
                             Elsevier Editorial System(tm) for 
Neuropsychologia 
                                  Manuscript Draft 
 
 
Manuscript Number: NSY-D-20-00151R1 
 
Title: Emotion Recognition with Convolutional Neural Network and EEG-
based EFDMs  
 
Article Type: Research Paper 
 
Section/Category: Emotion and Social Neuroscience 
 
Keywords: Emotion recognition; Electroencephalogram; convolutional neural 
network; electrode-frequency distribution maps; gradient-weighted class 
activation mapping 
 
Corresponding Author: Professor Fei Wang, Ph.D. 
 
Corresponding Author's Institution:  
 
First Author: Fei Wang, Ph.D. 
 
Order of Authors: Fei Wang, Ph.D.; Shichao Wu; Weiwei Zhang; Zongfeng Xu; 
Yahui Zhang; Chengdong Wu; Sonya Coleman 
 
Abstract: Electroencephalogram (EEG), as a direct response to brain 
activity, can be used to detect mental states and physical conditions. 
Among various EEG-based emotion recognition studies, due to the non-
linear, non-stationary and the individual difference of EEG signals, 
traditional recognition methods still have the disadvantages of 
complicated feature extraction and low recognition rates. Thus, this 
paper first proposes a novel concept of electrode-frequency distribution 
maps (EFDMs) with short-time Fourier transform (STFT). Residual block 
based deep convolutional neural network (CNN) is proposed for automatic 
feature extraction and emotion classification with EFDMs. Aim at the 
shortcomings of the small amount of EEG samples and the challenge of 
differences in individual emotions, which makes it difficult to construct 
a universal model, this paper proposes a cross-datasets emotion 
recognition method of deep model transfer learning. Experiments carried 
out on two publicly available datasets. The proposed method achieved an 
average classification score of 90.59% based on a short length of EEG 
data on SEED, which is 4.51% higher than the baseline method. Then, the 
pre-trained model was applied to DEAP through deep model transfer 
learning with a few samples, resulted an average accuracy of 82.84%. 
Finally, this paper adopts the gradient weighted class activation mapping 
(Grad-CAM) to get a glimpse of what features the CNN has learned during 
training from EFDMs and concludes that the high frequency bands are more 
favorable for emotion recognition. 
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x Proposed a novel concept of EFDMs with STFT based on multiple channel EEG signals. 
x Constructed four residual blocks based CNN for emotion recognition. 
x Performed cross-datasets emotion recognition based on deep model transfer learning. 
x Studied the number of training samples used for cross-datasets emotion recognition. 
x Obtained the key EEG information automatically based on EFDMs and Grad-CAM. 
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Abstract—Electroencephalogram (EEG), as a direct response to 
brain activity, can be used to detect mental states and physical 
conditions. Among various EEG-based emotion recognition studies, 
due to the non-linear, non-stationary and the individual difference 
of EEG signals, traditional recognition methods still have the 
disadvantages of complicated feature extraction and low 
recognition rates. Thus, this paper first proposes a novel concept of 
electrode-frequency distribution maps (EFDMs) with short-time 
Fourier transform (STFT). Residual block based deep 
convolutional neural network (CNN) is proposed for automatic 
feature extraction and emotion classification with EFDMs. Aim at 
the shortcomings of the small amount of EEG samples and the 
challenge of differences in individual emotions, which makes it 
difficult to construct a universal model, this paper proposes a 
cross-datasets emotion recognition method of deep model transfer 
learning. Experiments carried out on two publicly available 
datasets. The proposed method achieved an average classification 
score of 90.59% based on a short length of EEG data on SEED, 
which is 4.51% higher than the baseline method. Then, the 
pre-trained model was applied to DEAP through deep model 
transfer learning with a few samples, resulted an average accuracy 
of 82.84%. Finally, this paper adopts the gradient weighted class 
activation mapping (Grad-CAM) to get a glimpse of what features 
the CNN has learned during training from EFDMs and concludes 
that the high frequency bands are more favorable for emotion 
recognition. 
 

Index Terms—Emotion recognition, Electroencephalogram, 
convolutional neural network, electrode-frequency distribution 
maps, gradient-weighted class activation mapping 

I. INTRODUCTION 
UMAN emotion plays an important role in the process of 
affective computing and human machine interaction 

(HMI) [1]. Moreover, many mental health issues are reported to 
be relevant to emotions, such as depression, attention deficit 
[2], [3]. Much information such as posture, facial expression, 
speech, skin responses, brain waves and heart rate are 
commonly used for emotion recognition [4]. There is some 
evidence that electroencephalogram (EEG) based methods are 
more reliable, demonstrating high accuracy and objective 
evaluation compared with other external features [5]. Although 
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EEG has a poor spatial resolution and requires many sensors 
placed on the scalp, it provides an excellent temporal 
resolution, allowing researchers to study phase changes related 
to emotion. EEG is non-invasive, fast, and low-cost compared 
with other psychophysiological signals [6]. Various 
psychophysiological studies have demonstrated the 
relationship between human emotions and EEG signals [7], [8], 
[9]. With the wide implementation of machine learning 
methods in the field of emotion recognition, many remarkable 
results have been achieved. Sebe et al. summarized the studies 
of emotion recognition with single modality, described the 
challenging problem of multimodal emotion recognition [10]. 
Alarcao et al. presented a comprehensive overview of the 
existing works on EEG emotion recognition in recent years 
[11]. A number of EEG datasets have been built with various 
emotions or scored in one continuous emotion space. However, 
the problem of modeling and detecting human emotions has not 
been fully investigated [12]. EEG based emotion recognition is 
still very challenging for the fuzzy boundary between emotion 
categories as well as the difference of EEG signals from kinds 
of subjects. 

Various feature extraction, selection and classification 
methods have been proposed for EEG based emotion 
recognition [13]. Friston modeled the brain as a large number of 
interacting nonlinear dynamical systems and emphasized the 
labile nature of normal brain dynamics [14]. Several studies 
have suggested that the human brain can be considered as a 
chaotic system, i.e., a nonlinear system that exhibits particular 
sensitivity to initial conditions [15]. The nonlinear interaction 
between brain regions may reflect the unstable nature of brain 
dynamics. Thus, for this unstable and nonlinear EEG signals, a 
nonlinear analysis method such as sample entropy [16] is more 
appropriate than that of linear methods, which ignores 
information associated with nonlinear dynamics of the human 
brain. Time-frequency analysis methods are based on the 
spectrum of EEG signals. Power spectral density and 
differential entropy of sub-band EEG rhythms are commonly 
used as emotional features [17], [18]. In the last decade, a large 
number of studies have demonstrated that the higher frequency 
rhythms such as beta and gamma outperform lower rhythms, 
i.e., delta and theta, for emotion recognition. Traditional 
recognition methods are mainly based on the combination of 
hand-crafted features and shallow models like k-nearest 
neighbor (KNN), support vector machines (SVM) and belief 
networks (BN) [19], [20], [21]. However, EEG signals have a 
low signal-to-noise ratio (SNR) and are often mixed with noise 
generated in the process of data collection. Another much more 
challenging problem is that, unlike image or speech signals, 
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EEG signals are temporally asymmetry and nonstationary, 
which has created significant difficulties for data preprocessing 
to obtain clean data for feature extraction. The nonstationary 
means the properties (mean, variance and covariance) of EEG 
signals varied with time partly or totally. Temporally 
asymmetric refers to the fact that the corresponding activation 
lobes and activation degree are different under various 
cognitive activities. Pauls has identified these two nonlinearity 
properties of EEG [22]. Moreover, traditional manual feature 
extraction and selection methods are crucial to an affective 
model and require specific domain knowledge. The commonly 
used dimensionality reduction techniques for EEG signal 
analysis are principal component analysis (PCA) and Fisher 
projection. In general, the cost of these traditional feature 
selection methods increases quadratically with respect to the 
number of features that is included [23]. 

As a form of representation learning, deep learning can 
extract features automatically through model training [24]. 
Apart from the successful implementation in image and speech 
domains, deep learning has been introduced to physiological 
signals, such as EEG emotion recognition in recent years. 
Zheng et al. trained an efficient deep belief network (DBN) to 
classify three emotional states (negative, neutral, and positive) 
by extracting differential entropy (DE) of different frequency 
bands and achieved an average recognition of 86.65% [25]. As 
a typical deep neural network model, convolutional neural 
network (CNN) has achieved great progress in computer vision, 
image processing and speech recognition [26]. Yanagimoto et 
al. built a CNN to recognize the emotional valence of DEAP 
and analyze various emotions with EEG [27]. Wen et al. 
rearranged the original EEG signals through Pearson 
Correlation Coefficients and fed them into the end-to-end CNN 
based model for the purposes of reducing the manual effort on 
features, which achieved an accuracy of 77.98% for Valence 
and 72.98% for Arousal on DEAP, respectively [28]. 

The mainly used feature extraction methods of EEG signals 
can mainly be divided into time domain, frequency domain, and 
time-frequency domain [29], [30], [31]. Frequency analysis 
transformed the EEG signals into frequency domain for further 
feature extraction. Since many studies demonstrated that the 
frequency domain features have higher distinguishability, we 
proposed the novel concept of electrode-frequency distribution 
maps (EFDMs) firstly. With the successful application of CNN 
in speech recognition [32], we build a deep neural network for 
emotion recognition based on EFDMs. The EFDMs of EEG 
signals can be regarded as grayscale images. Therefore, with 
proposed EFDMs, we realized the purpose of constructing 
emotion recognition model based on CNN. 

At present, studies on EEG emotion recognition mainly 
focus on subject-dependent emotion recognition tasks. For 
engineering applications, it’s obviously impossible to collect a 
huge amount of subjects’ EEG signals in advance to build a 
universal emotion recognition model to identify the emotions 
of every person. Therefore, how to realize the subject- 
dependent pattern classification is one tough issue in the 
practical application of emotion recognition. Traditional 
emotion recognition models are usually established for a 

specific task on a small dataset, thus they often fail to achieve 
good effect under new tasks, due to the possible differences in 
stimulus paradigm, subjects and EEG acquisition equipment. In 
addition, the learning process of deep neural networks is vitally 
important, and generally requires a large amount of labeled 
data, while the acquisition of EEG signals is not as easy as that 
of image, speech and text signals. Accordingly, how to achieve 
a highly effective classifier through the training process based 
on a small number of labeled samples is another issue that 
needs to be considered. In this paper, transfer learning is 
employed to solve those problems highlighted above. Among 
various transfer learning methods, one is to reuse the 
pre-trained model from source domain to target domain, 
dependent on the similarities of data, tasks and models between 
them [33]. Transfer learning accelerates the training process by 
transferring the pre-trained model parameters to a new domain 
task. Since Yosinski et al. published an article on how to 
transfer the features in deep neural network, it has achieved a 
rapid development in the field of image processing [34]. 

We firstly proposed a novel concept of EFDMs based on 
multiple channel EEG signals. Then four residual blocks based 
CNN was built for automatic feature extraction and emotion 
classification with EFDMs as input. We mainly set up two 
experiments in this paper. One is to evaluate the effectiveness 
of the proposed method on SEED. Second, based on the deep 
model transfer learning strategy, the pre-rained CNN from the 
first experiment is applied to DEAP for the cross-datasets 
emotion recognition. At the last, we have given more 
neuroscience interpretation by revealing the key EEG 
electrodes and frequency bands corresponding to each emotion 
category based on the attention mechanism of deep neural 
network and the proposed EFDMs. 

II. METHODS 
In this section, we will detail the general framework of the 

EFDMs based CNN for emotion recognition, including a short 
description of short-time Fourier transform (STFT), the 
structure and key parameters of the proposed CNN as well as a 
brief introduction to Grad-CAM. 

A. Short-Time Fourier Transform 
Fourier transform (FT) is often used to analyze the frequency 

features of time series. It provides the frequency information 
averaged over the entire signal time interval, and does not know 
the time when each frequency component appears. Therefore, 
the spectrum of two signals with large difference in time 
domain may be the same in frequency domain. That is to say, 
FT assumes that the time sequences are stationary, which is a 
false hypothesis for EEG signals apparently. For these 
nonstationary signal analyze, the time series should be cut into 
minor segments, and within each segment, the signal waves can 
be approximately considered as stationary signals used for FT. 
The idea is called STFT. It is a sequence of Fourier transforms 
of a windowed signal, used to analyze how the frequency 
content of a nonstationary signal changes. Provides the 
time-localized frequency information for situations in which 
frequency components of a signal vary over time. The 
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calculation of STFT is defined as: 

 ( , ) ( ) ( ) jwtX w x t t e dtW Z W
f �

�f
 �³   (1) 

where ( )x t  represents original signal and ( )tZ  indicates the 
window function such as the Hanning window as shown in (2). 
It’s a linear combination of modulated rectangular windows, 
and usually emerges in applications that require low aliasing 
and less spectrum leakage. 

 1 2( ) 1 cos
2 1

nw n
N
S§ ·§ · �¨ ¸¨ ¸�© ¹© ¹

  (2) 

in which n  represents the window length and N  is the 
sampling number. 

As for discrete time series, the data could be broken up into 
segments. Each segment is Fourier transformed, and the 
complex result is added to a matrix, which records magnitude 
and phase for each point in time and frequency. The calculation 
of STFT for discrete time series can be expressed as: 

 ( , ) [ ] [ ] jwn

n

X m w x n n m eZ
f

�

 �f

 �¦   (3) 

where [ ]x n  is a time series and [ ]nZ  is window function. With 
a normalization of ( , )X m w , we got the corresponding EFDMs. 

B. The Proposed Model for EEG Emotion Recognition 
In image processing, convolution operations can effectively 

filter image information, and CNN make use of these 
characteristics to achieve automatic feature extraction from 
images. In order to apply the CNN for automatic feature 
extraction and pattern classification in EEG-based emotion 
recognition, we proposed a novel concept of EFDMs based on 
multiple channel EEG signals. These EFDMs can be treated as 
grayscale images to apply two dimensional convolution 
operation. 

A CNN with four residual blocks is proposed for EEG 
emotion recognition with EFDMs as input. The general 
network structure is shown in Fig. 1. The network consists of 1 
convolution layer, 4 residual blocks, 4 max pooling layers, 2 
fully connected layers, and finally the Softmax layer. The 
network also includes 5 batch normalization and 4 dropout 
layers for over-fitting consideration. The size of the max 
pooling window is 2×2, and the window slide step is 2. In 
addition, all intermediate layers use the Rectified Linear Unit 
(ReLU) as an activation function. The detailed structure of the 
residual block is shown in the dashed box. The size of the 
convolution kernel in the residual block is 3, 3, 1, the sliding 
step is 1, and one batch normalization layer is included after 
each convolution layer. 

 
Fig. 1. The proposed residual block based CNN for EEG emotion recognition. 
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The residual block based CNN can effectively alleviate the 
problem of gradient disappearance and gradient explosion 
through the shortcut connections between layers. The network 
embedded with max pooling layer has a certain translation and 
rotation invariance to the input. Moreover, since the 
emotion-related features of EEG signals mainly reflected in the 
sub-frequency rhythms, the pooling operation in the frequency 
direction can make the neural network more effective for 
extracting emotion-relevant features from EFDMs. Finally, two 
fully connected layers are used for emotion classification based 
on the features extracted by the former convolution layers. 

C. Grad-CAM 
Gradient-weighted class activation mapping (Grad-CAM) is 

used to make CNN-based models more transparent by 
producing visual explanations [35]. This can be used to 
understand the importance of input data with respect to a target 
class of interest. In order to obtain the class-discriminative 
localization map Grad-CAM for any class c  ( c

Grad CAML � ), the 
gradient of the score for class c  was first computed ( cy ), with 
respect to the feature maps kA  of a convolutional layer. These 
gradients flowing back are global-average-pooled to obtain the 
neuron importance weights: c

ka  

 1 c
c
k k

i w j h ij

y
Z A

D
� �

w
 

w¦¦   (4) 

in which Z  represents the number of pixels in the feature map. 
Through performing a weighted combination of forward 

activation maps followed by a ReLU, the Grad-CAM can be 
expressed as: 

 Rec c k
Grad CAM k

k

L LU AD�
§ · ¨ ¸
© ¹
¦   (5) 

 
The output c

Grad CAML �  indicates which parts the proposed 
neural networks have paid more attention to, and we denote them 
as attention heat maps. For each emotion, we use (6) to calculate 
the average heat maps of all samples to understand what’s the 
difference when classify different emotions. 

 1 c
AVE Grad CAML L

N � ¦   (6) 

III. DATASET DESCRIPTION AND ANALYSIS 
In this section, we make a description on two EEG emotion 

recognition datasets, i.e. SEED and DEAP. Then some data 
preprocessing methods are presented to prepare samples for 
cross-datasets emotion recognition. Finally, data distribution 
between different subjects are analyzed. 

A. SEED Dataset Description 
SEED dataset contains three categories of emotions, i.e., 

negative, neutral, and positive.  Fifteen subjects (7 males and 8 
females) participated in the experiments. EEG signals were 
recorded using an ESI NeuroScan System at a sampling rate of 
1000 Hz from a 62-channels active AgCl electrode cap 
according to the international 10-20 system while they were 
watching emotional film clips. There are 15 trials (film clips 

watching test) in one experiment. Each subject participated in 
the experiment 3 times at an interval of one week or longer. 

For EEG signal processing, the raw EEG data were first 
down-sampled to 200 Hz. In order to filter the noise and 
remove most artifacts, a bandpass filter of 0.5Hz to 70Hz was 
performed [36]. 

B. DEAP Dataset Description 
DEAP is a multimodal dataset consisting of EEG recordings 

collected while watching the selected video clips to analyze 
human affective states. The EEG and peripheral physiological 
signals of 32 participants were recorded using a Biosemi 
ActiveTwo system as each watched 40 one-minute long 
excerpts of music videos. The experiments were performed in 
two laboratory environments with controlled illumination. The 
EEG signals were recorded at a sampling rate of 512Hz from 32 
active electrodes according to the international 10-20 system. 
Each participant assesses their levels of arousal, valence, 
dominance and liking using self-assessment manikins (SAM). 
Participants selected the numbers 1-9 for emotional state for 
each clip. The arousal scales extend from passive to active, and 
valence ranges from negative to positive. 

Some preprocessing operations have been applied to the raw 
data, such as down sampling the recordings to 128 Hz; EOG 
artifacts were removed; a bandpass filter of 4Hz to 45Hz was 
applied; averaged to the common reference. After that, the data 
were segmented into 60 second trials and a 3 second pre-trial 
baseline removed [37]. 

C. Data Preprocessing 
For the SEED dataset since the length of the EEG signals 

acquired under various stimulus differs greatly, we firstly count 
the lengths of all EEG trials, then the EEG signals are truncated 
(taking the first 37,000 sampling points for subsequent 
analysis) to ensure that every kind of emotion has the same 
number of samples. 

Due to the big differences in the experimental protocol, the 
composition of subjects, and the configuration of signal 
acquisition system between DEAP and SEED dataset. In order 
to ensure that the classification task using both SEED and 
DEAP is similar, the emotional space of DEAP is divided into 
discrete parts according to the valence score similar to the 
approach in [38]. Samples with a score in valence greater than 7 
were classified as positive, samples with scores less than or 
equal to 7 and greater than 3 were classified as neutral, and 
samples with scores no more than 3 were treated as negative. 
Based on this classification criterion, the number of subjects 
with different types of emotion was counted in each film 
stimulus, and the frequency results are shown in Fig. 2. The 
horizontal axis represents the film clip index from 1 to 40, and 
the vertical axis represents the number of subjects with one 
specific emotion corresponding to each stimulus. We then look 
for the trials that have the most participants who reported to 
have successfully induced positive, neutral and negative 
emotion, respectively. These trials are: #18 for positive 
emotion, #16 for neutral emotion, and #38 for negative 
emotion, each having 27, 28 and 19 subjects respectively. 
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Fourteen subjects in DEAP (numbered 2, 5, 10, 11, 12, 13, 14, 
15, 19, 22, 24, 26, 28 and 31) that successfully induced all three 
types of emotions under these three trials (#18, #16 and #38) 
were selected for subsequent experiments. 

After that, the EEG signals in each channel are divided into a 
number of samples with a 1s long non-overlapping Hanning 
window in two datasets. Hence, we obtain 185 samples of one 
trail corresponding to one film clip, and 41625 samples are 

obtained under different emotions in SEED. For DEAP, since 
each trial lasts for 63 seconds and the first 3 seconds are 
baseline recording without emotion elicitation, we only use the 
segment from the 4th second to the end. Thus, 60 samples were 
obtained in each trial, the total number of samples is 2520. 
Finally, Fourier Transform and normalization are performed on 
the samples to get the EFDMs. 

 
Fig. 2. DEAP emotion space discrete results with valence score. 

D. EFDMs 
The Fourier transform is applied to each EEG channel of all 

samples obtained above, and then the transformed results are 
normalized to produce the input data that are suitable for CNN. 
The normalized results in two dimensions were known as 
EFDMs. The EFDMs of the EEG signals can be represented as 
grayscale images, and the normalized results can be compared 
to the gray pixel value. Therefore, we can build a CNN for 
EEG-based emotion recognition with EFDMs. Fig. 3 shows the 
EFDMs under different emotions. 

 
(a) Negative            (b) Neutral            (c) Positive 

Fig. 3. EFDMs under different emotions. 

E. Data Distribution Analysis 
In order to illustrate the difference in EEG signals between 

different subjects, we use the SEED dataset as an example and 
randomly select 50 samples of five subjects under three 
emotional states for analysis. Firstly, the DE of five sub-band 
EEG signals in all channels are extracted, and the feature 
vectors are formed. Then the PCA is used to reduce the 
dimensionality of the features, the two components with the 
largest eigenvalues are retained for data distribution analysis. 

 
Fig. 4. Two-dimension visualization of features selected from different 

subjects in SEED. 
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As can be seen from Fig. 4, the data distribution among 
different subjects is quite different, which does not satisfy the 
independent and identical assumption between training and test 
samples in traditional machine learning. In addition, the feature 
differences among three kinds of emotions of the same subject 
are not obvious. Therefore, in this case, traditional machine 
learning methods often fail to achieve good recognition results. 
The recently proposed transfer learning is specifically designed 
to solve this problem. Such methods usually carried out within 
one dataset, which has some similar parts among different 
subjects, such as EEG signal acquisition equipment and 
experimental process, this is helpful for knowledge transfer 
from source to target domain. However, in cross-dataset 
emotion recognition task, the differences introduced by 
different signal acquisition equipment and experimental 
environments need also to be considered. Therefore, it is more 
difficult to realize the transfer learning of emotion recognition 
model with cross-datasets. 

IV. EXPERIMENTS AND RESULTS ANALYSIS 
We set up two experiments. First, the effectiveness of the 

proposed method for EEG-based emotion recognition is 
verified using SEED. Then, based on the deep neural network 
transfer learning strategy, the pre-trained model is applied to 
DEAP with 12 training samples of each emotion class. 

A. SEED Based Emotion Recognition 
Over the past few years, many scholars have conducted 

notable research on EEG based emotion recognition with 
SEED. To compare the proposed approach with [25], [39], [40], 
[41], in this experiment, we strictly obey the protocol of Zheng 
et al. [25]. Specifically, for all 15 trials of EEG data associated 
with one session of one subject, the first 9 trials are used to 
serve as the training set and the remaining 6 are the testing set. 
Then, the recognition accuracy corresponding to each period is 
obtained for each subject. Finally, the average classification 
accuracy over three sessions for all 15 subjects is calculated. 

The training and testing processes are implemented using 
Pytorch framework with Adam algorithm as an optimizer; the 
learning rate is set as 0.0001, and the loss function is a cross 
entropy loss function. 

Table 1. Some notable works on SEED dataset. 
Method Feature Classifier Signal Accuracy (%) 

Zheng et al.[25], 2015 DE DBN EEG(1s) 86.08 

Lu et al.[39], 2015 DE (EEG) Fuzzy integral fusion strategy EEG (4s) + Eye movement 87.59 

Liu et al.[40], 2016 DE BDAE + SVM EEG (4s) + Eye movement 91.01 

Yang et al.[41], 2017 DE hierarchical network with subnetwork nodes EEG (4s) + Eye movement 91.51 

Tang et al.[42], 2017 PSD, DE, Mean, SD Bimodal-LSTM EEG (4s) + Eye movement 93.97 

Li et al.[43], 2018 DE BiDANN EEG (9s) 92.38 

Song et al.[44], 2018 DE DGCNN EEG (1s) 90.40 

Ours EFDMs CNN EEG (1s) 90.59 

 
We compared the proposed models with other state-of 

-the-art approaches [42], [43], [44] and the baseline method, 
which uses DBN directly as the classifier. As shown in Table 1, 
Bimodal-LSTM achieved the best accuracy (93.97%) among 
[39], [40], [41], [42] with 4 seconds of EEG as well as eye 
movement information. Based on single EEG, Li et al. [39] 
obtained the best recognition rate of 92.38% with 9s EEG. The 
result of the proposed model based on EFDMs and CNN is 
90.59%, which is 4.51% higher than the baseline results with 
differential entropy and DBN. Compared with other methods, 
the data samples of 1s used in this paper are shorter and the 
process to produce EFDMs through STFT is simpler compared 
to DE. That is to say, the EEG based emotion recognition 
method combined with EFDMs and CNN is effective. 

To see the results of recognizing each emotion, we depict the 
confusion matrix corresponding to the experiments using 
SEED, as shown in Fig. 5. Each row of the confusion matrix 
represents the target class and each column represents the 
predicted class that a classifier outputs.  The element ( , )i j  is 
the percentage of samples in class i  that were classified as 
class j . From the results we can see that, in general, positive 

emotion can be recognized with high accuracy (93%), while 
negative emotion is more difficult to recognize, and very easy 
to be confused with neutral emotion. 

 
Fig. 5. Confusion matrix on SEED. 

B. DEAP Based Emotion Recognition 
The goal of machine learning is to build a model that is as 

general as possible to meet the requirements of different user 
groups and different environments. However, such an ideal 
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model often fails to meet the expected requirements in practical 
applications. Therefore, how to establish a universal model to 
tackle the possible differences between subjects and signal 
acquisition devices under different classification tasks, as well 
as realizing few-shot learning, is a problem that needs to be 
taken into consideration in CNN-based emotion recognition 
system. Various studies on CNN have shown that shallow 
convolution layers are designed to extract common basic 
features from the input, while deeper convolution layers can 
extract more abstract and task related features. Therefore, it is 
possible to get an accurate classification result based on partial 
fine-tuning of the pre-trained CNN with a few training samples. 
Generally, the accuracy is positively correlated with the 
number of fine-tuned layers. To this end, through two deep 
neural network transfer learning strategies, i.e. just fine-tune 
the fully connected layers or fine-tune all layers, the pre-trained 
CNN with SEED is transformed for another emotion 
recognition task based on DEAP. 

In order to produce EFDMs with the same attributes 
(including channel order, frequency range and size) for deep 
model transfer learning between two datasets, we take 
following different preprocessing methods. For SEED, 32 EEG 
channels (Fp1, Fp2, AF3, AF4, F7, F3, Fz, F4, F8, FC5, FC1, 
FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, 
Pz, P4, P8, PO3, PO4, O1, Oz, O2) are shared with DEAP and 
the first 64 frequency points are selected to build EFDMs with a 
size of 32×64. For DEAP, the EEG channels are rearranged 
according to the former presented electrode order to ensure that 
they are consistent with SEED. 

Based on the review of relevant works, we found that some 
scholars have conducted research on emotion recognition with 
transfer learning across two datasets [38]. However, there are 
some differences between the research focus. The main 
research focus of this paper is to realize emotion recognition 
based on a deep model transfer strategy with a few training 
samples. While the latter aims to use a domain adaptation 
method to transfer the classification knowledge learned using 
SEED, to DEAP. There are also differences in experimental 
settings. In this paper, a small amount of data of the target 
subject is used for training, while the latter uses the leave-one- 
subject-out cross-validation strategy for classification on 
DEAP. (The data of each session in SEED were used as source 
samples, and each subject in DEAP was set as a target sample 
for testing.) The recognition results using the DEAP dataset 
with domain adaptation from [38] are shown in Table 2. 

Table 2. Cross-datasets emotion recognition results with 
leave-one-subject-out cross-validation strategy. 

Method SEEDⅠ→DEAP SEEDⅡ→DEAP SEEDⅢ→DEAP 
Baseline 34.57 (7.98) 32.99 (3.44) 32.51 (6.73) 
MIDA 40.34 (14.72) 39.90 (14.83) 37.46 (13.11) 
TCA 42.60 (14.69) 42.40 (14.56) 39.76 (15.15) 
SA 36.73 (10.69) 37.36 (7.90) 37.27 (10.05) 
ITL 34.50 (13.17) 34.10 (9.29) 33.62 (10.53) 
GFK 41.91 (11.33) 40.08 (11.53) 39.53 (11.31) 
KPCA 35.60 (6.97) 34.69 (4.34) 35.11 (10.05) 

It can be seen from the table that Transfer component 
analysis (TCA) achieved the best recognition accuracy under 

the three experimental settings. However, the recognition 
accuracy of all domain adaptation methods is very low (no 
more than 43%), and the recognition result for Information 
theoretical learning (ITL) is even lower than that of the baseline 
method which did not adopt transfer learning. 

From here on, we will carry out deep model transfer learning 
based on a small number of training samples. For DEAP, we 
randomly divide the samples of each subject into a training and 
testing dataset with a training versus testing ratio of 1:4. (Which 
means 20% for training, 80% for testing, the training sample 
size of each emotion is 12.) Then, two different deep model 
transfer learning strategies are used to fine-tune the pre-trained 
CNN with the training dataset, after which the network is tested 
on the testing samples. During model fine-tuning, Adam is used 
as an optimizer, the learning rate is 0.00002 with cross-entropy 
as a loss function. The recognition accuracy of the proposed 
method using the DEAP dataset based on a few training 
samples is shown in Fig. 6.  

 
Fig. 6. The recognition accuracy of our proposed method on DEAP. 

The average recognition accuracy and standard deviation of 
the baseline, fine-tune fc layers and fine-tune all layers are 
32.94% (3.80), 70.14% (9.81), and 82.84% (10.74), 
respectively. The baseline indicates that the pre-trained model 
using SEED is directly applied to DEAP without using a 
transfer learning strategy. It can be seen that the recognition 
accuracy of all 15 subjects with this method is very low (less 
than 40%), which means that the data distribution of DEAP is 
quite different from that of SEED. The data distribution 
between these two datasets doesn’t satisfy the independent and 
identical assumption of traditional machine learning. It is worth 
noting that the baseline result is similar to the baseline 
recognition accuracy in [38]. Fine-tune fc layers and fine-tune 
all layers represent the recognition results obtained by using 12 
training samples to fine-tune the pre-trained CNN with fully 
connected layers or all layers, respectively. For each subject, 
the recognition results of these two methods changed 
synchronously. Compared with the baseline results, these two 
transfer learning strategies improved the recognition accuracy 
significantly for every subject. The method of fine-tune all 
layers achieved the best classification results among 15 
subjects with an average accuracy of 82.84%, the highest result 
is 96.60% on subject 11, while a lower result is 61.18% and 
63.13% for subject 7 and 9, respectively. The best recognition 
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accuracy using fine-tune fc layers is 84.86% with subject 11. 
However, its performance on subject 5, 7, 9, and 14 is poor, all 
of them are lower than 60%. 

The confusion matrix of the proposed method is shown in 
Fig. 7. As can be seen from the figure, the baseline method 
classified almost all samples (about 84%) as neutral emotion, 
only a small number of samples are recognized as negative, 
while fewer samples are classified as positive (less than 1%). It 
shows that there is a big difference in the EFDMs between the 
two datasets, and the pre-trained CNN learned from SEED 
cannot be directly used for DEAP. With the proposed deep 
model transfer learning strategy of fine-tuning the fully 
connected layers of the pre-trained CNN, the classification 
accuracy has been greatly improved. The best result is obtained 
in neutral emotion recognition (77%), followed by positive, 
while the result of negative emotion recognition is not as good 
as the former (62%). With the method of fine-tuning all layers, 
the recognition results have been further enhanced, the positive 
emotion recognition is the best (86%), the neutral is second, 
and the accuracy of the negative emotion recognition has 
reached 79%. It is worth noting that the emotions achieved with 
the best classification accuracy of fine-tune fc layers and 
fine-tune all layers are neutral and positive, respectively. That 
is to say, through fine-tuning the weights of the convolution 
layers in the pre-trained CNN, it has helped to learn more 
emotion related features in DEAP. The average recognition 
accuracy for fine-tuning all layers is 82.84%. 

 
(a) Baseline    (b) Finetune fc layers   (c) Finetune all layers 

Fig. 7. The confusion matrix on DEAP. 
We set up six comparative experiments to illustrate the 

effectiveness of the proposed methods for EEG based emotion 
recognition, including one-shot learning (taking one sample 
from each emotion to form a training set, and using remaining 
samples for testing), as well as the experiments with a training 
data proportion of 0.05, 0.1, 0.3, 0.4 and 0.5, respectively. For 
the training dataset, we randomly selected a number of samples 
from all types of emotions according to the training data 
proportion, and the remaining samples are used to form the 
testing dataset. In order to avoid the problem that a small 
number of randomly selected training samples are not 
representative enough, the comparative experiment under every 
experimental setting was repeated five times, and the average 
value was used as the final result. The average recognition 
accuracy and standard deviation of the proposed methods with 
a different number of training samples are shown in Fig. 8.  

We can see that the accuracy direction of these two deep 
model transfer learning is consistent, both increase with the 
number of training samples used. When the number of training 
samples from each emotion increased to 12 (the training data 
proportion is 0.25), the growth trend of these two methods was 
significantly slower. Under each experimental setup, the result 

of fine-tune all layers is always better than that of fine-tune fc 
layers. This shows that there is a difference in EFDMs between 
SEED and DEAP, which needs to be adjusted through the 
fine-tuning with the weights of the convolution layers. 
Additionally, under the ‘one-shot learning’ experimental setup, 
which uses only one sample from each emotion kind for 
training, the accuracy of these two methods (e.g., fine-tune fc 
layers 45.50% (5.60), fine-tune all layers 50.02% (11.48)) is 
much higher than that of the baseline method (32.94% (3.80)). 
This also illustrated by the effectiveness of the proposed 
methods in emotional recognition by fine-tuning the CNN with 
a few samples. 

 
Fig. 8. Classification accuracy with varying number of training 

samples. 

C. What Did Our Network Learn? 
The existing CNN based EEG emotion recognition studies 

take the original EEG signals or time frequency maps as the 
input. However, the original EEG signals cannot represent its 
frequency feature, and the time frequency maps cannot reflect 
the position relationship between EEG channels. The EFDMs 
proposed in this paper can simultaneously give expression to 
the frequency distribution as well as the EEG electrodes 
position information. Based on the attention mechanism of 
deep neural network, we adopt Grad-CAM to analysis what 
information the CNN has learned from EFDMs. Investigate the 
key EEG electrodes as well as frequency bands corresponding 
to each emotion category automatically and simultaneously.  

Fig. 9 shows the ‘attention maps’ generated with Grad-CAM 
of different emotion categories. The brighter the color is, the 
more important the information contained in this area is to 
emotion recognition. Similarly, the darker the color is, the less 
important this area is. From the figure, we can see that the EEG 
channels and frequency bands that the CNN focused on are 
quite different. The average attention level for all channels are 
shown in the right histogram, which represent the average of 
Grad-CAM value across each channel. From these attention 
heat maps and histograms, we can find that there is a large 
similarity between negative and neutral emotion. That’s why 
the network misclassified 6% of neutral emotions into negative 
(with 3% into positive), while the proportion of negative 
samples misclassified into neutral is 8% (with 4% into positive) 
as shown in Fig. 5.  
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Fig. 9. Heat maps and average attention level for every channel 

obtained through Grad-CAM on SEED. (a), (d) Negative. (b), (e) 
Neutral. (c), (f) Positive. 

From Fig. 9 (a), (d), the key frequency bands related to 
negative emotion recognition mainly concentrated in 25-57 Hz, 
and the key channels distributed around FC2, FC6. From Fig. 9 
(b), (e), the key EEG frequency bands and channels of neutral 
emotion are 27-55Hz, and T8, CP5, CP1, CP2. Similarly, the 
critical information of positive emotion from Fig. 9 (c), (f) are 
24-59Hz, and FC2, FC6. Although the distribution of key 
frequency bands under three emotions is highly coincident, the 
key point of positive (29Hz) is quite different from that of 
negative (44Hz), and neutral (44Hz). This means the high 
frequency feature components contain more distinguishing 
information for EEG based emotion recognition. In addition, 
the alpha band (8-13Hz) of some channels is helpful for 
negative and positive emotion classification, while not for 
neutral emotion. We can draw the conclusion that CNN pays 
more attention to the high frequency bands of the EEG signals 
(24-59Hz), which is consistent with the conclusion in [5], [25], 
[45], [46]. Therefore, the CNN can be trained to automatically 
discover the EEG channels and features that are conducive to 
emotion recognition. It is worth noting that the range of key 
EEG channels and frequency bands obtained in this paper is a 
little wider than the true information due to the influence of 
two-dimensional convolution operation. That is to say, the real 
key EEG channels and frequency bands related to emotion 
recognition should be concentrated in several channels and 
frequency bands with the highest brightness in the attention 
maps. 

V. CONCLUSION 
In this paper, we have provided a solution to tackle the 

challenge of differences in individual emotions with deep 
model transfer learning. Aims to build a robust emotion 
recognition model independent of stimulus, subjects, and EEG 
collection device etc. We have mainly set up two experiments, 
within and cross-datasets emotion recognition. First, the 
effectiveness of the proposed approach is valid on SEED with 

an average accuracy of 90.59%. After that, the pre-rained CNN 
from the first experiment is applied to DEAP with the deep 
model transfer learning method. Experiments show that when 
12 training samples of each emotion are used for deep model 
fine-tune, a high accuracy can be achieved with a few samples. 
At the last, based on the attention mechanism of deep neural 
network, we adopt Grad-CAM to analysis what information the 
CNN has learned from EFDMs, obtained the key EEG 
electrodes and frequency bands corresponding to each emotion 
category automatically and simultaneously. The results show 
that the high frequency bands (24-59Hz) are more helpful for 
emotion recognition. he key channels of neutral are T8, CP5, 
CP1, CP2, which is different from that of negative and positive 
(FC2, FC6). 

From Table 1, we can see that the proposed approach hasn’t 
achieved the best performance, this may due to the 1s signal 
used is shorter than that of others with 4s and 9s, or due to the 
lack of eye movement data. We will consider the issue of EEG 
data length as well as the multimodal data fusion method for 
emotion recognition in the future. Moreover, we only studied 
the transfer learning method of fine-tuning deep neural 
networks to tackle the challenge of individual difference 
between subjects with the cross-datasets emotion recognition 
experiment at present. More and more advanced deep transfer 
learning methods have emerged recently. Therefore, more 
attempts should be tried with these algorithms. Furthermore, 
the source and target domain included in this paper is the same. 
Concentrate on the EEG emotion recognition issue with 
insufficient samples and different source and target domain is 
another work worth studying. 
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