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Abstract This study focuses on the characterisation of

thermal conductivity for three potential host rocks for

radioactive waste disposal. First, the heat conduction pro-

cess is reviewed on the basis of an analytical solution and

key aspects related to anisotropic conduction are discussed.

Then the existing information on the three rocks is sum-

marised and a broad uncertainty range of thermal con-

ductivity is estimated based on the mineralogical

composition. Procedures to backanalyse the thermal con-

ductivity on the basis of in situ heating tests are assessed

and a methodology is put forward. Finally, this method-

ology is used to estimate the impact of experimental

uncertainties and applied to the four in situ heating tests. In

the three potential host rocks, a clear influence of the

bedding planes was identified and anisotropic heat con-

duction was shown to be necessary to interpret the

observed temperature field. Experimental uncertainties

were also shown to induce a larger uncertainty on the

anisotropy ratio than on the equivalent thermal conduc-

tivity defined as the geometric mean of the thermal con-

ductivity in the three principal directions.

Keywords Callovo-Oxfordian Clay � Boom Clay �
Opalinus Clay � Thermal conductivity �
In situ experiments � Heat

1 Introduction

Since the Second World War, mankind has produced

radioactive waste. According to the International Atomic

Energy Agency (IAEA 2009) radioactive waste is classified

into different categories. High level waste (HLW) is

defined as the waste with levels of activity concentration

high enough to generate significant quantities of heat by

the radioactive decay process or waste with large amounts

of long lived radionuclides that need to be considered in

the design of a disposal facility. Most of the HLW is

produced by the defence industry and the power generation

industry (IAEA 2007). Although most of the data for the

defence sector is classified, a worldwide accumulation of

800,000 m3 of HLW since the early days is estimated. By

the beginning of 2003, power generation is estimated to

have produced 255,000 metric tons of heavy metal

(MTHM) of spent fuel in total. In 2010, 441 reactors are in

operation providing a power capacity of about 375 GWe

(Giga Watt electrical). A modern power reactor with a

capacity of 1 GWe generates approximately spent fuel

assemblies containing around 30–50 MTHM per year. This

results in an overall annual increase of waste of about

15,000 MTHM and in a total amount of spent fuel nowa-

days of about 400,000 MTHM. Current reprocessing pro-

cedures allow for the conversion of 100 MTHM spent fuel

into 40 m3 of vitrified HLW. A total volume of approxi-

mately 960,000 m3 of HLW (that should be multiplied by

some kind of security factor to account for the containment

structure) will thus have to be accommodated in the dif-

ferent geological disposal facilities worldwide.

Generally, geological disposals will be organised as a

grid of storage galleries. Considering the maximum tem-

perature that the host rock is allowed to reach and the heat

output per metre of gallery as constraining factors, the
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diameter of the galleries and the distance between galleries

in the grid will be mostly dependent on the thermal con-

ductivity of the host rock. As a consequence of the total

volume of waste and of the economic impact of gallery

diameter and their distance, the determination of the ther-

mal conductivity of the considered host rocks and of its

uncertainty is of crucial importance. In this work, an

attempt to characterise the thermal conductivity of Cal-

lovo-Oxfordian Clay, Opalinus Clay and Boom Clay,

potential host rocks for the French, Swiss and Belgian

disposal facilities, on the basis of four in situ heating tests

is presented. Although the proposed methodology is

applied specifically to three argillaceous rocks, it may also

be used for other rock types as long as conduction is the

dominant heat transport mode and that convection and

changes of thermal conductivity of the host rock may be

neglected.

2 Heat Transport in Argillaceous Rocks

In general, two modes may appear as candidates for heat

transport in porous media: convection and conduction. In

argillaceous rocks, however, convection may be neglected

because of the low permeability of the medium (Gens et al.

2007). Moreover, considering that the soil remains satu-

rated throughout the experiment and that changes in

porosity are minor (because of the high stiffness of the

medium), changes of thermal conductivity are negligible.

On the basis of these assumptions, the thermal conduction

problem can be solved independently.

Sedimentary rocks exhibit cross-anisotropic features

associated with the presence of bedding planes (Gens 2011)

including heat conduction properties. The analytical solu-

tion proposed by Booker and Savvidou (1985) for a point

heat source in an infinite isotropic medium can be trans-

formed (Carslaw and Jaeger 1946) to take anisotropy into

account:

DT ¼ q

4 � p � k0 � R0

� erfc
R0

2
ffiffiffiffiffiffi

k0�t
q�C

q

0

B

@

1

C

A

ð1Þ

where DT is the temperature increment induced by q, the

applied power (in W). k0 is the equivalent thermal

conductivity (in W/m/K):

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kpar � kpar � kper
3
p

ð2Þ

where kpar and kper are the thermal conductivity in the

bedding plane and in the perpendicular direction,

respectively. C is the heat capacity or specific heat (in

J/kg/K), q is the density (in kg/m3) and t is the heating time

(in s). erfc stands for complementary error function. The

solution is calculated in a Cartesian reference system where

X- and Y-axes are considered in the bedding plane and Z in

the perpendicular direction. The transformed radius R0 is a

function of the isotropy-like distances n, g and f in x, y and

z direction, respectively:

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ g2 þ f2

q

ð3Þ

n, g and f are related to the real distances x, y and z

through:

x ¼
ffiffiffiffiffiffiffi

kpar

p

ffiffiffiffiffi

k0

p n ð4Þ

y ¼
ffiffiffiffiffiffiffi

kpar

p

ffiffiffiffiffi

k0

p g ð5Þ

z ¼
ffiffiffiffiffiffiffi

kper

p

ffiffiffiffiffi

k0

p f ð6Þ

Two factors may be distinguished in Eq. (1): the

complementary error function that expresses the transient

behaviour and the pre-multiplying factor that gives the

maximum temperature reached at steady state. Equation (1)

is further analysed in Table 1 with emphasis on two

orientations relative to the heat source. The first one is

along the bedding plane and the second one is in the

perpendicular direction. For both directions, we present the

equations for Tsteady, the temperature reached at steady

state and the time tsteady to reach a certain percentage of the

steady-state temperature. The steady-state temperature in

both directions is dependent on the geometric mean of the

thermal conductivity values in the transversal plane to the

respective directions. The time to reach steady state is

inversely proportional to the thermal conductivity (or

thermal diffusivity) between the observation point and the

heat source and proportional to the square of the distance

between the observation point and the heat source.

More complex boundary value problems may be

resolved using finite elements. Code_Bright (Olivella

1995) is a finite element code that allows solving partial

differential equations in one, two or three dimensions. In

this case, the relevant equation is the energy balance:

Table 1 Analysis of the temperature field in an anisotropic medium

in the bedding plane and the perpendicular direction

Parallel (z = 0, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

) Perpendicular

(x and y = 0)

Tsteady
q

4�p�
ffiffiffiffiffiffiffiffiffiffiffi

kpar�kper

p
�r

q
4�p�kpar�z

t�steady f � r2 �q�C
kpar

f � z2 �q�C
kper

f = 127.16 to reach 95 % of the steady-state temperature and

f = 3,183.29 to reach 99 % of the steady-state temperature
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oðq � C � TÞ
ot

þ divð ic
!Þ ¼ fE ð7Þ

where q is the density of the porous medium, C the specific

heat of the porous medium, fE a well/sink term of heat and

ic is the conductive flux of heat caused by temperature

gradients:

ic
!¼

kpar 0 0

0 kpar 0

0 0 kper

2

4

3

5 � rT ð8Þ

where kpar and kper are the thermal conductivity values in

the bedding plane and in the perpendicular direction,

respectively. Code_Bright was used in this work to model

the different in situ heating tests.

3 In Situ Heating Tests and Feedback from Laboratory

Four in situ heating tests are analysed in this work:

• The ATLAS experiment in Boom Clay (De Bruyn and

Labat 2002) performed in the HADES Underground

Rock Laboratory (URL) in Belgium (Bernier et al.

2007) in several phases. Phase III is analysed in this

work.

• The HE-D experiment in Opalinus Clay (Wileveau

2005) performed in the Mont Terri URL in Switzerland

(Thury and Bossart 1999).

• The TER and TED experiments in Callovo-Oxfordian

Clay (Conil et al. 2010) performed in the Meuse/Haute

Marne URL in France (Delay et al. 2007).

Callovo-Oxfordian Clay and Opalinus Clay overcon-

solidated Mesozoic argillaceous rock sedimented during

the Middle Jurassic. Boom Clay is younger (Oligocene)

and exhibits a lower overconsolidation ratio. An overview

of the hydro-mechanical properties of the three materials

may be found in Gens (2011). A general review of the three

laboratories, THM processes and outstanding issues has

been presented by Tsang et al. (2012). At the location of

the URL, Boom Clay and Callovo-Oxfordian Clay did only

experience weak tectonic activity and the bedding plane is

thus subhorizontal. The Mont Terri URL instead is located

in the Jura Mountain and the Opalinus Clay layer here

underwent several folding events resulting in the Mont

Terri anticline. In the HE-D area, values of the dip angle of

typically 45� were measured.

Each of the experiments considers the emplacement of a

heating device in direct contact with the host rock in a

horizontal borehole. In the TED experiment, three heaters

were emplaced in parallel boreholes. The heating path of

the tests is presented in Fig. 1a and b as a function of the

time since heating started. The heating strategy of the

different experiments is fairly similar and consisted in a

stepwise increase of the heating power up to a nominal

value designed to reach a maximum temperature of about

90–100 �C at heater–rock contact. The resulting nominal

heating power related to the heating borehole wall surface

was 293 W/m2 in the ATLAS experiment, 345 W/m2 in the

HE-D experiment and 436 W/m2 in the TER and TED

experiments. As a consequence of the long duration of

heating, unexpected shutdown events occurred in most of

the experiments. The nomenclature of the different heating

phases of the TER experiment (H1.1., H1.2., H2.1., H2.2.,

H2.3., H3.1. and H3.2.) has been added in Fig. 1b as this

experiment is used to illustrate the determination method-

ology of the thermal conductivity. That methodology relies

on the temperature measurements carried out in the rock

mass around the heating boreholes. The number of em-

placed temperature sensors in each experiment is given in

Table 2.

Fig. 1 a Heating history in the HE-D, ATLAS and TED experiments.

b Heating history in the TER experiment

Table 2 Number of temperature sensors in the rock mass in the

different in situ experiments

ATLAS TER TED HE-D

24 20 108 26
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Two parameters are directly related to the thermal

conduction problem: specific heat and thermal conductiv-

ity. Both parameters are dependent on the composition of

the porous materials: the porosity itself, the mineralogy of

the solid phase and the fluids present in the pores. Specific

heat is the amount of heat required to raise the temperature

of the unit mass of the material by a given amount (usually

one degree). As a consequence of the storage nature of this

parameter, a volumetric average considering the different

constituents may be applied:

q � C ¼ qs � 1� /ð Þ � Cs þ qw � / � Sr � Cw þ qa � /
� 1� Srð Þ � Ca ð9Þ

where the ‘‘s’’, ‘‘w’’ and ‘‘a’’ subscripts stand for solid,

water and air, respectively. u is the porosity and Sr is the

degree of saturation. Thermal conductivity is the property

of a material that indicates its ability to conduct heat. In

this case, it is clear that there is an influence of the material

composition, but also of the arrangement of the different

constituents. Farouki (1986) proposed a formula for the

isotropic thermal conductivity that can be applied to a

random mixture of several materials. Applied to a porous

medium, it states:

k0 ¼ k1�/
s � k/�Sr

w � k/� 1�Srð Þ
a ð10Þ

The random requirement is important and does not apply

for argillaceous rocks that present a specific arrangement of

the clay particles as a consequence of their sedimentary

nature. Equation (10), however, is a convenient tool to get

a first order approximation and to define a broad

uncertainty range. Note that a similar equation can be set

up to estimate ks on the basis of the mineralogical

composition. Significant variations of carbonates or

quartz which are relatively high conductive minerals are

known to occur in argillaceous rock as a function of the

sediment level and should be taken into account. Average

values of the mineralogical composition have been

indicated for the three rocks in Table 3. Whenever

possible, the data are taken from samples at the location

of the in situ heating experiments. Considering the

mineralogy and accounting for a thermal conductivity of

the clay component of 1.1 W/m/K, of 0.7 W/m/K for the

water and of 3.75 and 8 W/m/K for calcite and quartz

crystals (Robertson 1988), a first order approximation of

the saturated thermal conductivity of the three rocks can be

calculated. On the basis of this estimation, Callovo-

Oxfordian Clay and Opalinus Clay exhibit larger

conductivity values of 1.8 and 1.6 W/m/K, respectively.

Boom Clay has a slightly lower thermal conductivity: 1.3

W/m/K as a consequence mainly of its larger water

content.

Different laboratory experiment campaigns have been

carried out on saturated Callovo-Oxfordian Clay samples.

They are summarised in Table 4. A clear influence of the

heat flow orientation with respect to bedding was observed.

The laboratory experiments realised on Opalinus Clay

samples are summarised in Jobmann and Polster (2007)

and Bock (2009). Average values of 2.15 and 1.2 W/m/K

are indicated for the parallel and the perpendicular thermal

conductivity values of Opalinus Clay, respectively. In

Boom Clay, there are a limited number of laboratory

experiments set up to determine the thermal conductivity.

Lima Amorim (2011) and Van Cauteren (1994) measured

an average value of 1.6 W/m/K in the bedding plane, and

Djeran et al. (1994) reported an average value of 1.44 W/

m/K for the equivalent thermal conductivity. It should be

noted that the thermal conductivity values estimated on the

basis of the mineralogy coincides quite well with the values

indicated by the different laboratory campaigns.

The different experimentalists mentioned above con-

curred in detecting a very small temperature dependency of

the thermal conductivity generally much lower than the

standard deviation measured in the different laboratory

campaigns. Moreover, in all cases, the specific heat of the

solid phase of the rocks was close to 800–820 J/kg/K,

resulting in values for the saturated porous materials of

about 1,000 J/kg/K for the Opalinus Clay (Fernandez 2011;

Table 3 Indicative mineralogy (% weight of total solid) of the three

argillaceous rocks in terms of the three main components and their

porosity

Boom Clay Opalinus Clay Callovo-Oxfordian Clay

Clay 70 67.5 (40–80) 55 (30–60)

Calcite 0 14 (5–40) 28 (20–75)

Quartz 30 18.5 (10–40) 17 (7–35)

Porosity 40 15 15

Variation range is indicated for Opalinus Clay and Callovo-Oxfordian

Clay. Data are collected from Romero (1999), Wileveau (2005) and

ANDRA (2009)

Table 4 Laboratory measurements of thermal conductivity in Cal-

lovo-Oxfordian Clay in the TED area (Conil et al. 2010) and in the

TER area (Auvray et al. 2005)

kpar kper k0 kh/kv npar nper

TED area (DBE)

Average 1.96 1.28 1.69 1.52 14 12

SD 0.08 0.07 0.06 0.08

TED area (LAEGO)

Average 1.89 1.26 5 3

SD 0.05 0.04

TER area (LAEGO)

Average 1.91 1.25 4 3

npar and nper are the number of measurements parallel and perpen-

dicular to the bedding, respectively
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Bock 2009) and the Callovo-Oxfordian Clay (Conil et al.

2010; Auvray et al. 2005) and 1,450 J/kg/K for Boom Clay

(Van Cauteren 1994). Because of the lower uncertainty on

the specific heat that depends exclusively on the medium

composition and not on the grain arrangement, these values

were assumed to be satisfactory estimates.

4 Determination Methodology

4.1 Shortcomings of a Global Analysis

The first attempt to determine the thermal conductivity was

done on the basis of the temperature measurements in the

TER in situ heating experiment. A series of thermal 3D finite

element computations were run, solving the diffusion Eq. (7)

and accounting for anisotropic heat conduction (8). In each of

the computations, the thermal conductivity values (in the

direction parallel and perpendicular to the bedding) were

changed covering a wide range well beyond the thermal

conductivity uncertainty. The parallel thermal conductivity

was varied between 0.6 and 4 W/m/K and the perpendicular

thermal conductivity between 0.5 and 3 W/m/K. Nine hun-

dred and ten computations were run considering a discreti-

zation of 0.1 W/m/K. For each thermal conductivity pair, the

averaged relative difference between measured and simu-

lated temperature was evaluated in each sensor as:

ei ¼
X

nT

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DTrealðjÞ � DTsimðjÞð Þ2
q

DTrealðjÞ
� DtðjÞ
tanalysis

0

@

1

A ð11Þ

where tanalysis is the duration of the analysed period. nT is

the number of measurements in the considered sensor

during the analysed period. DTreal(j) is the measured

temperature increment since the start of the analysed period

at time tj and DTsim(j) is the simulated temperature

increment at tj.
DtðjÞ

tanalysis
is a time factor used to weight

measurement j, where Dt(j) is computed as:

DtðjÞ ¼ tjþ1 � tj�1

2
ð12Þ

This time weighting factor is introduced to avoid biasing

the calculations in favour of the periods in which more

frequent measurements were taken. The temperature

differences can be averaged over several sensors:

e ¼
PnMP

i¼1 ei

nMP

ð13Þ

where nMP is the number of sensors considered.

Average relative difference maps were built for each

sensor of the TER experiment by applying Eq. (11) to each

of the 910 simulations. The analysed period covers all

heating phases H1.1., H1.2., H2.1., H2.2., H2.3. and H3.1.

A best-fitting thermal conductivity pair of values could

only be determined for 10 of the 20 sensors. The difference

maps for these sensors are presented in Fig. 2. For other

sensors, the minimum in the difference maps was located

outside the thermal conductivity domain considered. Mal-

functioning of the sensor or an error in the sensor location

was put forward as possible explanation. The dispersion of

the determined thermal conductivity values is thus

significant.

Even in the sensors indicating a minimum inside the

investigated thermal conductivity domain, a significant

scatter is observed. The best-fitting thermal conductivity

pairs determined from the average relative difference maps

are summarised in Table 5. Sensors located in the same

bedding plane as the heater seem to indicate a parallel

thermal conductivity value between 1.8 and 2.1 W/m/K.

Perpendicular sensors in turn indicate a somewhat higher

parallel thermal conductivity: 2.6–2.7 W/m/K. The per-

pendicular thermal conductivity varies between 0.5 and 1.4

W/m/K and it does not exhibit any particular pattern

related to the sensor location relative to the heater.

Although the different sensors showed a very uneven

behaviour, Eq. (13) was used to build a difference map

averaging the results from the individual sensors (nMP = 10,

Fig. 3). This difference map indicates an overall best-fitting

thermal conductivity pair of kpar = 2.4 W/m/K and kper =

0.9 W/m/K. These values not only differ significantly from

the average determined on the basis of the observation of

the ten more reliable sensors (kpar = 2.1 W/m/K and kper =

1 W/m/K), but also from the thermal conductivity mea-

surements performed in the laboratory: kpar = 1.9 W/m/K

and kper = 1.3 W/m/K. The reliability of the thermal con-

ductivity determination from the overall difference mini-

mum may thus be questioned. Moreover, the determination

of the minimum is not very precise, in particular along the

direction indicated with a dotted line. Cross sections of

the difference map along the two axes of the minimum

valley have been plotted in Fig. 4 to illustrate the differ-

ence in dispersion along the axes. The flatness of the

valley bottom along the dotted line does not allow

determining the thermal conductivity with a precision

lower than 0.5 W/m/K.

Each heating phase was also investigated separately in

each sensor. Some sensors (e.g. TER1201TEM2 in Fig. 5)

show a very consistent behaviour along the different

heating phases. The best-fitting thermal conductivity pair in

each heating phase is quite similar to the one determined

for all the heating phases together. It is noteworthy that

short heating phases (H1.1. and H2.1.—20 days each) seem

to provide a precise determination of the perpendicular

thermal conductivity and that longer heating phases (H2.2.

and H3.1.) indicate a combination of parallel and perpen-

dicular thermal conductivity pairs. Other sensors (e.g.

Thermal Conductivity of Argillaceous Rocks 115
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Fig. 2 Map of average relative

difference in each sensor

considering the entire heating

history in TER
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TER1203TEM4 in Fig. 6) exhibit a significantly erratic

behaviour depending on the heating phase used for the

determination.

4.2 Synthetic Case

The analytical solution—Eq. (1)—is a convenient tool to

examine the shortcomings of the global analysis: its solu-

tion is fast and no numerical errors are introduced. First, a

synthetic case is defined. We consider a point heat source

with q* = 300 W in a cross-anisotropic continuum with

k�par ¼ 2:1 W/m/K, k�per ¼ 1 W/m/K and C* = 1,000 J/kg/K.

The temperature evolution T* has been computed with the

analytical solution at x* = 0.5 m and x* = 2 m (y* = z* = 0

m) in the bedding plane and at z* = 0.5 m and z* = 2 m (y* =

x* = 0 m) in the perpendicular direction (Fig. 7). T* has

been compared with results from a finite element compu-

tation to discard code-related errors (Fig. 7, full lines).

The superscript * indicates values used to define the syn-

thetic case, and when a position is indicated and no infor-

mation is given about a specific coordinate, it should be

considered 0.

In a second step, the measured temperature increment

DT* is compared with the temperature increment DT cal-

culated with the analytical solution using different thermal

conductivity values. The comparison is carried out at a

particular time (t) using the following expression:

e ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DT � �DTð Þ2
q

DT�

�

�

�

�

�

�

t

ð14Þ

Table 5 Best-fitting thermal conductivity pair in each sensor on the basis of Fig. 2

kpar (W/m/K) kper (W/m/K) Sensor orientation

with respect

to bedding

Radial distance

to heater (m)

Distance to transversal

plane through

the centre

of the heater (m)

TER1201TEM01 1.8 0.8 Parallel 0.49 -3.01

TER1201TEM02 1.8 1.2 Parallel 0.53 -1.51

TER1201TEM03 1.8 1.4 Parallel 0.57 -0.01

TER1201TEM04 2.1 0.9 Parallel 0.61 1.49

TER1201TEM05 1.9 1 Parallel 0.64 2.99

TER1203TEM03 2.7 0.7 Perpendicular 0.57 -0.10

TER1203TEM04 2.6 1.2 Perpendicular 0.63 1.40

TER1403TEM01 1.7 1.4 45� 1.31 -1.39

TER1404TEM01 1.9 1 Perpendicular 0.66 -2.09

TER1405TEM01 2.7 0.5 Perpendicular 1.41 -1.19

Average 2.1 1

Min 1.7 0.5

Max 2.7 1.4

Fig. 3 Map of average relative difference considering all sensors and

the entire heating history in TER

Fig. 4 Cross sections of the difference map from Fig. 3 along the

dotted and full profile lines. kequi is taken 0 at the cross over and

kequi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
par þ k2

per

q
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The pairs of thermal conductivity values where e(t) is

lower than 2 % have been plotted in Fig. 8 for the four

synthetic sensors at different times. They correspond to

valleys of the difference function encompassing the

minimum. Along those valleys, all thermal conductivity

pairs are associated with very similar errors, so the

determination of the optimum in practice will have a

high degree of reliability.

In this synthetic case, for long times, the minimum

valleys converge towards a thermal conductivity pair

whose product kper � kpar ¼ k�per � k
�
par for sensors in the

bedding plane and to kpar ¼ k�par for perpendicular sensors.

This is related to the fact that the steady-state temperature

in parallel and perpendicular sensors is determined

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kpar � kper

p

and kpar, respectively (Table 1). This

Fig. 5 Map of average relative

difference in sensor

TER1201TEM2 for each

heating phase in TER. The

minimum determined for this

sensor on the basis of all heating

phases is indicated by a

transparent ellipse

Fig. 6 Map of average relative

difference in sensor

TER1203TEM4 for each

heating phase in TER. The

minimum determined for this

sensor on the basis of all heating

phases is indicated by a

transparent ellipse
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convergence occurs more slowly in perpendicular sensors

and in farther sensors as the time to reach steady state is

inversely proportional to the thermal conductivity between

the sensor and the heat source and proportional to the

square of the distance between the sensor and the heat

source (Table 1). It is noteworthy that the minimum valleys

at 1 and 8 days in the sensors at 0.5 m from the heat source

correspond exactly to those at 16 and 128 days in the

sensors at 2 m, which is also a direct consequence of the

square distance proportionality. It should also be noted that

the location of a minimum valley at time t is independent

of the applied power.

The analysis of the minimum valleys from Fig. 8 allows

the examination of some features of the global analysis

presented in the previous section. As a consequence of the

indiscriminate time average applied in Eq. (11), relatively

long heating phases tend to indicate a minimum valley

instead of a single thermal conductivity pair as the infor-

mation from short times is neglected. This is illustrated in

Fig. 9 in which Fig. 8a has been redrawn discarding short

times. Without the information from low times, it is not

possible to determine the unknown thermal conductivity

pair using one single sensor and the time average factor

used in the global analysis is thus identified as a potential

source of uncertainty. For example, in TER1201TEM2, a

parallel sensor relatively close to the heater, long heating

periods (H2.2. and H3.1.) indicate a minimum close to the

kper � kpar ¼ k�per � k
�
par valley (Fig. 5). In contrast, shorter

heating periods (H1.1. and H2.1.) indicate a clear mini-

mum. Obviously, this problem may be tackled introducing

a factor giving more weight to short-term measurements.

This solution, however, is difficult to apply in practice as

the concept of long and short terms is related to the dis-

tance between the heater and the sensor and the sensor

Fig. 7 Comparison of the analytical solution (triangle and diamond

dots) against simulation results (full lines) in the bedding plane

(x) and in the perpendicular direction (z)

Fig. 8 Thermal conductivity pairs satisfying e(t)\2 % in the synthetic sensors Par_1 (x* = 0.5 m) (a), Par_2 (x* = 2 m) (b), Per_1 (z* = 0.5 m)

(c) and Per_2 (z* = 2 m) (d) at different times
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orientation. Unsurprisingly, the same effect is also identi-

fied when all heating periods are averaged in each sensor

(Fig. 2). Parallel sensors close to the heater (TER1201-

TEM2, TER1201TEM3 and TER1201TEM4) show an

important scatter along the kper � kpar ¼ k�per � k
�
par valley.

Parallel sensors (TER1201TEM1 and TER1201TEM5)

further from the heater indicate a single minimum.

The convergence of the minimum valleys towards kper �
kpar ¼ k�per � k

�
par for sensors in the bedding plane and to

kpar ¼ k�par for perpendicular sensors may also explain the

important dispersion along the dotted line in Fig. 3 when

all the sensors are averaged over long heating times.

4.3 Impact of Experimental Uncertainties

An evident advantage of a synthetic case is that experi-

mental uncertainties can be simulated easily. According to

Eq. (1), three possible experimental uncertainty types may

be identified: sensor location uncertainty, power input

uncertainty and uncertainty on the temperature measure-

ment itself. Besides, conceptual errors may also be done, in

particular on the specific heat, but also on the theoretical

assumptions (convection is neglected, medium is consid-

ered saturated and changes in porosity are neglected). The

theoretical assumptions are considered to be accurate

enough. Thermo-Hydro-Mechanical computations per-

formed by Gens et al. (2007) showed that convection was

negligible for intrinsic permeability values as high as 10-15

m2 and that convection started to have influence from

values of 10-11 m2 (typical for gravels). These values are

much beyond the range of argillaceous rocks. It is probable

that, after the drilling or during cooling, a zone around the

heater desaturates and/or fissures appear. Given the limited

extent of this zone and the fact that the experiments are

controlled in power, a small impact of temperature on the

saturated zone is expected. The impact of each uncertainty

on the determination of the best-fitting thermal conduc-

tivity pair is now discussed.

4.3.1 Uncertainty on the Sensor Location

The emplacement of sensors in an in situ experiment is

always subjected to a location uncertainty to some extent.

The position of the instrumentation borehole itself is

obviously the first uncertainty source. But even in case of

accurate knowledge of that position, the location of the

sensor within the borehole may also be inaccurate. For

example, the diameter of the instrumentation boreholes in

the TER experiment is 56 mm. As the instrumentation

boreholes are approximately parallel to the heating bore-

hole, emplacing the sensor next to the right or the left wall

of the instrumentation borehole is equivalent to a location

uncertainty in the direction of the heater of the same order

of magnitude as the borehole diameter. It should also be

noted that the relevant reference system here is that defined

by the heater itself and that a location uncertainty of the

heater cannot be discarded either.

A location uncertainty of the same order of magnitude

was introduced for the four sensors of the synthetic case:

each sensor is supposed to be 5 cm closer to the heater as it

is in reality. The closest parallel sensor for example is

supposed to be at r = 50 cm from the heater when its true

location is r* = 55 cm. Equation (11) from the global

analysis was applied to each sensor for a short heating

period (Fig. 10) and a long heating period (Fig. 11) con-

sidering a measurement frequency of 1 day. Most of the

sensors indicate a minimum in the long and in the short

heating period, but it does not correspond anymore to the

thermal conductivity values used in the analysis and a

different pair is determined for each sensor. Additionally,

some sensors indicate different best-fitting thermal con-

ductivity pair in the short and in the long heating periods.

For example, the farthest perpendicular sensor indicates

kpar = 1.7 W/m/K, kper = 0.9 W/m/K in the short heating

period and kpar = 2.1 W/m/K, kper = 0.9 W/m/K in the long

heating period. Note that the same phenomenon is observed

when the measurement frequency is changed. Other sen-

sors show consistent behaviour between the short and the

long heating period, but do not determine the best-fitting

thermal conductivity pair precisely in the long heating

period. The same type of observations was made in the

global analysis of the TER experiment.

The value of the average difference over the examined

domain of thermal conductivities should also been dis-

cussed. First, the average difference for the best-fitting

thermal conductivity pair is not zero and can reach values

significantly higher than 2 %, for example, in Fig. 10d.

This is due to a very large difference for very short times

throughout the investigated domain. Secondly, closer

Fig. 9 Thermal conductivity pairs satisfying to e(t)\2 % in synthetic

sensor Par_1 (x* = 0.5 m) for times 8, 16, 32, 64 and 128 days
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Fig. 10 Average relative difference maps by applying Eq. (11) for a

short heating period (20 days) in sensors at x* = 0.55 m (a), x* = 2.05

m (b), z* = 0.55 m (c) and z* = 2.05 m (d) presuming that the location

is x = 0.5 m (a), x = 2 m (b), z = 0.5 m (c) and z = 2 m (d). Using

measurements at 1, 2,…,20 days

Fig. 11 Average relative difference maps by applying Eq. (11) for a

long heating period (125 days) in sensors at x* = 0.55 m (a), x* = 2.05

m (b), z* = 0.55 m (c) and z* = 2.05 m (d) presuming that the location

is x = 0.5 m (a), x = 2 m (b), z = 0.5 m (c) and z = 2 m (d). Using

measurements at 1, 2,…,125 days
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sensors have a relatively low difference all over the

domain, typically lower than 1 and the difference in farther

sensors increases significantly. For example, the far per-

pendicular sensor indicates differences over 1,000 for the

best-fitting thermal conductivity pair of the closest parallel

sensor (kpar = 1.75 W/m/K, kper = 1.5 W/m/K).

Having introduced experimental uncertainties, the best-

fitting thermal conductivity pair is thus not the same in

each sensor and the shape of the difference function away

from the minimum will thus influence the results when

averaging different sensors. In Fig. 12, the difference maps

from the different sensors were averaged using Eq. (13)

considering different sensors combinations. It is clear that

the contribution from far field sensors spoils the

information from closer sensors. The difference maps

obtained by average of all sensors (a and b) are almost

identical to those obtained by the average of the two far

field sensors (e and f). Moreover, the best-fitting thermal

conductivity pair is a function of the duration of the

heating period (a vs. b), as it was the case when consid-

ering one particular sensor. It is also noteworthy that,

when analysed individually, the two closer sensors indi-

cated two different thermal conductivity pairs the average

of which was close to the assumed thermal conductivity

pair. Applying Eq. (13) to the two closer sensors, another

thermal conductivity pair, significantly different from the

average of the two individually determined pairs, is

obtained (c and d).

Fig. 12 Average relative difference maps by applying Eqs. (11) and

(13) for a short heating period (a, c and e) and a long heating period

(b, d and f) averaging the four sensors (a and b), the two closest

sensors (c and d) and the two farther sensors (e and f). Using

measurements at 1, 2,…,125 days
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The shape of the difference function was thus identified

as a second uncertainty source as it was shown to perform

poorly as an average tool. Alternative difference expres-

sions for Eq. (11) were explored. In the first one, the

quotient DTreal was replaced by DTsim. That resulted in

even more important overweighting of far field sensors. In

the second, alternative absolute difference was used instead

of relative difference. That resulted in overweighting close

sensors. An attempt was also done to normalise the dif-

ference maps for each sensor. That was quickly abandoned

as the maximum difference used as a normalising measure

is obviously dependent on the size of the investigated

thermal conductivity domain and is not intrinsic to the

sensor.

Considering the unsatisfactory results from averaging

difference maps from different sensors to determine a

global average, preference was given to the determination

of the best-fitting thermal conductivity pair for each sensor

and, then, to compute the average of the thermal conduc-

tivity values obtained for individual sensors. To apply this

solution, two problems have still to be solved. The first one

is the fact that the determined thermal conductivity pair is

dependent on the duration of the heating period (e.g. Figs.

10d, 11d). The second one is that, in some cases (close

sensors and long heating periods), a minimum valley rather

than a single thermal conductivity pair is obtained. Both

problems are tackled by applying Eq. (14) as presented in

Fig. 9: the thermal conductivity pairs for which the relative

difference is lower than 2 % are plotted at different times.

Proceeding in this way, the influence of the shape of the

difference function away from the minimum is avoided.

Accepting only differences lower than 2 % solves the first

problem as the very large differences for short times all

over the thermal conductivity domain are excluded. We

also avoid overweighing long-term measurements in a

natural way and a best-fitting thermal conductivity pair is

determined independently of the duration of the analysed

period.

The parallel and perpendicular thermal conductivity

values were determined using the selected methodology for

several synthetic sensors in which a known location

uncertainty was introduced. The resulting thermal conduc-

tivity pairs are shown in Figs. 13 and 14 for sensors at 50 cm

and 2 m, respectively. Diamond symbols indicate sensors in

the bedding plane, circle symbols sensors in the perpen-

dicular direction and rectangular symbols sensors in an

intermediate orientation. Iso-curves of equivalent thermal

conductivity (k0) and anisotropy ratio (a) have been added

to these figures. Independently of the magnitude or the

direction of the location uncertainty, the determined ther-

mal conductivity pairs lie on the same equivalent thermal

conductivity iso-curve. A significant scatter of the deter-

mined anisotropy ratio is, however, found. This observation

suggests that it may be preferable to characterise the ther-

mal conductivity in terms of equivalent thermal conduc-

tivity and anisotropy ratio instead of thermal conductivity in

the bedding plane and in the perpendicular direction. In

Table 6, the determined thermal conductivity values for the

sensors used in Figs. 13 and 14 are reported and the average

is calculated. Obviously, the average of the equivalent

thermal conductivity is that obtained for every sensor. It is

Fig. 13 Influence of location uncertainties on the determination of

the thermal conductivity pair for sensors at 50 cm. The five-branch

star indicates the pair used in the synthetic case

Fig. 14 Influence of location uncertainties on the determination of

the thermal conductivity pair for sensors at 2 m. The five-branch star

indicates the pair used in the synthetic case

Table 6 Determined thermal conductivity values for four synthetic

sensors with a 5 cm localisation uncertainty

Sensor kpar kper k0 kh/kv

x* = 0.55 m & z* = 0 1.69 1.55 1.64 1.09

x* = 2.05 m & z* = 0 2.00 1.10 1.64 1.82

x* = 0 & z* = 0.55 m 2.28 0.85 1.64 2.68

x* = 0 & z* = 2.05 m 2.15 0.95 1.64 2.26

Average 2.03 1.11 1.64 1.96

Calculated from average of k0 and kh/kv 2.05 1.05
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noteworthy that using the average equivalent thermal con-

ductivity and the average anisotropy ratio to calculate

thermal conductivity values in the bedding and in the per-

pendicular direction yields better results than averaging the

bedding and perpendicular values directly.

4.3.2 Uncertainty on the Power Input

An uncertainty on the power input can occur in heating

experiments (Gens et al. 2009). In practice, the applied

power is not measured directly. In fact, we impose an

electrical current from the gallery. What is really injected

at the heater depends on potential losses during transport.

Those losses can be estimated but they depend on a number

of factors, e.g. the temperature of the electrical line. The

structure of the heater itself can also induce some uncer-

tainty and will probably result in applying a non-uniform

power along its length. This can be caused by metallic ends

that would be equivalent to a larger heater length or

irregularities of the wire spirals around the heating core.

The effect of over- or underestimation of the applied

power has been summarised in Fig. 15 and it is quite

remarkable. Independently of the magnitude of the power

input uncertainty, sensors in the bedding plane provide an

exact estimation of the perpendicular thermal conductivity

and perpendicular sensors provide an exact estimation of

the parallel thermal conductivity. Sensors at different dis-

tances from the heat source, but in the same orientation,

provide the same best-fitting thermal conductivity pair. For

the same power input uncertainty, the determined equiva-

lent thermal conductivity is the same in both directions. In

fact it can be directly approximated from Eq. (1) using the

steady-state factor:

dk0 ¼
�k0 � dq

qþ dq
ð15Þ

It is apparent that an uncertainty on the power input will

induce a difference between the thermal conductivities

determined from perpendicular and parallel sensors. This

feature will be used in the determination methodology.

4.3.3 Uncertainty on the Temperature Measurements

Temperature measurement uncertainties may obviously be

related directly to the temperature sensor itself. Sensor man-

ufacturers estimate a minimum temperature uncertainty of

about 0.1 �C. Additionally, a possible uncertainty of about

0.2–0.3 �C (Wileveau 2005) is estimated. Another indirect

uncertainty source on the temperature measurement may

occur in the case that the boundary conditions of the problem

(e.g. temperature variation in nearby galleries) are not

reproduced adequately. This second uncertainty source is

illustrated in Fig. 16 in which the temperature evolution

measured in two sensors of the TER experiment has been

plotted. Both sensors lie at the same distance from the heating

device, but one is relatively close to a gallery and the other one

is relatively far. The results from three simulations have been

added to illustrate the influence of temperature variations on

the gallery. In the first computation, only the heater was taken

into account and obviously the simulation predicts a very

similar temperature evolution in the two sensors that differ

significantly from the measurements. The difference between

this simulation and the measurements is explained by the

second simulation that considers exclusively the temperature

variation in the gallery (no heating is applied at the heater

boundary). Indeed, if the two effects are taken into account in

the simulation (the third simulation), a good agreement

between the simulation and the measurements is obtained.

As for the other uncertainty sources, an attempt was

done to quantify the effect of temperature measurement

uncertainties (Fig. 17). Two constant errors on the tem-

perature measurement were applied: 0.5 and 1.5 �C. The

Fig. 15 Influence of power input uncertainties on the determination

of the thermal conductivity pair. The five-branch star indicates the

pair used in the synthetic case

Fig. 16 Measured temperature evolution in TER1201TEM1 and

TER1201TEM5. Simulation results have been added for three

simulations (full lines for TER1201TEM1 and dotted lines for

TER1201TEM5)
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first one can be considered as an upper bound for direct

sensor uncertainties and the second one as an upper bound

for indirect uncertainties. Even if the uncertainty is mod-

erate, a significant difference from the thermal conductivity

pair used in the calculation is observed. As in the location

uncertainty case, the scatter of the anisotropy ratio is much

larger than that of the equivalent thermal conductivity.

4.3.4 Uncertainty on the Specific Heat

We already commented that the uncertainty on the specific

heat is much lower than the uncertainty on the thermal

conductivity as it does not depend on the grain arrangement

but only on the volumetric composition of the porous

medium. Nevertheless, it is reasonable to expect a spatial

variation of the specific heat as the medium composition

can vary as a function of the sedimentary level. That spatial

variation cannot be taken into account in the finite element

computation due to the lack of information on the spatial

variability of the porous medium composition. A possible

variation of the specific heat of 100 J/kg/K, which is

probably exaggerated, was investigated in Fig. 18. The

main findings may be summarised as follows:

• An uncertainty on the specific heat induces a constant

uncertainty on the equivalent thermal conductivity

independently of the sensor orientation.

• The uncertainty induced on the thermal conductivity

anisotropy is dependent on the sensor orientation and may

reach important values for some sensor orientations.

• Sensors at different distances from the heat source but

along the same orientation provide the same best-fitting

thermal conductivity pair.

• Parallel sensors indicate a best-fitting thermal conduc-

tivity pair on kper. kper � kpar ¼ k�per � k�par and perpen-

dicular sensors on kpar ¼ k�par as the steady-state

temperature is not influenced by the specific heat.

Fig. 17 Influence of temperature measurement uncertainties on the

determination of the thermal conductivity pair. The five-branch star

indicates the pair used in the synthetic case

Fig. 18 Influence of specific heat uncertainties on the determination

of the thermal conductivity pair. The five-branch star indicates the

pair used in the synthetic case

Fig. 19 Best-fitting thermal conductivity pairs in each sensor for each

heating level in the TER experiment. The seven-branch star indicates

the mean of laboratory measurements and the five-branch star the

average of in situ determined pairs

Fig. 20 Best-fitting thermal conductivity pairs in each sensor for each

heating level in the HE-D experiment. The seven-branch star

indicates the mean of laboratory measurements. The five-branch

stars indicate the average of in situ determined pairs as explained in

determination methodology
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• As a direct consequence of the last point, all best-fitting

thermal conductivity pairs will fall in the area between

the two extreme minimum valleys indicated by a grey

background in the figure.

It is important to emphasise that, in a similar way as for

localisation and power uncertainties, specific heat uncer-

tainty induces a small uncertainty on the equivalent thermal

conductivity.

4.4 Determination Methodology

As a result of the above considerations, the following

methodology for the determination of the anisotropic

thermal conductivity is adopted:

• 3D computations of the considered experiment are run

for different thermal conductivity pairs covering a wide

range (beyond the natural variation of thermal

conductivity).

• Values of thermal conductivity are obtained from each

individual sensor and for each heating state. The

determination of the pair of thermal conductivity

values is performed from the intersection of low-

difference valleys plotted at different times (as in

Fig. 8).

• This is done whenever possible, but some sensors and/

or some heating phases provide less good quality data,

probably as a consequence of the above-described

uncertainties. In those cases, the determination meth-

odology fails and the sensor is excluded. This is one of

the advantages of the present method in comparison

with a more general approach. In the general case, a

bath quality sensor is included and it perturbs the

determination.

• An overall value of thermal conductivities is

obtained from the average of all the sensors. If

there are quite different numbers of sensors aligned

parallel and perpendicular to the bedding planes, the

average of each orientation will be computed first

and a final overall value will be obtained from the

average of the sensors at the two different

orientations.

• If there is a significant difference between the thermal

conductivities computed from sensors parallel and

perpendicular to bedding planes, it will be taken as an

indication of uncertainty in the heating power that will

be adjusted accordingly.

Fig. 21 Best-fitting thermal conductivity pairs in each sensor for each

heating level in the ATLAS experiment. The seven-branch star

indicates the mean of laboratory measurements. The five-branch stars

indicate the average of in situ determined pairs as explained in

determination methodology

Fig. 22 Best-fitting thermal

conductivity pairs in each

sensor in the TED experiment

for H1.1. The seven-branch star

indicates the mean of laboratory

measurements and the five-

branch star the average of

in situ determined pairs
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5 Application to Four In Situ Heating Tests

The proposed methodology has been applied to the four

heating in situ tests. A 3D thermal conceptual model was thus

built for each of the experiments. In general, we considered:

• A domain extension limited by the adjacent geological

units in vertical direction and by the presence of other

galleries (or about 50 m when no gallery was present)

in horizontal direction.

• Prescription of the initial temperature on top and

bottom boundaries.

• Null heat flux on the vertical limits and the measured

temperature on the gallery walls since their excavation.

• Application of power on the heater walls corresponding

with the really applied one. The exact position of the

heater was considered.

• The mesh size was typically 50.000 to 200.000 nodes

depending on the problem complexity.

The obtained results are shown in Fig. 19 (TER exper-

iment), Fig. 20 (HE-D experiment), Fig. 21 (ATLAS

experiment) and Figs. 22, 23 and 24 (TED experiment).

The best-fitting thermal conductivity pairs for each

sensor in each heating phase of the TER experiment are

presented in Fig. 19. Full symbols stand for sensors in the

bedding plane and blank symbols for perpendicular sen-

sors. Although some parallel sensors indicate values close

Fig. 23 Best-fitting thermal

conductivity pairs in each

sensor in the TED experiment

for H1.2. The seven-branch star

indicates the mean of laboratory

measurements and the five-

branch star the average of

in situ determined pairs

Fig. 24 Best-fitting thermal

conductivity pairs in each

sensor in the TED experiment

for H1.3. The seven-branch star

indicates the mean of laboratory

measurements and the five-

branch star the average of

in situ determined pairs
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to isotropy and that perpendicular sensors tend to provide a

better discrimination of the perpendicular thermal conduc-

tivity, no clear trend is observed. The average value was thus

calculated on the basis of all sensors and all heating phases. It

is striking that the average equivalent thermal conductivity is

very similar to the equivalent thermal conductivity deter-

mined in the laboratory (samples from the TER area). How-

ever, for the anisotropy ratio, a significant scatter is observed.

The standard deviation calculated for the anisotropy ratio

(0.88) is thus more significant than the standard deviation of

the equivalent thermal conductivity (0.14 W/m/K).

In the HE-D (Fig. 20) and the ATLAS experiments,

(Fig. 21), the parallel sensors and the perpendicular sensors

tend to indicate two different thermal conductivity pairs.

Some power loss was assumed as a possible explanation for

this kind of pattern and a second analysis was performed

for those two tests. Diamond dots indicate the analysis in

which no power loss was applied and circle dots indicate

the best-fitting thermal conductivity pair determined in an

analysis considering a power loss of 5 %. Due to the dif-

ferences between the two sensor groups and to the fact that

more perpendicular sensors were available in the HE-D and

more parallel ones in the ATLAS, the global average is not

done on all sensors directly as indicated above. The aver-

ages of the perpendicular sensors and of the parallel sen-

sors are done first. The two obtained averaged thermal

conductivity pairs are then used to calculate what we called

the final average. A direct consequence of this is that the

standard deviation can only be computed for the equivalent

thermal conductivity.

Because of the important number of sensors in the TED

experiment, the results are presented in three different Figs.

22, 23 and 24 (one for each of the analysed heating phases).

In these figures, the size of the dots is proportional to the

number of sensors for which that particular best-fitting

thermal conductivity pair has been obtained. No consistent

differences between the results from parallel and perpen-

dicular sensors were observed.

The thermal conductivity values determined in the lab-

oratory and in the field are summarised in Table 7.

Wherever possible, a standard deviation was indicated. The

case of the TER and TED experiments is worth com-

menting. In both cases, the determined equivalent thermal

conductivity value is very similar not only between the two

tests but also when they are compared to laboratory values.

For the determined anisotropy ratio, significant differences

were found for the in situ TER experiment. In the TER

experiment, important uncertainties (particularly on the

sensors location) were found. In accordance with the

findings about the impact of experimental uncertainties,

those uncertainties seem to influence more of the anisot-

ropy ratio than the equivalent thermal conductivity. The

TED experiment was performed after the TER experiment

to reduce these uncertainties and to verify the agreement

between thermal conductivity values measured in the lab-

oratory and in situ among other reasons.

Table 7 Summary of the thermal conductivity values determined in

the laboratory and in the in situ heating tests for the three host rocks

kpar (W/m/K) kper (W/m/K) k0 (W/m/K) kpar/kper

Boom Clay

ATLAS

Average 1.55a 1.06a 1.35 1.46

SD 0.05

Lab

Average 1.60 1.18 1.44 1.36

SD

Callovo-Oxfordian Clay

TER

Average 2.17 1.00 1.65 2.40

SD 0.28 0.30 0.14 0.88

TER lab

Average 1.91 1.25 1.66 1.53

SD

TED1.1.

Average 1.84 1.23 1.60 1.52

SD 0.21 0.11 0.10 0.28

TED1.2.

Average 1.86 1.25 1.63 1.51

SD 0.17 0.12 0.07 0.27

TED1.3.

Average 1.88 1.26 1.64 1.51

SD 0.17 0.13 0.08 0.27

TED lab

Average 1.92 1.27 1.67 1.51

SD 0.05 0.04

Opalinus Clay

HE-D

Average 2.15a 1.19a 1.80 1.81

SD 0.09

Lab

Average 2.15 1.2 1.77 1.79

SD

a Corrected average values (average of the parallel sensors and per-

pendicular sensors considering a power loss of 5 %)

Table 8 Proposed reference thermal conductivity values for the three

rocks

kpar

(W/m/K)

kper

(W/m/K)

k0

(W/m/K)

kpar/kper

Boom Clay 1.55 1.06 1.35 1.46

Callovo-Oxfordian Clay 1.88 1.26 1.64 1.5

Opalinus Clay 2.15 1.2 1.8 1.8
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6 Conclusions

In spite that the basic heat conduction equation is very

simple, the determination of thermal conductivities from

the results of in situ heating tests presents significant

challenges. In this study, an analysis of thermal conduction

in three argillaceous rocks integrating the results from

laboratory measurements and in situ heating tests has been

presented. A methodology for the determination of thermal

conductivity on the basis of temperature measurements in

the rock mass in heating experiments has been proposed.

Arguments in favour of this methodology were discussed

and it was shown to be more robust than other alternatives.

The determined thermal conductivity values in the labo-

ratory and in the field exhibit a very good agreement. In

this way, reference thermal conductivity values for the

three rocks can be proposed (Table 8). The anisotropic

nature of thermal conduction in the three sedimentary rocks

should be noted.

An analysis of the impact of potential experimental

uncertainties has also been presented. The analysis high-

lights the high reliability of the determined equivalent

thermal conductivity (geometric mean of the thermal

conductivity values in the principal directions) as uncer-

tainties on sensor localisation, specific heat and tempera-

ture measurements induce only a relatively small

dispersion of this parameter. In contrast, the anisotropy

ratio was shown to be more sensitive to all types of

experimental uncertainties. Uncertainty on the power input

exhibits the interesting feature of inducing a clear differ-

ence between sensors located in the bedding plane and in

the perpendicular direction. That feature allowed the

identification of a potential power loss in the ATLAS and

the HE-D experiments.
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