[22]. Also the linear re-enhancement modes, ˙̃U(e)2 in Equation (76), considered for the E4n
element do not ful�l the stability condition (ṼU ∩VU= {0}) [24].
However, there is a crucial aspect in the way that the elements derived in this work are

implemented and that makes their stability behaviour very di�erent from the classical ones.
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Throughout this work, those �nite element formulations have been derived and presented
for the BVP in rate (incremental) form (see Equations (4), (45), (72) or (80)). This allows
to consider the problem as a sequence, along time, of incremental problems, each one having
its own �nite element formulation. As a matter of fact the implementation is done in such a
way that the modi�cations on the basic element S4n that lead to the derived elements M4n
and E4n, are e�ective only for the band of elements that captures the discontinuity and only
beyond the time that this discontinuity appears. The elements outside this band behave as the
original S4n since they do not exhibit the stress-locking problem that the modi�ed elements try
to overcome. This decreases the number of elements a�ected by the reduced integration or re-
enhancement techniques to a single band of essentially one element bandwidth. Consequently
the development and propagation of spurious instability modes are extremely restrained. In
addition, the computational costs associated to the presence of new degrees of freedom (for
the re-enhancement strategy) are then very small.
Although speci�c stability analyses have not been conducted in this paper, and they are left

for subsequent works, during the numerical simulations presented above, and others carried
out during this study, the possible instability modes have not been observed and have not
placed special di�culties on the numerical procedure. However, the authors are aware that
this cannot be generalized to any type and size of the problems, and that speci�c studies on
the stability issue should be carried out in the future.
Also the possibility of using some of the developed elements to dispense with the discon-

tinuity tracking algorithm should be explored in subsequent works.
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