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THE POSITIVITY OF THE TRANSMUTATION

OPERATORS ASSOCIATED TO THE CHEREDNIK

OPERATORS FOR THE ROOT SYSTEM BC2

Khalifa Trimèche

Abstract. We consider the transmutation operators Vk,
tVk and V W

k ,
tV W

k associated respectively with the Cherednik operators and the
Heckman-Opdam theory attached to the root system BC2, called also
in [8, 9, 10] the trigonometric Dunkl intertwining operators, and their
dual. In this paper we prove that the operators Vk,

tVk and V W
k , tV W

k

are positivity preserving and allows positive integral representations.
In particular we deduce that the Opdam-Cherednik and the Heckman-
Opdam kernels are positive definite.

1. Introduction

In [1] I. Cherednik introduced a family of differential-difference operators
that nowadays bear his name. These operators play a crucial role in the the-
ory of Heckman Opdam’s hypergeometric functions, which generalizes the
theory of Harish-Chandra’s spherical functions on Riemannian symmetric
spaces (see [3, 4, 6]).

To study in [9, 10] a harmonic analysis associated with the Cherednik
operators, the author has introduced in [8, 10] the transmutation operators
Vk, V

W
k called also the trigonometric Dunkl intertwining operators and their

dual tVk,
tV W

k . In many situations to solve problems of this harmonic anal-

ysis we need the positivity of the operators Vk,
tVk and V W

k , tV W
k . This

property is not yet proved in the general case, it is obtained only in the one
dimensional case and for the root system of type A2 (see [2, 11]).

This paper is a contribution towards this question in the case of the
Cherednik operators attached to the root system of type BC2.

In this paper we consider the Cherednik operators Tj, j = 1, 2 associated
with the root system of type BC2. We present definitions and properties of
the trigonometric Dunkl intertwining operator Vk and of its dual tVk (see
[8, 9]), and we prove that they are positive integral transforms. To obtain
this result we establish first that the function Vk(ps(u, .))(x) is positive,
where ps(u, y), s > 0, is the classical heat kernel on R

2, and next we use the
fact that the operators Vk and tVk are transposes of each other, and that
the family {ps}s>0 is an approximate of the identity.
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By using the relations between the operators Vk,
tVk and V W

k , tV W
k , we

deduce that the operators V W
k , tV W

k are also positive integral transforms.
The method used in this paper can be applied also to prove the positivity

of the transmutation operators associated to the Cherednik operators and
the Heckman-Opdam theory attached to the root system of type BCd, d ≥ 3.
The results of this general case will be given in a forthcoming paper.

2. The Cherednik operators

We consider R2 with the standard basis {e1, e2}, and inner product 〈., .〉
for which this basis is orthonormal. We extend this inner product to a
complex bilinear form on C

2.

2.1. The root system of type BC2 and the Cherednik operators on
R
2. The root system of type BC2 can be identified with the set R given by

R = {±e1,±e2,±2e1,±2e2} ∪ {±e1 ± e2}, (2.1)

which can also be written in the form

R = {±αi, i = 1, 2, ..., 6},

with

α1 = e1, α2 = e2, α3 = 2e1, α4 = 2e2 , α5 = (e1 − e2), α6 = (e1 + e2). (2.2)

We denote by R+ the set of positive roots.

R+ = {αi, i = 1, 2, ..., 6}, (2.3)

and by R◦
+ the set of positive indivisible roots. For α ∈ R, we consider

rα(x) = x− 〈ᾰ, x〉α, with ᾰ =
2α

‖α‖2
, (2.4)

the reflection in the hyperplane Hα ⊂ R
2 orthogonal to α.

The reflections rα, α ∈ R, generate a finite group W called the Weyl group
associated with R. In this case W is isomorphic to the hyperoctahedral
group which is generated by permutations and sign changes of the ei, i = 1, 2.

The multiplicity function k : R →]0,+∞[ can be written in the form
k = (k1, k2, k3) where k1 and k2 are the values on the roots α1, α2, and
α3, α4 respectively, and k3 is the value on the roots α5, α6.

The positive Weyl chamber denoted by a
+ is given by

a
+ = {x ∈ R

2 ; ∀ α ∈ R+, 〈α, x〉 > 0}. (2.5)

it can also be written in the form

a
+ = {(x1, x2) ∈ R

2 x1 > x2 > 0}. (2.6)
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Moreover, let Ak be the weight function

∀ x ∈ R
2, Ak(x) =

∏

α∈R+

| sinh〈
α

2
, x〉|2k(α). (2.7)

The Cherednik operators Tj, j = 1, 2, are defined for functions f of class
C1 on R

2 by

Tjf(x) =
∂

∂xj
f(x) +

∑

α∈R+

k(α)〈α, ej 〉

1− e−〈α,x〉
{f(x)− f(rαx)} − ρjf(x), (2.8)

with

ρj =
1

2

∑

α∈R+

k(α)〈α, ej〉, j = 1, 2. (2.9)

These operators can also be written in the following form

T1f(x) =
∂

∂x1
f(x) + k1

{f(x)− f(rα1
x)}

1− e−〈α1,x〉
+ 2k2

{f(x)− f(rα3
x)}

1− e−〈α3,x〉

+k3

[f(x)− f(rα5
x)

1− e−〈α5,x〉
+
f(x)− f(rα6

x)

1− e−〈rα6
,x〉

]

− (
1

2
k1 + k2 + k3)f(x), (2.10)

T2f(x) =
∂

∂x2
f(x) +

{f(x)− f(rα2
x)}

1− e−〈α2,x〉
+ 2k2

{f(x)− f(rα4
x)}

1− e−〈α4x)〉

+k3

[

− (
f(x)− f(rα5

x)

1− e−〈α5,x〉
) + (

f(x)− f(rα6
x)

1− e−〈α6,x〉
)
]

− (
1

2
k1 + k2)f(x).

(2.11)

2.2. The Opdam-Cherednik and the Heckman-Opdam kernels (see
[3, 4, 6, 8]). We denote by Gλ, λ ∈ C

2, the eigenfunction of the operators
Tj , j = 1, 2. It is the unique analytic function on R

2 which satisfies the
differential-difference system

{

TjGλ(x) = −iλjGλ(x), j = 1, 2, x ∈ R
2,

Gλ(0) = 1.
(2.12)

It is called the Opdam-Cherednik kernel.
We consider the function Fλ, λ ∈ C

2, defined by

∀ x ∈ R
2, Fλ(x) =

1

|W |

∑

w∈W

Gλ(wx). (2.13)

It is called the Heckman-Opdam hypergeometric function.
The functions Gλ and Fλ possess the following properties .

i) For all x ∈ R
2 the function λ→ Gλ(x) is entire on C

2.
ii) We have

∀ x ∈ R
2, ∀ λ ∈ C

2, |Gλ(x)| ≤ GIm(λ)(x). (2.14)
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iii) We have

∀ x ∈ R
2, ∀ λ ∈ R

2, |Gλ(x)| ≤ |W |1/2. (2.15)

∀ x ∈ R
2, ∀ λ ∈ R

2, |Fλ(x)| ≤ |W |1/2. (2.16)

iv) For x ∈ R
2, we denote by x+ the only point in the orbit W.x which

lies in a
+. Then we have

∀ x ∈ R
2, G0(x) ≍

∏

α∈R◦
+

〈α,x〉≥0

(1 + 〈α, x〉)e−〈ρ,x+〉. (2.17)

v) Let p and q be polynomials of degree m and n. Then there exists a
positive constant M such that for all λ ∈ C

2 and x ∈ R
2, we have

|p(
∂

∂λ
)q(

∂

∂x
)Gλ(x)| ≤M(1+‖x‖)m(1+‖λ‖)nF0(x)e

maxw∈W Im〈wλ,x〉. (2.18)

vi) The function F0 satisfies the estimate

∀ x ∈ a
+, F0(x) ≍ e−〈ρ,x〉

∏

α∈R◦
+

(1 + 〈α, x〉). (2.19)

vii) The function Gλ, λ ∈ C
2, admits the following Laplace type repre-

sentation

∀ x ∈ R
2, Gλ(x) = 〈Kx, e

−i〈λ,.〉〉, (2.20)

where Kx is some distribution in E ′(R2) (the space of distributions
on R

2 with compact support) with support in Γ = conv{wx,w ∈W}
(the convex hull of the orbit of x under W ).

viii) From (2.13), (2.20) we deduce that the function Fλ, λ ∈ C
2, possesses

the Laplace type representation

∀ x ∈ R
2, Fλ(x) = 〈KW

x , e−i〈λ,.〉〉, (2.21)

where KW
x is the distribution given by

KW
x =

1

|W |

∑

w∈W

Kwx. (2.22)

3. The trigonometric Dunkl intertwining operators and its

dual

Notations. We denote by
- E(R2) the space of C∞-functions on R

2. Its topology is defined by the
semi-norms

qn,K(ϕ) = sup
|µ|≤n
x∈K

|Dµϕ(x)|.
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where K is a compact subset of R2, n ∈ N and

Dµ =
∂|µ|

∂µ1x1∂µ2x2
, µ = (µ1, µ2) ∈ N

2, |µ| = µ1 + µ2.

- D(R2) the space of C∞-functions on R
2 with compact support. We have

D(R2) = ∪a>0Da(R
2),

where Da(R
2) is the space of C∞-functions on R

2 with support in the closed
ball B(0, a) of center 0 and radius a. The topology of Da(R

2) is defined by
the semi-norms

Pn(ψ) = sup
|µ|≤n

x∈B(0,a)

|Dµψ(x)|, n ∈ N.

The space D(R2) is equipped with the inductive limit topology.

By using the distribution Kx given by (2.20) we define by applying [8],
the trigonometric Dunkl intertwining operator Vk on E(R2) relating to the
root system BC2 by

∀ x ∈ R
2, Vk(g)(x) = 〈Kx, g〉. (3.1)

The operator Vk is the unique linear topological isomorphism from E(R2)
onto itself satisfying the transmutation relations

∀ x ∈ R
2, TjVk(g)(x) = Vk(

∂

∂yj
g)(x), j = 1, 2, (3.2)

and the condition

Vk(g)(0) = g(0). (3.3)

The dual tVk of the operator Vk is defined by the following duality relation
∫

R2

tVk(f)(y)g(y)dy =

∫

R2

Vk(g)(x)f(x)Ak(x)dx, (3.4)

with f in D(R2) and g in E(R2).
The operator tVk is a linear topological isomorphism from D(R2) onto

itself satisfying the transmutation relations

∀ y ∈ R
2, tVk((Tj + Sj)f)(y) =

∂

∂yj

tVk(f)(y), j = 1, 2, (3.5)

where Sj is the operator on D(R2) given by

∀ x ∈ R
2, Sj(h)(x) =

∑

α∈R+

k(α) 〈α, ej〉h(rαx).
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Remark 1. By using the distribution KW
x given by (2.22) we have defined

and studied in [10] the trigonometric Dunkl intertwining operator V W
k on

E(R2)W (the space of C∞-functions on R
2 which are W -invariant) and we

have studied also its dual tV W
k on D(R2)W (the space of C∞-functions on

R
2 which are of compact support and W -invariant). We have given some

properties of these operators .

Proposition 3.1. Let s > 0. For all x, u ∈ R
2, we have

Vk(ps(u, .))(x) =

∫

R2

e−s‖λ‖2Gλ(x)e
i〈λ,u〉dλ, (3.6)

where ps(u, z) is the classical heat kernel given by

∀ u, z ∈ R
2, ps(u, z) =

∫

R2

e−s‖λ‖2ei〈λ,u−z〉dλ . (3.7)

Proof. From (3.1) we have

∀ x ∈ R
2\{0}, u ∈ R

2, Vk(ps(u, .))(x) = 〈Kx, ps(u, .)〉. (3.8)

Thus from (3.8), for all x ∈ R
2\{0}, u ∈ R

2, we have

Vk(ps(u, .))(x) = 〈Kx(z),

∫

R2

e−s‖λ‖2ei〈λ,u−z〉dλ〉. (3.9)

As the distribution Kx belongs to E ′(R2), then the relation (3.9) can also
be written in the form

Vk(ps(u, .))(x) =

∫

R2

e−s‖λ‖2〈Kx(z), e
−i〈λ,z〉〉ei〈λ,u〉dλ . (3.10)

Thus from (2.20), for all x ∈ R
2\{0}, u ∈ R

2, we get

Vk(ps(u, .))(x) =

∫

R2

e−s‖λ‖2Gλ(x)e
i〈λ,u〉dλ. (3.11)

On the other hand from (3.3), (3.7), for all u ∈ R
2, we have

Vk(ps(u, .))(0) = ps(u, 0) =

∫

R2

e−s‖λ‖2ei〈λ,u〉dλ. (3.12)

We deduce (3.6) from (3.11), (3.12) and the continuity of the function x→
Vk(ps(u, .))(x) at x = 0. �

Proposition 3.2. Let s > 0. The function Vk(ps(u, .))(x) is of class C
1 on

R
2 ×R

2 with respect to the variables x and u, and satisfies the equations

∀ x, u ∈ R
2, (Tj +

∂

∂uj
)Vk(ps(u, .))(x) = 0, j = 1, 2. (3.13)
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Proof. We obtain the results of this proposition by derivation under the
integral sign with respect to the variables xj , uj , j = 1, 2, in the relation
(3.6), and by using the relation (2.12). �

Proposition 3.3. i) Let s > 0. There exists a positive function C(s) such
that

∀ x;u ∈ R
2, |Vk(ps(u, .))(x)| ≤ C(s)

∏

α∈R◦
+

(1 + |〈α, x〉|)e−〈ρ,x+〉, (3.14)

where x+ is the only point in the orbit W.x which lies in a
+.

ii) Let s > 0. We have

∀ x ∈ R
2, lim

‖u‖→+∞
Vk(ps(u, .))(x) = 0. (3.15)

iii) Let s > 0. The function Vk(ps(u, .))(x) is bounded on R
2 ×R

2 and we
have

lim
‖(x,u)‖→+∞

Vk(ps(u, .))(x) = 0. (3.16)

Proof. i) We deduce (3.14) from the relation (3.6), (2.14), (2.17).
ii) By using (3.6) and the fact that from (2.15) the function

λ→ e−s‖λ‖2Gλ(x)

is for all x ∈ R
2, integrable with respect to the Lebesgue measure, we

deduce (3.15) from the Riemann-Lebesgue Lemma. iii) We obtain (3.16)
from (3.14), (3.15). �

4. Positivity of the operators Vk and tVk

In this section we prove first that for s > 0 the function
(x, u) → Vk(ps(u, .))(x) given by (3.6) is positive on R

2 × R
2, and next

we deduce the positivity of the operators Vk and tVk.

Proposition 4.1. i) The Weyl chambers attached to the root system of type
BC2 are the following

{

a
+ = {x ∈ R

2; 〈αi, x〉 > 0, i = 1, 2, ..., 6}
a
− = −a

+ (4.1)

{

a
+
1 = {x ∈ R

2; 〈αi, x〉 > 0, i = 1, 2, 3, 4, 6; 〈α5 , x〉 < 0}
a
−
1 = −a

+
1

(4.2)

ii) We denote by C1, C2, the Weyl chambers a+, a+1 , and by C3, C4, the Weyl
chambers a

−, a−1 . Then we have

R
2 =

4
⋃

ℓ=1

Cℓ . (4.3)
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where Cℓ is the closure of Cℓ.

Proof. We determine the Weyl chambers corresponding to the six roots of
R+, and next by applying the relations















2α1 = α3

2α2 = α4

α1 − α2 = α5

α1 + α2 = α6.

we obtain the Weyl chambers (4.1), (4,2) and the others are empty. �

Proposition 4.2. i) For all s > 0, x, u ∈ R
2, the function Vk(ps(u, .))(x) is

real. ii) Let s > 0. The function Vk(ps(u, .))(x) is strictly positive on the set

Y = {(x, u) ∈ R
2 × R

2;x = 0, u ∈ R
2}. (4.4)

Proof. i) From (2.12) we deduce that

∀ x ∈ R
2 ,∀ λ ∈ R

2, Gλ(x) = G−λ(x).

We obtain the result from (3.6) by change of variables and by using the
previous relation. ii) By using the fact that

∀ λ ∈ R
2, Gλ(0) = 1,

we deduce from (3.6), (3.3), (3.7) that

∀ u ∈ R
2, Vk(ps(u, .))(0) = ps(u, 0) > 0.

Thus for all s > 0, the function Vk(ps(u, .))(x) is strictly positive on the set
Y . �

Proposition 4.3. We consider for s > 0, the function Us(x, u) defined by

∀ (x, u) ∈ R
2 × R

2, Us(x, u) = Vk(ps(u, .))(x). (4.5)

Then for some α ∈ R+ and (x, u) ∈ R
2 × R

2, we have

Us(rαx, u)− Us(x, u) = −〈ᾰ, x〉〈∇Us(x, u), α〉
+1

2(〈ᾰ, x〉)
2αtD2Us(ξ, u)α,

(4.6)

with some ξ on the line segment between x and rαx.

Proof. We obtain (4.6) from the relation (2.4) and Taylor’s formula. �

Theorem 4.4. For all s > 0, we have

∀ (x, u) ∈ R
2 × R

2, Vk(ps(u, .))(x) ≥ 0. (4.7)
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Proof. The proof is made up in two steps.
In the first step we obtain some results concerning the positivity of the

function Us(x, u) given by (4.5) on each of the sets Cℓ × R
2, ℓ = 1, 2, 3, 4,

where Cℓ is the closure of the Weyl chamber Cℓ given by Proposition 4.1 ii).
In the second step we use the fact that R2 ×R

2 = (∪4
ℓ=1Cℓ)×R

2 and the
result of the first step to deduce the positivity of the function Us(x, u) on
R
2 ×R

2.
1st Step

We consider the set Yℓ, ℓ = 1, 2, 3, 4, defined by

Yℓ = {(x, u) ∈ R
2 × R

2; x ∈ Cℓ, u ∈ R
2}.

We denote by

Vℓ
s(x, u) = Us(x, u)1Yℓ

(x, u),

where 1Yℓ
is the characteristic function of the set Yℓ. From Proposition 4.2

ii) the function Vℓ
s(x, u) is strictly positive on the set Y .

We shall prove that the function Vℓ
s(x, u) is positive on the set Yℓ\Y . If

not we suppose by using Proposition 4.2 i) and Proposition 3.3 iii) that it
attains a strictly negative absolute minimum at (xℓ, uℓ) ∈ Yℓ\Y i.e.

Vℓ
s(x

ℓ, uℓ) = inf
(x,u)∈Yℓ

Vℓ
s(x, u) < 0. (4.8)

There are two possibilities : the point (xℓ, uℓ) is in the open subset (Yℓ\Y )0

of Yℓ\Y or in the set

Y 0
ℓ = {(x, u) ∈ R

2 × R
2 ;x ∈ ∂Cℓ, u ∈ R

2}, (4.9)

where ∂Cℓ is the border of the Weyl chamber Cℓ.
We suppose that (xℓ, uℓ) ∈ (Yℓ\Y )0. As the point (xℓ, uℓ) is an absolute
minimum then we have

∂

∂xj
Vℓ
s(x

ℓ, uℓ) =
∂

∂uj
Vℓ
s(x

ℓ, uℓ) = 0, j = 1, 2. (4.10)

By using the fact that

∀ α ∈ R+, (rαx
ℓ, uℓ) /∈ Yℓ,

and by applying the relations (4.5), (3.13), (2.10), (2.11), we get
{

k1

( 1

1− e−〈α1,xℓ〉
−

1

2

)

+ 2k2

( 1

1− e−〈α3,xℓ〉
−

1

2

)

+k3

[

(
1

1− e−〈α5,xℓ〉
−

1

2

)

+
( 1

1− e−〈α6,xℓ〉
−

1

2

)]}

Vℓ
s(x

ℓ, uℓ) = 0. (4.11)
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{

k1

( 1

1− e−〈α2,xℓ〉
−

1

2

)

+ 2k2

( 1

1− e−〈α4,xℓ〉
−

1

2

)

+k3

[

−
( 1

1− e−〈α5,xℓ)
−

1

2

)

+
( 1

1− e−〈α6,xℓ〉
−

1

2

)]}

Vℓ
s(x

ℓ, uℓ) = 0. (4.12)

Using the fact that from (4.8) the function Vℓ
s(x

ℓ, uℓ) is different from zero
and that k3 > 0, the equations (4.11), (4.12) can also be written in the form

k1
k3
Xℓ

1 +
2k2
k3

Xℓ
3 +Xℓ

5 +Xℓ
6 = 0 (4.13)

k1
k3
Xℓ

2 +
2k2
k3

Xℓ
4 −Xℓ

5 +Xℓ
6 = 0, (4.14)

with

Xℓ
i =

1 + e−〈αi,x
ℓ〉

1− e−〈αi,xℓ〉
, i = 1, 2, ..., 6. (4.15)

Then the Xℓ
i , i = 1, 2, ...6, are solutions of the system of linear equations (S)

on R
4 :

(S)

{

k1
k3
X1 + 2k2

k3
X3 +X5 +X6 = 0,

k1
k3
X2 + 2k2

k3
X4 −X5 +X6 = 0.

(4.16)

On the other hand from (4.15) we obtain

e−〈αi,x
ℓ〉 =

Xℓ
i − 1

Xℓ
i + 1

, i = 1, 2, ..., 6. (4.17)

We consider the function f defined on R\{−1} by

f(y) =
y − 1

y + 1
,

we have

f(y) ≤ 0 ⇔ y ∈]− 1, 1], (4.18)

0 < f(y) < 1 ⇔ y ∈]1,+∞[, (4.19)

f(y) > 1 ⇔ y ∈]−∞,−1[. (4.20)

From the relation (4.17), we have

e−〈αi,xℓ〉 = f(Xℓ
i ), i = 1, 2, ..., 6. (4.21)

As the first member of (4.21) is strictly positive, then from (4.18) the
Xℓ

i , i = 1, 2, ..., 6, are not in the interval ] − 1, 1]. They are in the interval
]−∞,−1[∪]1,+∞[. We consider two cases .
1st Case
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(1) If xℓ ∈ Cℓ, ℓ = 1.
From the relation (4.1) we have 〈αi, x

ℓ〉 > 0 for i = 1, 3, 5, 6. Then
by using (4.21), (4.19) we obtain

Xℓ
i ∈]1,+∞[, i = 1, 3, 5, 6. (4.22)

By applying (4.22) we get

k1
k3
X1 ++2

k2
k3
X3 +X5 +X6 >

k1
k3

+ 2
k2
k3

+ 2 > 0.

Thus from (4.13) we obtain an absurdity, and then the Xℓ
i , i =

1, 2, ..., 6, are not solutions of the system (S) given by (4.16).
(2) If xℓ ∈ Cℓ, ℓ = 2.

The same proof as for the previous case shows that we obtain also
an absurdity, and then the Xℓ

i , i = 1, 2, ..., 6, are not solutions of the
system (S) given by (4.16).

2nd Case

(1) If xℓ ∈ Cℓ, ℓ = 3.
From the relation (4.2) we have 〈αi, x〉 > 0, i = 2, 4, 6 and

〈α5, x〉 < 0. Then by using (4.21), (4.19), (4.20), we obtain

Xℓ
i ∈]1,+∞[, i = 2, 4, 6, and Xℓ

5 ∈]−∞,−1[. (4.23)

By applying (4.23) we get

k1
k3
Xℓ

2 + 2
k2
k3
Xℓ

4 −Xℓ
5 +Xℓ

6 >
k1
k3

+ 2
k2
k3

+ 2 > 0.

Thus from (4.14) we obtain an absurdity, and then the Xℓ
i , i =

1, 2, ..., 6, are not solutions of the system (S) given by (4.16).
(2) If xℓ ∈ Cℓ, ℓ = 4.

The same proof as for the previous case shows that we obtain
also an absurdity, and then the Xℓ

i , 1, 2, ..., 6, are not solutions of the
system (S) given by (4. 16).

From the first and second cases we deduce that our supposition that the
function Vℓ

s(x
ℓ, uℓ) attains a strictly negative absolute minimum at (xℓ, uℓ)

in (Yℓ\Y )0 is absurd. Then the point (xℓ, uℓ) does not belong to (Yℓ\Y )0,
and it is in the set Y 0

ℓ .
2nd Step

From Proposition 4.2 ii) the function Us(x, u) is strictly positive on the
set Y .
We shall prove that the function Us(x, u) is positive on the set R2 × R

2\Y .
If not we suppose by using Proposition 4.2.i) and Proposition 3.3 iii) that it
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attains a strictly negative absolute minimum at (x0, u0) ∈ R
2 × R

2\Y .
From the first step and the relation (4.3), the point (x0, u0) is in the set

Y 0 =
4
⋃

ℓ=1

Y 0
ℓ ,

with Y 0
ℓ given by (4.9). We have

Y 0 = {(x, u) ∈ R
2 × R

2 ;∀ α ∈ R+, 〈α, x〉 = 0, u ∈ R
2},

then

∀ α ∈ R+, 〈α, x0〉 = 0.

We shall prove in the following that the point (x0, u0) is not in the set Y 0.
As the point (x0, u0) is a strictly negative absolute minimum, then we have
the following relations

Us(x0, u0) = inf
(x,u)∈R2×R2

Us(x, u) < 0, (4.24)

and
∂

∂x1
Us(x0, u0) =

∂

∂u1
Us(x0, u0) = 0 . (4.25)

We write the relations (4.5), (3.13), (2.10) for x, u0, and we get

∂

∂x1
Us(x, u0) +

∂

∂u1
Us(x, u0) + k1

{Us(x, u0)− Us(rα1
x, u0)}

1− e−〈α1,x〉

+2k2
{Us(x,u0)−Us(rα3

x,u0)}

1−e−〈α3,x〉

+k3

[Us(x, u0)− Us(rα5
x, u0)

1− e−〈α5,x〉
+
Us(x, u0)− Us(rα6

x, u0)

1− e−〈α6,x〉

]

= (
1

2
k1 + k2 + k3)Us(x, u0). (4.26)

Then by passing to the limit in (4.26), when 〈α, x〉, for all α ∈ R+, goes to
〈α, x0〉 = 0, and by using Proposition 4.3 and the relation (4.25), we obtain

(
1

2
k1 + k2 + k3)Us(x0, u0) = 0.

As ki > 0, i = 1, 2, 3, then

Us(x0, u0) = 0. (4.27)

Thus (4.24) and (4.27) imply a contradiction, and the point (x0, u0) is not
in the set Y 0.
Then the function Us(x, u) is positive on the set R2×R

2\Y . We deduce the
relation (4.7) from this result and the fact that the function Vk(ps(u, .))(x)
is positive on the set Y . �
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Theorem 4.5. For all positive functions f in D(R2), we have

∀ y ∈ R
2, tVk(f)(y) ≥ 0. (4.28)

Proof. From the relations (3.4), (3.7), for all s > 0 and y ∈ R
2 we have

∫

R2

tVk(f)(x)ps(y, x)dx =

∫

R2

f(z)Vk(ps(y, .))(z)Ak(z)dz.

But from Theorem 4.4, the second member of this relation is positive. Then
∫

R2

tVk(f)(x)ps(y, x)dx = tVk(f) ∗Es(y) ≥ 0,

with Es the classical Gauss kernel given by

∀ u ∈ R
2, Es(u) =

∫

R2

e−s‖λ‖2eiλudλ,

and ∗ the classical convolution product on R
2.

Thus
tVk(f)(y) = lim

s→0

tVk(f) ∗Es(y) ≥ 0.

�

Theorem 4.6. There exists a σ-algebra m in R
2 which contains all Borel

sets in R
2, and for each y ∈ R

2, there exists a unique positive measure νy
on m such that for every f in D(R2), we have

tVk(f)(y) =

∫

R2

f(x)dνy(x). (4.29)

The measure νy satisfies

νy(K) < +∞, for every compact K ⊂ R
2. (4.30)

Proof. We deduce the results of this theorem from the relation (4.28) and
Theorem 2.14 p. 42 of [5]. �

Theorem 4.7. For all g in E(R2), positive, we have

∀ x ∈ R
2, Vk(g)(x) ≥ 0. (4.31)

Proof. From the relation (3.4), for all f in D(R2) positive and g in E(R2)
positive, we have

∫

R2

Vk(g)(x)f(x)Ak(x)dx =

∫

R2

tVk(f)(y)g(y)dy.

By applying Theorem 4.5 to the second member, we deduce that
∫

R2

Vk(g)(x)f(x)Ak(x)dx ≥ 0.
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Thus
∫

R2

f(x)Vk(g)(x)Ak(x)dx = 〈TVk(g)Ak
, f〉 ≥ 0, (4.32)

where TVk(g)Ak
is the distribution of D′(R2) (the space of distributions on

R
2) given by the function Vk(g)Ak. From (4.32) and Theorem V of [7] p.

29, this distribution is the positive measure of density Vk(g)Ak with respect
to the Lebesgue measure on R

2. Then by using the relation (2.7) and the
continuity of the function Vk(g) on R

2, we obtain (4.31). �

Theorem 4.8. There exists a σ-algebra m in R
2 which contains all Borel

sets in R
2, and for each x ∈ R

2, there exists a unique positive measure µx
on m with support in B(0, ‖x‖) the closed ball of center 0 and radius ‖x‖,
such that for every g in E(R2), we have

Vk(g)(x) =

∫

R2

g(y)dµx(y). (4.33)

Proof. From (3.1), (4.31) we have

Vk(g)(x) = 〈Kx, g〉 ≥ 0, (4.34)

with Kx in E ′(R2) such that supp Kx ⊂ B(0, ‖x‖).
Then from (4.34) and Theorem V of [7] p. 29, the distribution Kx is a
positive measure on m denoted by µx with support in B(0, ‖x‖). �

Corollary 4.9. There exists a σ-algebra m in R
2 which contains all Borel

sets in R
2.

(1) For each x ∈ R
2, there exists a unique positive measure µWx on m

with support in B(0, ‖x‖) such that for every g in E(R2)W , we have

V W
k (g)(x) =

∫

R2

g(y)dµWx (y), (4.35)

where

µWx =
1

|W |

∑

w∈W

µwx. (4.36)

(2) For each y ∈ R
2, there exists a unique positive measure νWy on m

such that for every f in D(R2)W , we have

tV W
k (f)(y) =

∫

R2

f(x)dνWy (x),

where

νWy =
1

|W |

∑

w∈W

νwy. (4.37)

The measure νWy satisfies

νWy (K) < +∞, for every compact K ⊂ R
2. (4.38)
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Corollary 4.10. We have the following i) The Opdam-Cherednik and the
Heckman-Opdam kernels Gλ(x) and Fλ(x), λ ∈ C

2, possess the Laplace type
integral representations

Gλ(x) =

∫

R2

e−i〈λ,y〉dµx(y), ∀x ∈ R
2, (4.39)

Fλ(x) =

∫

R2

e−i〈λ,y〉dµWx (y), ∀x ∈ R
2. (4.40)

ii) We have

∀ x ∈ R
2, ∀ λ ∈ R

2, Giλ(x) > 0. (4.41)

∀ x ∈ R
2,∀ λ ∈ R

2, Fiλ(x) > 0. (4.42)

iii) For all x ∈ R
2, the function λ → Gλ(x) and λ → Fλ(x) are positive

definite on R
2.

Remark 2. We have studied in [12] the absolute continuity with respect to
the Lebesgue measure of the measures µx, νy, µ

W
x , νWy .
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