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Abstract: 
The state estimation and the analysis of load flow are very important subjects in the 
analysis and management of Electrical Power Systems (EPS). This article describes 
the state estimation in EPS using the Extended Kalman Filter (EKF) and the method of 
Holt to linearize the process model and then calculates a performance error index as 
indicators of its accuracy. Besides, this error index can be used as a reference for further 
comparison between methodologies for state estimation in EPS such as the Unscented 
Kalman Filter, the Ensemble Kalman Filter, Monte Carlo methods, and others. Results 
of error indices obtained in the simulation process agree with the order of magnitude 
expected and the behavior of the filter is appropriate due to follows adequately  the true 
value of the state variables. The simulation was done using Matlab and the electrical 
system used corresponds to the IEEE 14 and 30 bus test case systems. State Variables 
to consider in this study are the voltage and angle magnitudes. 
 
Keywords: state estimation; electric power systems; extended Kalman filter; linear 
exponential smoothing of Holt; performance indices; IEEE 14 bus test case; IEEE 30 
bus test case. 
 
Resumen: 
La estimación de estado y el análisis de flujo de carga son tópicos muy importantes en 
el análisis y control de un Sistema Eléctrico de Potencia (SEP). Este artículo describe 
la estimación de estados usando el Filtro Extendido de Kalman (EKF) y el método de 
Holt para linealizar el modelo del proceso y entonces calcular el índice de error del 
rendimiento del filtro como un indicador de su exactitud. Además, este índice de error 
calculado puede ser usado como una referencia en posteriores estudios de 
comparación entre diferentes metodologías usadas en la estimación de estados en 
SEP tales como el Unscented Filtro de Kalman, el Ensemble Filtro de Kalman, métodos 
de Montecarlo, y otros.  Los resultados del índice de error obtenidos en el proceso de 
simulación están de acuerdo al orden de magnitud esperado y el comportamiento del 
filtro es adecuado ya que sigue adecuadamente al valor verdadero de las variables de 
estado. La simulación fue realizada usando Matlab y el sistema eléctrico usado 
corresponde a los sistemas de prueba IEEE de 14 y 30 barras. Las variables de estado 
a considerar en este estudio son la magnitud del voltaje. 
 
Palabras clave: estimación de estados; sistemas eléctricos de potencia; filtro 
extendido de Kalman; alisado exponencial lineal de Holt; índices de performance; caso 
de prueba IEEE de 14 barras; caso de prueba IEEE de 30 barras.  
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1. Introduction 
 
State estimation is an important topic which contributes to the proper management of 

electrical energy. In this sense, fields where the application of state estimation methods is 
crucial such as modeling, optimizing power flow, bad data detection, contingencies analysis 
and corrective actions against possible failures in the power systems improve the 
monitoring capability of the grid to take control actions in real-time raising the system 
reliability and stability, (Huang et al., 2012). State estimation is mainly used in the tracking 
of the dynamics of the power system through the assimilation of real-world information 
obtained from smart measurement devices. 

The Static State Estimation provides the system operating point in a determined time 
reflected through the state variables for each measurement data set and has no memory of 
the evolution of the state variables, it was introduced by Schweppe and Wildes (1970), 
based on Weighted Least Square (WLS). Dynamic State Estimation (DSE) was also 
introduced by Debs and Larson (1970) with a simple model for the time behavior of the 
power system. 

Kalman filters are widely used for the analysis of dynamic systems with normally 
distributed noise: the EKF applied for non-linear systems, the unscented Kalman filter, and 
the ensemble Kalman filter; researchers are also studying the particle filter and other 
stochastic methods. 

In this work, the performance of the EKF focused on forecasting and filtering the state 
vectors by using exponential smoothing and recursive Bayesian estimation in the state 
estimation process of the EPS (see Figures 1 and 2) can predict state vectors one-time step 
ahead based on the priori knowledge (prediction stage) and be corrected (update stage) 
with next measurement sets. The dynamics of the system is simulated using smooth load 
changes. The loads were changed in each time step with a linear tendency, and the method 
of Holt has been used to linearize the state transition. 

 
Figure 1. IEEE 14-bus system test case 

The electrical power systems with their data considered in the study are the IEEE 14 
and 30 bus test cases, which represent a portion of the American Electric Power System 
(in the Midwestern US) as of February 1962. These and others IEEE n-bus test cases are 
used as a reference for different studies, and they are found in the archives of the University 
of Washington (Washington, 1993). 
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Figura 2. IEEE 30-bus system test case 

 
The extended Kalman filter consists of the linearization of the nonlinear system about 

a nominal state trajectory and the posterior approximation of the probability density function 
(pdf) as Gaussian. 

The nonlinear system in Equations 1 and 2 is considered in the derivation of the EKF 
by using the Recursive Bayesian Estimation approach, 

𝑥𝑡 = 𝑓𝑡,𝑡−1(𝑥𝑡−1) + 𝑤𝑡 (1) 

𝑦𝑡 = ℎ𝑡(𝑥𝑡) + 𝑣𝑡 (2) 
 

with 𝑓𝑡,𝑡−1(∙)  the non-linear function relating the state propagation through time and ℎ𝑡(∙) 

the non-linear observation function. The distributions and statistics of the process and 
observation noises are presented as shown in Equations 3 – 8. 

 
𝑤𝑡~ 𝒩(𝑤𝑡: 0, 𝑄𝑡)  (3) 

𝑣𝑡~ 𝒩(𝑣𝑡: 0, 𝑅𝑡)  (4) 

𝐸[𝑤𝑡] = 0 , 𝐸[𝑣𝑡] = 0, (5) 

𝐸[𝑤𝑡𝑤𝑡+𝑘
𝑇 ] = 0 , 𝐸[𝑤𝑡𝑤𝑡

𝑇] = 𝑄𝑡 , (6) 

𝐸[𝑣𝑡𝑣𝑡+𝑘
𝑇 ] = 0 , 𝐸[𝑣𝑡𝑣𝑡

𝑇] = 𝑅𝑡 , (7) 

𝐸[𝑤𝑡𝑣𝑡+𝑘
𝑇 ] = 0 , 𝐸[𝑤𝑡𝑣𝑡

𝑇] = 0, (8) 

 
The noises are white Gaussian distributed with zero mean and uncorrelated ∀𝑡 with 𝑘 ≥ 0, 

𝑄 and 𝑅 are positive definite covariances matrices for the process and observation noises 
respectively, and 𝑘 is a positive integer. 

Based on the fact that the nonlinear system is linearized before the analysis step, the 

posterior pdf at time step 𝑡 − 1  can be approximated by the Gaussian distribution in 
Equation 9, 

 
𝑝(𝑥𝑡−1|𝑦1:𝑡−1)~𝒩(𝑥𝑡−1: 𝑥𝑡−1

𝑎 , 𝑃𝑡−1
𝑎 ) (9) 

 
where 𝑥𝑡−1 is the true state vector, 𝑥𝑡−1

𝑎  and 𝑃𝑡−1
𝑎  are the state vector and the covariance 

matrix, obtained both from the analysis step at time step 𝑡 − 1. 
 

Forecast step. The forecast step is given by the computation of the predictive pdf in 
Equation 10. 
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𝑝(𝑥𝑡|𝑦1:𝑡−1) = ∫ 𝑝(𝑥𝑡|𝑥𝑡−1)𝑝(𝑥𝑡−1|𝑦1:𝑡−1)𝑑𝑥𝑡−1 
(10) 

The posterior pdf at time 𝑡 − 1 is referred in Equation 9. The transition pdf at the right 
hand side of Equation 10 can be obtained from Equation 1 and by considering that this pdf 
follows the Gaussian distribution in Equation 11; 

 

𝑝(𝑥𝑡|𝑥𝑡−1) = 𝒩(𝑥𝑡−1: 𝐸[𝑓𝑡,𝑡−1(𝑥𝑡−1)], 𝑄𝑡), (11) 

 
thus, the predictive pdf is defined as in Equation 12. 
 

𝑝(𝑥𝑡|𝑦1:𝑡−1) = ∫ 𝒩(𝑥𝑡−1: 𝑥𝑡−1
𝑎 , 𝑃𝑡−1

𝑎 ). 𝒩(𝑥𝑡−1: 𝐸[𝑓𝑡,𝑡−1(𝑥𝑡−1)], 𝑄𝑡)𝑑𝑥𝑡−1, 
(12) 

 
The integral in Equation 12 is complicated due to the presence of the nonlinear 

function 𝑓𝑡,𝑡−1(∙). 
The approach adopted in the extended Kalman Filter is the linearization by using 

Taylor series. Additionally, a state trajectory should be defined around which the function is 
linearized. At this point in the development of the extended Kalman Filter, the best estimate 
is given by 𝑥𝑡−1

𝑎 . 

Taylor series expansion of 𝑓𝑡,𝑡−1(𝑥𝑡−1) in a neighborhood of 𝑥𝑡−1
𝑎 = 𝐸[𝑥𝑡−1|𝑦1:𝑡−1] is 

considered in the linearization of the system. For the linear approximation, only the first two 
terms are considered. 

The resulting prior pdf can be obtained in the Gaussian form as in Equation 13. 
 

𝑝(𝑥𝑡|𝑦1:𝑡−1) = 𝒩(𝑥𝑡: 𝑥𝑡
𝑓

, 𝑃𝑡
𝑓

), (13) 

 

The forecast state vector 𝑥𝑡
𝑓
 and forecast error covariance matrix 𝑃𝑡

𝑓
are given by 

Equations 14 and 15. 
 

𝑥𝑡
𝑓

= 𝑓𝑡,𝑡−1(𝑥𝑡−1
𝑎 ) (14) 

𝑃𝑡
𝑓

= 𝐹𝑡,𝑡−1𝑃𝑡−1
𝑎 𝐹𝑡,𝑡−1

𝑇 + 𝑄𝑡 (15) 

 
Analysis step. The analysis step consists in the update of the prior according to 
Equation 16. 
 

𝑝(𝑥𝑡|𝑦1:𝑡) =
𝑝(𝑦𝑡|𝑥𝑡)𝑝(𝑥𝑡|𝑦1:𝑡−1)

∫ 𝑝(𝑦𝑡|𝑥𝑡) 𝑝(𝑥𝑡)|𝑦1:𝑡−1𝑑𝑥𝑡

 
(16) 

 
For the extended Kalman filter, the prior is approximated by a Gaussian distribution 

which is characterized by the mean (Equation 14) and the covariance (Equation 15). The 
likelihood pdf is obtained from Equation 2, by considering that the pdf in Equation 17 is 
Gaussian. 

 
𝑝(𝑦𝑡|𝑥𝑡) = 𝒩(𝑦𝑡: 𝐸[ℎ𝑡(𝑥𝑡)], 𝑅𝑡) (17) 

 
By substituting Equation 13 and Equation 17 into Equation 16, the filtering pdf is given 

by Equation 18, 
 

𝑝(𝑥𝑡|𝑦1:𝑡) =  
𝒩(𝑦𝑡: 𝐸[ℎ𝑡(𝑥𝑡)], 𝑅𝑡)𝒩(𝑥𝑡: 𝑥𝑡

𝑓
: 𝑃𝑡

𝑓
)

∫ 𝒩(𝑦𝑡: 𝐸[ℎ𝑡(𝑥𝑡)], 𝑅𝑡)𝒩(𝑥𝑡: 𝑥𝑡
𝑓

: 𝑃𝑡
𝑓

)𝑑𝑥𝑡

 

 

(18) 
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where the first issue aiming to calculate the filtering pdf is to solve the integral in the 
denominator. In order to find an analytical solution, the observation system is linearized 

around a state trajectory. At this point, 𝑥𝑡
𝑓
 is the best state estimation thus the nonlinear 

observation system is linearized through Taylor series expansion in the neighborhood of 

𝑥𝑡
𝑓
. The non-linear function is expanded as in Equation 19, 

ℎ𝑡(𝑥𝑡) ≃ ℎ𝑡(𝑥𝑡
𝑓

) + 𝐻𝑡[𝑥𝑡 − 𝑥𝑡
𝑓

] (19) 

 
where 𝐻𝑡 is a (𝑚𝑦 × 𝑚𝑥) dimensional Jacobian matrix. 

 
By substituting Equation 19 into Equation 18, the expression for the posterior pdf is 

given in Equation 20. 
 

𝑝(𝑥𝑡|𝑦1:𝑡) =  
𝒩(𝑦𝑡: ℎ𝑡(𝑥𝑡

𝑓
) + 𝐻𝑡[𝑥𝑡 − 𝑥𝑡

𝑓
], 𝑅𝑡)𝒩(𝑥𝑡: 𝑥𝑡

𝑓
: 𝑃𝑡

𝑓
)

∫ 𝒩(𝑦𝑡: ℎ𝑡(𝑥𝑡
𝑓

) + 𝐻𝑡[𝑥𝑡 − 𝑥𝑡
𝑓

], 𝑅𝑡)𝒩(𝑥𝑡: 𝑥𝑡
𝑓

: 𝑃𝑡
𝑓

)𝑑𝑥𝑡

 

 

(20) 

Now, the solution of the integral is tractable, and the resulting expression for the 
posterior pdf in terms of distribution is (Equation 21): 

 
𝑝(𝑥𝑡|𝑦1:𝑡) = 𝒩(𝑥𝑡

𝑎 , 𝑃𝑡
𝑎); (21) 

with (Equations 22 and 23) 
 

𝑥𝑡
𝑎 = 𝑥𝑡

𝑓
+ 𝐾𝑡 (𝑦𝑡 − ℎ𝑡(𝑥𝑡

𝑓
)), (22) 

𝑃𝑡
𝑎 = 𝑃𝑡

𝑓
− 𝐾𝑡𝐻𝑡𝑃𝑡

𝑓
, (23) 

and Equation 24. 
 

𝐾𝑡 = 𝑃𝑡
𝑓

𝐻𝑡
𝑇[𝐻𝑡𝑃𝑡

𝑓
𝐻𝑡

𝑇 + 𝑅𝑡]−1 (24) 

 
The algorithm for the extended Kalman filter is described in Algorithm 1. 
 

Algorithm 1. Extended Kalman Filter 

For 𝑡 = 1 to the number of time steps 
1. Forecast step: 

𝑥𝑡
𝑓

= 𝑓𝑡,𝑡−1(𝑥𝑡−1
𝑎 ) 

𝑃𝑡
𝑓

= 𝐹𝑡,𝑡−1𝑃𝑡−1
𝑎 𝐹𝑡,𝑡−1

𝑇 + 𝑄𝑡 

2. Analysis step: 

𝐾𝑡 = 𝑃𝑡
𝑓

𝐻𝑡
𝑇[𝐻𝑡𝑃𝑡

𝑓
𝐻𝑡

𝑇 + 𝑅𝑡]−1 

𝑥𝑡
𝑎 = 𝑥𝑡

𝑓
+ 𝐾𝑡(𝑦𝑡 − ℎ𝑡(𝑥𝑡

𝑓
)) 

𝑃𝑡
𝑎 = 𝑃𝑡

𝑓
− 𝐾𝑡𝐻𝑡𝑃𝑡

𝑓
 

  

 2. Methodology 
 
The Electrical Power System 
 

To simulate the slow dynamics of the test systems under normal conditions, the 
smooth load changes were obtained by running load flow calculations under different 
loading conditions at each step (Valverde and Terzija, 2011). The dynamics of the system 
was obtained by varying the loads at certain predefined buses (4, 5, 7, 9-14 for the 14- bus 
system and 3, 4, 6, 7, 9, 10, 12, 14-30 for the 30- bus system) following a linear trend of 1% 
over the entire time interval with a random fluctuation of 3%. Additionally, measurements of 
voltage, power injections, and power transfer were corrupted with a random additive 
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Gaussian distributed noise with a mean equal to zero and a low level of variability, this is, 
with a standard deviation (σ) according to Table 1 (Sharma, Srivastava, and Chakrabarti, 
2017) for voltage and powers respectively, to consider the uncertainty of measurement. 
 

Table 1. Values of standard deviation Measurement √𝑅𝑘  
Power Injection in pu. 0.001 

Power Flow in pu. 0.001 
Voltage in pu. 0.0006 
Angle in rad. 0.018 

 
The state variables were the voltage (𝑣) and angle (𝜃) magnitudes of each one of the 

bars. Bus 1, in both systems, was considered the slack bus with angle 0°. Buses 1, 2, 3, 6, 
9 for the 14-bus system and buses 1, 2, 5, 8, 11, 13 for the 30-bus system were buses with 
a regulated voltage. The 14-bus system had 73 measurements, from which 5 were voltage 
magnitudes, and the rest were power magnitudes. The 30-bus system had 93 
measurements, from which all were power magnitudes except the first that was a voltage 
magnitude. 
 
Performance indices 
 

The accuracy of EKF are carried out using the following indices as seen in previous 
studies (Alhalali and Elshatshat, 2015; Valverde and Terzija, 2011): 

 
(1) The error estimation ε(k) for step k (Equation 25):  

 

𝜀(𝑘) =
1

2𝑁𝑏𝑎𝑟𝑟𝑎𝑠 − 1
∗ ∑ |𝑥𝑛(𝑘) − 𝑥𝑛

𝑡 (𝑘)|

2𝑁𝑏𝑎𝑟𝑟𝑎𝑠

𝑛=2

 

 

(25) 

(2) The error estimation ε(n) for bus n:  
 

 𝜀𝑣(𝑛) for voltage magnitude (Equation 26): 
 

𝜀𝑣(𝑛) =
1

𝑁𝑝𝑎𝑠𝑜𝑠
∗ ∑ |𝑣𝑘(𝑛) − 𝑣𝑘

𝑡 (𝑛)|

𝑁𝑝𝑎𝑠𝑜𝑠

𝑘=1

 

 

(26) 

  𝜀𝜃(𝑛) for angle magnitude (Equation 27): 
 

𝜀𝜃(𝑛)  =
1

𝑁𝑝𝑎𝑠𝑜𝑠
∗ ∑ |𝜃𝑘(𝑛) − 𝜃𝑘

𝑡(𝑛)|

𝑁𝑝𝑎𝑠𝑜𝑠

𝑘=1

 

 

(27) 

(3) The performance index 𝐽(𝑘) (Equation 28):  
 

𝐽(𝑘)  =
∑ |�̂�𝑖(𝑘) − 𝑧𝑖

𝑡(𝑘)|𝑚
𝑖=1

∑ |𝑧𝑖(𝑘) − 𝑧𝑖
𝑡(𝑘)|𝑚

𝑖=1

 (28) 

 

where, 𝑥 is the state vector[𝜃2 … 𝜃𝑛𝑣1 … 𝑣𝑛], 𝜀(𝑘)  is the mean error for the 𝑘𝑡ℎ, 𝑥𝑛(𝑘) 
is the filtered (estimated) state vector at 𝑘𝑡ℎ  step and 𝑛𝑡ℎ  bus, 𝑁𝑏𝑢𝑠𝑒𝑠  is the number of 

buses, 𝜀(𝑛) is the mean error for the 𝑛𝑡ℎ bus, 𝜀𝑣(𝑛) is the error estimation calculated for 

voltage magnitude at 𝑛𝑡ℎ bus, 𝑣𝑘(𝑛) is the filtered (estimated) voltage magnitude at 𝑛𝑡ℎ bus  

and 𝑘𝑡ℎ step, 𝑣𝑘
𝑡 (𝑛) is the true (actual) voltage magnitude at 𝑛𝑡ℎ bus and 𝑘𝑡ℎ step, 𝜀𝜃(𝑛) is 
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the error estimation calculated for angle magnitude at 𝑛𝑡ℎ  bus, 𝜃𝑘(𝑛)  is the filtered 

(estimated) angle magnitude at 𝑛𝑡ℎ and 𝑘𝑡ℎ step, 𝜃𝑘
𝑡(𝑛) is the true (actual) angle magnitude 

at 𝑛𝑡ℎ  and 𝑘𝑡ℎ  step, 𝑁𝑠𝑡𝑒𝑝𝑠  is the number of time steps (sampling time), 𝐽(𝑘)  is the 

calculated performance index for step 𝑘, 𝑚 is the number of measurements (observations), 

�̂�𝑖(𝑘) is the estimated measurement vector at 𝑖𝑡ℎ measurement and 𝑘𝑡ℎ step, 𝑧𝑖(𝑘) the real 

measurement vector at 𝑖𝑡ℎ  measurement and 𝑘𝑡ℎ  step, 𝑧𝑖
𝑡(𝑘)  is the true measurement 

vector at 𝑖𝑡ℎ measurement and 𝑘𝑡ℎ step. 
 

Extended Kalman Filter – EKF 
 

The non-linear stochastic difference equations that govern the system with a state 

vector 𝑥 ∈  ℜ𝑛 is (Equation 29): 
𝑥𝑘  = 𝑓(𝑥𝑘−1, 𝑢𝑘 , 𝑤𝑘−1) (29) 

  

with a measurement vector 𝑧 ∈  ℜ𝑚, that is (Equation 30): 
 

𝑧𝑘  = ℎ(𝑥𝑘 , 𝑣𝑘) (30) 
 

where 𝑢𝑘 represents any driving function , the random variables  𝑤𝑘 and  𝑣𝑘 represent 
the process and measurement noise and assumed to be independent (of each other), white, 
and with normal probability distribution: 𝑝(𝑤)~𝑁(0, 𝑄𝑘−1), 𝑝(𝑣)~𝑁(0, 𝑅𝑘) respectively. 

The Gaussian process noise error covariance (𝑄𝑘−1) and the measurement noise 
error covariance 𝑅𝑘  are diagonal matrices that might change with each time step or 

measurement (Zanni, Le Boudec, Cherkaoui, and Paolone, 2017). In this study, the 𝑄𝑘−1 

value was kept constant and set to 10−6 according to Valverde and Terzija (2011). The 

values for the standard deviation of measurement noise error variance √Rk , were taken 

from the Table 1 as used in Sharma et al. (2017). 
As the most used approach to handle the complexity of model mentioned above, the 

EKF-based method is to linearize (29), assuming a quasi-steady-state behavior of the 
system, it can be represented by Equation 31, 
 

𝑥𝑘  = 𝐹𝑘−1 ∗ 𝑥𝑘−1 +  𝑔𝑘−1 + 𝑞𝑘−1 (31) 
 
where matrix 𝐹𝑘−1 represents the transition speed between states; vector 𝑔𝑘−1  is 

related with the behavior tendency of the states. Dynamic State Estimation depends 
strongly on the forecasting technique chosen to estimate parameters𝐹𝑘−1, 𝑔𝑘−1 and 𝑞𝑘−1. 
The technique used in this document for calculating 𝐹𝑘−1  and 𝑔𝑘−1  Linear exponential 
smoothing of Holt (online parameter identification technique) widely used to forecast the 
states in this type of work (Leite da Silva, Do Coutto Filho, and De Queiroz, 1983; Nguyen, 
Venayagamoorthy, Kling, and Ribeiro, 2013; Valverde and Terzija, 2011) which provides 
good predictions even when state variables are assumed to be independent. Values of 
these parameters can be obtained as in Equations 32 and 33, 

 
𝐹𝑘−1 =  𝛼𝑘−1(1 + 𝛽𝑘−1)𝐼, (32) 

𝑔𝑘−1 = (1 + 𝛽𝑘−1)(1 − 𝛼𝑘−1)�̃�𝑘−1 −  𝛽𝑘−1𝑎𝑘−2 + (1 − 𝛽𝑘−1) 𝑏𝑘−2 (33) 
 

where �̃�𝑘−1 is the predicted state vector at step 𝑘 − 1, 𝐼 is the identity matrix, the 
parameters𝛼𝑘−1  and 𝛽𝑘−1  are between 0 and 1 in this work have been fixed constant 
throughout the whole simulation to 0.5 and 0.8 respectively as proposed in Valverde and 
Terzija (2011), and the vectors a and b can be obtained from previous (a priori) knowledge 
(Equations 34 and 35), 
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𝑎𝑘−1 =  𝛼𝑘−1𝑥𝑘−1
𝑡 + (1 − 𝛼𝑘−1)�̃�𝑘−1, (34) 

𝑏𝑘−1 = 𝛽𝑘−1(𝑎𝑘−1 − 𝑎𝑘−2) + (1 − 𝛽𝑘−1) 𝑏𝑘−2 (35) 
 

where �̃�𝑘−1 is the predicted state vector and, 𝑥𝑘−1
𝑡  is the true state vector. 

Active and reactive power balance, line flow equations and bus voltages govern the 

non-linear function h(∙)  that relates measurement 𝑧𝑘 with the state vectors.  The flowchart 
for the EKF method is illustrated in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Flow Chart of EKF Algorithm. 

3. Results and discussion 
 

The proposed calculation of the error (𝜀) and performance (𝒥) indices, and their respective 
standard deviation are presented in Table 2 for 14 and 30 buses 
 

Table 2. Index error for EKF and standard deviations (𝜎) for 14 and 30 buses 
Buses Index EKF σEKF 

14 

𝜀𝑣(𝑛) ∗ 10−3, 𝑝𝑢 

𝜀𝜃(𝑛) ∗ 10−3, 𝑝𝑢 
𝜀(𝑘) ∗ 10−3, 𝑝𝑢 

𝐽(𝑘) 

0.26995 
0.40309 
0.34899 
0.72139 

0.13941 
0.17706 
0.44329 
0.07470 

30 

𝜀𝑣(𝑛) ∗ 10−3, 𝑝𝑢 

𝜀𝜃(𝑛) ∗ 10−3, 𝑝𝑢 
𝜀(𝑘) ∗ 10−3, 𝑝𝑢 

𝐽(𝑘) 

1.4533 
1.9930 
1.7524 

0.84601 

0.48266 
0.75792 
0.75503 
0.06132 
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Table 2 shows that the average of the (𝒥) index and the average errors of the 30-bus 
system are higher than the equivalent averages of the 14-bus system. 

The Figures 4 to 8 show the evolution of error indices (𝜀) and performance indices (𝒥) 
according to definitions established before for 14 and 30 bus systems  

 

 

 

 

 
 

Figure 4. Estimation error for step k - 14 bus test case. 

 
 

 

 

 

 

 

 

 

 

Figure 5. Voltage and angle magnitude error for bus n - 14 bus test case. 

 
 

 

 

 

 

Figure 6. J performance index - 14 bus test case. 

 
 

 
 

 

 

Figure 7. Estimation error for step k - 30 bus test case. 
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Figure 8. J performance index - 30 bus test case. 

Figure 5 shows the voltage and angle magnitude error for each bus during the 50 
steps of our simulation. Figure 4 and Figure 7 present the estimation error of each simulation 
step considering the 2n−1 state variables of each system. The performance index (𝒥), in 
Figure 6 has a peak in the first steps because of the difference between the initial estimated 
values and the true values of the measurements is high. 

The Figures 9 to 12 show the behavior of the estimation values concerning the true 
values of voltage and angle magnitudes. It can be seen that in all the graphs there is a 
tracking of the estimation signal towards the real signal. 

  
 

 

 

 

 

 
Figure 9. Voltage magnitude in bar 9 - 14 bus test case. 

 
 
 
 

 

 

 

Figure 10. Angle magnitude in bar 9 - 14 bus test case. 

 
 

 

 

 

 

 
Figure 11. Voltage magnitude in bar 17 - 30 bus test case. 
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Figure 12. Angle magnitude in bar 17 - 30 bus test case. 

4. Conclusion and recommendations 
 
In general, it can be concluded that the methodology used in this work to estimate 

states of an EPS is showing good results and the error indices reported can be accepted 
as referential values in this types of studies, e.g., to compare accuracies between different 
methods employed to state estimation of EPS. Future work will study the Monte Carlo 
methods deeply in the state estimation of EPS such as the Ensemble Kalman Filter and 
sequential Monte Carlo methods. 
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