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Abstract 
The use of solid lipid nanoparticles in medicine and more specifically drug 
delivery is set to spread rapidly. Currently many substances are under 
investigation for drug delivery and more specifically for cancer therapy 
technology is the latest trend in the cancer therapy. It helps the pharmacist to 
formulate the product with maximum therapeutic value and minimum or 
negligible range side effects. Cancer is a class of disorders characterized by 
abnormal growth of cells that proliferate in an uncontrolled way and a major 
disadvantage of anticancer drugs is their lack of selectivity for tumor tissue, 
which causes severe side effects and results in low cure rates. Thus, it is very 
hard to target the abnormal cells by the conventional method of the drug 
delivery system. In harmony with these approaches, this review’s basic 
approach is that the defining features of solid lipid nanoparticles are 
embedded in their breakthrough potential for patient care. This review article 
describes the possible way to exploit solid lipid nanoparticle technology to 
targeted drug therapy in cancer. We looked at the usefulness of solid lipid 
nanoparticles as a tool for cancer therapy. 
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Introduction  
Solid lipid nanoparticles are also referred to as “zero-
dimensional” nanomaterials. This definition arises from 
the fact that all of their dimensions are in the nanoscale 
(under 100 nm), as opposed to one-dimensional 
nanomaterials, which have one dimension larger than 
the nanoscale (such as nanowires and nanotubes), and 
two-dimensional nanomaterials, which have two 
dimensions larger than the nanoscale (such as self-
assembled monolayer films). Solid lipid nanoparticles 
(SLN) are colloidal drug carrier systems [1-3]. General 
ingredients include solid lipid, emulsifier and water. 
The term lipid is used generally in a very broad sense 
and includes triglycerides, partial glycerides, 
PEGylated lipids, fatty acids steroids and waxes. All 
classes  of  emulsifiers  have  been  used to stabilize the  

 
lipid dispersion, emulsifiers such as poloxamer, 
polysorbates, lecithin and bile acids. They are very 
much like nanoemulsions, differing in lipid nature. The 
liquid lipid used in emulsions is replaced by a lipid 
solid at room temperature in SLN including high-
melting point glycerides or waxes [2, 4-5]. Indeed, 
nanoparticles were initially thought to be designed as 
carriers for vaccines and anticancer drugs when they 
were first developed in about 1970. Several innovative 
research articles on solid lipid nanotechnology for drug 
delivery are available in the literature which describes 
extensive preparation techniques, characterization and 
types of SLN, investigation of their structural 
properties, factors affecting their formation and storage 
stability,  drug  loading   principles   and   drug   release  
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characteristics [1, 6-9]. 
 
Use of SLN in various cancer therapies  
Liver cancer 
Hepatocellular carcinoma (HCC), a primary 
malignancy of the liver, is one of the most common 
tumors worldwide. The mortality rate from HCC is the 
third highest worldwide for any cancer-related 
diseases, and since the 1990s, HCC has been the cause 
of the second highest mortality rate due to cancer in 
China [10]. In addition to primary tumors, the liver is 
the most common organ where tumor metastases occur. 
Bartsch and coworkers (2004) proposed stabilized lipid 
coated lipoplexes for the delivery of antisense 
oligonucleotide (AS-ODN) to liver endothelial cells in-
vitro and in-vivo [11]. 
 
Breast Cancer 
Breast cancer is one of the most frequently occurring 
cancers in women and the second leading cause of 
cancer deaths in women. However, since 1989, the 
breast cancer mortality rate has decreased 1.8% per 
year, due to improvements in breast cancer prevention 
as well as treatment [12]. A major clinical obstacle in 
cancer therapy is the development of resistance to a 
multitude of chemotherapeutic agents, a phenomenon 
termed multidrug resistance (MDR). Chemoresistance 
can generally result from either of two means firstly, by 
physically impairing delivery to the tumor (e.g., poor 
absorption, increased metabolism/excretion, and/or 
poor diffusion of drugs into the tumor mass); secondly, 
through intracellular mechanisms that raise the 
threshold for cell death [13-17]. It is widely known that 
nanoparticles are beneficial tumor targeting vehicles 
due to their passive targeting properties by the 
enhanced permeability and retention (EPR) effect, 
whereby the added advantage of stealth shielding the 
particles with a poly ethylene glycol/oxide (PEG/PEO) 
surface modification avoids uptake by the 
reticuloendothelial system, thereby improving 
circulation time of the nanoparticles [18]. 
 
Colorectal Cancer 
Colorectal cancer is the most common cancer in 
Western countries and is the second leading cause of 
cancer-related deaths in the United States, accounting 
for nearly 60,000 deaths each year [19]. Hyaluronic 
acid–coupled chitosan nanoparticles bearing oxaliplatin 
(L-OHP) encapsulated in Eudragit S100–coated pellets 

were developed for effective delivery to colon tumors 
[20]. SLN have been proposed as new approach of drug 
carriers [21]. SLN carrying cholesteryl butyrate (chol-
but), doxorubicin and paclitaxel had previously been 
developed. However, doxorubicin is not so active 
against colorectal cancer [22]. SLN are in the colloidal 
size range and can be loaded with both hydrophilic and 
lipophilic drugs, depending on the preparation method 
[23, 24]. The composition of the warm microemulsions 
from which SLN are prepared is flexible, and can be 
varied to suit the type of drug and administration route 
[25].  
 
Lung Cancer 
Lung cancer is one of the leading causes of death 
worldwide [26]. Adenocarcinoma, squamous cell 
carcinoma, and large-cell carcinoma, which together 
make up the majority of lung cancers, are referred to as 
‘‘non-small cell lung cancers’’ (NSCLCs). Patients 
with early stage NSCLC are typically treated with 
surgery; 5-year survival rates range from 25% to 80%, 
depending on the stage of the disease [27]. Current 
treatments for lung cancer have shown little success 
because they cannot cure disseminated tumors with an 
acceptable level of toxicity. The causes of lung cancers 
are generally characterized by mutations in p53 gene 
[28-31], which can lead to loss of tumor-suppressor 
function, increase of drug resistance, loss of mutational 
repair, increase of tumor angiogenesis, proliferation of 
cells, and inhibition of apoptosis [32]. Thus, one 
alternative strategy that has shown promise in the 
treatment of lung cancer is gene therapy. There are two 
main groups of vectors used in gene delivery: viral and 
non-viral vectors. Toxicity and immunogenicity 
concerns associated with viral vectors have led to an 
active interest in non-viral systems for gene delivery 
[33]. Among non-viral vectors, biodegradable 
nanoparticles have shown their advantage over other 
carriers by their increased stability and their controlled-
release ability [34-35]. Typically, nanoparticles in gene 
delivery systems could be divided into two systems, 
cationic and anionic nanoparticles. Cationic 
nanoparticles systemsutilize the ionic interaction 
between the cationic polymers and the anionic plasmid 
DNA, forming stable polymer/lipids-DNA complexes 
[36-37]. Cationic lipid formulations, solid lipid 
nanoparticles (SLNs) have gained increasing attention 
as promising colloidal carrier systems [38]. As a 
substitution for viral delivery systems it was reported 
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the use of p53 gene/cationic lipid complexes for the 
treatment of early endobronchial cancer [39]. Despite 
their low potency compared to those of viral vectors, 
cationic lipids may present advantages in the context of 
long-term administration to multiple tumor sites 
dispersed over the bronchial epithelium. Moreover, 
most nonviral gene delivery systems that are being 
considered show no immunogenicity [40-42]. 
  
Brain Tumor 
One of the best characterized lipid-based nanoscale 
compounds developed for brain tumor drug delivery 
are, SLN. These nanoparticles are prepared by high-
pressure homogenization or micro-emulsion of solid 
physiologic lipids [43]. Although the exact mechanism 
by which SLN’s cross the BBB and BTB is unknown, 
internalization is hypothesized to be mediated by 
endocytosis of SLN’s by endothelial cells. The process 
of endocytosis is thought to be facilitated by the 
adsorption of circulating plasma proteins to the SLN 
surface [44]. The lipid matrix of SLN provides a means 
of loading drugs and protecting them from degradation. 
The unloading of drugs within target tumor tissues can 
also be controlled depending on the surface coating of 
the SLN and its constituent lipids [45]. Especially 
coating of the nanoparticles with the polysorbate 
(Tween) surfactants resulted in transport of drugs 
across the blood brain barrier [46].  SLN have the 
potential to revolutionize both preoperative and 
intraoperative brain tumor detection. The incidence of 
primary brain tumors in the United States has been 
estimated at approximately 43,800 per year [47-49]. 
Since the application of nanotechnology to the imaging 
of gliomas was proposed [50], there has been a rapid 
expansion of the application of nanodevices to the 
diagnosis and treatment of brain tumors. A wide 
variety of nanoparticle targeting options have been 
reported including peptides, cytokines, drugs, 
antibodies and ferromagnetic agents. When 
administered systemically, nanoparticles are cleared 
swiftly by the reticuloendothelial system. This process 
involves opsonization of nanoparticles, phagocytosis 
by macrophages and uptake in the liver and spleen 
[51]. Clearance of nanoparticles by the 
reticuloendothelial system can be partially blocked by 
the attachment of hydrophilic molecules to their 
surface [52]. However, common agents employed to 
achieve a hydrophilic coating such as polyethylene 

glycol or pluronic can be immunogenic or pro-
inflammatory [53]. Passage of the BBB was suggested 
to be possible by the toxic effect of nanoparticles 
(about 200 nm) on cerebral endothelial cells [54], 
although for similar nanoparticles (about 300 nm) this 
was contradicted in another study. [55] In addition this 
effect was not found for a different type of 
nanoparticles [56]. Physical association of the drug to 
the nanoparticles was necessary for drug delivery to 
occur into the brain [55]. Also other SLN like 
manganese oxide was shown to translocate to the brain 
by the olfactory route [57], based on measurements of 
manganese in different parts of the brain.  
 
Gastro-intestinal Cancer 
In gastrointestinal cancers, drugs in SLP are given by 
oral route. SLN were introduced as a novel drug carrier 
system for oral delivery in the middle of 1990s [58]. 
The adhesive properties of nanoparticles are reported to 
increase bioavailability and reduce or minimize erratic 
absorption. [59], Absorption of nanoparticles occurs 
through mucosa of the intestine by several mechanisms 
namely through the Peyer’s patches, by intracellular 
uptake or by the paracellular pathway. Pinto and 
Muller (1999) incorporated SLN into spherical pellets 
and investigated SLN release for oral administration 
[60]. SLN granulates or powders can be put into 
capsules, compressed into tablets or incorporated into 
pellets. For some of these applications, the conversion 
of the liquid dispersion into a dry product by spray-
drying or lyophilization is useful or often necessary 
[60, 61]. However, the assessment of the stability of 
colloidal carriers in GI fluids is essential in order to 
predict their suitability for oral administration. Critical 
parameters have been widely overlooked in the design 
of new and efficent colloidal drug carrier systems for 
oral use: firstly, their stability upon contact with GI 
fluids since they are composed of biodegredable 
materials and particle size in nanorange maximizes the 
surface area for enzymatic degradation [62], secondly, 
particle aggregation due to environmental conditions of 
the GI tract leading decrease in the interaction 
capability of particles with the intestinal mucosa [63]. 
 
Nanoparticle and quantum dot for cancer treatment 
The introduction of nanoparticles in the field of cancer 
research has recently improved diagnosis, targeting and 
drug delivery with the use of nanotubes, liposomes, 
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dendrimers and polymers [64-66]. Other nanoparticles, 
such as quantum dots, possess excellent photophysical 
properties and prove to be an elegant alternative to the 
traditional bioimaging tools [67]. Quantum dots are one 
of the most rapidly evolving products of 
nanotechnology, with great potential as a tool for 
biomedical and bioanalytical imaging. Their superior 
photophysical properties [68] and sometimes 
multifunctional surfaces are suitable for applications in 
various biological models [69]. Semiconductor 
quantum dots and nanoparticles composed of metals, 
lipids or polymers have emerged with promising 
applications for early detection and therapy of cancer. 
Quantum dots with unique optical properties are 
commonly composed of cadmium contained 
semiconductors. Cadmium is potentially hazardous, 
and toxicity of such quantum dots to living cells, and 
humans, is not yet systematically investigated. 
Therefore, search for less toxic materials with similar 
targeting and optical properties, is of further interest. 
Despite advances in neurosurgery and radiotherapy the 
prognosis for patients with malignant gliomas has 
changed little for the last decades. Cancer treatment 
requires high accuracy in delivering ionizing radiation 
to reduce toxicity to surrounding tissues. Recently 
some research has been focused in developing 
photosensitizing quantum dots for production of 
radicals upon absorption of visible light. In spite of the 
fact that visible light is safe, this approach is suitable to 
treat only superficial tumours [70]. Quantum advances 
in nanotechnology have the potential to revolutionize 
multiple aspects of the diagnosis and treatment of brain 
tumors in the future [71]. 
 
Radionuclide nanoparticles for cancer treatment 
 Nanotechnology is also enabling highly efficent 
radiotherapy, such as the injection of single doses of an 
atomic nanogenerator at kilobecquerel (nanocurie) 
levels into mice bearing solid prostate carcinoma or 
disseminated human lymphoma induced tumor 
regression and prolonged survival, without toxicity, in 
a substantial fraction of animals [72]. In another study, 
metal nanoshells with tunable optical resonance were 
shown to induce irreversible thermal damage to tumour 
cells when exposed to near infrared light [73]. 
Currently, clinical trials on targeted radionuclide 
therapies are mostly based on small molecules both for 
targeting and delivery that include antibodies, smaller 
peptides [74-75], or the radiolabeled biotin/avidin pair 

[76]. Advancement in the area of internal radionuclide 
therapy may further be enabled by using different 
carrier materials with higher radionuclide loads 
exhibiting different behavior in-vivo such as 
liposomes, dendrimers, and other structures with sizes 
of the order of several nanometers. 
 
Magnetic nanoparticles for cancer treatment 
Magnetic nanoparticles (MNPs) are being actively 
investigated as the next generation of magnetic 
resonance imaging (MRI) contrast agents [77] and as 
carriers for targeted drug delivery [78-79]. As 
therapeutic tools, MNPs have been evaluated 
extensively for targeted delivery of pharmaceuticals 
through magnetic drug targeting [80-81] and by active 
targeting through the attachment of high affinity 
ligands [82-84]. Huh et al (2005) recently described 
how superparamagnetic iron oxide (SPIO) 
nanoparticles can be used to detect cancer in-vivo using 
a mouse xenograft model [85]. In this investigation, the 
nanoparticles were conjugated to herceptin, a cancer-
targeting antibody. Harisinghani et al (2003) utilized 
SPIO nanoparticles in human patients with prostate 
cancer to detect small metastases in the lymph node. In 
this case, the nanoparticles were coated with dextran 
for retention in the blood stream and gradual uptake 
into the lymph nodes where they are internalized by 
macrophages [86]. MNPs have been examined 
extensively as MRI contrast agents to improve the 
detection, diagnosis, and therapeutic management of 
solid tumors. Currently, clinical imaging of liver 
tumors and metastases through reticulo-endothelium 
system mediated uptake of SPIOs has been capable of 
distinguishing lesions as small as 2–3 mm [77, 87]. 
Another clinical application of ultra superparamagnetic 
iron oxide MNPs under evaluation is their use in 
improving the delineation of brain tumor boundaries 
and quantify tumor volumes [88, 89].  
 
Future trends 
SLN constitute an attractive colloidal drug carrier 
system due to successful incorporation of active 
compounds and their related benefits. Although most of 
the technologies have focused on the delivery of single 
chemotherapeutic agents to the tumors, it is 
increasingly becoming clear that an integrative 
approach may work better than a reductionist approach. 
Nanotechnology platforms can provide the unique 
niche within this space by enabling multimodal 
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delivery with a single application. Although SLN’s 
may be used for drug targeting, when reaching the 
intended diseased site in the body the drug carried 
needs to be released. So, for drug delivery 
biodegradable nanoparticle formulations are needed as 
it is the intention to transport and release the drug in 
order to be effective. Interestingly pharmaceutical 
sciences are using nanoparticles to reduce toxicity and 
side effects of drugs and up to recently did not realize 
that carrier systems themselves may impose risks to the 
patient. Nevertheless, we believe that the next few 
years are likely to see an increasing number of 
nanotechnology-based therapeutics and diagnostics 
reaching the clinic. 
 
Conclusion 
Solid lipid nanoparticle, although in its nascent stage, 
has a great potential to cure the cancer, with least side 
effects. It is the technology that will grow in years to 
come, and probably, the human race will have a 100% 
cure to cancer. 
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