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Abstract

The work explores a specific scenario for structural computational optimization based on the following elements:
a) a relaxed optimization setting considering the ersatz (bi-material) approximation, b) a treatment based on a non-
smoothed characteristic function field as a topological design variable, c) the consistent derivation of a relaxed topo-
logical derivative whose determination is simple, general and efficient, d) formulation of the overall increasing cost
function topological sensitivity as a suitable optimality criterion, and e) consideration of a pseudo-time framework for
the problem solution, ruled by the problem constraint evolution.

In this setting, it is shown that the optimization problem can be analytically solved in a variational framework,
leading to, nonlinear, closed-form algebraic solutions for the characteristic function, which are then solved, in every
time-step, via fixed point methods based on an pseudo-energy cutting algorithm combined with the exact fulfillment
of the constraint, at every iteration of the non-linear algorithm, via a bisection method. The issue of the ill-posedness
(mesh dependency) of the topological solution, is then easily solved via a laplacean smoothing of that pseudo-energy.

In the aforementioned context, a number of (3D) topological structural optimization benchmarks are solved, and
the solutions obtained with the explored closed-form solution method, are analyzed, and compared, with their solution
through an alternative level set method. Although the obtained results, in terms of the cost function and topology
designs, are very similar in both methods, the associated computational cost is about five times smaller in the closed-
form solution method this possibly being one of its advantages. Some comments, about the possible application of
the method to other topological optimization problems, as well as envisaged modifications of the explored method to
improve its performance close the work.

Keywords: Topological optimization, Variational approach, Closed-form solutions, Pseudo-time sequential analysis,
Structural topological optimization

1. Motivation

Computational mechanics tools for solving topological optimization problems raise a large number of challenges,
both from the mathematical and computational points of view. The problem is originally formulated in the context of
a design domain, Ω ⊂ R3, in which a solid domain, Ω+ ⊂ Ω, whose topology is going to be designed, is embedded.
Then, the voids domain is defined as Ω− = Ω\Ω+, and a cost function (typically the structural compliance or a related
structural measure) is aimed at being optimized (minimized) in terms of some design variables, defining the material
distribution (topology) in Ω, and subject to some constraints1. This setting poses a number of difficulties, among
which we will mention the following:

∗Corresponding author
Email address: oliver@cimne.upc.edu (J. Oliver)

1Typically, but not necessarily, the volume occupied by the solid.
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a) Discrete character of the design variables. The distribution of the material at every point, x ∈ Ω, is defined in
terms of the characteristic function, χ(x) : Ω → {0, 1} ; χ(x) = 1 ∀x ∈ Ω+ (material) and χ(x) = 0 ∀(x) ∈ Ω−

(voids). Therefore, the design variables χ(x) map into the discrete image set {0, 1} and the optimization problem
is highly non smooth.

b) Number of design variables. The design variable χ(x) is valued at all points x ∈ Ω. Therefore, unlike in standard
discrete optimization problems [8], there are, in principle, an infinite number of design variables, χ(x) ∀x ∈ Ω,
to be determined.

c) The unknown characteristic function, χ(x), is non-Lipschitz and non-differentiable. This translates into the
fact that optimality conditions, based on standard differentiation of the cost functional, are not, in principle,
applicable.

Along the last decades, a large number of approaches to computational topological optimization have been pro-
posed. With no aim of exhaustiveness, two large families of methods to overcome those challenges have been proposed
(see, for instance, [16, 38, 42] for exhaustive reviews on topological optimization methods):

I) Regularize the characteristic function. This is the choice of the most popular, and successful, of the current
approaches: the Solid Isotropic Material with Penalization (SIMP) [7], in which the discrete characteristic
function, χ, is replaced by a regularized (continuous) function, (density-like function), ρ(x) : Ω → [0, 1]. The
regularization domain, Ωreg ⊂ Ω, (the set of points of Ω where ρ(x) ∈ (0, 1)) is not necessarily small, and
it requires to be covered by a, relatively large, number of discretization domains (finite elements or Voxels).
The approach succeeds in breaking the challenge of continuity, and standard finite-dimensional optimization
procedures2 can be applied to the resulting optimization problem, now formulated in terms of a finite (but large)
number of design variables3, which are, then, supplemented by additional constraints imposing 0 ≤ ρ(xi) ≤ 1.
The success of the method brings also some drawbacks, typically:

• Intrinsic to the existence of the regularization domain, Ωreg ⊂ Ω, is the appearance of grey zones (zones
with diffuse material/voids coexistence, 0 < ρ < 1) [7, 9], where the kind of material provided by the
optimization is unclear. This requires to, subsequently, resort to filtering techniques to eliminate them.

• The mesh-dependence [43] or lack of mesh-size objectivity of the results. Again these requires resorting
to filtering techniques [53].

• The appearance of checkerboards when using finite element discretizations. This type of problems is iden-
tified as a numerical instability (not fulfillment of the Ladyzhenskaya-Babuska-Brezzi stability conditions)
and it should be solved by resorting to specific finite elements in modeling the problem [24].

II) Change the design variable. The so called level-set methods for topological optimization [46], overcome the
difficulties inherent to the discrete character of the characteristic function, χ(x), by replacing it by a different,
smoother, function (the level-set function φ(x) ∈ H1(Ω) : Ω → R) related to each other through χ(x) =

H (φ(x)), where H : R → {0, 1} stands for the Heaviside function. The values of φ(xi) at the sampling points
are the new design variables. The optimization problem is no longer solved through standard optimization
methods, but by means of the solution of a Hamilton-Jacobi (pseudo-time evolutionary) equation [34, 49]. This
family of methods have proven to be very robust in solving different types of topological optimization methods,
albeit they suffer, also, from some drawbacks, e.g.:

• They also require regularization techniques, for instance Tikhonov-regularization based methods [52], to
obtain a well posed (mesh-size objective) optimization problem.

• Their robustness, and rate of convergence, relies on the size of the pseudo time increment adopted, in turn
depending on heuristic considerations. In general this translates into a high number of iterations and, thus,
into a high computational cost. In some cases, these methods use initially the signed distance to the solid
boundaries as level set function, and they may require re-initialization techniques during the analysis [53].

2Typically based on efficient optimization techniques, like the Method for Moving Asymptotes (MMA).
3The value of ρ(xi) at the sampling points xi ∈ Ω.
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• A fundamental issue in this method is the selection of an appropriated sensitivity of the cost function to
changes on the design variable (the level-set function) which was initially related to the shape derivative
concept [3]. More recently, connections with the topological derivative concept were introduced (see for
instance [5, 52]).
The use of an appropriate sensitivity of the cost function to topological changes in the design domain,
in front of the introduction of holes in the solid material, plays a fundamental role in the performance of
this family of methods [28]. Indeed, derivation of analytical expressions for the topological derivative, in
linear elastic problems, becomes crucial, and much work has been done in this sense ([6, 20, 21, 31, 32].
In these cases, the topological sensitivity is mathematically derived in terms of the perturbation of the
cost function, after material removal (introduction of a hole) in a certain point of Ω, ruled by the elastic
state problem in the perturbed solid. This analytical derivation, which specifically depends on the type
of optimization problem and the considered elastic material (isotropic, orthotropic, anisotropic etc.), has
to be previously derived via specific, and sometimes heavy, analytical methods, i.e. limit and asymptotic
analysis to a null size of the hole. This could be also understood as an specific burden of the method.

On the light of the, so far, depicted situation, this work aims at exploring the impact and consequences of an alternative
option for computational topological optimization: facing, as much as possible, the topological optimization problem
in its original setting, i.e. considering the following scenario:

• A non-smoothed characteristic function, χ(x) : Ω→ {β, 1} ; β ∈ (0, 1), as design variable.

• An infinite-dimensional design space, considering the values of the characteristic function χ(x) at all points of
Ω, as design variables of the optimization problem.

• A relaxed optimization setting, which facilitates the obtainment of the topological derivative, not requiring a
complex mathematical derivation.

• Deriving the corresponding closed-form solutions, for such a non-smooth optimization problem, in a number
of structural problems4.

Then, an algorithmic setting for solving the obtained (highly non-linear) closed-form solutions is devised, consist-
ing of:

1) A relaxed, bi-material, topological optimization, setting. The original embedded-solid setting, where a hard
material (solid) domain Ω+ is embedded into the design space, Ω, is relaxed to a bi-material (hard-phase +

soft-phase, M+/M−) setting. This relaxed scenario is commonly found in current topological optimization
approaches and it is, sometimes referenced as ersatz material approximation [2, 15]. Its main advantage is
that it makes the optimization problem simpler than the alternatives, e.g. the immersed boundary methods
[1, 30, 39]. In the approach considered in this work, the relaxed bi-material setting is used, not only for solving
the static elastic problem, but also for the purposes of derivation of the topological sensitivity, this providing
additional consistence to the approach. In this way, at all points of the design domain Ω, there exists (some
type of) material, and the classical concept of topological perturbation, initially understood as solid material
removal or addition, is replaced by that of material switching or material exchange (M+(x)↔ M−(x)).

A number of, non-trivial, consequences derive from this, apparently minor, modification: a) the standard (solid
+ voids) setting is asymptotically approximated by assigning to the soft material, M−, very weak elastic prop-
erties (characterized by the classical contrast factor α → 0), and b) the sensitivity of the cost function to the
topological perturbation at a given point x ∈ Ω, now understood as a local material exchange at the point, can
be readily placed in a, non-smooth, variational setting and computed, independently of the considered elastic
material family, as a directional derivative of the cost functional. This largely facilitates the derivation of the
corresponding relaxed topological derivative.

4As precursors of solutions, in the chosen context, for broader families of topological optimization problems.
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2) Sequential pseudo-time framework. In this framework, a pseudo-time parametrization is introduced. Solutions
of the topological optimization problem are obtained for increasing values of the restriction (i.e. the soft-phase
volume |Ω−|), that plays the role of a pseudo-time. In this context, the time evolution of the topology of the
optimal solution (and the associate cost function values) is obtained at no additional computational cost. In this
way the optimization process provides information, not only on the optimal topology at every pseudo-time-step
and, thus, at the corresponding soft-phase volume level, but also on the evolution of the minima for a chosen set
of times (volumes). In some cases this is a very useful information for the designer, who obtains, in a single
run, additional information about, for instance, the minimum of the minima in the computed designs.

3) Exact fulfillment of the restriction at every iteration of the algorithm. This concept is borrowed from numerical
techniques frequently used in non-linear analysis of structures: the so-called load control, or arc-length methods
[14]. This substantially contributes to the robustness, and to the computational cost diminution, in the resolution
of the resulting non-linear problem.

4) Regularization of the obtained closed-form topological solutions via laplacean smoothing techniques. In order
to prevent the aforementioned ill-posedness of the problem, leading to the mesh-size dependence, a Laplace-type
smoothing is done, which removes from the solution the small (noisy) wavelengths below a predefined thresh-
old. Distincly from other approaches, this regularization is not done by introducing an additional contribution
to the cost function [52], but by smoothing the closed-form solution obtained from the original optimization
problem. Additionally, this allows: a) controlling the minimum attainable width/section of the filaments of
the solid material in the obtained solutions topology and, b) obtaining 2 1

2 D (extruded to the third dimension)
topological designs.

In next sections the theoretical and algorithmic aspects of the considered formulation are, first, presented in detail
and, then, assessed by application to a set of representative examples. Comparisons of the obtained results, with those
obtained with level-set (Hamilton-Jacobi type) techniques using the derived relaxed topological derivative, are done
in order to check the performance of the analyzed approach, both in terms of the cost function values, and also in
terms of the required computational cost.

2. Problem set up

∂uΩ
∂σΩ

F
Ω

FΓ

Ω+ ( χ𝜓(x) = 1 )

Ω- ( χ𝜓(x) = β )

𝔐+

𝔐-

x

y

x

y

Figure 1: β-relaxed setting: bi-material design domain

2.1. Relaxed characteristic function

Let’s consider the design domain, Ω ⊂ Rn ; n ∈ {2, 3}, and the distribution over this domain of two different
material phases: a) hard-phase (M+) and b) soft-phase (M−), the type of phase at every point, x ∈ Ω, being defined

4



by the characteristic function χ(x) as:

χ(x) : Ω→ {β, 1} :=
χ(x) = 1 if material phase at x isM+

χ(x) = β if material phase at x isM−
(a)

0 < β < 1⇒ (1 − β) > 0 (b)

(1)

In a second step we shall consider a relaxed version of the characteristic function, denoted as χψ, in terms of the, here
termed, discrimination function ψ ∈ H1(Ω) which is assumed single-valued and defined as (see figure 2)

χψ(x) = Hβ(ψ(x)) (2)

whereHβ(•) stands for a relaxed Heaviside function5, defined as

Hβ(ψ) = 1 for ψ > 0
Hβ(ψ) = β for ψ < 0

(3)

Therefore, function ψ(x) defines, through its value, two possible values of χψ, i.e.

χψ(x) = Hβ(ψ(x)) = 1 for ψ(x) > 0
χψ(x) = Hβ(ψ(x)) = β for ψ(x) < 0

(4)

and discriminates points x ∈ Ω belonging either to the hard-phase domain, Ω+, or to the soft-phase domain Ω−:Ω+(χψ) := {x ∈ Ω | ψ(x) > 0} ⇒ χψ(x) = 1 (a)
Ω−(χψ) := {x ∈ Ω | ψ(x) < 0} ⇒ χψ(x) = β (b)

(5)

Equations (5) define the topology of Ω.

Remark 1. Notice that, since only two different phases are considered, Ω+ ∪Ω− = Ω, the description of the topology
in equation (5) can be rephrased only in terms of the positive counterpart of the discrimination function, ψ(x), i.e.Ω+(χψ) := {x ∈ Ω ; ψ(x) > 0} ⇔ χψ(x) = 1 (a)

Ω−(χψ) := {x ∈ Ω ; x < Ω+} ⇔ χψ(x) = β (b)
(6)

or, alternatively, in terms of the negative counterpart of ψ(x) i.e.Ω−(χψ) := {x ∈ Ω ; ψ(x) < 0} ⇒ χψ(x) = β (a)
Ω+(χψ) := {x ∈ Ω ; x < Ω−} ⇒ χψ(x) = 1 (b)

(7)

From equations (5) or (6) the following equalities can be stated:

|Ω| = |Ω+(χψ)| + |Ω−(χψ)| (a)

|Ω+(χψ)| =
∫

Ω

χψ(x) − β
1 − β

dΩ (b)

|Ω−(χψ)| =
∫

Ω

1 − χψ(x)
1 − β

dΩ (c)

(8)

where |Ω|, |Ω+| and |Ω−| stand, respectively, for the measure (surface/volume) of the design domain, Ω, the hard-phase
domain, Ω+, and the soft-phase domain, Ω−.

5Which recovers to the classical Heaviside function as β→ 0.
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Figure 2: Discrimination function, ψ and the corresponding relaxed characteristic function, χψ.

2.2. Relaxed, bi-material, linear elastic problem
Let us now consider a bi-material elastic solid occupying the whole domain Ω. Then, the material distribution

in Ω can be defined in terms of the relaxed characteristic function6, χ(x), in equations (1) to (5). The corresponding
elastic problem reads

∇ · σχ(x) + b(x) = 0 ;


σχ(x) ≡ σ(uχ(x)) = χmC︸︷︷︸

Cχ(x)

: ε(uχ) = Cχ(x) : ε(uχ)

ε(uχ) ≡
(
∇ ⊗ uχ(x)

)sym
∀x ∈ Ω (a)

σχ(x) · n = t∗(x) ∀x ∈ ∂σΩ (b)
uχ(x) = 0 ∀x ∈ ∂uΩ (c)

(9)

where uχ(x) is the displacement vector field, parametrized by the current topology, σχ(x) stands for the second order
stress tensor field, b(x), stands for the density of the body forces, t∗(x) stands for the boundary tractions and ε(uχ) is
the (infinitesimal) strain tensor. In equation (9)-(a), C is the, fourth order, elastic constitutive tensor of the hard-phase
(assumed constant), and the exponent m is typically taken m > 1. In addition, ∂uΩ ⊂ ∂Ω and ∂σΩ ⊂ ∂Ω, (where
∂uΩ ∩ ∂σΩ = ∅ and ∂uΩ ∪ ∂σΩ = ∂Ω) are, respectively, those parts of the boundary, ∂Ω, where displacements, uχ,
and tractions, t = σχ · n or forces, are, prescribed (see figure 1). In addition χ(x) is recalled, from equations (1) as:

χ(x) =

1 ∀x ∈ Ω+

β ∀x ∈ Ω−
(10)

where 0 < β < 1 will be, from now on, termed the relaxation factor. Notice that, according to equations (9)-(a) and
(10) the elastic constitutive tensor, Cχ(x) can be specified for all the domain points as

Cχ(x) ≡ χm(x)C =

C ∀x ∈ Ω+(χ)
βmC = αC ≈ 0 ∀x ∈ Ω−(χ)

(a)

α = βm ∈ (0, 1) ; β = α
1
m ∈ (0, 1) (b)

∂Cχ

∂χ
= mχm−1C =

mC ∀x ∈ Ω+(χ)

mβ(m−1)C = mα
m−1

m C ∀x ∈ Ω−(χ)
(c)

(11)

6From now on, subscript (•)ψ will be omitted, unless it is strictly necessary.
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where the factor α and the exponent m will be, respectively, termed the contrast stiffness factor and the contrast
stiffness exponent. For the standard isotropic case the elasticity tensor can be written [33]

C = λ̄1 ⊗ 1 + 2µI =
νE

(1 + ν) (1 − 2ν)
1 +

E
(1 + ν)

I

Ci jkl = λ̄δi jδkl + µ
[
δikδ jl + δilδ jk

]
; i, j, k, l ∈ {1, 2, 3}

(12)

where λ̄ and µ are the Lamé coefficients and E and ν stand, respectively, for the Young modulus and the Poisson
ratio. In addition, 1 and I are, respectively, the second order unit tensor and the fourth order (symmetric) unit tensor.
The problem in equations (9) can be alternatively written in a variational form as

RELAXED BI-MATERIAL ELASTIC PROBLEM
GIVEN : χ(x), b(x), t∗(x), (a)

Vη :=
{
η(x) ∈ H(1)(Ω) ; η(x) = 0 in ∂uΩ

}
(b)

FIND : u(χ, x) ≡ uχ(x) ∈ Vη (c)
FULFILLING : aχ(uχ,w) = l(w) ∀w ∈ Vη (d)

aχ(uχ,w) ≡
∫

Ω

ε(uχ) : Cχ : ε(w)dΩ ; ε
(
η
)

=
(
∇ ⊗ η(x)

)sym

l(w) =

∫
Ω

b · wdΩ +

∫
∂σΩ

t∗ · wdΓ

(e)

(13)

where, aχ(uχ,w) is a symmetric bilinear form (aχ(uχ,w) = aχ(w,uχ)).

Remark 2. Notice that, unlike in the strong form of the relaxed elastic problem, in equations (9), no derivative of
the, spatially discontinuous, constitutive tensor Cχ appears in the variational form of problem in equations (13).
The problem description in these equations will be the one considered, from now on, and termed the (relaxed) state
problem (or equation). With the boundary conditions appropriately precluding the rigid body motions, it has a unique
solution.

Remark 3. Additionally, it is assumed that, as the relaxation factor β → 0 (and, thus, α → 0), the relaxed elastic
problem, in equations (9) to (13), asymptotically converges, to the solution of the single material (M+ ≡ solid and
M− ≡ voids) elastic problem defined as:

SINGLE-MATERIAL ELASTIC PROBLEM
GIVEN : Ω,Ω+,b(x), t∗(x), (a)

Vη :=
{
η(x) ∈ H(1)(Ω+) ; η(x) = 0 in ∂uΩ ∩ ∂Ω+

}
(b)

FIND : u(x) ∈ Vη (c)
FULFILLING : a(u,w) = l(w) ∀w ∈ Vη (d)

a(u,w) ≡
∫

Ω+

ε(u) : C : ε(w)dΩ ; ε
(
η
)

=
(
∇ ⊗ η(x)

)sym

l(w) =

∫
Ω+

b · wdΩ +

∫
∂σΩ+

t∗ · wdΓ

(e)

(14)

i.e. the linear elastic solution of the (non-relaxed or embedded) solid/voids problem.

The fact that the relaxed bi-material version (in equations (13)) is considered here as the target state problem for the
subsequent developments, is emphasized.
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2.3. Finite element discretization

So far, no mention has been made of the numerical method used to solve the elastic state problem in equation (13).
If the finite element method is chosen, the state-equation (13)-(d) yields7, after discretization,

Kχdχ = f ; Kχ =

∫
Ω

BT (x) Dχ(x) B(x)dΩ ; Dχ(x) = (χ(x))m D (a)

σχ(x) = Dχεχ(x) ; εχ(x) = B(x)dχ ; uχ(x) = Nu(x)dχ (b)
(15)

where Kχ stands for the stiffness matrix, f for the external forces vector and dχ is the nodal displacement vector. In
addition, σχ(x) and εχ(x) stand, respectively, for the stress and strain vectors, B(x) is the strain matrix, D is the matrix
version of the hard-phase constitutive tensor C, and Nu(x) is the, displacement, interpolation (shape-function) matrix.

2.4. Relaxed Topological Derivative. Definition.

Let us consider the function space of solutions,Vuχ , of the relaxed state problem in equation (13) for all possible
topologies χ(x), i.e.Vχ := {χ(x) : Ω→ {β, 1} }

Vuχ =
{
uχ(x) ≡ u(χ, x) : Ω→ Rn, n ∈ {2, 3} ; χ ∈ Vχ ; aχ(uχ,w) = l(w) ∀w ∈ Vη

} (16)

and the function space,VΩ, of mappings G(χ,uχ, x), in R, and the corresponding functional J(χ) i.e.
VΩ :=

{
G

(
χ(x),uχ(x), x

)
∈ L2(Ω) ; G(χ,uχ, x) : Vχ ×Vuχ ×Ω→ R

}
J(χ) ≡ Jχ : VΩ → R ; Jχ =

∫
Ω

G
(
χ,uχ(x), x

)︸           ︷︷           ︸
F(χ, x)

dΩ =

∫
Ω

F(χ, x)dΩ (17)

Let us now consider a specific point, x̂ ∈ Ω, and a sequence of balls8, Ωε(x̂) of radius ε, (the perturbation domain),
surrounding x̂, i.e. x̂ ∈ Ωε ⊂ Ω, where ε ∈ R+ and ε → 0 is a regularization parameter (see figure 3). Let us finally
consider the space of perturbations, due to material phase exchange only at points of the domain Ωε(x̂),

∆Vx̂,ε :=
{
ηx̂,ε ; ηx̂,ε(x) = ∆χ(x) ∀x ∈ Ωε(x̂) ; ηx̂,ε(x) = 0 ∀x ∈ Ω\Ωε(x̂)

}
(18)

where ∆χ(x) stands for the increment in the value of χ(x) due to exchange of the type of material phase at point x. In
view of equation (5), the value ∆χ(x), is:

∆χ(x) =

−(1 − β) < 0 for x ∈ Ω+

1 − β > 0 for x ∈ Ω−
(19)

Let us now consider the following asymptotic expansion of the functional J(χ) in equation (17), in terms of the
perturbation ηx̂,ε ∈ ∆Vx̂,ε

J(χ + ηx̂,ε) = J(χ) +
δJ(χ)
δχ

(x̂) µ[Ωε(x̂)] + O(ε) (20)

7In the following, matrix (Voigt’s) notation is used for discrete finite element formulations.
8Ωε (x) is a circle (in 2D) or a sphere in (3D).
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(a)

(b)

Ω+ Ω+\Ωϵ(x̂)

x̂x̂

Δχ(x̂) = 1-β

Δχ(x̂) = - (1-β)

ϵ

x̂

Ωϵ(x̂)

Figure 3: Topological derivative settings: (a) Relaxed Topological Derivative (RTD), (b) Exact Topological Derivative
(TD)

where, µ[Ωε(x̂)] is an appropriate measure9 of the perturbation domain Ωε(x̂), fulfilling the following conditions
1) µ[Ωε(x̂)] > 0 (a)
2) lim

ε→0
µ[Ωε(x̂)] = 0 (b)

3) makes
δJ(χ)
δχ

(x̂) nonzero valued and bounded (c)

(21)

From equation (20), and conditions in equation (21), we define the Relaxed Topological Derivative (RTD) of the
functional J(χ) at point x̂ as

δJ(χ)
δχ

(x̂) = lim
ε→0

1
µ[Ωε(x̂)]

[
J(χ + ηx̂,ε) − J(χ)

]
(22)

In view of the previous derivations the RTD can be conceptually defined as

Definition 1 (RTD). The (relaxed) topological derivative (RTD) of functionalJ(χ), at point x̂ ∈ Ω, is a finite measure
of the sensitivity of J(χ) to the change of topology at that point, in the α-relaxed setting described in sections 2.1 and
2.2. It is computed as the limit, as α → 0; β → 0, of the change of J(χ), when the material phase type is exchanged
(χ↔ χ + ∆χ(x̂)) at the neighborhood, Ωε(x̂) per unit of the perturbation measure, µ[Ωε(x̂)].

Notice in the previous derivations the similarity of the procedure for obtainment of the topological derivative, here
acronymized as (RTD), in the relaxed bi-material setting in equations (22), and that in the embedded/single-material
setting: the exact Topological Derivative (TD) [11, 31, 32, 45]. The fundamental difference is that, in the second, case

9For practical purposes, it will be the volume or the surface (depending on the case) of the perturbation domain µ[Ωε (x̂)].
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the TD is considered in the context of a a single (solid) phase, occupying the domain Ω+ ⊂ Ω, the corresponding
functional being J(Ω+) =

∫
Ω+ (•)(x)dΩ. This functional is perturbed by removing the material in an infinitesimal

neighborhood, Ωε(x̂), around point x̂, so that the perturbed solid domain becomes Ω+\Ωε(x̂) (see figure 3).
Then the topological derivative is defined as :

DT (x̂) := lim
ε→0

∫
Ω+\Ωε (x̂)(•)(x)dΩ −

∫
Ω+ (•)(x)dΩ

µ[Ωε(x̂)]
(23)

Unlike in the relaxed topological derivative derivation, the integration domains, Ω+\Ωε and Ω+, in equation (23) are
not the same, and it is not possible to establish a homeomorphism between both domains [31]. This motivates a
subsequent analytical procedure that involves some additional, and problem dependent, limit and asymptotic analyzes
[20]. However, it is assumed that, in the asymptotic limit case (α → 0; β → 0), both procedures lead to the same
results, either for the topological derivative or for the corresponding optimization problems.

2.5. Examples of relaxed variational topological derivatives

In the following sections, some results for relaxed topological derivatives, used in this work, are presented.

2.5.1. Relaxed topological derivative of an integral over the design domain
For the functional, Jχ , defined as in equation (17), the asymptotic expansion in the direction of the perturbation

ηx̂,ε reads

J(χ + ηx̂,ε) =

∫
Ω

F(χ + ηx̂,ε , x)dΩ =

∫
Ω

(
F(χ, x) +

∂F(χ, x)
∂χ

ηx̂,ε

)
dΩ + O(ε) =

=J(χ) +

∫
Ω

∂F(χ, x)
∂χ

ηx̂,εdΩ + O(ε) =

=J(χ) +

∫
Ω

∂G
(
χ,uχ(x), x

)
∂χ

+
∂G

(
χ,uχ(x), x

)
∂uχ

·
∂uχ
∂χ

 dΩ + O(ε)

(24)

where, when necessary, the displacement derivatives ∂uχ/∂χ are obtained from the relaxed elastic problem (the state
equation) in equations (13), either directly by χ-differentiation of its solution, or indirectly, by using the adjoint-
problem method [11]. Then, the topological derivative of the functional Jχ is obtained by replacing equation (24)
into equation (22), as

δJ(χ)
δχ

(x̂) =
δ

δχ

[∫
Ω

F(χ, x)dΩ

]
(x̂) = lim

ε→0

1
µ[Ωε(x̂)]

[
J(χ + ηx̂,ε) − J(χ)

]
=

= lim
ε→0

1
µ[Ωε(x̂)]

(∫
Ω

∂F(χ, x)
∂χ

ηx̂,εdΩ + O(ε)
)

= lim
ε→0

1
µ[Ωε(x̂)]

∫
Ωε (x̂)

∂F(χ, x)
∂χ

∆χ(x̂)dΩ =

= lim
ε→0

|Ωε(x̂)|
µ[Ωε(x̂)]

[
∂F(χ(x), x)

∂χ
∆χ(x)

]
x=x̂

(25)

where equations (22) and (24), and the definition of the perturbation ηx̂,ε in equation (18), have been taken into account.
In order to fulfill condition in equation (21)-(c), a suitable choice for µ[Ωε(x̂)] is

µ[Ωε(x̂)] = |Ωε(x̂)| =
4
3
πε3 (26)

10



this yielding, in terms of the descriptions F(•) and G(•) in equation (17)

δJ(χ)
δχ

(x̂) =
δ

δχ

[∫
Ω

F(χ, x)dΩ

]
(x̂) =

[
∂F(χ, x)
∂χ

]
x=x̂

∆χ(x̂) =

=

∂G
(
χ,uχ, x

)
∂χ

+
∂G(χ,uχ, x)

∂uχ
·
∂uχ
∂χ


x=x̂

∆χ(x̂)
(27)

Remark 4. Notice that the linear character of the integration and differentiation operations, involved in the determi-
nation of the relaxed variational topological derivative in equations (25) to (27), confers to the RTD the same linear
character, i.e.

δ (J(χ) + λK(χ))
δχ

(x̂) =
δJ(χ)
δχ

(x̂) + λ
δK(χ)
δχ

(x̂) ; J(χ),K(χ) ∈ VΩ ; λ ∈ R (28)

2.5.2. Relaxed topological derivative of a material phase volume
Let us consider the functional defining the volume of phaseM+ (see figure 4)

Ω-

Γ
x

y

∂Ω ∂Ω+ ∂Ω-

Ω+ 𝔐+ 𝔐-

Figure 4: Design domain Ω: material-phase domains (Ω+ and Ω−), material-phase boundaries (∂Ω+ and ∂Ω−), and
phase interfaces (Γ).

J(χ) ≡ |Ω+(χ)| =
∫

Ω+(χ)
dΩ ; J(χ) ∈ VΩ (29)

and the identity

lim
ε→0
J(χ + ηx̂,ε) = lim

ε→0
|Ω+(χ + ηx̂,ε)| = lim

ε→0

(
|Ω+(χ)| + sgn(∆χ(x̂))|Ωε(x̂)|

)
(30)

where sgn(∆χ(x̂)) = −1 ∀x̂ ∈ Ω+ and sgn(∆χ(x̂)) = 1 ∀x̂ ∈ Ω− (see equation (19)).

11



The corresponding topological derivative, at point x̂ ∈ Ω, can be now computed from equations (22) and (30) as

δJ(χ)
δχ

(x̂) = lim
ε→0

1
µ[Ωε(x̂)]

[
J(χ + ηx̂,ε) − J(χ)

]
= lim

ε→0

|Ω+(χ + ηx̂,ε)| − |Ω+(χ)|
µ[Ωε(x̂)]

= lim
ε→0

|Ω+(χ)| + sgn(∆χ(x̂))|Ωε(x̂)| − |Ω+(χ)|
µ[Ωε(x̂)]

=

=sgn(∆χ(x̂)) lim
ε→0

| Ωε(x̂)|
µ[Ωε(x̂)]

= sgn(∆χ(x̂))

(31)

where the choice for µ[Ωε(x̂)], to fulfill the condition in equation (21)-(c), is

µ[Ωε(x̂)] = | Ωε(x̂)| =
4
3
πε3 (32)

In summary

δ|Ω+(χ)|
δχ

(x̂) = sgn(∆χ(x̂)) =

 − 1 ∀x̂ ∈ Ω+

+ 1 ∀x̂ ∈ Ω−
(33)

For the RTD of the soft-phaseM− case we consider the identity

|Ω+(χ)| + |Ω−(χ)| = |Ω| (34)

which yields

δ|Ω−(χ)|
δχ

(x̂) = −
δ|Ω+(χ)|
δχ

(x̂) = −sgn(∆χ(x̂)) =

 + 1 ∀x̂ ∈ Ω+

− 1 ∀x̂ ∈ Ω−
(35)

An alternative procedure to obtain the RTD of the functional in equation (29), consists of rephrasing it, considering
equation (10), and applying the result in equation (27) (see also Table 1), i.e.

|Ω+(χ)| =
∫

Ω+

dΩ =

∫
Ω

χ − β

1 − β︸︷︷︸
F(χ)

dΩ

F(χ) ≡
χ − β

1 − β
⇒

∂F(χ)
∂χ

=
1

1 − β
δ|Ω+(χ)|
δχ

(x̂) =

[
∂F(χ
∂χ

]
x=x̂

∆χ(x̂) =
1

1 − β
(1 − β)(sgn(∆χ(x̂)))︸                   ︷︷                   ︸

∆χ(x̂)

= sgn(∆χ(x̂))

(36)

which, as expected, coincides with the result in equation (33).

2.5.3. Relaxed topological derivative of a phase perimeter
We now consider the functional corresponding to the perimeter of the hard-phase, P+(χ), defined as (see figure 4)

J(χ) = P+(χ) =

∫
∂Ω+(χ)

dΓ = |∂Ω+(χ)| (37)

and the identity

lim
ε→0
J(χ + ηx̂,ε) = lim

ε→0
|∂Ω+(χ + ηx̂,ε)| = lim

ε→0

(
|∂Ω+(χ)| + |∂Ωε(x̂)|

)
(38)

12



The corresponding topological derivative, at point x̂ ∈ Ω, can be now computed from equations (22) and (38) as:

δJ(χ)
δχ

(x̂) = lim
ε→0

1
µ[Ωε(x̂)]

[
J(χ + ηx̂,ε) − J(χ)

]
= lim

ε→0

|∂Ω+(χ + ηx̂,ε)| − |∂Ω+(χ)|
µ[Ωε(x̂)]

= lim
ε→0

|∂Ω+(χ)| + |∂Ωε(x̂)| − |∂Ω+(χ)|
µ[Ωε(x̂)]

= lim
ε→0

|∂Ωε(x̂)|
µ[Ωε(x̂)]

= 1
(39)

where the choice for µ[Ωε(x̂)], in equation (21)-(c), is

µ[Ωε(x̂)] = |∂Ωε(x̂)| = 4πε2 (40)

From the previous derivation it is evident that the same result would be found for the perimeter of the soft-phase
domain P−(χ). Therefore, in summary,

P+(χ) := |∂Ω+(χ)| ⇒
δP+(χ)
δχ

(x̂) = 1

P−(χ) := |∂Ω−(χ)| ⇒
δP−(χ)
δχ

(x̂) = 1
(41)

Remark 5 (Interface measure). A measure frequently considered in the topological optimization literature [17] is
the measure of the phases interface Γ(χ) (see figure 4), which does not correspond to any of the phase perimeters, P+

and P−, in equation (41), but to the measure, |Γ(χ)|, of the geometrical interface, Γ := (∂Ω+ ∪ ∂Ω−), shared by both
phases (thus, excluding the boundary ∂Ω, see figure 4).

The RTD of Γ(χ) can be readily obtained from the following identity

|∂Ω+(χ)|︸   ︷︷   ︸
P+(χ)

+ |∂Ω−(χ)|︸   ︷︷   ︸
P−(χ)

= 2|Γ(χ)| + |∂Ω| (42)

and the RTD of equation (42) yields

δ|Γ(χ)|
δχ

(x̂) =
1
2

(
δP+(χ)
δχ

(x̂) +
δP−(χ)
δχ

(x̂)
)

= 1 (43)

where equations (41) have been taken into account.

In Table 1, examples of commonly used RTD derivatives are summarized.

3. Application to volume constrained topological optimization problems

Let us consider the following topological optimization problem in the design domain Ω

FIND : χ(x) = Hβ(ψ (x)) ; χ : Ω→ {β, 1} ; ψ(x) ∈ H1(Ω)
FULFILLING :

χ∗ = argmin
χ

J (χ) ≡
∫

Ω

F(χ, x)dΩ (a)

SUBJECT TO :
C(χ) ≡ |Ω+(χ)| − V̄ = |Ω| − |Ω−(χ)| − V̄ = 0 (b)

(44)

where, in equation (44)-(b), V̄ is the target volume for the material hard-phase (M+) and the equality |Ω+(χ)| =
|Ω| − |Ω−(χ)| has been used.
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Functional Jχ RTD
(
δJχ/δχ

)
(x̂) Perturbation measure

µ[Ωε(x̂)]∫
Ω

F(χ, x)dΩ

[
∂F(χ(x), x)

∂χ

]
x≡x̂

∆χ(x̂) |Ωε(x̂)|

|Ω+(χ)| :=
∫

Ω+(χ) dΩ sgn(∆χ(x̂)) |Ωε(x̂)|

|Ω−(χ)| :=
∫

Ω−(χ) dΩ sgn(∆χ(x̂)) |Ωε(x̂)|

P+(χ) :=
∫
∂Ω+(χ) dΓ 1 |∂Ωε(x̂)|

P−(χ) :=
∫
∂Ω−(χ) dΓ 1 |∂Ωε(x̂)|

Γ(χ) :=
∫

(∂Ω+∩∂Ω−)(χ) dΓ 1 |∂Ωε(x̂)|

Table 1: Relaxed topological derivative examples. ∆χ(x̂) = −(1 − β) ∀ x̂ ∈ Ω+, ∆χ(x̂) = (1 − β) ∀ x̂ ∈ Ω−.

3.1. Penalized functional for non-smooth optimization problems. Optimality criterion

In order to face the difficulty to impose the minimization, accounting for the constraint in equation (44)-(b) in
non-differentiable function spaces, we will resort to a sequence of penalized problems (see [8]), by means of the
parameter 1

k , penalizing the values of χ that violate the constraint C(χ) = 0. Therefore, we start from the following
penalized problem, in terms of the extended functional, Jext,

FIND : χk(x) = Hβ(ψk (x)) : Ω→ {β, 1} ; ψk ∈ H1(Ω)
FULFILLING :

χ∗k = argmin
χk

Jext (χk) ≡ J(χk) +
1
2k

(C(χk))2

SUBJECT TO :
C(χk) ≡ |Ω+|(χk) − V̄ = 0

(a)

χ∗ = lim
k→0

χ∗k (b)

(45)

In order to solve the problem in equation (45) we impose the following optimality criterion

δJext(χk)
δχk

(x) =
δJ(χk)
δχ

(x) +
C(χk)

k
δC(χk)
δχk

(x)

=

(
∂F (χk, x)
∂χk

∆χ(x) +
C(χk)

k
sgn(∆χ(x))

)
> 0 ; ∀x ∈ Ω

(46)

where the topological derivation rules in equations (27) and (29) have been applied.

Remark 6 (Overall-increasing cost function sensitivity). Condition in equation (46) arises from the following ar-
gument (inspired by the one in [5]): by definition, the RTD,

(
δJext(χk)/δχk(x)

)
, measures the sensitivity to topological

changes of the functional Jext(χk) in front of local phase exchanges, ∆χ(x) at point x, per unit of measure of the per-
turbed domain (see definition 1). Therefore, denoting Ω̂ the subset of Ω where these exchanges take place, i.e.

Ω̂ ⊂ Ω → Ω̂ := {x ∈ Ω ; ∆χk(x) = ∆χ , 0}
Ω\Ω̂ ⊂ Ω → Ω\Ω̂ := {x ∈ Ω ; ∆χk(x) = 0}

(47)
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such that

∆χk(x) =

0→ no phase exchange at point x
∆χ , 0→ actual phase exchange at point x

(48)

If condition in equation (46) is fulfilled everywhere, for a given topology, χk(x), and for all possible phase changes of
that topology (∆χk(x); ∀x ∈ Ω̂; ∀Ω̂ ⊂ Ω) then, the increment of the functional ∆Jext(χk) for material phase exchange
at any finite subset Ω̂(χk) ⊂ Ω is:

∆Jext (χk) =

∫
Ω̂(χk)

δJext (χk,∆χ)
δχk

(x)︸                ︷︷                ︸
> 0

dΩ > 0 ∀Ω̂(χk) ⊂ Ω
(49)

this indicating that χk is a local minimizer of Jext(χk). This proves that equation (46) is a sufficient condition for
minimization of the problem in equation (45).

3.2. Closed-form solution

Replacing equation (19) into equation (46) yields:

∂F (χk, x)
∂χk

∆χ(x) +
C(χk)

k
sgn(∆χ(x)) =

=


−(1 − β)

∂F (χk, x)
∂χk

−
C(χk)

k
> 0 for x ∈ Ω+(χk)

(1 − β)
∂F (χk, x)
∂χk

+
C(χk)

k
> 0 for x ∈ Ω−(χk)

(50)

Comparing equation (50) with equations (5) and (6), and since (1 − β) > 0 (see equation (1)-(a)), we can identify the
closed-form solution of the penalized problem throughψk(x) := −(1 − β)

∂F (χk, x)
∂χk

−
C(χk)

k
χ∗k(x) := Hβ

[
ψk(x)

] (51)

where equation (2), has been considered. Finally, taking to the limit equation (51), as indicated in equation (45)-(b),
yields

χ∗(x) = lim
k→0

χ∗k(x) (52)

The drawback of the penalty method, considered so far, is that, for getting accurate and robust solutions in equations
(52) the penalty parameter, k, has to be taken very close to the limit (k → 0). This issue can be circumvented by
rephrasing equations (45) and (46) through definition of a new variable λ (see [8]),

λ := lim
k→0

C(χk)
k

(
=

0
0

)
(a)

lim
k→0
C(χk) = 0 (b)

(53)

where the new unknown, λ : Ω → R, arising form the (undetermined) equation (53)-(a) is solved by imposing, in
strong from, the original restriction, C(χ) = 0 in equation (53)-(b). Taking the limit k → 0 in equations (45) to (52),

and replacing lim
k→0

C(χk)
k

by λ, yields the following closed-form solution
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Box I. Volume constrained topological optimization problem. Closed form solution.

Problem:
χ∗ = argmin

χ
J(χ) = argmin

χ

∫
Ω

F(χ, x)dΩ

s.t. C(χ) ≡ |Ω+(χ)| − V̄ = 0
(a)

Lagrangean: L(χ, λ) = J(χ) + λC(χ) (b)
Optimality criterion:
δL(χ, λ)
δχ

(x) =
∂F (χ, x)
∂χ

∆χ(x) + λ sgn(∆χ(x)) > 0 ∀x ∈ Ω

C(χ) = 0
(c)

Closed-form solution:

ψχ(x, λ) := −(1 − β)
∂F (χ, x)
∂χ

− λ > 0 for x ∈ Ω+

⇒


ψχ(x, λ) := −(1 − β)

∂F (χ, x)
∂χ

− λχ(x, λ) = Hβ

[
ψχ(x, λ)

]
→ χλ(x) (d-1)

C(χλ, λ) = 0 (d-2)

→ λ∗ → χ∗(x) =: χλ∗ (x)
(d)

Topology:
Ω+(χ) := {x ∈ Ω ; ψχ(x, λ) > 0}
Ω−(χ) := {x ∈ Ω ; x < Ω+}

Γ(χ) := {x ∈ Ω ; ψχ(x, λ) = 0}

(54)

Equation (54)-(d-1) provides, at any point x ∈ Ω and for a given value of λ, a closed-form (fixed-point type) scalar
equation10, whose solution is χλ(x). When this is set for all points x ∈ Ω, the spatial description of a topology can be
parametrized in terms of the current value of λ, i.e.: χλ ≡ χ(x, λ). Substitution into the constraint equation (54)-(d-2)
yields a scalar equation supplying the solutions λ∗, and χ∗(x) = χλ∗ (x), and the solution of the original problem in
equations (44)-(a) and (54)-(a), is retrieved.

4. Regularization

It is well known that the topological optimization problem may be ill-posed [7, 43? ]. For instance, in case of the
restriction in equation (45)-(b), in terms of the material hard-phase (M+) volume, |Ω+(χ)|, i.e.

C(χ) ≡ |Ω+(χ)| − V̄ = 0 (55)

the infimum of the problem corresponds to a topology made of infinite number of inclusions of the soft-phase (M−),
of infinitesimally size each, embedded into a matrix of hard-phase (M+). Since, for solving the problem numerically,
one uses meshes with cells (voxels or finite elements) of typical size, h, this determines the minimum inclusion size
that can be captured by the mesh. Therefore, a local mimimum is achieved with the inclusion’s size in terms of h.
However, when finer meshes are used (h→ 0) finer topologies (with smaller inclusion’s size) are obtained, providing
different and unbounded lower minima of the cost function J(χ). No convergence is achieved in this process in terms
of h (lack of mesh size objectivity).

10Of the type y = G(y), in the argument y ≡ χ.
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Although this issue doesn’t appear for some other type of restrictions (like perimeter restrictions [4, 17]), this fact
sets serious limits to the type of applications in the topological derivative optimization based methods, unless some
remedy to the ill-posed-problem/mesh-size-unobjectivity issue are introduced. In the literature some of them can be
found, typically based on introducing some modifications on the original cost function J that regularize the problem
(like the Tikhonov regularization, [52]), by using Fourier series-based regularizations [50], or by a combination of
topological and shape derivatives [3, 10].

4.1. Regularization. Laplacean smoothing

Here we resort to a very simple and efficient regularization procedure, based on a laplacean smoothing of the
discrimination function ψ(x, λ), derived in equation (54)-(d). This function, which in principle might be discontinuous
due to the characteristic function χ ∈ {β, 1}, is here regularized through the solution of a Laplace-type smoothing
equation, that returns a smooth field ψτ(x, λ) to be inserted in equation (54)-(d):

ψ(x, λ)← ψτ(x, λ) (56)

the smooth field ψτ(x) being the solution ofψτ(x, λ) − ε2∆xψτ(x, λ) = ψ(x, λ) ∀x ∈ Ω

∇xψτ(x, λ) · n = 0 ∀x ∈ ∂Ω
(57)

where, ∆x(x, •) and ∇x(x, •) stand for the Laplacean and gradient operators, respectively, n is the outwards normal to
the boundary, ∂Ω, of the design domain. Therefore, the closed-form solution of the problem in equation (45) reads:

χ(x)→ solution of
χ(x, λ) = Hβ

[
ψτ(x)

]
C(χ(x, λ)) = 0

∀x ∈ Ω (58)

where ψτ(x) is the solution of equation (57), which can be solved in the context of any spatial numerical discretization
method. In a finite element context, it yields:

ψτ(x) = N(x){ψ̂τ} ; ψ̂τ = G̃−1f ; G̃ = M̃ + ε2K̃ (a)

M̃ =

∫
Ω

NT (x)N(x) ; K̃ =

∫
Ω

∇N(x)T∇N(x)dΩ; f(ψ) =

∫
Ω

NT (x)ψ(x)dΩ (b)
(59)

where N(x) stands for the standard interpolation matrix and ψ̂τ is the vector of nodal values of the field ψτ(x). Notice
that matrix G̃τ, in equation (59)-(a), needs to be built, and inverted, only once for ever, and that it can be used as many
times as the Laplacean smoothing is required in the optimization problem. This translates into a low computational
cost of the procedure.

The regularization parameter, ε ≥ 0, in equations (56) to (59), is indirectly defined through the mesh/voxel size,
h, and the non-dimensional parameter, τ, i.e.

ε = τh ; τ ∈ R+ (60)

where, for every mesh, τ, describes the number of elements that typically cover the filtering measure ε. The Laplacean
smoothing procedure in equations (57) and (59) is frequently used in digital image processing [35, 47] to remove the
short wavelength spectral components (noisy components) of the original field ψ(x), in such a way that the smoothed
field, ψτ(x), does not exhibit oscillation wavelengths shorter than ε. Therefore, the value of ε, approximately defines
a lower bound for the minimum hard-phase filaments width (separating soft-phase inclusions) that appear in the op-
timized topology emerging from equations (57) (see figure 5). Consequently, in equation (60), τ defines, for a given
uniform-size mesh, the number of elements covering the width of the thinnest hard-phase filaments [22].This strategy
breaks down the mesh-size dependency of the obtained topologies and the aforementioned ill-condition paradigm.
Now, the resulting soft-phase (inclusions/voids) cannot be closer to each other than the distance defined by ε, disre-
gard the size and number of the finite elements covering this width. In some way this is equivalent to establishing a
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Figure 5: Noisy modes remotion and minimum phase-filament-thickness, via laplacean smoothing of the discrimina-
tion function ψ(x). (a) Before smoothing ; (b) After smoothing

perimeter constraint in the optimization problem to remove those shortcomings [23]. From another point of view, the
need for a regularization can be related to manufacturing constraints, related to manufacturing issues [29], ε defining
the minimum hard-phaseM+ filament width that the manufacturing technology can produce.

5. Pseudo-time sequential approach for volume constrained optimization problem

Introduction of a pseudo-time, t, as an additional increasing scalar parameter in the problem, allows connecting
the strategy of resolution of the topological optimization problem, with some well known algorithmic time-advancing
techniques in computational mechanics. For instance, control methods in non-linear solid mechanics problems (i.e.
displacement control, arc-length methods, in which one additional algebraic equation (equivalent to the restriction in
equation (44)-(b)) is used to limit/control the evolution of the problem unknowns11, in order to increase the robustness
of the resolution process [14]. In this context, the pseudo-time parameter t ∈ [0,T ] is introduced in the constraint,

11The time interval [0,T ] is subdivided into a number of time-steps, each one defining an independent optimization problem, with a sufficiently small
length, ∆t, so as to ensure that the solution of the problem, at the beginning of the time step, is close enough to the solution at its end; this helping
the convergence of the solving iterative process.
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which is now rewritten as:

C(χ, t) ≡
|Ω+(χ)|
|Ω|

−
V̄
|Ω|

=
|Ω| − |Ω−(χ)|

|Ω|
−

V̄
|Ω|︸︷︷︸

1 − t

= t −
|Ω−(χ)|
|Ω|

; t ∈ [0, 1]
(61)

so that all variables become parametrized in terms of t, and the original problem in equation (44) now reads:

FIND : ψ(x, t) : Ω × [0,T ]→ R ; ψ ∈ H(1)(Ω) and

χ(x, t) = Hβ(ψ (x, t)) : Ω × [0, 1]→ {β, 1} (a)
FULFILLING :

χ∗t = argmin
χ

Jt (χ) ≡
∫

Ω

F(χ, x, t)dΩ (b)

SUBJECT TO :

C(χ, t) ≡ t −
|Ω−(χ)|
|Ω|

= 0 (c)

(62)

6. Algorithmic resolution

The time-discretized version of the closed-form problem and solution in equations (62) can be now written as:

GIVEN :


T := {t0 = 0, t1, t2, .....,T ≤ 1} (time discretization)
χ(x, tn) ≡ χn(x) (topology at time tn)
and [tn, tn+1] (time interval)

FIND : χ(x, tn+1) ≡ χn+1(x) : Ω→ {β, 1}, and λ(tn+1) ≡ λn+1 ∈ R
FULFILLING :

ψτ(x, λn+1) := solution of


ψτ(x, λn+1) − ε2∆ψτ(x, λn+1) = ψ(x, λn+1) ∀x ∈ Ω

∇ψτ(x, λn+1) · n = 0 ∀x ∈ ∂Ω

ψ(x, λn+1) := −
(
(1 − β)

∂F (χn+1, x)
∂χ

+ λn+1

) (a)

χn+1(x) = Hβ
[
ψτ(χn+1, x, λn+1)

]
(b)

C(χn+1, tn+1) ≡ tn+1 −
|Ω−(χn+1)|
|Ω|

= 0 (c)

(63)

Equations (63) define a discrete time-advancing problem providing the solution (χn+1(x), λn+1), at pseudo-time
tn+1, in terms of results at previous times (see figure 6). Equations (63)-(a) are associated to determination of the
topology, χn+1, whereas solution of equation (63)-(c) provides the value of the Lagrange multiplier λn+1. Therefore,
they can be numerically solved by means of an iterative algorithm at every time step. At time step [tn, tn+1] the
iterative problem to be solved is defined by the coupled system of equations involving as unknowns the topological
field, χn+1(x), and the (spatially constant) Lagrange multiplier, λn+1.

6.1. Iterative solving strategy
The problem to be solved, at the representative iteration (i + 1) of the considered time step [tn, tn+1], can be then

sketched as:

GIVEN χ(i)
n+1(x) : Ω→ {β, 1}

SOLVE

χ
(i+1)
n+1 (x) = F

(
χ(i)

n+1, λn+1

)
∀x ∈ Ω (topology problem) (a)

λn+1 = G
(
χ(i+1)

n+1 , λn+1

)
(restriction problem) (b)

UNTIL
∣∣∣∣∣∣χ(i+1)

n+1 − χ
(i)
n+1

∣∣∣∣∣∣
L2(Ω) =

[∫
Ω

(
χ(i+1)

n+1 (x) − χ(i)
n+1(x)

)2
dΩ

] 1
2

≤ Tolerχ

(64)
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Figure 6: Pseudo-time evolutionary analysis. Typical evolution of the cost function and topology vs. time.

Notice that the topology problem, in equation (64)-(a), sketching equations (63)-(a) involves as unknown the space
field, χ(i+1)

n+1 (x), which is iteratively updated, in terms of its value at the previous iteration, χ(i)
n+1(x), until convergence is

achieved according to the tolerance Tolerχ. On the contrary, the restriction problem in equation (64)-(b), correspond-
ing to equation (63)-(c), which involves the scalar unknown λn+1, is exactly enforced at every iteration (i + 1) of the
time step. This goal is achieved via a specific method for resolution of scalar equations e.g.: a bisection algorithm.
Details on the procedure are given in next sections.

6.1.1. Topology problem: cutting algorithm
The problem reads as follows

GIVEN χ(i)(x) (topology at the end of iteration ”i”)

SOLVE
χ(i+1)(x)



ξτ(χ(i), x) := solution of


ξτ(χ(i), x) − ε2∆ξτ(χ(i), x) = ξ(χ(i), x) ∀x ∈ Ω

∇ξτ(χ(i), x) · n = 0 ∀x ∈ ∂Ω

ξ(χ(i), x) := −(1 − β)
∂F

(
χ(i), x

)
∂χ(i)

(a)

ψτ(χ(i), x, λ) = ξτ(χ(i), x) − λ (b)

χ(i+1)(x) = Hβ

[
ψτ(χ(i), x, λ)

]
(c)

UNTIL ||χ(i+1) − χ(i)|| ≤ Tolerχ

(65)

where the lagrangean smoothing of variable ξτ(χ(i), x), in equation (65)-(a), (from now on termed the spatial
energy distribution), provides equivalent results12 to the smoothing of variable ψτ(x, λn+1) in equation (63)-(a).

Remark 7. In view of equation (65)-(c), iteration i + 1 can be regarded as performing a spatial cut, at level λ, of
the spatial energy distribution, ξτ(χi(x), x), to obtain the corresponding λ-contour (line/surface), Γ(i+1), defining the
topological boundaries (see figure 7) i.e.[

Γ(χ(i), λ)
](i+1)

:=
{
x ∈ Ω ; ξτ

(
χ(i)(x), x

)
= λ)

}
(66)

Therefore, equation (66) proves that, for the optimal topology solution corresponding to any of the sequential prob-
lems in equations (63), the material phase boundaries are, iso-energetic, λ-contours of the smoothed spatial energy
distribution ξτ(x)13.

12Since the spatially constant variable λ is not affected by the smoothing procedure.
13T3his concept is also retrieved in the context of regularized methods (SIMP) for the regularized domain Ωreg, see [7].
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Figure 7: Isoenergy (λ iso-level) contours of the spatial energy distribution ξ:
(a) countour-lines of ξ; (b)-(c)-(d) ξ iso-levels for different values of λ.

From the result in equation (66), the hard-phase (matrix) domain, |Ω+|(λ), and the soft-phase (inclusions) domain,
|Ω−|(λ), are finally obtained as (accordingly with equation (6))(

Ω+(χ(i), λ)
)(i+1)

:=
{
x ∈ Ω | ξτ

(
χ(i)(x), x

)
> λ

}
(
Ω−(χ(i), λ)

)(i+1)
:=

{
x ∈ Ω ; x <

(
Ω+)(i+1)

} (67)

and, finally, from equations (65), the updated characteristic function

χ(i+1)(x) = Hβ

[
ξτ

(
χ(i)(x), x

)
− λ

]
(68)

can be calculated (see figure 2). Calculations in equations (65) to (68) are repeated until convergence is achieved
(||χ(i+1) − χ(i)||L2(Ω) ≤ Tolerχ).

6.2. Lagrange multiplier resolution: bisection algorithm

The algorithm consists in determining, for the (i-th) iteration characteristic function, χ(i(x) and the corresponding
spatial energy distribution, ξτ(χ(i), x), the cutting level, λ, in equation (66), that fulfills the volume constraint (62)-(c),
i.e.

φ (λ) ≡ C(χ(i+1), λ, t) ≡ t −
|Ω−(χ(i+1), λ)|

|Ω|
= 0 (69)

The bisection algorithm is based on the following stages:

1) Explore the appropriate range of λ ∈ R and find in a sequence {0, λ(1), . . . , λ( j), λ( j+1)} a bracket {λ( j+1)
+ , λ

( j)
− }, for
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the sign change of function φ(λ j), in equation (69):

φ(λ( j+1)
+ ) ≡ t −

|Ω−(χ, λ( j+1))|
|Ω|

; φ(λ( j)
− ) ≡ t −

|Ω−(χ, λ( j))|
|Ω|

φ
(
λ

( j+1)
+

)
> 0 ; φ

(
λ

( j)
−

)
< 0

(70)

2) When the bracket is found, decrease the bracket’s size by iteration and interpolation (regula falsi method) [37]
until

‖λ
( j+1)
+ − λ

( j)
− ‖ ≤ Tolerλ ⇒ λ← λ

( j+1)
+ (71)

or, equivalently,

|φ(λ( j+1)
+ )| ≤ TolerC (72)

Once the value of λ is determined, the topology domains (Ω+)(i+1) and (Ω−)(i+1) are computed, according to equations
(67) and the new characteristic function, χ(i+1), is obtained according to equation (68).

Remark 8. A specific feature of the proposed algorithm is that, unlike in alternative options (i.e. augmented la-
grangian methods), the restriction C(χ), in equation (63)-(c) is not fulfilled only at the end (convergence) of the
iterative process. Instead, that constraint is exactly fulfilled (up to a small tolerance, TolerC) at every iteration ”i” of
the algorithm. This provides, in comparison with some alternative procedures14, additional control on the evolution
of topologies along iterations, which translates into global algorithmic robustness.

6.2.1. Algorithm initialization
As commented above, a relevant issue for convergence of the topology problem algorithm in equation (65), is the

fact that the value of the unknown field at the beginning of the current time interval, χ(0)
n+1(x), has to be close enough

to the final one (converged) at the end of the time step (χ(converged)
n+1 (x)).

In the pseudo-time sequential approach chosen here (see sections 5 and 6), this could be conceptually achieved by
choosing a sufficiently small time-step length, ∆t = tn+1 − tn, which places the iterative values into the suitable range
of convergence. However, the ∆t-proportional distance, between consecutive solutions, requires that the algorithm
initiates (i.e. at time t = 0 ≡ t0), at a solution of the problem: i.e. fulfilling the equations of the algorithm15.

t0 = 0→


λt0 = 0 (a)

C(χt0 ) =
|Ω+(χt0 )|
|Ω|

= 1⇒ |Ω+(χt0 )| = |Ω| ⇒ χt0 (x) = 1 ∀x ∈ Ω (b)

ξt0 (x) − λt0 > 0 ∀x ∈ Ω⇒ min
x∈Ω

ξt0 (x) ≥ λt0 = 0 (c)

(73)

where equations (73)-(a) and (73)-(b) state the initial conditions in terms of λ = 0, and a full hard-phase M+ distri-
bution for the initial design (Ω+(χt0 ) = Ω ; Ω−(χt0 ) = {∅}). However, under these initial conditions, equation (73)-(c)
is not automatically fulfilled in some problems: typically those in which the initial energy, ξt0 , is not intrinsically
positive definite (i.e. ∃x ∈ Ω; ξ(x) < 0). In these cases, convergence in the first time interval is not achievable (or
robustly achievable) disregard the considered time-step size16 ∆t. A remedy for this problem, is to perform a constant

14Like augmented lagrangean methods, where λ is iteratively updated until convergence to the exact final value.
15Here it is assumed that the algorithm is initiated at a full hard-phaseM+ design (Ω+

t0 = Ω).
16Even for ∆t = 0.
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shift17, of value ∆shi f t, of both unknown fields: ξ(χ(x)) (only at the Ω+ domain) and λ i.e.

∆shi f t = min
x∈Ω

ξt0 (x)→


ξ̂(i)

tn (x) = ξ(i)
tn (x) − ∆shi f t ∀x ∈ (Ω+)(i) (a)

ξ̂(i)
tn (x) = ξtn (x) ∀x ∈ (Ω−)(i) (b)

λ̂(i)
tn = λ(i)

tn − ∆shi f t (c)

∀i ∀tn (74)

In addition, a normalization of the resulting energy field, ξ(x(i)), is done, in terms of a positive factor, ∆norm > 0 (again
constant for all iterations and time steps), in order to keep its value inside convenient ranges, i.e.

∆norm = |max
x∈Ω

ξt0 (x) −min
x∈Ω

ξt0 (x)| →



ξ̂(i)
tn (x) =

ξ(i)
tn (x) − ∆shi f t

∆norm
∀x ∈ (Ω+)(i) (a)

ξ̂(i)
tn (x) =

ξtn (x)
∆norm

∀x ∈ (Ω−)(i) (b)

λ̂(i)
tn =

λ(i)
tn − ∆shi f t

∆norm
(c)

∀i ∀tn (75)

Therefore, the topology is updated, according to the cutting algorithm in section 6.1.1, in terms of the values of
the corrected fields, ξ̂(i)

τ,tn (x) − λ̂(i)
tn , at the domain, Ω+, instead of the original ones, ξ(i)

τ,tn (x) − λ(i)
tn , (see equations (65) to

(67)): (
Ω+

tn

)(i+1)
:=

{
x ∈ Ω | ψtn := ξ̂(i)

τ,tn (x) − λ̂(i)
tn > 0

}
(a)(

Ω−tn

)(i+1)
:=

{
x ∈ Ω ; x <

[
Ω+

tn

](i+1)
}

(b)
(76)

where ξ̂(i)
τ,tn (x) is the result of applying the Laplacean smoothing, in equations (65)-(a), to the normalized energy ξ̂(i)

tn (x)
in equations (75).

Remark 9. Notice that the shifted and normalized fields, ξ̂(i)
tn (x) and λ̂(i)

tn , in equation (75) fulfill the following proper-
ties:

a) By construction, at the initial time t0, min
x∈Ω

ξ̂t0 (x) = 0. Therefore, if Ω+
t0 ≡ Ω, equations (73) are fulfilled for

ξt0 ≡ ξ̂t0 and λt0 ≡ λ̂t0 = 0.

b) Since the shift, ∆shi f t, is applied to both fields, ξ(i)
tn (x) and λ(i)

tn , their difference, ψ(i)
tn ≡ ξ(i)

tn (x) − λ(i)
tn , and the

corresponding topology, χ(i)
tn = Hβ(ψ

(i)
tn ), is not affected by that shift. Also the normalization in equation (75)

does not affect neither the sign of ψ(i)
tn nor the topology.

c) The laplacean smoothing, ξ̂(i)
tn ← ξ̂(i)

τ,tn , is neither affected by the initialization operations18.

d) In consequence, if the discrimination function ψ(i)
tn , in equation (76)-(a), is applied in terms of the shifted and

normalized entities, ξ̂(i)
τ,tn (x) and λ̂(i)

tn at Ω+ (see equation (76)), the topology, at convergence, is not affected.
However, the robustness of the iterative process is remarkably increased.

6.3. Finite element implementation. Numerical aspects.

In the examples presented in section 10, the design space, Ω, has been discretized in uniform structured meshes
(labeled Mi, i = 1, 2..) made of regular hexahedra, i.e. elements, e, occupying the domain Ω(e) ⊂ Ω, with typical size
h(e). These finite element meshes have been used both for solving the state bi-material elastic problem, in equation

17Constant for all time-steps and iterations of the optimization algorithm.
18Except for the error associated to the (assumed small) parameter ε in the smoothing procedure (see equations (65)).
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(9), and for obtaining the geometrical data (typically the volume of the soft-phase Ω−) necessary for the cutting and
bisection algorithm in sections 6.1.1 and 6.2. In general, the integration (Gauss) points of regular elements have been
used as sampling points, xi, to evaluate the necessary data i.e. characteristic function χ(xi), discrimination function
ψ(χ, xi), etc.

6.3.1. Topology properties determination. Modified marching cubes strategy
Determination of the volumes, Ω+ or Ω−, in the cutting algorithm (equation (67), see also figure 7) has been

performed via the classic strategy of marching cubes [26]. In appendix A, additional details on the method are
provided.

6.3.2. Bi-material elements. Three field mixed displacement-strain-stress formulation
A specific issue arises in the treatment of the finite element formulation of bi-material elements, i.e. those elements

containing both the hard-phase,M+, and soft-phase,M−. They are identified during the marching cubes strategy and
the subset of bi-material elements Ω(+,−) ⊂ Ω is determined, as well as the portions Ω(e,+) ⊂ Ω(e) and Ω(e,−) ⊂ Ω(e)

(Ω(e,+) ∪Ω(e,−) = Ω(e)) containing hard and soft material phases in every element (e).
Ω(e,+) := {x ∈ Ω(e) ; x ∈ Ω+}

Ω(e,−) := {x ∈ Ω(e) ; x ∈ Ω−}

Ω(+,−) :=
{
∪

e=nelem
e=1

(
Ω(e,+) ∪Ω(e,−)

)} (77)

Details on the derivation of this formulation are given in Appendix B.

7. Perimeter constrained problems

Let us consider the time-parametrized constraint, C(χ, t), in equation (44) now expressed in terms of the perimeter,
i.e. 

C(χ, t) ≡
Γ(χ)
|∂Ω|

− t = 0 ; t ∈
[
0,

Γmax

|∂Ω|

]
(a)

Γ(χ) :=
1
2

(|∂Ω+(χ)|︸   ︷︷   ︸
P+(χ)

+ |∂Ω−(χ)|︸   ︷︷   ︸
P−(χ)

) − |∂Ω| (b)
(78)

where P+ and P− stand for the phase domain perimeters of the hard-phase and soft-phase, respectively, Γ is the phase
interface perimeter (see equations (42) and (43)), and Γmax is the maximum attainable (interface) perimeter in the
analysis. According to equation (43) the RTD of Γ(χ) reads

δΓ(χ)
δχ

(x̂) = 1 (79)

Following a similar derivation scheme than in equations (54) one arrives to
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Box II. Perimeter constrained topological optimization problem. Closed form solution.

Problem:
χ∗ = argmin

χ
J(χ) = argmin

χ

∫
Ω

F(χ, x)dΩ

s.t. C(χ) ≡ Γ(χ) − t|∂Ω| = 0
(a)

Lagrangean: L(χ, λ) = J(χ) + λC(χ) (b)
Optimality criterion:
δL(χ, λ)
δχ

(x) =
∂F (χ, x)
∂χ

∆χ(x) + λ > 0 ∀x ∈ Ω

C(χ) = 0
(c)

Closed-form solution:
ψ(1)
χ (x, λ) := −(1 − β)

∂F (χ, x)
∂χ

+ λ > 0 for x ∈ Ω+

ψ(2)
χ (x, λ) := −(1 − β)

∂F (χ, x)
∂χ

− λ > 0 for x < Ω− (⇒ ∀x ∈ Ω+)

⇒


ψχ(x, λ) := min

{
ψ(1)
χ (x, λ), ψ(2)

χ (x, λ)
}

χ(x, λ) = Hβ

[
ψχ(x, λ)

]
→ χλ(x) (d-1)

C(χλ, λ) = 0 (d-2)

→ λ∗ → χ∗(x) =: χλ∗ (x)
(d)

Topology:
Ω+(χ) := {x ∈ Ω ; ψχ(x, λ) > 0}
Ω−(χ) := {x ∈ Ω ; x < Ω+}

Γ(χ) := {x ∈ Ω ; ψχ(x, λ) = 0}

(80)

8. Structural compliance problems

Let us now specify the equations for the minimal compliance topological optimization in a linear elastic problem,
e.g.:

χ(x, t) = argmin
χ
J(uχ(x, t)) = argmin

χ
l(uχ(x, t)) (a)

subject to: C(χ, t) := t −
|Ω−|(χ)
|Ω|

= 0 ; t ∈ [0, 1] (b)
(81)

The problem above, belongs to the class of problems considered in equation (62) with

J(uχ) ≡ l(uχ) =

∫
Ω

b · uχdΩ +

∫
∂σΩ

t∗ · uχdΓ = aχ(uχ,uχ) ≡

≡

∫
Ω

ε(uχ) : Cχ : ε(uχ)dΩ =

∫
Ω

2UχdΩ

(82)

where equations (13)-(d)-(e) have been considered for w ≡ u, and Uχ can be identified as the actual elastic energy
density (Uχ = 1

2ε : Cχ : ε). Comparing equations (82) and (44) we can identify

F(χ, x) ≡ ε
(
uχ(x)

)
: Cχ : ε

(
uχ(x)

)
= 2Uχ(x) (83)
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The corresponding finite element discretization counterpart of the problem in equation (81) reads

χ(x, t) = argmin
χ
J (h)(dχ(t)) = argmin

χ
fT dχ(t) (a)

subject to: C(χ, t) := t −
|Ω−|(χ)
|Ω|

= 0 ; t ∈ [0, 1] (b)
(84)

where h stands for the typical size of the finite element mesh, and the term fT dχ(t), in equation (84)-(a) corresponds
to the structural compliance value.

8.1. Cost function topological sensitivity

The adjoint equation method [11] for sensitivity analysis is mimicked here for the case of RTD. The goal is to
compute the variational topological derivative (RTD) of the cost-function19, Jh(dχ), in equation (84)-(a), without
explicitly computing the sensitivity of the nodal displacement field (∂dχ/∂χ). The sensitivity of Jh(χ) can be, then,
obtained through the following steps:

1. Rephrase the cost function accounting for the state equation (15)-(a)

J (h)(χ) = fT dχ = fT dχ − wT
(
Kχdχ − f

)︸       ︷︷       ︸
= 0

(85)

where w is a vector to be chosen.
2. Compute the RTD of the equation (85)

δJ (h)(χ)
δχ

(x̂) = (fT − wTKχ)
δdχ
δχ

(x̂) − wT δKχ

δχ
(x̂)dχ (86)

3. Choose w ≡ dχ and replace it into equation (86)

δJ (h)(χ)
δχ

(x̂) = (fT − dT
χKχ)︸         ︷︷         ︸

= 0

δdχ
δχ

(x̂) − dT
χ

δKχ

δχ
(x̂)dχ = −

[
dT
χ

δKχ

δχ
(x)dχ

]
x≡x̂

(87)

where equations (15) and the symmetry of Kχ (Kχ = KT
χ ) has been considered, yielding the final result

δJ (h)(χ)
δχ

(x̂) = −dT
χBT (x̂)︸    ︷︷    ︸
εT
χ (x̂)

∂Dχ

∂χ
(x̂) B(x̂)dχ︸ ︷︷ ︸

εχ(x̂)

∆χ(x̂) = −

[
εT
χ (x)

∂Dχ

∂χ
εχ(x)

]
x≡x̂

∆χ(x̂) =

= −
[
mχm−1εT

χ (x)Dεχ(x)
]
x≡x̂

∆χ(x̂)

(88)

where the result, in matrix form, in equation (11) has been considered. The result in equation (88) can be then written
as 

δ
(
fT dχ

)
δχ

=
δJh(uχ)
δχ

(x̂) = −
[
mχm−1εT (dχ)D : ε(dχ)

]
x=x̂

∆χ(x̂)

= −2m (χ(x̂))m−1U(x̂)∆χ(x̂)

(a)

U(x̂) =
1
2

(
εT (dχ)Dε(dχ)

)
(x̂) (b)

(89)

19Omitting time dependencies.
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where Uχ(x̂) is the nominal elastic energy density20. The result in equation (89) is close to the one obtained for the
sensitivity in the (regularized/smoothed) method SIMP [7], except for the material exchange term ∆χ(x̂) (see equation
(19)).

Now the original compliance functional Jh, in equation (84)-(a) can be extended to account for the restriction in
equation (84)-(b). Following the methodology in section 3, and accounting for the RTD results in table (1) one arrives
to

Box III. Topological optimization for mean compliance problems

Problem:
χ∗ = argmin

χ
Jh(χ) := fT dχ

s.t. C(χ) ≡ |Ω+(χ)| − V̄ = 0
(a)

Lagrangean: L(χ, λ) = Jh(χ) + λC(χ) (b)
Optimality criterion:
δL(χ, λ)
δχ

(x) = −2mχm−1(x)U(x)∆χ(x) + λ sgn(∆χ(x)) > 0 ∀x ∈ Ω

C(χ) = 0
(c)

Closed-form solution:

⇒


ψχ(x, λ) := 2m(1 − β)χm−1(x)U(x) − λ ; U(x̂) =

1
2

(
εT (dχ)Dε(dχ)

)
(x̂) ≥ 0χ(x, λ) = Hβ

[
ψχ(x, λ)

]
→ χλ(x) (d-1)

C(χλ, λ) = 0 (d-2)

→ λ∗ → χ∗(x) =: χλ∗ (x)
(d)

Topology:
Ω+(χ) := {x ∈ Ω ; ψχ(x, λ) > 0}
Ω−(χ) := {x ∈ Ω ; x < Ω+}

Γ(χ) := {x ∈ Ω ; ψχ(x, λ) = 0}

(90)

9. Compliant mechanisms

We consider now the optimal design of the compliant mechanism sketched in figure 8. The goal is to design the
topology of a gripper, so as to maximize the compressive displacement of a spring placed at port (out), with stiffness
Kout (standing for the stiffness of the gripped object), under the action of a force acting on port (in), f, also applied
by means of spring of stiffness Kin (see figure 8) [19, 27, 41]. Therefore the structural system is constituted by the
gripper and the two springs (at ports in and out). In the context of a finite element discretization, like in section 2.3,
the problem is expressed as

min
χ
J (h)(dχ) = −dT

χ1vert (a)

subject to : C(χ, t) := t −
|Ω−|(χ)
|Ω|

= 0 ; t ∈ [0, 1] (b)
(91)

20Notice the difference of the nominal elastic energy density U(x̂) =
1
2

(
εT (dχ)Dε(dχ)

)
(x̂) (in terms of D), in equation (89)-(b), and the actual

elastic energy density,U(x̂) =
1
2

(
εT (dχ)Dχε(dχ)

)
(x̂) (in terms of Dχ = χmD).
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Figure 8: Compliant mechanism: (a) problem setting, (b) system (1) (half domain), (c) system (2) (half domain).

where, in equation (91)-(a), 1vert stands for that nodal vector force corresponding to uniform vertical components (in
the spring stretching sense) acting on the gripper jaws21.

The original elastic system (1) is supplemented with an auxiliary linear elastic original elastic system (2), subject
only to the forces 1vert (see figure 8). Both of them are ruled by the elastic problem in equations (15), with the same
stiffness matrix Kχ and different actions, with solutions d(1)

χ and d(2)
χ , respectively, i.e.:K d(1)

χ = f ; dχ = d(1)
χ (a)

K d(2)
χ = 1vert (b)

(92)

Standard algebraic manipulations allow replacing the cost function in equation (91)-(a) by

J (h)(uχ) ≡ −
∫

Ω

ε
(
d(1)
χ

)
: Cχ : ε

(
d(2)
χ

)
dΩ = −

∫
Ω

2Uχ(x)dΩ (93)

where, again,Uχ is defined as a pseudo elastic energy of the combined system.
Uχ(x) =

1
2
εT

(
d(1)
χ (x)

)
Dχε

(
d(2)
χ (x)

)
≡

1
2

(
ε(1)
χ (x)

)T
Dχε

(2)
χ (x)

ε
(
d(1)
χ (x)

)
≡ ε(1)

χ (x) = B(x)d(1)
χ ; ε

(
d(1)
χ (x)

)
≡ ε(2)

χ (x) = B(x)d(2)
χ

(94)

21Therefore, its components are zero everywhere excepting at the gripper jaws nodes.
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9.1. Topological sensitivity

The sensitivity of Jh(χ) is then obtained through the following steps

1. Rephrase the cost function accounting for the state equation (92)-(a) (adjoint equation method)

J (h)(χ) = − 1T
vertdχ = −1T

vertd
(1)
χ

= − 1T
vertd

(1)
χ + wT

(
Kχd(1)

χ − f
)︸        ︷︷        ︸

= 0

(95)

where w is a vector to be chosen.
2. Compute the RTD of the equation (95)

δJ (h)(χ)
δχ

(x̂) = − (1T
vert − wTKχ)

δd(1)
χ

δχ
(x̂) + wT δKχ

δχ
(x̂)d(1)

χ
(96)

3. Choose w ≡ d(2)
χ and replace it into equation (96)

δJ (h)(χ)
δχ

(x̂) = −

(
1T

vert −
(
d(2)
χ

)T
Kχ

)
︸                  ︷︷                  ︸

= 0

δd(1)
χ

δχ
(x̂)+

(
d(2)
χ

)T δKχ

δχ
(x̂)d(1)

χ

=
(
d(1)
χ

)T δKχ

δχ
(x̂)d(2)

χ

(97)

where equation (92)-(b) and the symmetry of K (K = KT ) have been considered, yielding the final result

δ
(
−1T

vertdχ
)

δχ
(x̂) =

δJ (h)(χ)
δχ

(x̂) =
(
d(1)
χ

)T
BT (x̂)︸          ︷︷          ︸(

ε(1)
χ

)T
(x̂)

δDχ

δχ
(x̂) B(x̂)d(2)

χ︸   ︷︷   ︸
ε(2)
χ (x̂)

=

[(
ε(1)
χ

)T δDχ

δχ
ε(2)
χ

]
x≡x̂

=

=

[
mχm−1

(
ε(1)
χ

)T
Dε(2)

χ

]
x≡x̂

∆χ(x̂) = 2m (χ(x̂))m−1U(x̂)∆χ(x̂)

(98)

where equations (15)-(b) (Dχ = χmD) has been considered. From equation (98) the nominal pseudo elastic strain
energy density of the combined system,U(x)22, is defined as

U(x̂) :=
1
2

(
ε(1)
χ (x̂)

)T
D ε(2)

χ (x̂) (99)

9.2. Closed-form solution

Following the methodology in section 3, and accounting for the RTD results in table 1, one arrives to

22Notice that, unlike in equation (89)-(b), for the mean structural compliance problem, now U(x̂) may be positive or negative. This makes a
substantial difference in the sign of the RTD in equation (98).
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Box IV. Topological optimization of compliant mechanisms

Problem: min
χ
J (h)(χ) = −dT

χ1vert (a)

s.t. C(χ) ≡ |Ω+(χ)| − V̄ = 0 (b)
(a)

Lagrangean: L(χ, λ) = J (h)(χ) + λC(χ) (b)
Optimality criterion:
δL(χ, λ)
δχ

(x) = 2mχm−1(x)U(x)∆χ(x) + λ sign(∆χ(x)) ∀x ∈ Ω

C(χ) = 0
(c)

Closed-form solution:
ψχ(x, λ) := −(1 − β)2mχm−1(x)U(x) − λ ; U(x) :=

1
2

(
ε(1)
χ (x)

)T
D ε(2)

χ (x)χ(x, λ) = Hβ

[
ψχ(x, λ)

]
→ χλ(x) (d-1)

C(χλ, λ) = 0 (d-2)

→ λ∗ → χ∗(x) =: χλ∗ (x)
(d)

Topology:
Ω+(χ) := {x ∈ Ω ; ψχ(x, λ) > 0}
Ω−(χ) := {x ∈ Ω ; x < Ω+}

Γ(χ) := {x ∈ Ω ; ψχ(x, λ) = 0}

(100)

10. Representative numerical simulations

In the following a set of 3D numerical simulations are presented, in order to display the performance of the
proposed approach. Unless it is differently indicated, the following material properties for the isotropic elastic material
are considered:

Young modulus E = 210GPa ; Poisson ratio ν = 0.3 ; Stiffness contrast factor α = 1.0 · 10−6

Stiffness contrast exponent m = 5 (see equation (11))⇒ Relaxation factor β = α
1
m = 6.3 · 10−2

(101)

The following additional algorithmic data used for running the proposed algorithm is

Tolerance error for topology Tolχ = 10−1

Tolerance error for Lagrange multiplier Tolλ = 10−1

Tolerance error for bisection TolC = 10−5

(102)

10.1. Mean compliance optimization. Cantilever beam.

The 3D design domain, in figure 9, is used. A first mesh, M1, (made of 432000 bi-linear hexahedral finite
elements), displayed in figure 9-(b), is used to mesh one-half of the design domain Ω (see figure 9-(a)). The mean
compliance design of the structure is done for the distributed loading forces at the right, lower, boundary of the design
domain (see figure 9-(d)).

In figure 10-(a), the pseudo-time, (t =
|Ω− |

|Ω|
), evolution of the analysis is shown, both in terms of the cost-function

and the topology. In figure 10-(b), the final design, when the hard-phase (solid material) equals 8% of the initial one
(100%), is depicted.

30



f

0.5

2

1

∂uΩ

Ω

∂σΩ

(a) 2x(b)

(d)

2x(c)

x

y

z

Figure 9: Minimum compliance cantilever beam: (a) Meshed domain, (b) Detailed mesh M1, (c) Detailed mesh M2,
(d) Symmetrized design domain Ω.
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Figure 10: Cantilever beam. Mean structural compliance optimization for Mesh M1: 432.000 elements.
τ = 1 (ε = τ ·h = 1.67 ·10−2) (a) Cost function and topology evolution; (b) Topology for t =

|Ω− |

|Ω|
= 0.92 ; |Ω

+ |

|Ω|
= 0.08.

10.1.1. Mesh size objectivity
The effects of the regularization parameter, ε, in the laplacean smoothing equations (56) to (60), are examined,

now for two different meshes in the design domain Ω. Mesh M1 (120x60x30=216.000 elements, with size h(1)), and
mesh M2 (obtained by doubling the number of elements in every direction {x, y, z}, this leading to a total of 1.728.000
elements⇒ h(2) = h(1)/2, see figure 9-(c)).

Mesh size objectivity is assessed in figures 11-(a)-(b)-(c)-(d), when the value of the regularization parameter
ε = 1.67 · 10−2 is kept constant for the original, M1, and direction-doubled, M2, meshes, giving rise to very similar
cost-function and topological design evolution. If, instead, no action is taken to keep this parameter constant in mesh
M2 (ε(2) = 8.33 · 10−3 = 1/2ε(1), thus keeping τ=constant in equation ε(i) = τ h(i)), the results, in figures 11-(e)-(f),
substantially change with respect to the ones in the figure above, and they become strongly dependent on the finite
element mesh size h(i).
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(a) Mesh M1: 432.000 elements ( τ = 1; ϵ = 1.67·10-2) (b) Mesh M1: Topology for t=0.92

(c) Mesh M2: 3.456.000 elements ( τ = 2; ϵ = 1.67·10-2) (d) Mesh M2: Topology for t=0.92

(e) Mesh M2: 3.456.000 elements ( τ = 1; ϵ = 8.33·10-3) (f) Mesh M2: Topology for t=0.92
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Figure 11: Cantilever beam. Mesh-size objectivity results (ε = τ · h).
(a) to (d): results for meshes M1 and M2 and the same regularization parameter (ε = 1.67 · 10−2),
(c) to (f): results for the same mesh, M2, and different regularization values (ε = 1.67 · 10−2 and ε = 8.33 · 10−3).
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Figure 12: Cantilever beam. Comparison of full 3D and 2 1
2 D (extruded) optimal topologies for t=0.85 and mesh M1.

(a) full 3D optimal topology (τ = 1; ε = 1.67 · 10−2) ; (b) Extruded optimal topology (τ = 1; εx = εy = 1.67 · 10−2; εz =

1.67 · 103)

10.1.2. 2-1/2D extruded design
Following the steps in [52] (where a Tikhonov-like regularization was used) we show here that, changing the

tensor order of the laplacean smoothing regularization parameter ε, from scalar to orthotropic second order tensor or,
equivalently, the parameter τ =

ε

h
in equations (56) to (60), one can obtain 2-1/2D extruded designs in a selected

direction.
For instance, let us replace the scalar value ε, in these equations, by an orthotropic second order tensor, ε, defined

through,

ε :=

εx 0 0
0 εy 0
0 0 εz

 =

1 0 0
0 1 0
0 0 η

 τh =

τx 0 0
0 τx 0
0 0 τz

︸          ︷︷          ︸
τ

h = τh ; η >> 1 (103)

where the second order tensor ε = τh (τz = ητ >> τx = τy ) is an orthotropic tensor defining the minimum filament
width size (see section 4.1) in the directions {x, y, z}. The value η >> 1 sets the length of the minimum solid fila-
ment width in the z-direction (=filtered wavelength in the z-direction ) much larger than in the other two orthogonal
directions, this resulting in z-extruded designs (see figure 12). This action was performed in the mean compliance op-
timization of the cantilever beam, in section 10.1, with the only modification of considering the orthotropic character
of the filtering tensor ε in equation (103). The corresponding results are shown in figure 12.

10.2. Mean compliance optimization. 3D bridge design

The problem of minimum compliance design of a bridge is tackled here. The design domain, Ω, is depicted in
figure 13. For symmetry reasons, only one fourth of the domain is discretized in a structured mesh of 240x204x40,
which leads to 1.084.800 hexahedra (see figure 13-(a)). A uniform load on the bridge deck, ∂σΩ, is prescribed, as
well as, the position for the eventual support at boundary, ∂uΩ.
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Figure 13: Minimum compliance bridge design: (a) Meshed domain, (b) Detailed mesh (c) Symmetrized design
domain Ω.

(a) Cost function and topology evolution

(b) Detailed view of the optimization process evolution

Figure 14: Bridge. Mean structural compliance optimization.
τ = 0.316 (ε = τ · h = 7.9 · 10−3)
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Then, the pseudo-time evolving optimization process, starting from a design at t = 0 made of hard-phase material
over all Ω, evolves along the increasing pseudo time t =

|Ω− |

|Ω|
. In figure 14, the cost function and the topology

evolution are shown. Finally, in figure 15 the final topology, for |Ω+| = 0.06|Ω|, is displayed in detail. Amazingly,
subtle structural design details, for the structural family of arch bridges, well known by structural designers, are
captured by the numerically obtained optimized solution.
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z

Figure 15: Bridge. Mean structural compliance optimization. Topology for t=0.94 (|Ω+| = 6%|Ω|).
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Figure 16: Compliant mechanism (gripper). (a) Design domain Ω, (b) detailed mesh, (c) symmetrized design domain.

10.3. Compliant mechanisms optimization.

The computational design of compliant mechanisms is another example of structural optimization problem for
which the approach considered in this work is evaluated. The RTD and closed form solution derived in section 9 (see
equation (100) and figure 8) is applied here to the design of a compliant 3D gripper. The problem is inspired in that
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in [52] using a Tikhonov-regularized level set method, and the mechanical properties considered here are23,

Young modulus E = 210GPa ; Poisson ratio ν = 0.31 ; Stifness contrast factor α = 1.0 · 10−2

Stifness contrast exponent m = 3 (see equation (11))

Kin = 3.19 · 1014 N
m3 ; Eout = 10GPa ; νout = 0 ; fin = 3.2 · 1013 N

m2 ; fout = 3.2 · 1010 N
m2

(104)

Due to symmetry considerations only one fourth of the design domain, Ω, is meshed with a structured hexahedra with
160x80x40, which leads to 506.880 elements (see figure 16).

In figure 17, the state problem (system (1)) and the adjoint state problem (system (2)) are also presented.
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y
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Figure 17: Compliant mechanism (gripper): (a) system (1) (1/4th-domain), (b) system (2) (1/4th-domain)).

In figure 18-(a), results concerning the cost-function (opening displacement of the gripper jaws is minimized,
therefore the closing motion is maximized) are presented, as well as the topology evolution. It is worth noting here
that, unlike in the mean structural compliance case, the cost function is not monotonously increasing, and a minimum
of the minima compliant design can be identified for t =

|Ω− |

|Ω|
≈ 0.48. In addition, one can identify a sudden change of

the topology, around t = 0.3, translating into a change of trend of the cost function to, subsequently, fall into a new
local minimum.

Also notice that the chosen value for τ (τ = 0.5) corresponds to ε = 1
2 h, i.e. one half of the element size, in order

to allow the formation of hinges (thin solid-phase filaments) typical of this problem in some stages of the optimization
process (see figure 18-(b)-(c)-(d)).

23At the output port, the existence of a gripped material mass has been considered. Therefore, it has been equipped with elastic material properties,
softer than the design solid material.
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(a) Cost function, 𝒥𝜒, vs. pseudo-time

(b) t=0.48 (c) t=0.70 (d) t=0.80 (e) t=0.90

x

y

z x

y

z x

y

z x

y

z

Hinges

Figure 18: 3D-Gripper optimization: (a) cost function evolution, (b) to (e) optimal topologies at different pseudo-
times. (τ = 0.5; ε = τ · h = 3.125 · 10−7). Notice, in figures (b) to (d) the appearance of hinges, in terms of thin
short-bars, to provide additional compliance to the design.

10.4. Computational assessment. Variational closed-form solution vs. level-set method

To assess the performance of the variational closed-form approach used in this work, in this section we compare
the results for the cantilever beam, obtained in section 10.1 with the so far described setting, with those using a level-
set method driven by the relaxed topological derivative (RTD) in equation (90)-(c). Details on the level-set numerical
algorithm and its properties are given in Appendix C.

In order to have a fair comparison, in both methods (variational closed-form solution and level set method) the
same sequence of time steps, ti, has been imposed along the pseudo-time interval [0,T ] ≡ [0, 1], i.e. 22 exponentially
spaced time steps from t = 0 to t = 0.92 as indicated in equation (62). The pseudo-time, t, evolution is, then, defined
according the following exponential law

ti = t0 +
T − t0
1 − eK

(
1 − eK(i/n)

)
; i ∈ {0, 1, . . . , n} (105)

where n = 40 denotes the number of steps required to reach the time tn = T = 1, and the constant K is set to obtain
the desired exponential function (K = −4.5).

Then, both algorithms are run until convergence in terms of the topology (with the same tolerance Tolχ = 10−1).
Their relative computational cost, is evaluated in terms of the number of iterations required to converge for each of
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the methods24.
In figure 19-(a), the cost function evolution is displayed, showing a very similar quantitative performance of both

methods. As for the computational cost (number of required iterations) the variational closed-form solution is about 5
times (in average) cheaper to obtain than in the level-set method (see figure 19-(b)). The fact that the volume restriction
is enforced at every iteration, in the variational closed from method, plays, in opinion of the authors, a relevant role
in this cost reduction. On the other hand, the number of requested iterations tends to be almost constant, along time
intervals, in the variational closed-form solution, whereas, in the level-set method it exhibits a large increase in the
required number of iterations for high values of the pseudo-time (i.e. small volumes of the solid-phase |Ω+|).

Similar trends, to those specifically emphasized here, has been observed in other optimization problems solved
using both methods. In summary, lower computational cost, in front of level-set methods, while providing similar
quantitative results, seems to be an argument in favor of the approach in the present work.

24In fact, the solution of the state (equilibrium) problem dominates the computational cost in both methods. Therefore, the computational cost is
closely proportional to the number of required iterations to converge.
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(a) Variational closed-form solution method vs. level-set method: cost-function evolution

(b) Variational closed-form method vs. level-set method: computational cost

Figure 19: Cantilever beam. Variational closed-form solution vs. level set method.
(ε = τ · h = 1.67 · 10−2)

11. Concluding remarks

Along this work a variational approach to relaxed topological optimization has been explored, and assessed
through its application to a number of structural problems. The conclusions to be highlighted by the authors, about
this work, are the following:

• Though the relaxed character of the optimization setting is not specific of the present approach, the formulation
of a relaxed topological derivative (RTD), clarifies the issue of using a topological sensitivity consistent with
the relaxed setting in which the optimization is performed. This is in contrast with the frequent use, in relaxed
optimization settings, of the exact topological derivative (TD), derived in an immersed setting at the cost of
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heavy, and problem dependent, mathematical derivations. In fact the results in this work, show that the RTD,
obtainable via simple function derivatives of the kernel of the cost function, in combination with the adjoint
problem method, provides results totally equivalent to those obtained with the TD.

• The difficulties inherent to the discrete (discontinuous) character of the design variable (the characteristic func-
tion χ(x)), and the resulting non-smoothness of the cost function, have traditionally suggested detouring the
formulation from the original variational scenario; either by resorting to regularization of the characteristic
function (like in SIMP) or by totally abandoning the variational formulation when facing the impossibility
to obtain the stationarity conditions based on differentiation of that cost function (like in level-set methods).
Surprisingly enough, the difficulties arising from that non-smooth character of the problem can be easily over-
come. Indeed, the analysis of the sensitivity of the cost function, in front of topology perturbations, via the
aforementioned expressions of the RTD, yields an inequality-type optimality criterion: the overall-increasing
cost function sensitivity. Amazingly, the emerging inequality, in terms of the, here termed, discrimination func-
tion ψ(x), leads straightforwardly to closed-form solutions of the topological optimization problem in the form
of simple algebraic non-linear equations. These equations, involving the characteristic function, χ(x), can be
solved, in turn, via simple non-linear algorithms. This is a very specific result of the proposed approach, which
suggests possible extensions of the technique to further methods and applications. In the cases studied here,
typically the mean structural compliance and compliant mechanisms problems, the resulting optimality solu-
tions are interpreted as fixed-point equations, to be solved by combination of a cutting algorithm, of energy-like
surfaces, and the exact imposition of the volume restriction (via bisection methods).

• Since the presented approach is not regularized in terms of the characteristic function, the obtained topological
designs are completely black and white designs, and there is no need of subsequent filtering techniques to
eliminate gray-scales.

• Besides, the characteristic function, χ(x), is never regularized, even for the treatment of bi-material elements.
Instead, three-field mixed formulations (σ − ε − u) [54] in hexahedral finite elements, detailed in appendix B,
are used for accurately capturing the discontinuous stress field in those bi-material elements. Albeit, the LBB
stability condition is not fulfilled in those elements, numerical instabilities do not appear, thus not leading to the
classical checkerboards, due to their isolate position, in a mesh of regular elements, which avoids propagation
of the possible instability modes. Also the marching cubes strategy, with the specific variant of marching
tetrahedra method (see appendix A) has provided the expected robustness and accuracy in the determination of
volumes and surfaces on the finite element mesh.

• An evolving pseudo-time framework can be naturally inserted in the considered setting. Albeit this is not an
exclusive feature of the proposed approach, and it can be used, for instance, in combination with the level set
methods, it is worth mentioning some of the benefits provided by this framework, i.e. the fact that a number
of intermediate optimal designs for a set of values of the volume restriction are obtained ”for free” and, in
some problems, like compliant mechanisms design, information of the minimum of the minima designs in the
explored range can be obtained.

• The approach considered here has proven to provide results, in the considered structural examples, very similar
to the ones obtained with other methods, the main difference being that the computational cost is smaller (about
five times in a benchmark test checked in the work) when compared with the level-set method, using the same
code, the same RTD and the same computational setting.

• The explored approach allows envisaging new computational strategies for topological optimization, which
could overcome some of the classical drawbacks of relaxed optimization settings, e.g. the necessity of using
high dense meshes in the design domain involving millions of elements and the application to new topological
design problems (e.g. multiscale topological design [13, 18, 25, 36], immersed boundary methods combined
with XFEM techniques [40], convected methods [51], etc.). This is an issue to be explored in a subsequent
research.
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[31] A. A. Novotny, R. A. Feijóo, E. Taroco, and C. Padra. Topological sensitivity analysis. Computer Methods in Applied Mechanics and
Engineering, 192(7-8):803–829, feb 2003.

[32] A. A. Novotny and J. Sokołowski. Topological Derivatives in Shape Optimization. Springer Berlin Heidelberg, 2013.
[33] J. Oliver and C. Agelet de Saracibar. Continuum mechanics for engineers. Theory and problems (first edition, september 2016). The Authors

(open access at https://upcommons.upc.edu/handle/2117/102979), 2016.
[34] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. Journal

of Computational Physics, 79(1):12–49, nov 1988.
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Appendix A Modified marching cubes strategy

Different strategies can be found in the literature to extract the zero-level surface, Γ := {x ∈ Ω(e) ; ψ(x) = 0}, from
a scalar field, ψ(x). Among them, the marching cubes (MC) approach, see [26], has been the most popular technique
used for volume visualization. However, the classical MC-method implementation requires the analysis of 15 different
cases in every cubic cell, and the corresponding rotations and symmetries. In spite of this, it does not guarantee the
topology correctness of the isosurface of a trilinear function.

For this reason, a modified algorithm, which takes into account 33 topologically different configurations to cor-
rectly treat topological ambiguities, both on the faces and inside the cell, was subsequently developed in [12]. Never-
theless, this algorithm is heavy to code and difficult to verify its faultlessness.
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In this work, an alternative marching tetrahedra method (MT) has been implemented, which overcomes the afore-
mentioned obstacles while avoiding ambiguities. The proposed strategy is based on an adaptive cube tessellation, see
[48], which ensures topologically correct isosurfaces in case of ambiguities. Furthermore, this tessellation preserves
the symmetries in the domain. The method is briefly sketched next.
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Figure 20: Marching cubes method: tessellation process.

The cubic cell is divided into six pyramids, a central extra-node, xC , is added to the cell and the value ψC ≡ ψ(xC)
is computed by interpolation from the regular nodes. In turn, each pyramid is split into four tetrahedra, including an
extra-node, xFi, on each face, and the value ψFi ≡ ψ(xFi) is computed, by interpolation, from its value at the vertices,
see figure 20. Therefore, seven extra values must be computed based on the trilinear approximation (green and red
dots in figure 21-(b)).
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Figure 21: Marching cubes method: nodal values interpolation.

Then, each tetrahedron is treated as usually in marching tetrahedra, where triangular surfaces and tetrahedral
volumes are computed. This procedure readily allows the geometrical computation of the perimeter and volume of
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the cell.

Appendix B Mixed finite element formulation for bi-material finite elements

Let us consider the subset of bi-material elements Ω(+,−) ⊂ Ω as well as the portions Ω(e,+) ⊂ Ω(e) and Ω(e,−) ⊂ Ω(e)

(Ω(e,+) ∪ Ω(e,−) = Ω(e)) containing hard and soft material phases, in every element e. This subset of elements is
treated considering a specific discontinuous elemental material approach based on a three field mixed stress-strain-
displacement (σχ − εχ − dχ) finite element formulation [54]. The elemental stresses, σ(e)

χ (x), strains, ε(e)
χ (x), and

displacements, u(e)
χ (x), are independently interpolated inside the element e. For the case of hexahedral elements, we

will consider element-wise constant stresses and strains. Therefore, following the notation in equation (15), they read


u(e)
χ (x) = [N(e)

u (x)]d(e)
χ ; [N(e)

u (x)] = [N(e)
1 (x), ...,N(e)

8 (x))] ; d(e)
χ = [d(e)

1 , ...,d(e)
8 ]T (a)

ε(e)
χ (x) = ε(e) = constant ∀x ∈ Ω(e) (b)

σ(e)
χ (x) = σ(e) = constant ∀x ∈ Ω(e) (c)

(106)

where N(e)
u (x) is the elemental displacement bilinear interpolation matrix, and d(e)

χ the corresponding nodal vectors.
The nodal displacement interpolation matrices N(e)

i (x) i ∈ {1, ..., 8} have a standard nodal support, and the nodal
displacements d(e)

i i ∈ {1, ..., 8} correspond to the displacements at the element nodes. As for the strain and stress in-
terpolation, due to their element-wise discontinuous character, they can be associated to one fictitious internal element
node in the center of every element Ω(e), with coordinates xC , (see figure 22), where the (constant) elemental strain
vector, ε(e), is defined. The elemental strain, ε(e), is, then, determined via the following additional variational equation
(uncoupled for every element in Ω(+,−))

GIVEN

V(e)
ε :=

{
η(e)
ε ∈ R6

}
; V(e)

σ :=
{
η(e)
σ ∈ R6

}
FIND : ε(e) ∈ V(e)

ε and σ(e) ∈ V(e)
σ

FULFILLING :∫
Ω(e)

(
η(e)
ε

)T (
ε(e) − ε(e)

χ (x)
)

dΩ =
(
η(e)
ε

)T
∫

Ω(e)

(
ε(e) − ε(e)

χ (x)
)

dΩ = 0 ∀η(e)
ε (x) ∈ V(e)

ε∫
Ω(e)

(
η(e)
σ

)T (
σ(e) − D(e)(x)ε(e)

)
dΩ =

(
η(e)
σ

)T
∫

Ω(e)

(
σ(e) − D(e)(x)ε(e)

)
dΩ = 0 ∀η(e)

σ (x) ∈ V(e)
σ

ε(e)
χ (x) = B(e)(x)d(e)

χ

(107)

where B(x)(e) and D(e)(x) stand, respectively, for the elemental deformation matrix and the elastic constitutive matrix
in equation (15). Equation (107) can be solved for ε(e) and σ(e) yielding

ε(e) =
1
|Ω(e)|

∫
Ω(e)

ε(e)
χ (x)dΩ =

∫
Ω(e)

B(e)(x)d(e)
χ dΩ =

∫
Ω(e)

B(e)(x)dΩ︸            ︷︷            ︸
B(e)(x)

d(e)
χ = B(e)(x) d(e)

χ (a)

B(e)(x) ' B(e)(xC) (b)

(108)
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Figure 22: Mixed finite element representation: (a) Hexahedra element with 8 integration points (b) Mixed element
with 1 pseudo-integration point

where (•) stands for the mean value of (•)(x) in Ω(e), and equation (108)-(b) stems from the bi-linear character of the
element. Now, considering the stress problem in equation (107), and solving for σ(e) yields

σ(e) =
1
|Ω(e)|

∫
Ω(e)

D(x)ε(e)dΩ =
1
|Ω(e)|

∫
Ω(e)

D(x)dΩ︸         ︷︷         ︸
D(x)

ε(e) = D(x) ε(e) (a)

D(x) =
|Ω(e,+)|

|Ω(e)|
D+
χ +
|Ω(e,−)|

|Ω(e)|
D−χ =

(
|Ω(e,+)|

|Ω(e)|
+ α
|Ω(e,−)|

|Ω(e)|

)
D (b)

(109)

where the values of the elastic constitutive tensor in Ω+ (D+
χ ) and in Ω− (D−χ ) in equations (11) and (15) have been

considered.

Appendix C A level set algorithm for relaxed bi-material topological optimization

C.1 Level set algorithm
Let us consider the topological optimization problem in equation (54)-(a) for the design domain Ω, and the hard-

material phase, Ω+
t and soft-material phase, Ω−t , corresponding to a pseudo-time, t, in turn associated to an iteration

procedure. The interface between the two phases is denoted by Γt, and n denotes the unit normal to Γt pointing to Ω+

(see figure 23).

Ωt
+

Ωt
-

n Ω

Γt={ϕt(x)=0}

ϕt(x)=const.

x

y

Figure 23: Level-set problem definition. The zero level-set (φt(x) = 0) defines, at time t, the position of the material
phase interface, Γt, in the design domain, Ω, and, therefore, the phase domains Ω+

t and Ω−t .
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Let φ(x, t) ≡ φt(x) ∈ Vφ be the level set function, considered as the actual unknown of the problem, through which
the characteristic function, χt(x), is defined (see equations (1) to (3)). Let us also consider φt(x) defined through a
time-evolving (Hamilton-Jacobi) equation [3] i.e.

Vφ ∈ H1(Ω) := {φ(x, t) : Ω × [0,T ]→ R}
φ̇t(x, λ) ≡ φ̇(x, λt) = −k

1
∆χt(x)

δL(χt, λt)
δχt

(x) ; k > 0 ; −1 ≤ φt ≤ 1 ; ∀x ∈ Ω (a)

Lt(φ, λ) ≡ L(χ(φt), λt) = J(χ(φt)) + λtC(χ(φt)) (b)
χt(x) = Hβ(φt(x)) (c)

(110)

where the relaxed topological derivative of the Lagrange functional Lt(φ, λ) in equation (110) is given by (see equa-
tions (100)-(a)-(b)-(c))

δLt(χ, λ)
δχ

(x) = 2mχm−1
t (x)Ut(x)∆χt(x) + λt sign(∆χt(x)) ∀x ∈ Ω (a)

Ut(x) :=
1
2

(
ε(1)
χ (x, t)

)T
D ε(2)

χ (x, t) (b)
(111)

The lagrange multiplier, λt, is determined via the augmented lagrange method (referencia [44]) i.e
λt ←< λt + ρ C(χ(φt) > (a)

C(χ(φt)) ≡ t −
|Ω−(χ(φt))|
|Ω|

(b)
(112)

where ρ ∈ R+ is a suitable penalty value.
The discrete time-evolution form of equations (110)-(a) and (112)-(a) is obtained after time integration, giving rise

to the following iterative update, from iteration i to i + 1, accounting for equation (110)-(c),φ
(i+1)(x) = φ(i)(x) − k

1
∆χ(i)(x)

δL(χ(i), λ(i))
δχ(i) (x)⇒ χ(i+1) = Hβ(φ(i+1)(x)) ∀x ∈ Ω

λ(i+1) =< λ(i) + ρ C(χ(φ(i))) >
(113)

The iterative update in equation (113) is stopped when the steady state solution of the problem is achieved, determined
in terms of some given tolerances on the variation of the unknowns χ(φ(x)) and λ, i.e.

||χ(i+1) − χ(i)||L2(Ω) ≤ Tolerχ
|λ(i+1) − λ(i)| ≤ Tolerλ

(114)

The corresponding characteristic function, χ(i + 1)(x) is then determined through equation (113).

C.1.1 Descending character of the algorithm
The algorithm in equations (110) to (113) leads to a continuous descent, along pseudo-time or iterations, of the

Lagrange functional to be minimized. This warranties that, when a steady state is reached, the solution is a local
minimum of the problem. The proof is readily achieved through the following sequence of propositions. Let us
consider the time-evolutionary problem in equation (110)

Vφ ∈ H1(Ω) := {φ(x, t) : Ω × [0,T ]→ R}φ̇t(x) = −k
1

∆χ(x)
δL(χ, λ)
δχ

(x) ; k ∈ R+ ; −1 ≤ φt ≤ 1 (a)

Lt(φ, λ) ≡ L(χ(φt), λ) = J(χ(φt)) + λC(χ(φt)) (b)

(115)
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Lemma 1. Given the functional

L(χ) =

∫
Ω

G(u(x), x)dΩ ≡

∫
Ω

F(χ, x)dΩ (116)

and considering the function derivative of L(χ) as a, parameter-χ-dependent, integral, the following equality is ful-
filled

∂L(χ)
∂χ

=

∫
Ω

1
∆χ(x)

δL(χ)
δχ

(x)dΩ (117)

Proof 1. The function derivative of L(χ), in equation (116), with respect to χ reads

∂L(χ)
∂χ

=

∫
Ω

∂F(χ, x)
∂χ

dΩ (118)

and, equation (27) (replacing J by L), yields
[
∂F(χ, x)
∂χ

]
x=x̂

∆χ(x̂) =
δ

δχ

[∫
Ω

F(χ, x)dΩ

]
(x̂) ∀x̂ ∈ Ω⇒ (a)

⇒
∂F(χ, x̂)
∂χ

=
1

∆χ(x̂)
δL(χ)
δχ

(x̂) ∀x̂ ∈ Ω (b)
(119)

Substitution of the result in equation (119)-(b) into equation (118), yields the proposition in equation (117).

Lemma 2.

∂χ(φt(x))
∂φt

≡
∂χ(φt)
∂φt

(x) = (1 − β)||∇φt(x)||−1δΓt (x) (120)

where δΓt (x) stands for the line/surface Dirac’s-delta function, shifted to Γt (see figure 23) thus fulfilling∫
Ω

δΓt (x)ϕ(x)dΩ =

∫
Γt

ϕ(x)dΓ (121)

for any sufficiently regular ϕ(x).

Proof 2.

χ(φt(x)) = Hβ(φt(x))⇒


∇χ(φt(x)) = ∇Hβ(φt(x)) = (1 − β)δΓt (x) ⊗ n(x) ; n(x) =

∇φt(x)
||∇φt(x)||

∇χ(φt(x)) =
∂χ(φt(x))
∂φt

∇φt(x) =
∂χ(φt(x))
∂φt

||∇φt(x)|| ⊗ n(x)
⇒

⇒
∂χ(φt(x))
∂φt

||∇φt(x)|| = (1 − β)δΓt (x)⇒
∂χ(φt(x))
∂φt

= (1 − β)||∇φt(x)||−1δΓt (x)

(122)

Theorem 1. Time evolution of the lagrangean functionalLt(φ, λ) ≡ L(χ(φt), λ), in equation (115), is always negative
i.e. L̇(χ(φt), λ) < 0.

Proof
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Time differentiation of L(φt, λ), in equation (115)-(b), yields

∂L (χ(φ(x, t)), λ)
∂t

≡ L̇(χ(φt(x)), λ) =

∫
Ω

∂ (J(χ(φt)) + λC(χ(φt))
∂χ

∂χ(φt)
∂φt

φ̇t(x)dΩ =

=

∫
Ω

(1 − β)||∇φt(x)||−1δΓt (x)
∂(J(χ(φt)) + λC(χ(φt))

∂χ
φ̇t(x)dΩ =

=

∫
Ω

(1 − β)||∇φt(x)||−1 1
∆χ(x)

δL(χ(φt), λ)
δχ

(x)δΓt (x)φ̇t(x)dΩ =

=

∫
Γt

(1 − β)||∇φt(x)||−1 1
∆χ(x)

δL(χ(φt), λ)
δχ

(x)φ̇t(x)dΓ

(123)

where results in equations (117), (120) and (121) have been used. Replacement of equation (115) into equation (123)
yields 

L̇(χ(φt), λ) =

∫
Γt

(1 − β)||∇φt(x)||−1 1
∆χ(x)

δL(χ(φt), λ)
δχ

(x) φ̇t(x)dΓ

φ̇t(x) = −k
1

∆χ(x)
δL(χ, λ)
δχ

(x) ; k ∈ R+

⇒ L̇(χ(φt), λ) = −k
∫

Γt

(1 − β)||∇φt(x)||−1︸                ︷︷                ︸
> 0

(
1

∆χ(x)
δL(χ(φt), λ)

δχ
(x)

)2

︸                          ︷︷                          ︸
> 0

dΓ < 0 ∀t

(124)

Corollary 1.1. Therefore, at the stationarity of the characteristic function (χ̇(φt(x)) = 0 ∀x ∈ Ω) the achieved,
topology χ(x, t), defines a (local) minimum of Lt(φ, λ) ≡ L(χ(φt), λ) in equation (115).
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