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Abstract

The essential trace element zinc is important for all living organisms. Zinc functions not only as a nutritional factor, but also
as a second messenger. However, the effects of intracellular zinc on the B cell-receptor (BCR) signaling pathway remain
poorly understood. Here, we present data indicating that the increase in intracellular zinc level induced by ZIP9/SLC39A9 (a
ZIP Zrt-/Irt-like protein) plays an important role in the activation of Akt and Erk in response to BCR activation. In DT40 cells,
the enhancement of Akt and Erk phosphorylation following BCR activation requires intracellular zinc. To clarify this event,
we used chicken ZnT5/6/7-gene-triple-knockout DT40 (TKO) cells and chicken Zip9-knockout DT40 (cZip9KO) cells. The
levels of Akt and ERK phosphorylation significantly decreased in cZip9KO cells. In addition, the enzymatic activity of protein
tyrosine phosphatase (PTPase) increased in cZip9KO cells. These biochemical events were restored by overexpressing the
human Zip9 (hZip9) gene. Moreover, we found that the increase in intracellular zinc level depends on the expression of
ZIP9. This observation is in agreement with the increased levels of Akt and Erk phosphorylation and the inhibition of total
PTPase activity. We concluded that ZIP9 regulates cytosolic zinc level, resulting in the enhancement of Akt and Erk
phosphorylation. Our observations provide new mechanistic insights into the BCR signaling pathway underlying the
regulation of intracellular zinc level by ZIP9 in response to the BCR activation.
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Introduction

Zinc is an essential trace element for living organisms and is

contained in many proteins, such as zinc-finger-containing

transcriptional factors and zinc-dependent metalloenzymes [1].

Therefore, dysfunctions of zinc homeostasis are currently known

to be involved in the development of various diseases, such as

cancer, inflammation, and diabetes [2,3]. Two zinc transporter

families, namely, the Zinc transporter (ZnT)/solute carrier 30a

(Slc30a) family and the Zrt/Irt-like protein (ZIP)/solute carrier

39a (Slc39a) family, have been identified and characterized. There

are nine members of the ZnT family and 14 members of the ZIP

family, which tightly control cellular zinc homeostasis [4–6].

Recently, intracellular zinc has been established as a second

messenger molecule in breast cancer cells [7], lymphocytes [8–10],

and mast cells [11]. In cancer cells, ZIP7 induces the release of

zinc into the cytosol and the resulting increased intracellular zinc

level regulates the epidermal growth factor (EGF)/insulin-like

growth factor (IGF) signaling pathway [12]. Regarding this

signaling activation, it has been reported that ZIP7 is directly

phosphorylated by casein kinase (CK2) [13]. Phosphorylation of

ZIP7 leads to the release of zinc into the cytosol, leading to the

activation of signaling factors, such as Akt and Erk. In addition,

zinc has also been shown to affect the immune functions of the ZIP

and ZnT families, including the enhancements of T cell receptor

signaling and protein kinase C (PKC) signaling, and the regulation

of production of cytokines such as interleukin-2 (IL-2) and

interferon-gamma (INFgamma) [14,15]. The alteration of ZIP6

expression by lipopolysaccharides (LPS) in dendritic cells decreases

intracellular zinc level and induces dendritic maturation [16].

Moreover, the protein expression of ZIP8 is significantly induced

in infectious diseases and inflammation, and ZIP8-mediated zinc

transport into innate immune cells is important for proper immune

function [17,18]. Although many study have been reported that

the intracellular zinc regulates signaling pathway in T cell and

lymphocytes, however, the relationship of zinc and B cell receptor

(BCR) signaling has been poorly understood.

BCR signal transduction affects the expression of metabolic

genes or cytoskeletal proteins and leads to various cellular events

such as the survival, growth, and apoptosis of B cells [19–21]. To

clarify the molecular relationships among key signaling enzymes

such as PI3K, Ras, and PLCgamma in the BCR signaling, DT40
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chicken B cell lines have been utilized as a model [22–24].

Furthermore, the relationships between cellular zinc homeostasis

and zinc transporters have been characterized using DT 40

chicken B cells [25]. ZnT5, ZnT6, and ZnT7 (ZnT5/6/7), which

are located in the Golgi, incorporate intracellular zinc from the

cytosol into the Golgi. These transporters are required in the

loading of zinc to zinc-requiring enzymes, namely, alkaline

phosphatases, for enzyme activation and are indispensable in

homeostatic maintenance of secretory pathway function [26–29].

Furthermore, ZIP9 has also been identified and characterized as a

resident protein in the Golgi in DT40 and HeLa cell lines [30].

However, the function of ZIP9 is not understood well.

We hypothesized that zinc released to the cytosol as induced by

ZIP9 plays a pivotal role in the BCR signaling pathway. Thus, we

examined the mechanisms underlying the activation of BCR

signaling by intracellular zinc using cZip9KO cells established

from the DT40 chicken B lymphocyte cell line, which has been

used as a model to examine the significance of calcium in BCR

signaling [31,32]. First, by treating DT40 cells with an intracel-

lular zinc chelator, N,N,N9,N9-tetrakis(2-pyridylmethyl) ethylenedi-

amine (TPEN), we found that the levels of Akt and Erk

phosphorylation decreased under BCR activation by an anti-

IgM antibody. In addition, we observed that intracellular zinc

contributes to the increase in phosphorylation levels in DT40 cells

when intracellular zinc level was induced to increase using a zinc

ionophore, zinc pyrithione (ZnPy). Second, we found that the

phosphorylation of Akt and Erk triggered by the anti-IgM

antibody or ZnPy treatment was significantly attenuated in

cZip9KO cells. Under the same experimental conditions, the

enzymatic activity of protein tyrosine phosphatase (PTPase)

increased in cZip9KO cells. These biochemical events were

restored by overexpressing hZip9 in cZip9KO cells. Finally, by

fluorescence zinc staining, we detected that ZIP9 induced the

release of zinc into the cytosol from the Golgi. The altered

regulation of Akt and Erk in BCR signaling and PTPase activity in

cZip9KO cells indicate that intracellular zinc regulates BCR

signaling. Our observations provide new insights into the

mechanism of Akt and Erk activation in the BCR signaling

pathway, which underlies the regulation of intracellular zinc level

by ZIP9.

Materials and Methods

Materials
1-Hydroxypyridine-2-thione zinc salt and 2,29-dithiodipyridine

were obtained from Sigma-Aldrich, Inc. (Saint Louis, MO, USA).

N,N,N9,N9-Tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) was

obtained from Dojindo Molecular Technologies, Inc. (Kumamoto,

Japan). Ionomycin, calcium salt was obtained from Invitrogen

(Carlsbad, CA, USA). Newport Green PDX, FluoZin-3 and

BODIPY TR-ceramide were obtained from Molecular Probes

(Eugene, OR, USA). An anti-chicken IgM antibody (M4) was

purchased from Beckman Coulter, Inc. (Fullerton, CA, USA).

Specific antibodies against phospho-Ser473 Akt, Akt, phospho-

Thr202/Tyr204 p44/42 mitogen-activated protein kinase

(MAPK), and p44/42 MAPK, and hemagglutinin (HA)-Tag

(C29F4) were purchased from Cell Signaling Technologies

(Beverly, MA, USA). LY294002 as the PI3K inhibitor and

U0126 as the MEK1/2 inhibitor were also purchased from Cell

Signaling Technologies. Other chemical compounds were pur-

chased from Nacalai Tesque (Kyoto, Japan).

Cell culture, Treatment, Stimulation, and Protein Isolation
DT40 cell lines were cultivated in RPMI1640 supplemented

with 10% fetal bovine serum (FBS), 1% chicken serum (ChS), and

50 mM 2-mercaptoethanol (2ME) at 39.5uC in a humidified

atmosphere with 5% CO2. DNA was transfected into DT40 cells

as described previously to disrupt cZnT5/6/7 and cZip9 [26,27],

and hZip9-HA was reintroduced as describe previously [30].

Exponentially growing DT40 cells were starved in RPMI1640

supplemented with 0.5% BSA and 50 mM 2ME at 37uC for 5 h.

Cells were washed once with 0.5% BSA-HBSS (25 mM HEPES-

NaOH, pH 7.4, 120 mM NaCl, 0.8 mM MgCl2, 5.4 mM KCl,

and 2 mM CaCl2) and then resuspended in the same buffer at

3.56105 per 500 mL. The cells were stimulated with the anti-

chicken IgM antibody or treated with ZnPy, ZnCl2, or Py at 37uC
for 10 min or 30 min. In some experiments, the cells were

preincubated with LY294002 as the PI3K inhibitor or U0126 as

the MEK1/2 inhibitor at 37uC for 30 min before the treatment.

The cells were collected and washed once with 0.5% BSA-HBSS

and then lysed with a cell lysis buffer (50 mM Tris-HCl, pH 7.4,

150 mM NaCl, 1 mM EDTA, 1% Triton-X100, 0.1% SDS,

10 mM NaF, and 1 mM NaVO3) on ice for 15 min. Insoluble

materials were removed by centrifugation, and protein level was

measured by Bradford assay using BSA as the standard.

Western blot analysis
Whole-cell lysate (30 mg protein) was resolved on 10% SDS-

PAGE gels and separated proteins were transferred to nitrocellu-

lose membranes. The membranes were blocked with 5% (w/v)

nonfat skim milk in TBST (10 mM Tris-HCl, pH 7.5, 150 mM

NaCl, 0.1% Tween 20) and immunoblotted with anti-phospho-

Ser473 Akt (pAkt), anti-Akt (Akt), anti-phospho-Thr202/Tyr204

p44/42 MAPK (pErk), anti-MAPK (Erk), or anti-HA (HA)

antibodies for overnight at 4uC in 5% BSA-TBST. After

incubation, the membranes were washed three times with TBST

and incubated for 1 h at room temperature with horseradish-

peroxidase-conjugated secondary antibodies. The immunoreactive

bands were visualized using Immobilon Western Chemilumines-

cent HRP substrates (Millipore, Billerica, MA, USA) and

membranes were scanned using the Chemi-Doc XRS system

(Bio-Rad, Hercules, CA, USA).

Measurement of PTPase activity
Cells were resuspended in 2 ml of cold homogenizing buffer

(0.25 M sucrose, 20 mM HEPES, and 1 mM EDTA) and

homogenized with 20 strokes of a Dounce homogenizer. To

remove the nucleus, the homogenate was centrifuged at 2,200 rpm

for 10 min at 4uC. The post-nuclear supernatant was centrifuged

at 12,000 rpm for 60 min at 4uC. The pellet containing

cytoplasmic and organelle membranes, was lysed in PTP lysis

buffer (50 mM Bis-Tris, 2 mM EDTA, pH 6.3 with HCl, 5 mM

DTT, 20% glycerol, and 0.1% Triton X-100). Insoluble materials

were removed by centrifugation (14,000 rpm for 5 min at 4uC),

and protein level was measured by Bradford assay using BSA as

the standard. 10 mg of lysate was preincubated at room

temperature for 10 min. After the preincubation, 100 mL of

substrate solution (10 mg/mL p-nitrophenyl phosphate in assay

buffer: 50 mM Bis-Tris, 2 mM EDTA, pH 6.3 with HCl, and

5 mM DTT) was added to the lysate, which was further incubated

at room temperature for 15 min. The level of p-nitrophenol

produced was measured at an absorbance of 405 nm. PTPase

activity was measured in terms of fold changes with respect to the

activity of untreated WT cells as the control.
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Zinc-specific fluorescence staining and measurement of
intracellular free zinc

Intracellular zinc staining was performed as described previ-

ously [29]. DT40 cells at 70% confluence were starved in

RPMI1640 supplemented with 0.5% BSA and 50 mM 2ME at

37uC for 5 h. The cells were treated with 5 mM Newport Green

PDX or FluoZin-3 for 30 min on coverslips coated with 0.05%

poly-L lysine before treating them with ZnPy or the anti-IgM (M4)

antibody for 10 min. To stain the Golgi, we used BODIPY TR

ceramide (red fluorescence), and performed staining with Newport

Green PDX or FluoZin-3. The cells were visualized by confocal

fluorescence microscopy (Carl Zeiss LSM510, Germany). In

addition, 56105 DT40 cells were subjected to the experiment of

intracellular zinc measurement using Newport Green PDX. The

concentration of intracellular free zinc was calculated from the

mean fluorescence with the formula [Zn] = KD6[(F2Fmin)/

(Fmax2F)]. Fmin was determined by the addition of 10 mM TPEN,

and Fmax was determined by the addition of 75 mM ZnPy [33,34].

For a calibration of these zinc measurements, we evaluated the

amount of Newport Green PDX integrated into cells [33]. After

treatment of Newport Green PDX (5 mM for 30 min), washed out

with 0.5% BSA/HBSS, and then lysed with HBSS buffer

containing 50 mM digitonin, and added excessive amounts of

ZnSO4 (20 mM). The concentration of Newport Green PDX in

DT40 cells was calculated using the calibration curve. Values are

expressed as the mean 6 standard deviations. Experiments and

measurements were performed in triplicate independently.

Statistical analyses
For multiple comparisons, one-way analysis of variance was

performed followed by Bonferroni’s Multiple Comparison Test

using GraphPad Prism 5 software. Differences were considered

significant at P,0.01.

Results

Activation of Akt and Erk phosphorylation by BCR
activation requires intracellular zinc

We first examined the impact of intracellular zinc level on the

antigen-stimulated BCR signaling pathway. Western blot analysis

was performed using lysates prepared from cells treated with or

without the intracellular zinc chelator TPEN, using specific

antibodies to total or phosphoforms of Akt and Erk (Figure 1A).

We observed that the activation of BCR by the anti-IgM antibody

induced the phosphorylation of Akt and Erk (Figure 1A, lane 2).

Surprisingly, we found that the phosphorylation of Akt and Erk

was not complete following the stimulation with the anti-IgM

antibody when the cells were pretreated with 10 mM TPEN for

1 h (Figure 1A, lane 3). These suppressions were restored by the

addition of 10–20 mM zinc pyrithione (ZnPy), but not recovered

by calcium salt of ionomycin (CaI) (Figure 1A, lanes 4, 5 and 6).

To assess whether zinc is involved in the phosphorylation of Akt

and Erk, DT40 cells were treated with zinc chloride (ZnCl2) and

ZnPy at different concentrations and with the anti-IgM antibody.

Figure 1B shows that the phosphorylation levels of Akt and Erk

were significantly increased by 5–10 mM ZnPy as well as by the

anti-IgM antibody (Figure 1B, lanes 2, 5, and 6). On the other

hand, ZnCl2 and pyrithione (Py), which does not contain zinc, did

not induce the phosphorylation of both proteins (Figure 1B, lanes

3, 4, and 7). We also determined whether ZnPy induces the

phosphorylation of Akt and Erk in a dose-dependent manner.

ZnPy enhanced the phosphorylation of both Akt and Erk in a

dose-dependent manner, and Erk phosphorylation level was

decreased by 25 mM ZnPy treatment (data not shown).

We next examined the time-dependence of the phosphorylation

of Akt and Erk induced by ZnPy. The cells were treated with

10 mM ZnPy for the indicated durations to determine the optimal

treatment time (Figure 1C). Akt phosphorylation by ZnPy was

most enhanced by treatment for 10–15 min, but the enhancement

was diminished at 60 min of treatment (Figure 1C, first panel;

lanes 2–6). In contrast, Erk phosphorylation by ZnPy remained

until 60 min. (Figure 1C, third panel; lanes 2–6).

To further investigate the phosphorylation of Akt and Erk by

ZnPy treatment in DT40 cells, the cells were pretreated with

LY294002 (PI3K inhibitor) or U0126 (MEK1/2 inhibitor) before

treatment with the anti-IgM antibody and ZnPy. Figure 1D shows

that the phosphorylation levels of Akt and Erk decreased in the

presence of their respective inhibitors (Figure 1D, lanes 3 and 7

indicate LY294002, and lanes 4 and 8 indicate U0126).

Thus, the enhancement of Akt and Erk phosphorylation

requires intracellular zinc and ZnPy, a zinc ionophore, which

can solely activate the BCR signaling pathway.

The phosphorylation of Akt and Erk is suppressed in the
chicken Zip9-knockout DT40 cells

We examined whether the fluctuations of the levels of Akt and

Erk phosphorylation are caused by the changes in intracellular

zinc level, which was regulated by the zinc transporters. To study

this mechanism, we used the two zinc-transporter-knockout cells,

chicken ZnT5/6/7 triple knockout (TKO) DT40 cells, and

chicken Zip9 gene knockout (cZip9KO) DT40 cells [26–30].

We first examined the levels of Akt and Erk phosphorylation in

these exponentially growing knockout DT40 cells in the presence

of serum. The levels of Akt and Erk phosphorylation were identical

in WT and TKO cells (Figure 2A, lanes 1 and 2). In contrast,

surprisingly, the levels of Akt and Erk phosphorylation of

cZip9KO cells significantly decreased (Figure 2A, lane 3). Under

the same experimental conditions, we analyzed the activity of total

protein tyrosine phosphatase (PTPase) using p-nitrophenol as a

substrate. Figure 2B shows that the activity of PTPase decreased in

TKO cells (gray column) as compared with that in wild-type (WT)

cells (hatched column). On the other hand, the activity in

cZip9KO cells moderately increased (white column).

To further investigate the phosphorylation levels of both

proteins in TKO and cZip9KO cells, we examined whether ZnPy

enhances the phosphorylation of Akt and Erk under serum-starved

conditions. Figure 2C shows that the phosphorylation levels of Akt

and Erk in WT and TKO cells were increased by the treatment

with ZnPy (lanes 2 and 4). In TKO cells, the level of Erk

phosphorylation did not decrease even under the serum-starved

conditions (Figure 2C, third panel; lane 3). On the other hand,

ZnPy did not increase the phosphorylation levels of Akt and Erk in

cZip9KO cells (Figure 2C, lane 6). To confirm this observation,

we also analyzed the activity of PTPase under the same

experimental conditions. Figure 2D shows that the activity of

total PTPase was decreased by the treatment with ZnPy in WT

cells (hatched column 2). Total PTPase activity in ZnPy-treated

TKO cells did not decrease significantly compared with that in

non-ZnPy-treated TKO cells (gray columns 3 and 4). The activity

of PTPase in non-ZnPy-treated TKO cells was slightly lower than

that in WT cells (hatched column 1 and gray column 3). In

contrast, the total PTPase activity in cZip9KO cells markedly

increased (Figure 2C, white columns 5 and 6). These findings

suggest that the regulation of intracellular zinc level by cZip9 in

DT40 cells is required to increase the phosphorylation levels of Akt

and Erk, at least in part, by inhibiting PTPase activity.
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Overexpression of human ZIP9 in cZip9KO cells restores
the enhancement of Akt and Erk phosphorylation in
response to zinc treatment and antigen-stimulated BCR

We demonstrated that cZip9 in DT40 cells function in the

regulation of Akt and Erk phosphorylation. To clarify the effects of

ZIP9 on both kinases, we overexpressed human Zip9 tagged with

the hemagglutinin epitope (hZip9-HA) in cZip9KO cells and used

the cells in the following experiments.

We re-estimated the phosphorylation levels of Akt and Erk by

overexpressing hZip9-HA in exponentially growing cZip9KO cells

in the presence of serum. As shown in Figure 3A, the

overexpression of hZip9-HA in cZip9KO cells restored the

phosphorylation of both proteins (Figure 3A, lane 3). In addition,

the total PTPase activity in these cells was similar to that in WT

cells under the same experimental conditions (data not shown).

Under the serum-starved conditions, where we more closely

examined the effects of ZnPy with time, we found that the

phosphorylation of Akt was not enhanced in cZip9KO cells with

ZnPy treatment for 10 and 30 min (Figure 3B, first panel; lanes 5

and 6) compared with that in WT cells (Figure 3B, first panel;

lanes 2 and 3). Although the phosphorylation of Erk in cZip9KO

cells was not enhanced after 10 min of ZnPy treatment, the

phosphoform of Erk was detected following treatment with ZnPy

for 30 min (Figure 3A, third panel; lanes 5 and 6). In contrast,

hZip9-HA-overexpressing cZip9KO cells showed higher levels of

the phosphoforms of both proteins than non-hZip9-HA-overex-

pressing cZip9KO cells (Figure 3B, lanes 8 and 9). ZnPy did not

alter the protein level of hZip9-HA (Figure 3B, fifth panel; lanes 7–

9). Under the same experimental conditions, we observed that the

treatment with ZnPy inhibited the activity of total PTPase in the

hZip9-HA-overexpressing cZip9KO cells compared with the non-

hZip9-HA-overexpressing cZip9KO cells (Figure 3C, columns 5

and 8).

Figure 1A shows that the intracellular zinc chelation inhibits the

phosphorylation of Akt and Erk in response BCR activation. Thus,

we examined the effects of ZIP9 in response to anti-IgM antibody-

stimulated BCR. Figure 3D shows that the phosphorylation levels

of Akt and Erk did not increase in cZip9KO cells following the

anti-IgM antibody treatment, in comparison with those in WT

cells (Figure 3D, lanes 1–4). In contrast, the inhibitory effect on the

phosphoforms of both kinases in cZip9KO cells was reversed by

the overexpression of hZip9-HA (Figure 3D, first and third panels;

lanes 4 and 6). The protein level of hZip9-HA was constant

(Figure 3D, fifth panel; lanes 5 and 6).

Our experimental data indicate that ZIP9 plays an important

role in the enhancement of Akt and Erk phosphorylation in

response to the treatment with ZnPy and the anti-IgM antibody-

activated BCR. In addition, the activation by the anti-IgM

antibody significantly decreased the levels of phosphoforms of both

proteins in cZip9KO cells. These observations coincide with the

attenuation of Akt and Erk phosphorylation in TPEN-treated WT

cells (Figure 1A).

Figure 1. Effect of intracellular zinc on enhancement of Akt and Erk phosphorylation. (A) Enhancement of Akt and Erk phosphorylation
required intracellular zinc. Serum-starved cells were treated with (+) or without (2) 10 mM TPEN for 1 h, before treatment with 0.5 mg/mL anti-IgM
antibody (lane 2 and 3), and then treated with 10 and 20 mM ZnPy (lane 4 and 5) or 10 mM CaI (lane 6). (B) The treatment with ZnPy activated the
phosphorylation of Akt and Erk. The abbreviation, ‘‘unt.’’ was defined the untreated sample. Serum-starved cells were treated with 0.5 mg/mL anti-
IgM antibody (lane 2), 5 and 10 mM ZnCl2 (lanes 3 and 4), 5 and 10 mM ZnPy (lanes 5 and 6), and 20 mM pyrithione (lane 7) for 10 min. (C) Akt and Erk
phosphorylation by ZnPy was enhanced in a time-dependent manner. The abbreviation, ‘‘unt.’’ was defined the untreated sample. Serum-starved
cells were treated with 10 mM ZnPy for 5 min (lane 2), 10 min (lane 3), 15 min (lane 4), 30 min (lane 5), and 60 min (lane 6). (D) The inhibitors of PI3K
and MEK1/2 inhibited the phosphorylation of Akt and Erk. Serum-starved cells were pretreated with (+) or without (2) LY294002 or U0126, before
treatments with 0.5 mg/mL anti-IgM antibody (lanes 1–4) and 10 mM ZnPy (lanes 5–8). All data are representative of three independent experiments.
doi:10.1371/journal.pone.0058022.g001
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ZIP9 increases intracellular zinc level in response to BCR
activation

A previous study demonstrated the presence of intracellular zinc

around perinuclear regions and zincosome-like vesicles in

cZip9KO cells using the zinc fluorescent probe zinquin [30]. It

has been reported that zinquin recognizes mainly the zinc in

subcellular compartments [35]. Hence, we performed the detec-

tion of intracellular zinc with confocal fluorescence microscope by

using two types of zinc-specific fluorescent probes, Newport Green

PDX (KD = 30 mM) and FluoZin-3 (KD = 15 nM) that have

different distribution in the cells. As shown in Figure 4A, the

fluorescence intensity of Newport Green PDX in WT cells treated

with ZnPy was higher than that in untreated WT cells (Figure 4A,

panels a and b). In contrast, we observed that the level of cytosolic

zinc was not increased in cZip9KO cells by the ZnPy treatments

(Figure 4A, panels c and d). On the other hand, the overexpression

of hZIP9-HA restored the intracellular zinc contents in cZip9KO

cells as well as WT cells, when the cells were treated with ZnPy

(Figure 4A, panels e and f). In the staining with FluoZin-3,

fluorescence intensity was increased by ZnPy treatment in WT

and hZip9-HA-overexpressing cZip9KO cells as well as in

Newport Green PDX staining. However, FluoZin-3 fluorescence

of cZip9KO cells was localized at the Golgi, even if it was treated

with ZnPy (Figure 4A, panels i and j).

When DT40 cells were treated with anti-IgM antibody,

cytosolic zinc was also increased in WT cells (Figure 4B, panels

a and d: Untreated WT cells = 2.0560.17 mM and anti-IgM

antibody stimulated WT cells = 2.8760.30 mM). Whereas, intra-

cellular zinc level in cZip9KO cells was lower than that in WT

cells even if it was stimulated with anti-IgM antibody (Figure 4B,

panels b and e: Untreated cZip9KO cells = 0.5860.09 mM and

anti-IgM antibody stimulated cZip9KO cells = 0.8760.13 mM). In

addition, hZip9-HA-overexpressing cZip9KO cells restore this

decrease of cytosolic zinc, as well as treatment with ZnPy

(Figure 4B, panels c and f: Untreated hZip9-HA-overexpressing

cZip9KO cells = 1.8860.18 mM and anti-IgM antibody stimulat-

ed hZip9-HA-overexpressing cZip9KO cells = 2.7160.14 mM).

We also observed that anti-IgM antibody stimulation for 5 min

induced increase of intracellular zinc level in 56105 DT40 cells

(Untreated cells = 2.0560.17 mM, DT40 cells stimulated with

anti-IgM antibody for 5 min = 2.6160.22 mM, and stimulated for

10 min = 2.8760.30 mM). These results suggested that intracellu-

lar zinc elevation by anti-IgM antibody appear prior to Akt and

Erk phosphorylation, and there are sufficient amount of intracel-

lular zinc for the activation of Akt and Erk after 5 min anti-IgM

antibody stimuli. In addition, we demonstrated that more than

96.6% of Newport Green PDX had been incorporated in 56105

DT40 cells (WTcells = 4.8960.80 mM, cZip9KO

Figure 2. Akt and Erk phosphorylation in zinc-transporter-knockout DT40 cells. (A) Suppression of Akt and Erk phosphorylation in cZip9KO
cells. Western blot analysis was performed using exponentially growing WT (lane 1), TKO (lane 2), and cZip9KO (lane 3) cells. (B) Analysis of total
PTPase activity. WT (column 1), TKO (column 2), and cZip9KO (column 3) cells were subjected to PTPase assay. Values are expressed as the mean 6
standard deviations. Significant difference at the level of *P,0.01 against the activity of WT cells (column 1). (C) ZnPy failed to induce Akt and Erk
phosphorylation in cZip9KO cells. Serum-starved WT (lanes 1 and 2), TKO (lanes 3 and 4), and cZip9KO (lanes 5 and 6) cells were treated with (+) or
without (2) 10 mM ZnPy for 10 min. (D) Analysis of PTPase activity in serum-starved DT40 cells. After treatment of serum-starved WT (columns 1 and
2), TKO (columns 3 and 4), and cZip9KO (columns 4 and 5) cells treated with (columns 2, 4 and 6) or without (columns 1, 3 and 5) 10 mM ZnPy for
10 min, and subjected to PTPase assay. Values are expressed as the mean 6 standard deviations. Asterisk represents significant difference at the level
of *P,0.01 for the columns linked by a line. All data are representative of three independent experiments.
doi:10.1371/journal.pone.0058022.g002
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cells = 4.8360.43 mM, and hZip9-HA-overexpressing cZip9KO

cells = 4.9060.46 mM).

Considering that ZIP9 is the Golgi-resident protein, these

findings suggest that the increase in cytosolic zinc level is caused by

zinc release from an intracellular store induced by ZIP9 through

BCR activation. This observation is in agreement with the levels of

Akt and Erk phosphorylation and the inhibition of total PTPase

activity (Figure 3).

Discussion

The essential trace element zinc is an important metal for all

living organisms. Zinc is not only a nutrition factor, but it also

functions as a second messenger [11]. Zinc homeostasis is tightly

mainly regulated by two-types of zinc transporters, such as those

belonging to the ZnT family and ZIP family. The latter zinc

transporter family consists of 14 transporter proteins that are

classified into four subfamilies (I, II, LIV-1, and gufA). Although

the roles of ZIP family proteins have been extensively investigated

and thus their importance has been elucidated [13,17,36],

information available has been limited to that on the LIV-I and

ZIP II subfamilies [25]. The cellular functions of ZIP9 belonging

to the subfamily I have not been fully understood.

Intracellular zinc affects the immune functions of T-cells and

lymphocytes including the activation of TCR signaling and

cytokine production [8]. It has been reported that the increase

in intracellular zinc level not only induces the activation of LCK

and PKC [37], but also enhances the tyrosine phosphorylation of

ZAP70, leading to the activation of the TCR signaling pathway

[10]. The BCR signaling pathway is critical for many cellular

events, such as cell growth, cell proliferation, and apoptosis [22–

24]. BCR activation transduces the signal to several cascades, such

as the PI3K-Akt, PLCgamma 2-PKC, and Ras-Raf-Erk cascades

[24,38,39]. These cascades are important for the differentiation to

antibody-producing cells and memory B cells. However, the effect

of the intracellular zinc on the BCR signaling pathway remains

unclear.

In this study, we examined the effect of intracellular zinc on the

BCR signaling pathway activated by ZIP9 using the DT40 chicken

B lymphocyte cell line as a model. Treating the cells with TPEN

Figure 3. Effect of overexpression of human Zip9 on phosphorylation levels of Akt and Erk in response to zinc treatment and anti-
IgM antibody stimulation. (A) Overexpression of hZip9 restored the phosphorylation of Akt and Erk. Western blot analysis was performed using
exponentially growing WT (lane 1), cZip9KO (lane 2), and cZip9KO+hZip9HA (lane 3) cells. (B) Overexpression of hZip9 in cZip9KO cells by ZyPy
treatment stimulated the phosphorylation of both proteins. Serum-starved WT (lanes 1–3), cZip9KO (lanes 4–6), and cZip9KO+hZip9HA (lanes 7–9)
cells were treated with 10 mM ZnPy for 10 min (lanes 2, 5 and 8) and 30 min (lanes 3, 6 and 9). The abbreviation, ‘‘unt.’’ was defined the untreated
sample. (C) Analysis of total PTPase activity. Serum-starved WT (lanes 1–3), cZip9KO (lanes 4–6), and cZip9KO+hZip9HA (lanes 7–9) cells were treated
with 10 mM ZnPy for 10 min (lanes 2, 5 and 8) and 30 min (lanes 3, 6 and 9). Values are expressed as the mean 6 standard deviations. Significant
difference at the level of *P,0.01 for the columns linked by a line. (D) Overexpression of hZip9 restored the response to anti-IgM antibody-stimulated
BCR activation. Serum-starved WT (lanes 1 and 2), cZip9KO (lanes 3 and 4), and hZip9-HA-overexpressing cZip9KO (lanes 5 and 6) cells were treated
with 0.5 mg/mL anti-IgM antibody for 10 min. All data are representative of three independent experiments.
doi:10.1371/journal.pone.0058022.g003
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suppressed the Akt and Erk phosphorylation enhanced by BCR

activation by the anti-IgM antibody. This suppression was

reversed by supplementation of exogenous zinc into the cells

(Figure 1A, lanes 4 and 5). In addition, the treatment of ZnPy

without the anti-IgM antibody induced Akt and Erk phosphory-

lation in time- and concentration-dependent manners. Further-

more, the phosphorylation of both proteins was inhibited by the

specific inhibitors of PI3K and MEK1/2. These observations

indicate that intracellular zinc is necessary for the activation of the

BCR signaling pathway. However, it has not been clarified

whether zinc transporters are involved in the regulation of this

signaling pathway.

ZIP9 has been suggested to function in the release of zinc from

the Golgi to the cytosol. We investigated direct correlation

between the effect of ZIP9 and the BCR signaling pathway.

Interestingly, the phosphorylation of both Akt and Erk was

suppressed by the disruption of cZip9 in exponentially growing

DT40 cells. This suppression was also observed in the serum-

starved cells, even if they were treated with ZnPy or the anti-IgM

antibody (Figures 2 and 3).

In TKO cells, the phosphorylation levels of Akt and Erk were

similar to those in WT cells under the exponential growth

condition (Figure 2A, lane 2). This finding raises the possibility

that the accumulation of zinc in the Golgi is due to a ZnT5/6/7-

independent mechanism. In contrast, the increase in the levels of

these phosphoforms of proteins may be the result of inhibition of

PTPase by cytosolic zinc, which is not incorporated into the Golgi.

Further testing of these hypotheses is needed to clarify whether

zinc transport into Golgi via ZnT5/6/7 is required for the function

of ZIP9. In addition, the level of Erk phosphorylation did not

decrease, even under the serum-starved condition. This finding

seems to support the idea of sustained inhibition of PTPase by

cytosolic zinc against the Erk cascade. The phosphorylation levels

of Akt and Erk increased in the TKO cells as well as in WT cells

under the ZnPy treatment conditions (Figure 2C). This finding

suggests that ZnPy is incorporated in the Golgi [29] and then

release from the Golgi via ZIP9, indicating that zinc trafficking

mediated by cZIP9 is involved in the activation of the BCR

signaling pathway.

Furthermore, we explored whether this activation is dependent

on ZIP9, of which sequence is 89% identical to the cZIP9 protein

[30]. Therefore, hZIP9-HA was overexpressed in cZip9KO cells

to determine the effects of ZIP9. We observed that hZIP9-HA

overexpression restored the enhancement of Akt and Erk

phosphorylation in cells treated with ZnPy and the BCR signaling

pathway treated with the anti-IgM antibody (Figures 3B and 3D).

We further explored whether the phosphorylation of Akt and

Erk is regulated by PTPase. Our findings indicate that PTPase

activity was significantly higher in cZip9KO cells than in WT cells

(Figures 2D and 3C). In contrast, PTPase activity was decreased

by overexpression of hZip9-HA in ZnPy-treated cZip9KO cells

(Figure 3C). cZip9KO cells retained high activity of PTPase, even

if cells were treated with ZnPy (Figure 3C, white columns 4, 5 and

6). These data indicate ZIP9 may inhibit PTPase activity.

We speculate two alternative explanations for the mechanism of

PTPase inhibition by ZIP9. First, ZIP9 might elevate local zinc

concentration on the Golgi where PTPase is in close proximity to

ZIP9. Hence, liberated zinc from Golgi by ZIP9 could bind to the

cysteine residue in the active site of PTPase and subsequently

reduce its activity [40,41]. Second, the released zinc could

modulate protein stability. It has been reported that zinc inhibits

PTEN activity in human airway epithelial cells [42] by zinc-

induced its ubiquitin-dependent degradation [43]. As such, free

zinc generated by ZIP9 could be involved in the proteolysis of

PTPase through the ubiquitin-proteasome system.

Our findings suggest that the activation of the BCR signaling

pathway following the treatment with ZnPy and the anti-IgM

antibody is indeed the function of ZIP9. However, a question

remains whether BCR activation increases the zinc influx through

ZIP9 into the cytosol. It has been reported that the intracellular

zinc level is altered by changes in the protein expression level of

the zinc transporter [44] and the release of zinc from the ER in

response to extracellular stimulation [11,13]. We observed a

significant fluorescence intensity of intracellular zinc in both

Figure 4. ZIP9 is an essential factor for regulating the intracellular zinc level in DT40 cells. (A) The intracellular zinc release depends on
the expression of ZIP9. Serum-starved WT (panels a, b, g and h), cZip9KO (panels c, d, i and j), and hZip9-HA-overexpressing cZip9KO (panels e, f, k
and l) DT40 cells were pretreated with 5 mM Newport Green PDX (magnification; 640), FluoZin-3 (magnification; 660) and BODIPY TR-ceramide for
30 min before treatment with 10 mM ZnPy (WT: panels b and h, cZip9KO: panels d and j, hZip9-HA-overexpressing cZip9KO: panels f and l) for 10 min.
(B) Serum-starved WT (panels a and d), cZip9KO (panels b and e), and hZip9-HA-overexpressing cZip9KO (panels c and f) DT40 cells were pretreated
with 5 mM Newport Green PDX (magnification; 640) and BODIPY TR-ceramide for 30 min before treatment with 0.5 mg/mL anti-IgM antibody (WT:
panel d, cZip9KO: panel e, hZip9-HA-overexpressing cZip9KO: panel f) for 10 min. The abbreviation, ‘‘unt.’’ was defined the untreated sample, and
white bars were defined as 10 mm length.
doi:10.1371/journal.pone.0058022.g004

Figure 5. Proposed action sites of intracellular zinc release by
ZIP9 in DT40 cells for activation of B cell receptor signaling. It is
the proposed mechanism of Zn-induced PTPase inhibition by ZIP9,
which leads to the activation of B cell receptor signaling in DT40 cells.
Intracellular zinc is incorporated into the Golgi by ZnT5/6/7. Zinc is
released as induced by ZIP9 into the cytosol from the Golgi, which in
turn inhibits PTPase activity and induces the phosphorylation of Akt
and ERK probably indirectly by regulating upstream components of the
signal transduction.
doi:10.1371/journal.pone.0058022.g005
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exponentially growing WT and hZip9-HA-overexpressing

cZip9KO cells (data not shown). In addition, we revealed the

intracellular zinc distribution in DT40 cells that were serum-

starved and treated with ZnPy or the anti-IgM antibody by using

Newport Green PDX and FluoZin-3. These results showed that

zinc is accumulated and retained into the Golgi in cZip9KO cells

(Figure 4). We analyzed that Zip9 mRNA was ubiquitously

expressed in the mouse tissues and several cell lines, such as HeLa,

MCF7, and NIH3T3 cells (data not shown). One of them, we

confirmed that treatment of ZnPy increased florescence intensity

of zinc in the Golgi of Zip9 siRNA-treated HeLa cells

(unpublished data). This supporting observation might indicate

that ZIP9 release zinc from the Golgi to the cytosol in mammalian

cells as well as DT40 cells.

It is known that zinc waves occur together with calcium waves

[11,13]. Antigen-stimulated BCR has been shown to trigger

calcium release via the inositol 1,4,5-triphosphate receptor (IP3R)

from the ER and also to incorporate extracellular calcium via the

calcium-release-activated calcium channel (CRAC/ORAI) that is

coupled with the stromal interaction molecule (STIM) in DT40

cells [31,45,46]. From this point of view, the function of ZIP9 may

require intracellular calcium. The relationship between calcium

and the ZIP9 function remains unclear. However, importantly,

our data suggest that the increase in intracellular zinc level

through ZIP9 is regulated by BCR activation without exogenous

zinc, and coincides with the enhancement of Akt and Erk

phosphorylation.

It has been reported that ZIP7 and ZIP13 that are located in the

ER, the Golgi, or both increase the zinc influx into the cytosol in

response to EGF/IGF and TGFß/BMP stimulations, respectively

[12,36,47–49]. The function of ZIP7 has been also reported to be

necessary to phosphorylate ZIP7 by CK2 in the human breast

cancer cell line [13]. On the other hand, the regulation of zinc

influx through ZIP13 by TGFß/BMP operates in the nuclear/

cytosol shuttle of Smad2/3, which supply zinc into the mad-

homology domain on Smad2/3 in primary dermal fibroblasts of

mice [49]. More recently, a homodimer complex of ZIP13 is

fundamental to the zinc influx [50]. Our findings reveal that the

zinc release function of ZIP9 seems to be similar to that of ZIP7

and ZIP13. However, ZIP7 and ZIP13 are members of the LIV-1

subfamily and these two transporters are similar. Moreover, ZIP9

may have retained important function in chicken cells because the

ZIP7 protein is not expressed in chicken [25]. Thus, the functional

mechanism in mammalian or human cells, which is post-

translational modification, or the higher-order structure of ZIP9

needs to be elucidated in further investigation.

Our findings indicate that the function of ZIP9 affects the level

of cytosolic zinc, resulting in the activation of signaling kinase via

PTPase inhibition in DT40 cells (Figure 5). As we have shown in

this study, this is the first evidence for the function of the subfamily

I of the ZIP family that could explain the relationship between the

increase of intracellular zinc level by ZIP9 and BCR activation.

These observations provide new mechanistic insights into signaling

molecules and B-cell fate underlying the regulation of intracellular

zinc level by ZIP9 in the response to antigen-stimulated BCR.
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