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RESTRICTION ON GALOIS GROUPS

BY PRIME INERT CONDITION

Toru Komatsu

Abstract. In this paper, we study number fields K with the prop-
erty that every prime factor of the degree of K remains prime in K.
We determine all types of Galois groups of such K up to degree nine
and find that Wang’s non-existence in cyclic octic case is exceptionally
undetermined by our group-theoretic criterion.

1. Introduction

Inverse Galois Problem (IGP) [8] asks whether a given finite group occurs
as one of the Galois groups over a fixed field. Over a number field, the
well known Hermite theorem tells that there are only finitely many field
extensions with bounded degrees and ramifications. This indicates that
arithmetic condition often restricts possible types of Galois groups to be
realized in IGP. In view of IGP with arithmetic inert condition, the following
result is of vital importance.

Proposition 1.1 (Wang [11], Swan [10, §5]). There are no cyclic-Galois

extensions of Q of degree 8 in which 2 remains prime.

Jensen, Ledet and Yui [5, §2.6] applied Proposition 1.1 to show non-existence
of a generic polynomial over Q with cyclic octic (= Z/8Z) Galois group. In
this paper, we consider number fields K having the “degree-inert” property
that every prime factor of the degree [K : Q] is inert in K. For the sake
of convenience, we shall abbreviate this property as deg.-inert property.
Writing Kgc for the Galois closure of K over Q and Gal(Kgc/Q) for its
Galois group, we let G(K) denote the image of the associated transitive
permutation representation ρ : Gal(Kgc/Q) → Sn, where Sn is the symmet-
ric group on n = [K : Q] letters. (Note that the group G(K) depends on K
up to conjugacy in Sn.) Then, as a necessary condition, we have

Proposition 1.2. The group G(K) of a deg.-inert field K of degree n over

Q contains a cycle of length n.

Our main result of this paper is then:
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Theorem 1.3. Every transitive subgroup G of Sn with an n-cycle occurs as

the group G(K) of a deg.-inert number field K, provided that n < 10 and G
is not the cyclic octic group.

We will deduce Proposition 1.2 from basic facts of algebraic number theory
in §2, and demonstrate Theorem 1.3 in §3 using known lists of the permu-
tation groups and tables of number fields. We provide explicit irreducible
polynomials f(x) over Q with G(Q[x]/(f)) giving the transitive groups in
Theorem 1.3. In §4 we observe higher degree cases and discuss a variant of
our degree-inert property.

2. Necessary condition for deg.-inert field

In this section, we will deduce Proposition 1.2 from basic facts of algebraic
number theory. We assume that K is a deg.-inert field of degree n and p is
a prime factor of n. Let O be the ring of algebraic integers in K, and p a
unique prime ideal of K above p, that is, p = pO. The following Dedekind’s
lemma, a sufficient condition for a prime to be inert, may come to mind.
Let T (θ,X) ∈ Z[X] denote the minimal polynomial of an algebraic integer
θ over Q. Let l be a prime number, and Z/l its residue class field of Z.

Lemma 2.1 (Dedekind, Cohen [2, Thm 4.8.13]). If T (θ,X) is irreducible

over Z/l, then l is inert in Q(θ).

Unfortunately, the converse of Lemma 2.1 is false. The number θ =
√
5

is a counter-example under l = 2. Indeed, one factorizes the polynomial
T (

√
5,X) = X2 − 5 into (X + 1)2 over Z/2, though Q(

√
5) is a deg.-inert

field. Meanwhile, the golden ratio γ = (1+
√
5)/2 generates Q(

√
5) and the

polynomial T (γ,X) = X2 −X − 1 is irreducible over Z/2.

Lemma 2.2. The deg.-inert field K has a generator γ in O so that T (γ,X)
is irreducible over Z/p.

Proof. Let E be the residue class field O/p of O at p, and F that of Z at p.
Since the extension E/F is simple, one can take a generator ξ of E over F .
For the natural projection O → E we choose a lift γ ∈ O of ξ. Due to the
genericity of ξ for E/F the polynomial T (γ,X) is irreducible over F with
degree n, and γ generates K. �

Let γ be a fixed one as in Lemma 2.2. The Galois closure field Kgc of K
over Q is equal to the minimal splitting field of T (γ,X) over Q.

Lemma 2.3 (Dedekind, Cox [4, Thm 13.4.5]). If T (γ,X) is irreducible over

Z/l, then the group G(K) of K contains a cycle with length n.

Lemmas 2.2 and 2.3 with l = p imply the assertion of Proposition 1.2 in §1.
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Remark. The books [2], [3] and [4] deal with more general methods than
those in Lemmas 2.1 and 2.3.

3. Determination of groups of deg.-inert fields

In this section, we will demonstrate Theorem 1.3 using known lists of
the permutation groups and tables of number fields. We provide explicit
irreducible polynomials f(x) over Q with G(Q[x]/(f)) giving the transitive
groups in Theorem 1.3. The first half of the proof is to prepare a list of
the groups satisfying the necessary condition in Proposition 1.2. Butler
and McKay [1] present not only all the transitive subgroups of Sn with
n ≤ 11 but also their invariants. As used in [1] let nTk stand for the k-th
transitive subgroup of Sn. The data in [1] provides Table 1 below with the
three invariants of nTk; the order, the signature and the number of n-cycles
are listed in the 2nd to 4th columns at Table 1, headed ord, sgn and cyc,
respectively. Here the signature is defined to be + if the n-th alternating
group An contains nTk, and − otherwise. Proposition 1.2 shows the non-
existence of a deg.-inert field K whose group G(K) has no n-cycles, and
allows us to delete the cases in which the number at its 4th column cyc is
equal to 0. Let tn be the number of transitive subgroups in Sn, and dn the
number of the deleted ones. The numbers tn and dn are as follows:

n 2 3 4 5 6 7 8 9
tn 1 2 5 5 16 7 50 34
dn 0 0 2 0 7 0 32 16

Proposition 1.1 urges us to put ∅ in the 5th column at the row of 8T1, the
cyclic octic group C8.

The second half of the proof is to fill all the open boxes of the constructing
table, that is, to discover a deg.-inert field K for each group whose 5th
column is open. For the discovery we utilize the databases of number fields
at the web cites of Klüners–Malle [7] and Jones [6]. We explain how to search
the data at [7] for a deg.-inert field with the group 6T3 for example. At the
page named Search in [7] specify the attributes so that the group degree and
number are =6 and =3, respectively, and the field discriminant factors are
2,3 with none of these. The button Search at the bottom yields many
candidate polynomials x6−x5−8x4+6x3+16x2−10x−5, x6+3x5−4x4−
13x3+3x2+10x+1, . . . The above attribute for the field discriminant factors
means that both 2 and 3 are unramified, which is a necessary condition to
be deg.-inert. By using a software PARI/GP available freely at [9], we can
check whether the fields defined by the candidates are deg.-inert or not.
Faster simple examination due to Lemma 2.1 operates by the command
factormod(f,p) on PARI/GP, which factors the polynomial f modulo the
prime p. If the simple examination does not work, then detailed inspection
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accomplishes by the command idealprimedec(nf,p) on PARI/GP, which
gives the prime ideal decomposition of the prime number p in the number
field nf. Here we can make the data nf from the polynomial f with the
command nfinit(f). For the first polynomial f(x) = x6−x5−8x4+6x3+
16x2 − 10x − 5 the simple result by factormod(f,p) is the factorizations
f(x) ≡ x6 + x5 + 1 (mod 2) and f(x) ≡ (x + 1)2(x2 + x + 2)(x2 + 2x + 2)
(mod 3). This means that 2 remains prime and 3 decomposes into at least 3
prime ideals. The detailed one by idealprimedec(nf,p) tells us that 3O =
p1p2p3 with [O/pi : Z/3] = 2 for i = 1, 2, 3, and thus the field of the first f(x)
is not deg.-inert. For the second f(x) = x6+3x5−4x4−13x3+3x2+10x+1
the simple factormod(f,p) shows that f(x) is irreducible not only over Z/2
but also over Z/3, that is, we now find a deg.-inert field. By the command
polgalois(f) one can make sure that the Galois group of the second f(x)
is isomorphic to 6T3. Unfortunately, at the cite [7] up to degree nine we
cannot find a deg.-inert field with the group 7T4. On the other hand, the
cite [6] contains useful data for the case 7T4. At [6] specify the attributes
so that Degree=7, Galois T-num=4 and p1 =7 with c1 =0. The attributes
p1 and c1 mean that 7 is unramified. By the same examination as above we
find a deg.-inert field for 7T4 described below.

Table 1: polynomials with degree less than 10

nTk ord sgn cyc polyn
2T1 2 − 1 x2 − 5
3T1 3 + 2 x3 − x2 − 2x+ 1
3T2 6 − 2 x3 − x2 − 3x+ 1
4T1 4 − 2 x4 − x3 − 4x2 + 4x+ 1
4T3 8 − 2 x4 − x3 − 3x2 + x+ 1
4T5 24 − 6 x4 − 4x2 − x+ 1
5T1 5 + 4 x5 − x4 − 4x3 + 3x2 + 3x− 1
5T2 10 + 4 x5 − x4 − 5x3 + 4x2 + 3x− 1
5T3 20 − 4 x5 − 2x4 − 12x3 + 24x2 + 8x− 23
5T4 60 + 24 x5 − x4 − 11x3 + x2 + 12x− 4
5T5 120 − 24 x5 − 5x3 + 4x− 1
6T1 6 − 2 x6 − x5 − 7x4 + 2x3 + 7x2 − 2x− 1
6T3 12 − 2 x6 − 3x5 − 4x4 + 13x3 + 3x2 − 10x+ 1
6T5 18 − 6 x6 − x5 − 8x4 + 5x3 + 19x2 − 4x− 11
6T6 24 − 8 x6 − 2x5 − 5x4 + 11x3 + 2x2 − 9x+ 1
6T9 36 − 12 x6 − 3x5 − 11x4 + 24x3 + 32x2 − 11x− 1
6T11 48 − 8 x6 − 3x5 + x4 + 4x3 − 3x2 − 2x+ 1
6T13 72 − 12 x6 − x5 − 6x4 + 4x3 + 8x2 − 1
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Table 1: polynomials with degree less than 10 (continued)

nTk ord sgn cyc polyn
6T14 120 − 20 x6 − x5 − 287x4 − 1058x3 + 17939x2 + 129814x

+231845
6T16 6! − 5! x6 − x5 − 5x4 + 4x3 + 5x2 − 2x− 1
7T1 7 + 6 x7 − x6 − 12x5 + 7x4 + 28x3 − 14x2 − 9x− 1
7T2 14 − 6 x7 − x6 − 9x5 + 2x4 + 21x3 + x2 − 13x− 1
7T3 21 + 6 x7 − 8x5 − 2x4 + 16x3 + 6x2 − 6x− 2
7T4 42 − 6 x7 − 3x6 + 6x5 − 8x4 + 12x3 − 15x2 + 10x− 9
7T5 168 + 48 x7 − 8x5 − 2x4 + 15x3 + 4x2 − 6x− 2
7T6 7!/2 + 6! x7 − 2x6 − 7x5 + 11x4 + 16x3 − 14x2 − 11x+ 2
7T7 7! − 6! x7 − 2x6 − 5x5 + 9x4 + 7x3 − 10x2 − 2x+ 1
8T1 8 − 4 ∅
8T6 16 − 4 x8 − 3x7 − 13x6 + 47x5 + 3x4 − 109x3 + 78x2 − 16x

+1
8T7 16 − 8 x8 − 20x6 + 105x4 + 15x3 − 110x2 + 45x − 5
8T8 16 − 4 x8 − 14x6 − 10x5 + 31x4 + 15x3 − 14x2 − 5x+ 1
8T15 32 − 8 x8 − x7 − 11x6 + 4x5 + 21x4 − 4x3 − 11x2 + x+ 1
8T16 32 − 16 x8 − 8x7 + 8x6 + 64x5 − 125x4 − 31x3 + 68x2 + 17x

+1
8T17 32 − 8 x8 − 12x6 − 2x5 + 37x4 + 17x3 − 25x2 − 16x− 1
8T23 48 − 12 x8 − 4x7 − 5x6 + 29x5 − 14x4 − 25x3 + 10x2 + 8x+ 1
8T26 64 − 16 x8 + x7 − 11x6 − 8x5 + 38x4 + 21x3 − 39x2 − 23x+ 1
8T27 64 − 16 x8 − 4x7 − x6 + 17x5 − 6x4 − 21x3 + 6x2 + 8x+ 1
8T28 64 − 16 x8 − 4x7 − 6x6 + 19x5 + 9x4 − 19x3 − 6x2 + 4x+ 1
8T35 128 − 16 x8 − 3x7 − 5x6 + 14x5 + 8x4 − 16x3 − 2x2 + 5x− 1
8T40 192 − 48 x8 − 18x6 + 103x4 − 5x3 − 209x2 + 26x+ 93
8T43 336 − 84 x8 − x7 − 29x6 + 111x5 − 139x4 + 37x3 + 32x2 − 10x

−1
8T44 384 − 48 x8 − 4x7 − x6 + 15x5 − 3x4 − 16x3 + 4x2 + 4x− 1
8T46 576 − 144 x8 − 21x6 + 15x5 + 121x4 − 135x3 − 126x2 + 105x

+41
8T47 1152 − 144 x8 − x7 − 7x6 + 5x5 + 15x4 − 7x3 − 10x2 + 2x+ 1
8T50 8! − 7! x8 − x7 − 7x6 + 4x5 + 15x4 − 3x3 − 9x2 + 1
9T1 9 + 6 x9 − x8 − 8x7 + 7x6 + 21x5 − 15x4 − 20x3 + 10x2 + 5x

−1
9T3 18 + 6 x9 − 95x7 + 430x6 − 285x5 − 1026x4 + 1416x3 − 152x2

−304x + 64
9T6 27 + 18 x9 − 3x8 − 10x7 + 42x6 − 28x5 − 28x4 + 28x3 + 2x2

−6x+ 1
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Table 1: polynomials with degree less than 10 (continued)

nTk ord sgn cyc polyn
9T10 54 + 18 x9 − 4x8 − 14x7 + 44x6 + 62x5 − 120x4 − 92x3 + 48x2

+12x− 4
9T17 81 + 36 x9 − 2x8 − 8x7 + 18x6 + 10x5 − 36x4 + 10x3 + 12x2

−7x+ 1
9T20 162 − 36 x9 − 4x8 − 4x7 + 22x6 − x5 − 31x4 + 4x3 + 15x2 − 1
9T21 162 + 36 x9 + 3x8 − 10x7 − 37x6 + 4x5 + 81x4 + 21x3 − 50x2

−10x+ 10
9T22 162 − 36 x9 + 3x8 + 5x7 + 18x6 + 34x5 + 27x4 + 5x3 + 3x2 − 6x

+1
9T24 324 − 36 x9 − x7 − 4x6 + 3x5 + 6x4 + 3x3 − 8x− 2
9T25 324 + 144 x9 − 2x8 − 18x7 + 48x6 + 68x5 − 296x4 + 164x3

+224x2 − 229x + 41
9T27 504 + 168 x9 − 3x8 + 12x6 − 14x5 − 2x4 + 12x2 + x+ 1
9T28 648 − 144 x9 − x8 − 8x7 + 6x6 + 20x5 − 11x4 − 18x3 + 7x2 + 4x

−1
9T29 648 − 144 x9 − 3x8 − 7x7 + 21x6 + 17x5 − 42x4 − 21x3 + 22x2

+14x+ 2
9T30 648 + 144 x9 − 4x8 − 10x7 + 50x6 + 6x5 − 146x4 + 44x3 + 142x2

−50x− 34
9T31 1296 − 144 x9 − 3x8 − 5x7 + 20x6 − 31x4 + 7x3 + 15x2 − 2x− 1
9T32 1512 + 504 x9 + 2x8 − 16176x7 + 255808x6 + 85921976x5

−2452969232x4 − 147036710464x3 + 4945237042432x2

+78691623510544x − 2853338165076832
9T33 9!/2 + 8! x9 + x8 − 17x7 − 35x6 + 18x5 + 69x4 + 8x3 − 33x2

−3x+ 4
9T34 9! − 8! x9 − 9x7 − 2x6 + 22x5 + 5x4 − 17x3 − 4x2 + 4x+ 1

By Table 1 we now finish the demonstration of Theorem 1.3.

4. Remarks on next cases

In this section, we will observe higher degree cases and discuss a variant
of our degree-inert property. On higher degrees we have

Proposition 4.1. (1) For n = 10 and 1 ≤ k ≤ 45 the transitive subgroup

G = nTk of Sn with n-cycles occurs as G(K) of some deg.-inert field K,

provided k 6= 5, 17, 19, 27, 29, 33, 35.
(2) For n = 11 and 1 ≤ k ≤ 8 the transitive subgroup G = nTk of Sn with

n-cycles occurs as G(K) of some deg.-inert field K, provided k 6= 3, 4
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Remark. For all of the exceptions in Proposition 4.1, the groups nTk have
n-cycles although they appear as none of the Galois groups of deg.-inert
fields defined by polynomials at the cites [6] and [7].

The symbols in Table 2 below are the same as for Table 1 at § 3. For
the exceptions described in Proposition 4.1 we denote ∃ ? at the 5th column
polyn. On the numbers tn of transitive subgroups in Sn and those dn of
the deleted ones from Table 2 due to Proposition 1.2, we have t10 = 45,
d10 = 22, t11 = 8 and d11 = 0.

Table 2: polynomials with degree 10 or 11

nTk ord sgn cyc polyn
10T1 10 − 4 x10 + x9 − 21x8 − 21x7 + 155x6 + 155x5 − 461x4

−461x3 + 419x2 + 419x + 67
10T3 20 − 4 x10 + 3x9 − 18x8 − 30x7 + 110x6 + 27x5 − 205x4

+90x3 + 75x2 − 65x+ 13
10T5 40 − 4 ∃ ?
10T6 50 − 20 x10 − 3x9 − 22x8 + 77x7 + 85x6 − 439x5 + 143x4

+427x3 − 255x2 − 20x+ 9
10T9 100 − 40 x10 − 214x8 + 733x7 + 10695x6 − 76150x5

+105427x4 + 356178x3 − 994203x2 + 16649x
+1191167

10T11 120 − 24 x10 − 5x9 − 15x8 + 90x7 + 53x6 − 495x5 + 52x4

+836x3 − 324x2 − 193x − 3
10T14 160 − 64 x10 − 2x9 − 9x8 + 15x7 + 29x6 − 31x5 − 43x4

+14x3 + 23x2 + 3x− 1
10T17 200 − 40 ∃ ?
10T19 200 − 80 ∃ ?
10T21 200 − 40 x10 + 5x9 − 2x8 − 35x7 − 16x6 + 75x5 + 49x4

−43x3 − 39x2 − 5x+ 1
10T22 240 − 24 x10 − 3x9 − 11x8 + 35x7 + 35x6 − 130x5 − 15x4

+159x3 − 54x2 − 37x+ 17
10T23 320 − 64 x10 − 4x9 − 8x8 + 35x7 + 14x6 − 61x5 − 14x4

+37x3 + 7x2 − 7x− 1
10T27 400 − 80 ∃ ?
10T29 640 − 64 ∃ ?
10T30 720 − 144 x10 − 3x9 + x8 + 5x7 − 3x6 + 2x5 − x4 − 5x3 + 2x2

+x+ 1
10T33 800 − 80 ∃ ?
10T35 1440 − 144 ∃ ?
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Table 2: polynomials with degree 10 or 11 (continued)

nTk ord sgn cyc polyn
10T36 1920 − 384 x10 − 2x9 − 21x8 + 30x7 + 128x6 − 81x5 − 223x4

−34x3 + 36x2 + 12x+ 1
10T39 3840 − 384 x10 − 2x9 − 9x8 + 12x7 + 29x6 − 22x5 − 39x4

+12x3 + 19x2 + x− 1
10T40 7200 − 1440 x10 − x9 − 4x8 − 4x7 + 7x6 + 12x5 + 13x4 + 5x3

+2x2 − x+ 1
10T41 14400 − 2880 x10 − 3x9 − 2x8 + 9x7 − 4x6 − 3x5 + 14x4 − 7x3

−13x2 + 2x+ 3
10T43 28800 − 2880 x10 − 2x7 − 3x5 + x4 + 3x2 − 1
10T45 10! − 9! x10 − x9 − 9x8 + 9x7 + 25x6 − 23x5 − 24x4 + 17x3

+8x2 − 3x− 1
11T1 11 + 10 x11 + x10 − 10x9 − 9x8 + 36x7 + 28x6 − 56x5

−35x4 + 35x3 + 15x2 − 6x− 1
11T2 22 − 10 x11 + 5x10 − 18x9 − 114x8 + 37x7 + 856x6 + 746x5

−2117x4 − 3648x3 − 135x2 + 2677x + 1301
11T3 55 + 10 ∃ ?
11T4 110 − 10 ∃ ?
11T5 660 + 120 x11 − 20x9 + 143x7 + 4x6 − 463x5 − 54x4 + 691x3

+186x2 − 392x − 177
11T6 7920 + 1440 x11 + 2x10 − 5x9 + 50x8 + 70x7 − 232x6 + 796x5

+1400x4 − 5075x3 + 10950x2 + 2805x − 90
11T7 11!/2 + 10! x11 − 3x10 − 36x9 + 60x8 + 213x7 − 9x6 − 114x5

−180x4 − 108x3 + 6x2 + 36x+ 54
11T8 11! − 10! x11 − 3x10 − 8x9 + 28x8 + 15x7 − 87x6 + 16x5

+95x4 − 51x3 − 17x2 + 13x− 1

Finally, we shall add a remark on a variant of deg.-inert property. A
number field K is called weak deg.-inert, if there exists a prime factor of
the degree [K : Q] that is inert in K.

Lemma 4.2. There exists no deg.-inert field K of degree 24 such that G(K)
is isomorphic to 24th cyclic group C24. There exist infinitely many weak

deg.-inert fields K of degree 24 with G(K) ≃ C24.

Proof. Suppose that a deg.-inert field K of degree 24 exists. Then K has a
unique cyclic octic field K ′. It follows from the definition that K ′ is a deg.-
inert field K of degree 8 with G(K) ≃ C8. It is contrary to Proposition 1.1.
One can construct weak fields in the following. Let l be a prime number
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with l ≡ 1 (mod 8) and l ≡ 2 (mod 3). Then lth cyclotomic field Q(ζl)

has a unique cyclic octic field L and a unique quadratic field L′ = Q(
√
l).

Since 3 is inert in L′, so is in L. Let M be the maximal real subfield of
7th cyclotomic field Q(ζ7). Since 3 is inert in Q(ζ7), so is in M . Note that
[L : Q] = 8 and [M : Q] = 3. Since the degrees of L and M are relatively
prime, 3 is inert in the composite field K = LM . Hence K is weak deg.-inert
of degree 24 with G(K) ≃ C24. �
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