研究紹介

分泌型免疫グロブリンAが認識する 腸内細菌種の同定

鶴 田 剛 司 (応用動物科学コース)

Identification of commensal bacteria coated with secretory immunoglobulin A

Takeshi Tsuruta

(Course of Applied Animal Science)

A part of commensal intestinal bacteria in mammal including human, mouse, bovine and pig are coated with secretory immunoglobulin A (S-IgA). It has been suggested from our previous research that S-IgA coating of commensal bacteria occur in bacterial group specific manner in human and mouse intestine. Thus, identification of S-IgA-coated bacterial genera/species would certainly help to elucidate the interaction between S-IgA and commensal intestinal bacteria. However, the method to identify the genera/species of S-IgA-coated bacteria has not been established. To identify S-IgA-coated bacterial composition, we developed the method combining immunohistochemical detection of S-IgA and subsequent 16S rRNA targeted fluorescence in situ hybridization (FISH) analysis. Furthermore, human and mice fecal S-IgA coated bacterial composition was evaluated by this newly developed method with ten frequently-used FISH probes. Fecal S-IgA-coated bacterial composition was successfully analyzed with this method and this analysis suggested that Enterobacteriaceae was preferably coated with S-IgA whereas Bacteroides/Prevotella and Lactobacillus/ Enterococcus groups seemed to be poorly coated with S-IgA. This method will be applied to confirm whether interaction between S-IgA and commensal intestinal bacteria relate to symptom of inflammatory bowel diseases.

Key words : Secretory immunoglobulin A, commensal intestinal bacteria, fluorescence in situ hybridization

緒言

分泌型免疫グロブリン A(S-IgA)は哺乳動物の腸管 管腔内に分泌される主要な免疫グロブリンである. S-IgA の主な機能として病原微生物に対する感染防御 機能が広く知られているが^{1.2},哺乳動物の腸管内に500 種100兆個存在する腸内細菌に対して S-IgA がどのよう な影響を及ぼしているかは未解明な部分が多い^{3.4}.腸管 内には病原細菌の排除機能を持つ S-IgA が多量に(腸内 細菌数の約10⁷倍)腸管内に分泌されているにもかかわら ず,腸内細菌は排除されることなく安定した腸内細菌叢 を形成している.このことから,近年,S-IgA が腸内細 菌に対して排除的機能以外の働きをしている可能性が提 起されている.

S-IgA と腸内細菌の相互作用に関する新たな知見が Waaii らによって報告された。哺乳動物の腸管内におい て一部の腸内細菌は S-IgA が結合した状態で存在して おり5) この現象は全ての消化管部位で起こっているこ とが明らかとなった.しかし, S-IgA が結合している腸 内細菌種は不明であるため, S-IgA の腸内細菌への結合 が細菌種特異的な免疫応答であるか、あるいは非特異的 な免疫応答であるかは明らかではない. その理由として S-IgA が結合している腸内細菌種の検索方法が未だ確 立されていないことが挙げられる. 我々は, S-IgA が結 合している腸内細菌 (S-IgA 被覆菌)を免疫染色で色素 検出し、その後、その細菌種構成を fluorescence in situ hvbridization (FISH 法) で蛍光染色する新規手法を確立 した、本研究では、確立した新規手法を用いてヒトおよ びマウスの糞便中 S-IgA 被覆菌の細菌種構成を検討し た.

材料と方法

ヒトボランティアおよび実験動物

ヒトボランティア5名(齢:25~30歳)を本実験に採 用し、インフォームドコンセントを全ての被験者から得 た.9週齢のC57BL/6マウス(メス, n=5)をマウス ブリーダーAおよびBより購入した。全てのマウスには 固形飼料(CE-2,日本クレア)および飲料水を自由給与 させた、マウスは購入後1週間SPF施設にて馴化した. ヒトおよびマウスより糞便を採取し、30分以内に-80℃ で保存した.

サンプル作製

採取した糞便サンプルを PBS で10倍希釈した後, マイ クロホモジナイザーで5分間ホモジナイズした. 粗雑物 を除去するために糞便懸濁液を遠心分離(100×g, 20 分)した.上清を回収し,遠心分離(9,000×g, 10分) により細菌ペレットを得た.細菌ペレットを PBS1 ml で 再懸濁し,ボルテックスで30秒間洗浄した.遠心分離後 (9,000×g, 10分),上清を除去し,再度洗浄を行った.

その後,細菌ペレットを4%のパラホルムアルデヒド で再懸濁し,4℃で一晩固定した.固定後,遠心分離 (9,000×g,10分)を行い,1mlのPBSで2回洗浄を行 った.洗浄後,ペレットをエタノール-PBS(1:1, v/v) で懸濁し,解析まで-20℃で保存した.

Received October 1, 2015

S-IgA 被覆菌の免疫染色

上記サンプル溶液を適宜希釈し、シランコート10-well スライドグラス(松浪硝子工業)の各ウェルに20 μ lの希 釈液を加えた.ドラフトチャンバーで乾燥させた後に、 PBSで洗浄した.洗浄後、1 % BSA-PBSで希釈したウ サギ抗 IgA 抗体(1:100; Rockland 社)およびアイソ タイプコントロール(1:100; Dako 社)を30 μ lずつ 各ウェルに加えた.室温で1時間インキュベーションし た後、PBSで5分間、3回洗浄を行った.洗浄後、1 % BSA-PBSで希釈した HRP ラベル抗ウサギ IgG 抗体 (1:100; Dako 社)を各ウェルに加えた.室温で1時 間インキュベーションした後、PBSで5分間、3回洗浄 を行った.その後、DAB タブレット(和光純薬)および 0.0001% H₂O₂(wt/vol)を添加した 0.01 M Tris buffer (pH 7.2)中で5分間インキュベートした.インキュベー ト後、蒸留水に浸し、DAB 発色反応を止めた.

FISH

FISH 法は Harmsen ら (2002) の報告に基づいて行っ た. 免疫染色処理後のスライドグラスを99.5%エタノー ル中で脱水し、空気乾燥させた. 16S rRNA をターゲッ トにしたオリゴヌクレオチドユニバーサルプローブ (EUB 338, Cy3 ラベル)および10種類の細菌群特異的 な Cv3 ラベルオリゴヌクレオチドプローブを FISH 解 析に使用した⁶⁾. オリゴヌクレオチドプローブ NON 338 は陰性コントロール用プローブとして使用した. プロー ブの配列,標的細菌群およびハイブリダイゼーションコ ンディションは Table 1 に示した. Cv3 ラベルオリゴヌ クレオチドプローブ (5 ng/µl) を添加したハイブリダイ ゼーションバッファー [750 mM NaCl (和光純薬), 100 mM Tris-HCl (Sigma 社), 5 mM EDTA (ナカライテスク), 0.01% BSA (wt/vol, ナカライテスク), 10%硫酸デキス トラン (wt/vol, Sigma 社)] を10 µl ずつ各ウェルに加え た. その後, ハイブリダイゼーションバッファーをウェ ル全体に行き渡らせるためにカバーガラスをかぶせた. スライドガラスを湿潤箱に静置し、インキュベーター内 で50℃でインキュベーションした後、スライドガラスを 洗浄バッファー [180 mM NaCl, 20 mM Tris-HCl, 5 mM

EDTA, 0.01% Sodium dodecyl sulfate (wt/vol;和光純 薬)]に浸し、45℃で20分間インキュベートした.洗浄 後、Milli-Q水に浸し、空気乾燥させた. DAPI染色後、 蛍光の退色を防ぐため Vectashield (Vector Laboratories 社)を5µlずつ各ウェルに加えた.封入後、スライドガ ラスを蛍光顕微鏡 (IX 81;オリンパス社)で観察した.

全画像の取得は IX 81に付属のデジタルカメラ DP 71 (オリンパス社)で行った.

統計解析

統計解析は統計解析ソフト Statcel 2を用いて行った. それぞれの細菌群の総細菌数, S-IgA 被覆菌数および S-IgA 被覆率(総細菌数に占める S-IgA 被覆菌数の割 合)は平均 ± 標準誤差 (SE)で示した. ヒトおよびマウ スの各データの細菌群間の違いは一元配置分散分析を行 い,有意差が認められた場合について,Bonferroni's multiple comparison testを用いて平均値の差の検定を 行った.有意水準は5%とした (P < 0.05).

結 果

S-IgA 被覆菌の細菌種構成検索

顕微鏡観察および画像取得には実験1と同じデジタル カメラ付属の蛍光顕微鏡を使用した。取得した画像は画 像解析ソフトウェア Metamorph (Molecular Devices 社) を用いて画像解析を行った. S-IgA 被覆菌(DAB 陽性) の解析のために明視野画像を、細菌種構成の検索および 総細菌数の解析のために、同一視野の Cy3 および DAPI シグナルをそれぞれ撮影した. DAB 陽性および Cv3 陽 性の閾値設定はアイソタイプコントロール抗体で免疫染 色したスライドガラスおよび NON 338でハイブリダイ ゼーションを行ったスライドガラスを基準に行った.10 種類の細菌群特異的なプローブで検出した総細菌数 (Cv3 陽性) および S-IgA 被覆菌数 (Cv3 および DAB 陽性)をそれぞれカウントした. 総細菌数の計測は EUB 338および DAPI シグナルを合成した画像を用いて 行った. EUB 338は全ての細菌にハイブリダイズしない 可能性が報告されている7.8).また実験1の観察結果から DAPI が認識していない細菌を EUB 338が認識している というケースが多く見られた. これらのことから EUB 338および DAPI シグナルを合成した画像を総細菌 数の計測に用いた.

マウス

マウス(ブリーダーA)では、総細菌数に有意な差が ないにも関わらず, S-IgA被覆菌数は Enterobacteriaceae において clostridial clusters XIVa・ XIVb, Atopobium cluster, R. Flavifaciens, R. bromii (検出限界以下), Bacteroides/Prevotella および Lactobacillus/Enterococcus groups より有意に多く存在 した (P<0.05) (Fig. 1 a, Table 2). マウス (ブリーダ ーA)のS-IgA被覆率はEnterobacteriaceae (29.45 ± 6.81%) でその他の細菌群よりも有意に高かった(P< 0.05) (Fig. 1 a, Table 2). マウス (ブリーダーB) では 全ての細菌群でマウス (ブリーダーA) よりも高い S-IgA 被覆率を示した. しかし. マウス (ブリーダーB) もマウス(ブリーダーA)と同様に総細菌数に有意な差 がないにも関わらず. S-IgA被覆菌数は Enterobacteriaceae において F. prausnitzii を除いたそ の他の細菌群より有意に多く存在した(P<0.05,

Table 2). また, S-IgA 被覆率も *Enterobacteriaceae* (71.43±6.06%) でその他の細菌群よりも有意に高かっ た (P<0.05, Table 2). その一方で S-IgA にコートさ れにくい細菌群も存在していた.マウス (ブリーダーB) (a)

Middle Right Left

Fig. 1 Typical image of the Enterobacteriaceae and Lactobacillus/Enterococcus groups coated with S-IgA. S-IgA-coated bacteria in mice faeces were hybridized with ENTER1432 (a) and LAB158 (b). Left : bright-field image, Middle : fluorescence image for Cy3 signals. Right : Merged image. Only red signal was extracted from fluorescence image and merged with bright-filed images using Azpainter 2 (free software). Bars represent 5 μm .

Table 1	Oligonucleotide	probes	used	in	this	study

		Sequence (5'-3')		vbridizat	ion	
Probe	Target bacterial groups/species			condition	S	References
			F*	TH**	L***	
EUB 338	Univsal eubacterial probe	GCTGCCTCCCGTAGGAGT	0	50	0	Amann et al. (1990)
NON 338	Negative control	ACTCCTACGGGAGGCAGC	0	50	0	Wallner et al. (1993)
BAC 303	Bacteroides/Prevotella	CCAATGTGGGGGGACCTT	0	45	0	Manz et al. (1996)
EREC 482	Clostridial cluster XIVa and XIVb	GCTTCTTAGTCAGGTACCG	0	50	0	Fraks <i>et al.</i> (1998)
BIF 164	Bifidobacterium genus	CATCCGGCATTACCACCC	0	50	0	Langendijk <i>et al.</i> (1995)
LAB 158	Lactobacillus-Enterococcus	GGTATTAGCAYCTGTTTCCA	20	45	10	Franks et al. (1998)
FPRAU 645	Faecalibacterium prausnitzii (part of cluster IV)	CCTCTGCACTACTCAAGAAAAAC	0	50	0	Suau et al. (2001)
RFLA 729	Ruminococcus flavifaciens	AAAGCCCAGTAAGCCGCC	20	50	15	Harmsen et al. (2002)
RBRO 730	Ruminococus bromii	TAAAGCCCAGYAGGCCGC	20	50	15	Harmsen et al. (2002)
ENTER 1432	Enterobacteriaceae	CTTTTGCAACCCACT	0	50	0	Sghir et al. (2000)
ATO 291	Atopobium cluster	GGTCGGTCTCTCAACCC	0	45	0	Harmsen et al. (2000)
PROP 853	Clostridial cluster IX	ATTGCGTTAACTCCGGCAC	0	50	0	Walker et al. (2005)

*Formamide concentration in the hybridization buffer (%).

**Hybridization temperature (°C).

***Lysozyme treatment (min).

Mouse (Supplier A)				Mouse (Supplier B)			
Probe	Whole* population	S-IgA coated* population	S-IgA coating** ratio (%)	Whole population	S-IgA coated population	S-IgA coating ratio (%)	
EU B338 or DAPI	124.14 ± 5.06	10.66 ± 0.56	8.64 ± 0.56	164.4 ± 36.51	10.09 ± 1.3	6.63 ± 0.66	
	†						
ENTER 1432	$5.52 \pm 0.63 \ cde$	$1.74 \pm 0.54 \ a$	$29.45 \pm 6.81 \ a$	$6.1 \pm 0.46 \ b$	$4.31 \pm 0.36 \ a$	$71.43 \pm 6.06 \ a$	
FPRAU 645	$6.58 \pm 0.78 \ cd$	$0.77\pm0.28~ab$	$11.33 \pm 4.25 \ b$	$9.24 \pm 1.87 \ b$	$3.1 \pm 0.87 \ ab$	$33.28 \pm 5.93 \ b$	
PROP 853	$6.72 \pm 0.76 \ cd$	$0.63 \pm 0.15 \ ab$	$9.44 \pm 2.03 \ b$	$7.6 \pm 1.51 \ b$	$0.77 \pm 0.34 \ c$	$8.86 \pm 3.84 \ bc$	
EREC 482	$19.64 \pm 1.68 \ a$	$0.19 \pm 0.14 \ b$	$1.21 \pm 0.97 \ b$	$29.22 \pm 11.06 \ a$	$1.94 \pm 0.76 \ bc$	$12.59 \pm 5.28 \ bc$	
ATO 291	$8.95 \pm 1.07 \ bc$	$0.29 \pm 0.18 \ b$	$3.21 \pm 2.06 \ b$	$5.95 \pm 0.84 \ b$	$1.31 \pm 0.51 \ bc$	$23.46 \pm 9.22 \ bc$	
BIF 164	$6.29 \pm 0.58 \ cde$	$0.87 \pm 0.2 \ ab$	$13.87 \pm 2.95 \ b$	$6.29 \pm 1.1 \ b$	$1.5 \pm 0.16 \ bc$	25.8 ± 3.14 bc	
RFLA 729	$3.87 \pm 0.4 \ de$	$0.05 \pm 0.05 \ b$	$0.95 \pm 0.95 \ b$	$4.93 \pm 1.02 \ b$	$0.53 \pm 0.25 c$	$12.96 \pm 6.22 \ bc$	
		† †					
RBRO 730	$1.79 \pm 0.48 \ e$	ND b	$0 \pm 0 b$	$5.08 \pm 2.17 \ b$	$0.48 \pm 0.19 \ c$	$21.35 \pm 8.57 \ bc$	
BAC 303	$9.92 \pm 1.07 \ bc$	$0.26 \pm 0.08 \ b$	$2.56 \pm 0.77 \ b$	$7.89 \pm 1.29 \ b$	$0.28 \pm 0.08 \ c$	$3.95 \pm 1.65 c$	
LAB 158	$12.46 \pm 1.31 \ b$	$0.36 \pm 0.19 \ b$	$3.58 \pm 2.11 \ b$	$7.79 \pm 1.53 \ b$	ND c	$0 \pm 0 c$	

Table 2 The whole population, S-IgA coated population and the S-IgA coating ratio in the predominant faecal bacterial groups of mouse

Values are given as mean \pm SE

*Counts 10⁸ cells per gram faeces

**The ratio of S-IgA coated population to whole population

^{\dagger}Values sharing the same letter are not significantly different at P < 0.05.

^{† †}ND, not detected

Table 3		The whole population, S-IgA coated population and					
		the S-IgA coating ratio in the predominant faecal					
	bacterial groups of human						

Human						
Probe	Whole* population	Whole* S-IgA coated* population population				
EU B338 or DAPI	151.68 ± 55.02	10.84 ± 1.23	9.32 ± 1.87			
		Ť				
ENTER 1432	13.82 ± 4.63	$2.79\pm0.68~ab$	22.56 ± 3.25			
FPRAU 645	12.19 ± 4.44	$0.81 \pm 0.31 \ ab$	7.47 ± 1.42			
PROP 853	11.01 ± 1.26	$2.67\pm0.42~ab$	25.04 ± 4.39			
EREC 482	35.92 ± 9.66	$4.68 \pm 1.43 \ a$	18.28 ± 8.35			
ATO 291	41.57 ± 9.76	4.1 ± 1.91 ab	11.44 ± 5.89			
BIF 164	84.88 ± 56.8	$1.94 \pm 0.27 \ ab$	5.8 ± 1.78			
RFLA 729	2.53 ± 1.32	$0.39 \pm 0.34 \ b$	13.33 ± 8.16			
RBRO 730	17.78 ± 16.97	0.39 ± 0.2 b	11.61 ± 8.54			
BAC 303	3.69 ± 1	$0.31 \pm 0.15 \ b$	7.43 ± 3.59			
LAB 158	2.75 ± 0.89	$0.08 \pm 0.08 \ b$	1.43 ± 1.43			

Values are given as mean \pm SE

*Counts 10^8 cells per gram faeces

**The ratio of S-IgA coated population to whole population

 $^{\dagger}\mathrm{Values}$ sharing the same letter are not significantly different at $P\!<\!0.05.$

では総細菌数に有意な差がないにも関わらず, Bacteroides/Prevotellaグループ(3.95±1.65%)および Lactobacillus/Enterococcusグループ(検出限界以下)の S-IgA被覆率はEnterobacteriaceae(71.43±6.06%)お よびF. Prausnitzii(33.28±5.93%)より有意に低い値を 示した(P<0.05)(Fig.1 b, Table 2).マウス(ブリー ダーA)でも同様の傾向が見られ, Bacteroides/ Prevotellaグループ(2.56±0.77%)およびLactobacillus/ Enterococcusグループ(3.58±2.11%)で低いS-IgA被 覆率を示した.

ヒト

S-IgA 被覆率は各細菌群間で有意な差がなかったが (P=0.07),マウス糞便中の結果と同様の傾向がヒトの 糞便中でも見られた. Enterobacteriaceae は高い割合で S-IgA によりコートされており(22.56 ± 3.25 %), Bacteroides/Prevotella グループ(7.43 ± 3.59%) および Lactobacillus/Enterococcus グループ(1.43 ± 1.43%)の S-IgA 被覆率は低かった(Table 3).マウスとは違い, ヒトでは clostridial cluster IX(25.04 ± 4.39%)で高い S-IgA 被覆率を, Bifidobacterium(5.8 ± 1.78%)で低い S-IgA 被覆率をそれぞれ示した.

考 察

本実験で確立した S-IgA 被覆菌の細菌叢構成の検索 方法は多量の S-IgA によりコートされた S-IgA 被覆菌 をターゲットにした検索方法ではあるが,各細菌群の S-IgA 被覆率はブリーダーの異なるマウス間およびマ ウス・ヒト間で異なることが本法により明らかとなっ た.これはブリーダーの異なるマウス間およびマウス・ ヒト間の細菌種構成の違い^{9,10)}が原因であると考えられ る.

加えて、ヒトおよびマウスの糞便中 S-IgA 被覆菌の細 菌叢構成検索の結果から 2 つの興味深いことが示唆され た. ひとつは Enterobacteriaceae がその他の細菌群と比 較して顕著に高い S-IgA 被覆率を示したことで、もうひ と つ は Bacteroides/Prevotella グ ル ー プ お よ び Lactobacillus/Enterococcus グループなどの S-IgA にコ ートされにくい細菌群の存在である.

これらの結果は我々の過去の研究¹¹⁾において示唆され てきた常在性腸内細菌が S-IgA により選択的にコート されている可能性を強く支持するものであると考えられ る. なぜ Enterobacteriaceae が選択的に S-IgA によりコ ートされるのか, また, Bacteroides/Prevotella グループ および Lactobacillus/Enterococcus グループが S-IgA コ ートを免れているのかは興味深い点ではあるが,本研究 からはその原因は不明であり,今後の研究で明らかにす る必要がある.

本実験から確立した S-IgA 被覆菌の細菌叢構成の新 規検索方法はヒトおよびマウスの糞便を用いた解析に適 用でき得る手法であることが明らかになった.

ヒトの生理状態が変化することによってヒトの糞便中 S-IgA 被覆率も変化することが報告されている. Van der Waaij ら(2004)は炎症性腸疾患(IBD)患者において S-IgA 被覆率が上昇することを報告しており¹², Nadal ら(2008)はライフスタイル介入試験により体重が6kg 以上減少したヒトボランティアにおいて糞便中の S-IgA 被覆率が減少することを報告している¹³⁾. しかし, これらの S-IgA 被覆率の変化の原因は依然として不明 である.本研究で確立した S-IgA 被覆菌の細菌叢構成の 検索方法はこれらの生理状態の変化に伴う S-IgA 被覆 率の変化がどの細菌種への S-IgA 被覆率の変化による ものなのかを明らかにできると考えられる.

謝 辞

本研究は北海道大学農学研究院教授・原 博博士,京都府立大学 講師・井上 亮博士の指導の下で行われたものである.ここに感謝 を申し上げます.

引用文献

- Mazanec, M. B., Kaetzel, C. S., Lamm, M. E., Fletcher, D., Nedrud, J. G : Intracellular neutralization of virus by immunoglobulin A antibodies. Proc. Natl. Acad. Sci. USA., 89, 6901– 6905 (1992)
- 2) Ren, J. M., Zou, Q. M., Wang, F. K., He, Q., Chen, W., Zen, W. K : PELA microspheres loaded H. *pylori* lysates and their mucosal immune response. World J. Gastroenterol., 8, 1098–1102 (2002)
- 3) Moore, W. E. C., Holdeman, L. V : Human faecal flora : The normal flora of 20 Japanese-Hawaiians. Appl. Microbiol., 27, 961–979 (1974)
- 4) Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E., Relman, D. A : Diversity of the human intestinal microbial flora. Science, **308**, 1635–1638 (2005)
- 5) Van der Waaij, L. A., Limburg, P. C., Mesander, G., Van der Waaij, D : In vivo IgA coating of anaerobic bacteria in human faeces. Gut, **38**, 348-354 (1996)
- 6) Chassard, C., Scott, K. P., Marquet, P., Martin, J. C., Del'homme, C., Dapoigny, M., Flint, H. J., Bernalier-Donadille, A : Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. FEMS Microbiol. Ecol., 66, 575-583 (2008)
- 7) Bouvier, T., del Giorgio, P. A : Factors influencing the detection of bacterial cells using fluorescence in situ hybridization (FISH) : a quantitative review of published reports. FEMS Microbiol. Ecol., 44, 3-15 (2003)
- 8) Rogers, S. W., Moorman, T. B., Ong, S. K. : Fluorescent in situ hybridization and microautoradiography applied to ecophysiology in soil. Soil Sci. Soc. Am. J., 71, 620-631 (2007)
- 9) Ohashi, Y., Hiraguchi, M., Ushida, K : The composition of intestinal bacteria affects the level of luminal IgA. Biosci. Biotechnol. Biochem., 70, 3031-3035 (2006)
- 10) Salzman, N. H., De Jong, H., Paterson, Y., Harmsen, H. J., Welling, G. W., Bos, N. A : Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology, **148**, 3651–3660 (2002)
- Tsuruta, T., Inoue, R., Nojima, I., Hara, H., Tsukahara, T., Yajima, T : The amount of secreted IgA may not determine the secretory IgA coating ratio of gastrointestinal bacteria. FEMS immunol. Medical. Microbial., 56, 185–189 (2009)
- 12) Van der Waaij, L. A., Kroese, F. G. M., Visser, A., Nelis, G. F., Westerveld, B. D., Jansen, P. L. M., Hunter, J. O : Immunoglobulin coating of faecal bacteria in inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol., 16, 669–674 (2004)
- 13) Nadal, I., Santacruz, A., Marcos, A., Warnberg, J., Garagorri, M., Moreno, L. A., Martin-Matillas, M., Campoy, C., Martí, A., Moleres, A., Delgado, M., Veiga, O. L., García-Fuentes, M., Redondo, C. G., Sanz, Y : Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int. J. Obes., 33, 758– 767 (2008)