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ALTERNATIVE APPROACH FOR SIEGEL’S LEMMA

Makoto Nagata

Abstract. In this article, we present an alternative approach to show a
generalization of Siegel’s lemma which is an essential tool in Diophantine
problems. Our main statement contains the so-called analytic Siegel’s
lemma as well as the Bombieri-Vaaler lemma. Our proof avoids relying
on the ordinary geometry of numbers.

1. Introduction

Let T be a linear subspace of the n-dimensional Euclidean space Rn.
When T is defined over the rational number field Q or over an algebraic
number field, the original Siegel’s lemma [8] states that there exists a non-
trivial integral point in T whose norm is bounded. Bombieri and Vaaler
[2] established a generalization of Siegel’s lemma where they introduced the
notion of height of the linear subspace T . An analytic version of Siegel’s
lemma due to Philippon and Waldschmidt [5] is also known, where the as-
sumption does not include algebraicity, namely it is not needed that T is
defined over Q or an algebraic number field. Instead, it is only required
that the defining equation of T has coefficients which are sufficiently near
by rational numbers or algebraic numbers.

In this article, we present an alternative approach aimed to a general-
ization of Siegel’s lemma which essentially contains both the statement by
Bombieri-Vaaler and that by Philippon-Waldschmidt.

Siegel’s lemma is characterized by three keywords: vector space, linear
equation, and restriction of solutions. Our proof seems to rely on the same
objects; however, our approach is different from the original one towards
Siegel’s lemma. Indeed, we first introduce an infinite-dimensional vector
space with an inner product. Next, we consider linear equations whose
coefficients are obtained from T , and then, we restrict our attention to so-
lutions in a sphere in the vector space.

The following simple proposition plays a crucial role in introducing an
infinite-dimensional vector space to prove a finiteness argument. Let V be
a vector space over R and let 〈 , 〉 : V × V → R be an inner product of V .
For a fixed nonzero u ∈ V , we set S(u) := {x ∈ V | 〈x, u− x〉 = 0}.
Proposition 1. Let N be a positive integer and let x1, . . . , xN ∈ S(u) with
〈xi, xj〉 = 0 for 1 ≤ i < j ≤ N . Then there exists an element w ∈ S(u) such
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that

〈u, u〉 = 〈w,w〉 +
N
∑

i=1

〈xi, xi〉.

Here the set S(u) is a sphere whose zero vector and u are the north and
south poles, respectively. We assume that the inner product 〈 , 〉 is positive
definite. In this case, even if the dimension of V is not finite, Proposition 1
provides a finite bound.

This article is organized as follows: In section 1.1, we specify the infinite-
dimensional vector space V and the sphere. We introduce a symbol H̃m,n

ǫ

which plays the role of height. In section 1.2, we present our main result, i.e.,
Theorem 1 (our version of Siegel’s lemma) and the first application supplying
information concerning the base field of T (Theorem 2). In section 1.3,
we deduce from our Theorem 1 both the above-mentioned analytic Siegel’s
lemma (Corollary 1) and Bombieri-Vaaler lemma (Corollary 2). In section
2.1, we introduce our basic tool to avoid using the ordinary geometry of
numbers. This section is devoted to an estimation so as to cover the role of
Minkowski’s theorem related to successive minima which was employed in
[2, 9]. In section 2.2, we collect some lemmas that we need in later sections,
and we also give a simple proof of Proposition 1. In section 3.1, we give a
proof of Theorem 1, and in section 3.2 that of Corollary 1. In section 3.3, a
proof of Theorem 2 is presented. In section 3.4, we show Corollary 2.

1.1. Settings. Let E = {e1, . . . , en} be a fixed orthonormal basis of Rn and
let Zn be the lattice group by E; Zn := Ze1+ · · ·+Zen. We use the symbol

| |∞ for the L∞-norm on E;
∣

∣

n
∑

i=1

αiei
∣

∣

∞
= max

i=1,...,n
|αi|. We consider the

canonical n-dimensional torus group Ω := Rn/Zn with the usual topology.
We put π : Rn → Ω as the standard projection such that Ker(π) = Zn. Let
P be the Haar measure of the Hausdorff compact topological abelian group
Ω with P (Ω) = 1, that is, the usual one induced by the Lebesgue measure.

Let V be the linear space over R of bounded measurable functions on Ω:

V = {X : Ω → R | X is a bounded measurable function}.
In other words, X ∈ V is a random variable on Ω with the probability
measure P . We also define a natural inner product on the linear space V to
R by

〈X,Y 〉 =
∫

Ω
XY dP

for X,Y ∈ V .
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Let 1 ∈ V be the function identically 1 on Ω, i.e., 1(ω) = 1 for all ω ∈ Ω,
and let S(1) = {Y ∈ V | 〈Y,1− Y 〉 = 0} be the sphere.

For Y ∈ S(1), m,n ∈ Z≥0, and a real ǫ > 0, we put

H̃m,n
ǫ (Y ) :=

1− 〈Y, Y 〉
ǫn−m

+ ǫm.

This value will play the role of height in our results.
To state our results, we need a few notations. For a real ǫ with 0 < ǫ <

1/2, A(ǫ) =
{

x ∈ Rn
∣

∣ |x|∞ < ǫ/2
}

denotes the ǫ-cube. For p ∈ Rn, let
Xp

ǫ ∈ V be the characteristic function of the image of π of the p-translation
of A(ǫ), that is,

Xp
ǫ (ω) =

{

1 if ω ∈ π(A(ǫ) + p),
0 otherwise

where A(ǫ) + p = {a + p | a ∈ A(ǫ)}. Let Z(ǫ) = {a + b | a ∈ A(2ǫ),b ∈
Zn,b 6= 0}.

1.2. Results. Theorems 1 and 2 stated below are our main results. We note
that they are analytic, that is, we do not assume that the linear subspace T
is defined over an algebraic number field.

Theorem 1. Let l, m, n be integers with 1 ≤ l ≤ m < n, and let ǫ be
a real number with 0 < ǫ < 1/2. Let T be a linear subspace of Rn with
m = dimR T . Suppose that Y ∈ S(1) satisfies 〈Xp

ǫ , Y 〉 = 0 for all p ∈ T ,
where Y may depend on ǫ. Then the following hold:

(i) There exist l points z1(ǫ), . . . , zl(ǫ) in Rn with

l
∑

i=1

log |zi(ǫ)|∞ ≤ l

m
log H̃m,n

ǫ (Y ) + Cl,m,n

such that zi(ǫ) ∈ T ∩ Z(ǫ) for i = 1, . . . , l, where Cl,m,n is a constant inde-
pendent of ǫ, T , Y , and z1(ǫ), . . . , zl(ǫ).

(ii) Consider the case l = m. Let ǫ1 > ǫ2 > ǫ3 > . . . ց 0 be a decreasing
sequence converging to 0 with ǫ1 < 1/2, and let S be the set of all m-tuples
(zi(ǫk))i=1,...,m in (i);

S := {(z1(ǫk), . . . , zm(ǫk)) | k = 1, 2, . . .} ⊂ Rn×m.

Assume that

lim sup
ǫ→+0

inf
Y ∈S(1)

{H̃m,n
ǫ (Y ) | 〈Xp

ǫ , Y 〉 = 0 for all p ∈ T}

is finite. Then there exists an accumulating point (ζζζ i)i=1,...,m of S such that
ζζζ1, . . . , ζζζm are linearly independent over R.
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Theorem 2. Let T be a linear subspace of Rn with m = dimR T for 1 ≤
m < n. Then the following are equivalent.

(I) lim sup
ǫ→+0

inf
Y ∈S(1)

{H̃m,n
ǫ (Y ) | 〈Xp

ǫ , Y 〉 = 0 for all p ∈ T} < ∞
(II) T is defined over Q.

As mentioned in the Introduction, if we call “ 〈Xp
ǫ , Y 〉 = 0 for all p ∈ T ”

a system of linear equations whose coefficients are obtained from T , we can
say that Y ∈ V is a solution of this system. Then we restrict our attention
to solutions in the sphere S(1). This is our approach for Siegel’s lemma.

Remark 1. For only Part (i) of Theorem 1, one can choose the constant as

(1) Cl,m,n =

{

l log n if l = 1, 2,

l log n+
(l − 1)l(l + 3)

2m
log(l − 1) if l = 3, . . . ,m.

However in order to validate Part (ii), we need another constant Cl,m,n, de-
noted by C ′ in our proof below, which is slightly larger than (1) for technical
reasons.

1.3. Siegel’s lemma and the geometry of numbers. The geometry of
numbers, namely, the ordinary geometry of numbers (e.g., the Euclidean
geometry of numbers and the adelic geometry of numbers, which utilize the
volume of convex bodies), is an essential tool for the height type in [2, 9].
The height of a linear subspace defined over an algebraic number field is the
volume of a certain convex body, and this fact allows the best use of the
geometry of numbers. Philippon and Waldschmidt [5] used the pigeonhole
principle; however, it is not difficult to imagine that their analytic type
can be also proved by means of the geometry of numbers. For the relation
between Siegel’s lemma and the geometry of numbers, one can refer to [6].
There is no doubt that the geometry of numbers is an important principle
underlying Siegel’s lemma.

In this article, we introduce a tool (Lemma 1 below) instead of the ordi-
nary geometry of numbers. No volume appears, that is, Lemma 1 requires
only discrete conditions. Our proof of Theorem 1 relies on this tool. Fur-
thermore Theorem 1, a hybrid of the analytic and the height type, leads
to both types as the following Corollaries 1 and 2. Our approach needs
the Lebesgue measure; however, our proof avoids relying on the ordinary
geometry of numbers.

Now let ( , ) be the standard inner product on Rn.

Corollary 1. (see [5]) Let m and n be integers with 1 ≤ m < n and
let a1, . . . ,an−m ∈ Rn be linearly independent over R with absolute values
M := max

i=1,...,n−m
|ai|∞. Then for a given real ǫ0 > 0, there exists a nontrivial
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lattice point z ∈ Zn with

log |z|∞ ≤ n−m

m
log

M

ǫ0
+ C1

such that |(ai, z)| < ǫ0 for i = 1, . . . , n−m. Here C1 = (n log n)/m+ ((m+
1) log 2)/m.

Corollary 2. ([2] see also [9]) With the same hypotheses as in Corollary
1, assume that a1, . . . ,an−m ∈ Zn ⊂ Rn. Let

TQ = {x ∈ Qn | (ai,x) = 0 for i = 1, . . . , n −m}.
Suppose that the rank of TQ ∩ Zn over Z is m. Then there exist m linearly
independent lattice points z1, . . . , zm ∈ Zn with

m
∑

i=1

log |zi|∞ ≤ logH(TQ) + C2.

Here H(TQ) is the height of the linear subspace TQ and the constant C2 is
independent of the height and z1, . . . , zm.

Remark 2. Part (i) of Theorem 1 holds even for the trivial solution Y = 0
(identically 0). It leads to Corollary 1. Note that the analytic Siegel’s
lemma in [5] was considered over the complex number field. If ǫ0 tends to 1,
Corollary 1 immediately gives the original Siegel’s lemma (see [8] and [1]).
In this case, it is known that C1 is improved as ((n−m) log n)/m in [1]. Our
estimation of the error term Cl,m,n in Theorem 1 is not sharp, and therefore
neither C1 nor C2 is. It is important to note that Bombieri and Vaaler [2]
obtained C2 = 0. They also obtained the height type for the case of general
algebraic number fields.

Some readers may be concerned that there are different versions of the
definition of (the ordinary) height depending on the norm chosen at the
Archimedean places. However this affects only the constant term C2. We
use the usual L2-norm at the Archimedean places. See [2], [6] and [7] for
the definition of height. In this article, we follow Schmidt in Ch. 3 of [7];
essentially, it is the same as that given as in [2].

2. Preliminaries

2.1. Alternative tool and its estimation. Here we introduce our tool
instead of the ordinary geometry of numbers.

Let G be an abelian group and let Q be a subset of G. We call Q sym-
metric if σ ∈ Q implies that −σ ∈ Q. For a nonempty subset H of G, we
write H −H = {σ − σ′ | σ, σ′ ∈ H}. For a given real number γ, inevitably
greater than 1, we will consider a subset Q of G satisfying the following:
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(Condition A)
For arbitrary finite subset H of G, if #H ≥ γ then (H −H) ∩Q 6= {0}.

Here #H denotes the cardinality of H. We always assume that 0 ∈ Q.
The following Lemma 1 is our alternative tool. Only discrete conditions

appear.

Lemma 1. Let l and m be integers with 1 ≤ l ≤ m. Suppose that a sym-
metric subset Q of the abelian group G = Zm satisfies Condition A with a
given real γ. Then there exist l elements ρρρ1, . . . ,ρρρl ∈ Q which are linearly
independent over Z such that

l
∑

i=1

log |ρρρi|∞ ≤ l

m
(log γ + C(l)) ,

where |ρρρ|∞ := max
i=1,...,m

|ai| for ρρρ = (a1, . . . , am) ∈ Zm and C(l) is a constant

dependent only on l. More precisely, C(1) = C(2) = 0 and C(l) = ((l −
1)(l + 3) log(l − 1))/2 for l ≥ 3.

To show Lemma 1 we use the following:

Lemma 2. Let l be an integer with l ≥ 2. Let r1, . . . , rl, δ2, . . . , δl be real
numbers with 0 < r1 ≤ r2 ≤ · · · ≤ rl and with 0 < δi ≤ 1 for i = 2, . . . , l.
Suppose that a real l × l matrix B = (ai,j)i,j=1,...,l satisfies |ai,i| = ri for
i = 1, . . . , l and

|ai,j| ≤
{

riδj if i < j,
rj if i > j.

If

l
∑

i=2

δi(i− 1)(i+1)/2 < 1, then detB 6= 0.

Proof of Lemma 2. We write Bm = (ai,j)i,j=1,...,m for m = 1, . . . , l. Let Di

be the (i, l)-cofactor of B = Bl, that is, the submatrix obtained by deleting
the i-th row and the l-th column of B. By the assumptions, the absolute
values of elements in the k-th column do not exceed rk. By Hadamard’s
inequality we have

|detDi| ≤
√
l − 1r1 · · ·

√
l − 1rl−1 = (l − 1)(l−1)/2r1 · · · rl−1.
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The cofactor expansion of detBl gives that

|detBl| =

∣

∣

∣

∣

∣

rl detBl−1 +

l−1
∑

i=1

(−1)l+iai,l detDi

∣

∣

∣

∣

∣

≥ rl |detBl−1| −
l−1
∑

i=1

riδl |detDi|

≥ |detBl−1| rl − δl(l − 1)(l−1)/2r1 · · · rl−1

l−1
∑

i=1

ri.

Now for i = 2, . . . , l, put

ǫi = δi(i− 1)(i−1)/2
i−1
∑

j=1

rj
ri
, bi = |detBi| (r1 · · · ri)−1.

Then bl ≥ bl−1 − ǫl. Similarly, bi ≥ bi−1 − ǫi for i = 2, . . . , l. Consequently,
if l ≥ 3, we obtain

bl ≥ bl−1 − ǫl ≥ bl−2 − ǫl−1 − ǫl ≥ · · · ≥ b2 −
l
∑

i=3

ǫi.

Since ǫ2 = δ2r1/r2 and since r1r2b2 = |detB2| ≥ r1r2 − δ2r
2
1 = r1r2(1 − ǫ2),

it follows that

bl ≥ 1−
l
∑

i=2

ǫi

for l = 2, 3, . . .. The assumption ri ≤ ri+1 implies
∑i−1

j=1 rj/ri ≤ i − 1.

Therefore we have ǫi ≤ δi(i− 1)(i−1)/2(i− 1) and

bl ≥ 1−
l
∑

i=2

δi(i− 1)(i+1)/2.

This proves the lemma. �

Proof of Lemma 1. For i = 1, . . . ,m, we denote πi : Rm → R by the
standard projections, i.e., for ααα = (α1, . . . , αm) ∈ Rm, πi(ααα) = αi. Let Zm

be the canonical full-rank lattice group in Rm.
Let Rm

≥0 be the set of non-negative real coordinates vectors. For a vector
βββ ∈ Rm

≥0, we write

C(βββ) = {a ∈ Zm | 0 ≤ πi(a) ≤ πi(βββ) for i = 1, . . . ,m}.
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Then #C(βββ) =
∏m

i=1(⌊πi(βββ)⌋+ 1) ≥∏m
i=1 πi(βββ), where ⌊πi(βββ)⌋ denotes the

integer not exceed πi(βββ). Moreover, for a, b ∈ C(βββ) and for i = 1, . . . ,m,
we have |πi(a− b)| ≤ πi(βββ) since 0− πi(βββ) ≤ πi(a− b) ≤ πi(βββ)− 0.

Now let βββ(1) be in Rm
≥0 with πi(βββ

(1)) = γ1/m for i = 1, . . . ,m. We first

consider C(βββ(1)). Since #C(βββ(1)) ≥ ∏m
i=1 πi(βββ

(1)) = γ, there exist a, b ∈
C(βββ(1)) ⊂ G = Zm with 0 6= a − b ∈ Q by the assumptions. That is, the

set D1 := {ρρρ ∈ Q \ {0} | |πi(ρρρ)| ≤ πi(βββ
(1)) = γ1/m for i = 1, . . . ,m} is not

empty. We choose an element in D1 such that the value of | |∞ is minimum,

and we denote it by ρρρ1. Set r1 = |ρρρ1|∞. Since it is in D1, 1 ≤ r1 ≤ γ1/m. We
can assume, by exchanging coordinates of Rm if necessary, that |π1(ρρρ1)| = r1.
Furthermore we can assume that π1(ρρρ1) = r1 since Q is symmetric. We thus
conclude that Lemma 1 holds for l = 1 with C(1) = 0.

For l = 2, . . . ,m, we now consider real numbers δ2, . . . , δl satisfying

(2) 0 < δl ≤ · · · ≤ δ2 < 1 and
l
∑

i=2

δi(i− 1)(i+1)/2 < 1.

Here let βββ(2) be in Rm
≥0 with π1(βββ

(2)) = r1δ2 and with πi(βββ
(2)) =

(γ/(r1δ2))
1/(m−1) for i = 2, . . . ,m. We next consider C(βββ(2)). Again, since

#C(βββ(2)) ≥
∏m

i=1 πi(βββ
(2)) = γ, there exist a, b ∈ C(βββ(2)) with 0 6= a− b ∈

Q. That is D2 := {ρρρ ∈ Q \ {0} | |πi(ρρρ)| ≤ πi(βββ
(2)) for i = 1, . . . ,m}

is not empty. We choose an element in D2 such that the value of | |∞
is minimum, and we denote it by ρρρ2. Set r2 = |ρρρ2|∞. If r2 < r1, then

r2 ≤ γ1/m by r1 ≤ γ1/m. It follows that ρρρ2 ∈ D1. This contradicts the
minimality of |ρρρ1|∞. Therefore r1 ≤ r2. Here we have r2 = |ρρρ2|∞ ≤
max(r1δ2, (γ/(r1δ2))

1/(m−1)). By r1 ≤ r2 and by δ2 < 1, it follows that

r1δ2 < r2. Thus r2 ≤ (γ/(r1δ2))
1/(m−1), that is,

δ2r1r
m−1
2 ≤ γ.

Since Q is symmetric, we can assume, by exchanging coordinates of Rm

except the first index if necessary, that |π1(ρρρ2)| ≤ r1δ2, π2(ρρρ2) = r2 and that
|πi(ρρρ2)| ≤ r2 for i = 3, . . . ,m.

Now we consider the case of l = 2. For any 0 < δ2 < 1, the rank of the
matrix formed from ρρρ1 and ρρρ2 is 2 by Lemma 2; hence they are linearly
independent over R.

Since the values of r1 and r2 are discrete on δ2, one sees that there exist
ρρρ1 and ρρρ2 such that r1r

m−1
2 ≤ γ in the case of δ2 = 1 − δ for sufficiently

small positive δ > 0.
By (log r1+log r2)+(m−2) log r2 ≤ log γ and by log r1+log r2 ≤ 2 log r2,
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it follows that (1 + m−2
2 )(log r1 + log r2) ≤ log γ. That is

log r1 + log r2 ≤
2

m
log γ.

This shows that Lemma 1 holds for l = 2 with C(2) = 0.
We now proceed by induction. For a natural number k with 3 ≤ k ≤ l,

we define βββ(k−1) ∈ Rm
≥0 by π1(βββ

(k−1)) = r1δk−1, π2(βββ
(k−1)) = r2δk−1, . . .,

πk−2(βββ
(k−1)) = rk−2δk−1 and by

πi(βββ
(k−1)) = (γ/(r1r2 · · · rk−2δ

k−2
k−1))

1/(m−(k−2))

for i = k − 1, . . . ,m. We now assume the following (1-i)–(1-iii):

(1-i) the set Dk−1 := {ρρρ ∈ Q\{0} | |πi(ρρρ)| ≤ πi(βββ
(k−1)) for i = 1, . . . ,m}

is not empty.
(1-ii) we can choose an element in Dk−1 such that the value of | · |∞ is

minimum, and we denote it by ρρρk−1. Set rk−1 = |ρρρk−1|∞. Then rk−1 =
πk−1(ρρρ

(k−1)) and r1 ≤ r2 ≤ · · · ≤ rk−1 hold.

(1-iii) the inequality δk−2
k−1r1r2 · · · rk−2r

m−(k−2)
k−1 ≤ γ holds.

One sees that these three assumptions hold for k = 3. Note that the last
inequality is equivalent to

(3) rk−1 ≤ πk−1(βββ
(k−1)).

Now we define βββ(k) ∈ Rm
≥0 by π1(βββ

(k)) = r1δk, π2(βββ
(k)) = r2δk, . . .,

πk−1(βββ
(k)) = rk−1δk and by πi(βββ

(k)) = (γ/(r1r2 · · · rk−1δ
k−1
k ))1/(m−(k−1)) for

i = k, . . . ,m. We consider the set C(βββ(k)). Since #C(βββ(k)) ≥
∏m

i=1 πi(βββ
(k))

= γ, there exist a, b ∈ C(βββ(k)) with 0 6= a − b ∈ Q. That is, the set
Dk := {ρρρ ∈ Q \ {0} | |πi(ρρρ)| ≤ πi(βββ

(k)) for i = 1, . . . ,m} is not empty.
We choose an element in Dk such that the value of | · |∞ is minimum,
and we denote it by ρρρk, set rk = |ρρρk|∞. We now show that rk−1 ≤ rk.
Assume the negation: rk < rk−1. By ρρρk ∈ Dk, we have |πi(ρρρk)| ≤ riδk ≤
riδk−1 = πi(βββ

(k−1)) for i = 1, . . . , k − 2. Noting the assumption (3) we

have |πk−1(ρρρk)| ≤ rk < rk−1 ≤ πk−1(βββ
(k−1)) for i = k − 1. Moreover

one sees that |πi(ρρρk)| ≤ rk < rk−1 ≤ πk−1(βββ
(k−1)) = πi(βββ

(k−1)) holds for
i = k, k + 1, . . . ,m. That is, ρρρk ∈ Dk−1, which contradicts the minimality
of |ρk−1|∞. Therefore rk−1 ≤ rk, i.e., r1 ≤ r2 ≤ · · · ≤ rk−1 ≤ rk.

We can assume, by changing the k, . . . ,m-th coordinates of Rm if nec-
essary, that rk = πk(ρρρk). Since rk = |ρρρk|∞ ≤ max(r1δk, r2δk, . . . , rk−1δk,

(γ/(r1r2 · · · rk−1δ
k−1
k ))1/(m−(k−1))), the conditions r1 ≤ r2 ≤ · · · ≤ rk and

δk ≤ · · · ≤ δ2 < 1 give that rk ≤ (γ/(r1r2 · · · rk−1δ
k−1
k ))1/(m−(k−1)), i.e.,

δk−1
k r1r2 · · · rk−1r

m−(k−1)
k ≤ γ.
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By induction on k, we obtain r1 ≤ r2 ≤ · · · ≤ rl−1 ≤ rl and

(4) δl−1
l r1r2 · · · rl−1r

m−(l−1)
l ≤ γ.

Lemma 2 and the condition (2) show that the matrix formed from ρρρ1, . . . ,ρρρl
has the full rank, hence ρρρ1, . . . ,ρρρl are linearly independent over R. Note

that
∑l

i=1 log ri ≤ l log rl. Again by (4) and since

(l − 1) log δl +
l
∑

i=1

log ri + (m− l) log rl ≤ log γ,

we have

(l − 1) log δl +

(

1 +
m− l

l

) l
∑

i=1

log ri ≤ log γ.

Therefore

(5)

l
∑

i=1

log ri ≤
l

m
(log γ + (l − 1) log(1/δl))

holds. Recall that the condition (2) about δ2, . . . , δl. So for any sufficient
small positive δ > 0, the inequality (5) holds in the case of

δl = δl−1 = · · · = δ2 =

(

l
∑

i=2

(i− 1)(i+1)/2

)−1

− δ.

Furthermore, since the left-hand side in the inequality (5) is discrete on δ,
one sees that the estimation in Lemma 1

l
∑

i=1

log ri ≤
l

m

(

log γ + (l − 1) log
l
∑

i=2

(i− 1)(i+1)/2

)

holds for sufficiently small δ > 0. Finally, we have
∑l

i=2(i − 1)(i+1)/2 ≤
(l−1) · (l−1)(l+1)/2 = (l−1)(l+3)/2 since the value (i−1)(i+1)/2 is increasing
on i = 2, 3, . . .. Therefore we conclude that Lemma 1 holds for l = 3, . . . ,m
with C(l). �

2.2. Some lemmas. We now give a proof of Proposition 1 as Lemma 3
below in a slightly generalized form. By abuse of notation, we use the same
letters employed in the preceding sections. Let V and K be abelian groups
and let 〈 , 〉 : V × V → K be a bilinear mapping as Z-modules. We will use
the symbols +,− and 0 in the usual sense. For a fixed nonzero u ∈ V , we
put S(u) = {x ∈ V | 〈x, u− x〉 = 〈u− x, x〉 = 0}.
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Lemma 3. Let N be a positive integer and let x1, . . . , xN be in S(u) with
〈xi, xj〉 = 0 for i, j = 1, . . . , N , i 6= j. Then there exists an element w ∈ S(u)
such that

〈u, u〉 = 〈w,w〉 +
N
∑

i=1

〈xi, xi〉.

Proof. For x ∈ V , we abbreviate 〈x, x〉 to 〈x〉. Put w = u −∑N
i=1 xi. We

claim that w ∈ S(u) and that 〈u〉 = 〈w〉 +∑N
i=1〈xi〉. Since 〈xi, xj〉 = 0 for

i 6= j, we have

〈w, u − w〉 = 〈u,
N
∑

i=1

xi〉 − 〈
N
∑

i=1

xi,
N
∑

j=1

xj〉 =
N
∑

i=1

〈u− xi, xi〉 = 0.

Similarly, 〈u − w,w〉 = 0. Thus w ∈ S(u). Since 〈xi〉 = 〈u, xi〉 for i =
1, . . . , N and since 0 = 〈w, u − w〉,

〈w〉 = 〈w, u〉 = 〈u−
N
∑

i=1

xi, u〉 = 〈u〉 −
N
∑

i=1

〈xi, u〉 = 〈u〉 −
N
∑

i=1

〈xi〉.

�

The following Lemma 4 is a simple corollary of Proposition 1 for such our
situation. We follow here the notation of Theorem 1. For p ∈ Rn, we write
Wǫ(p) = {Y ∈ V | 〈Xp

ǫ , Y 〉 = 0}. For a finite index set I = {1, 2, . . . , N}
we consider {pi}i∈I which is a finite subset of Rn. We denote 〈X,X〉 briefly
by 〈X〉 for X ∈ V .

Lemma 4. Suppose that

#I >
1− 〈Y 〉
〈X0

ǫ 〉
for Y ∈ S(1) ∩

⋂

i∈I Wǫ(pi). Then there exist i, j ∈ I with i 6= j such that

〈Xpi
ǫ ,X

pj
ǫ 〉 6= 0. Here X0

ǫ ∈ V is defined by

X0
ǫ (ω) =

{

1 if ω ∈ π(A(ǫ)),
0 otherwise.

Proof. Assume that 〈Xpi
ǫ ,X

pj
ǫ 〉 = 0 for any i 6= j. Equalities 〈Xpi

ǫ 〉 =
P (π(A(ǫ))) = 〈Xpi

ǫ ,1〉 gives Xpi
ǫ ∈ S(1). Since 〈Xpi

ǫ , Y 〉 = 0 for any i ∈ I,
Proposition 1 now shows that there exists Z ∈ S(1) such that

〈1〉 = 〈Z〉+ 〈Y 〉+
∑

i∈I

〈Xpi
ǫ 〉.

By 〈1〉 = 1, 〈Xpi
ǫ 〉 = P (π(A(ǫ))) = 〈X0

ǫ 〉 and by 〈Z〉 ≥ 0, we have 1−〈Y 〉 ≥
#I × 〈X0

ǫ 〉, a contradiction. �
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Lemma 5. For p,q ∈ Rn, if 〈Xp
ǫ ,X

q
ǫ 〉 6= 0, then p− q ∈ Zn +A(2ǫ).

Proof. By the definition of 〈 , 〉 and the assumption 〈Xp
ǫ ,X

q
ǫ 〉 6= 0, we have

π(A(ǫ) + p) ∩ π(A(ǫ) + q) 6= ∅. Then there exist ααα,βββ ∈ A(ǫ) such that
π(ααα+ p) = π(βββ + q), that is , (ααα+ p)− (βββ + q) ∈ Ker(π) = Zn. Therefore
p− q ∈ Zn +A(2ǫ). �

Lemma 6. Consider two orthonormal bases of Rn, E := {e1, . . . , en} and
F := {f1, . . . , fn}. For α1, . . . , αn, β1, . . . , βn ∈ R, let

∣

∣

n
∑

i=1

αiei
∣

∣

E

∞
= max

i=1,...,n
|αi|,

∣

∣

n
∑

i=1

βifi
∣

∣

F

∞
= max

i=1,...,n
|βi|.

Then for arbitrary x ∈ Rn, the inequality |x|E∞ ≤ √
n|x|F∞ holds.

Proof. The proof is standard, left to the reader. �

3. Proofs

3.1. Proof of Theorem 1. Part (i) : According to the preceding section,
we fix an orthonormal basis E = {e1, . . . , en} and an inner product ( , ).
Let T be an m-dimensional linear subspace of Rn in Theorem 1. Now let
F = {f1, . . . , fn} be another orthonormal basis of Rn with ( , ) such that

T = {
m
∑

i=1

αifi | α1, . . . , αm ∈ R}.

Let B = {x ∈ Rn | (x,x) < nǫ2} denote the ball centered at the origin
with radius

√
nǫ. Then B contains the cube A(2ǫ). We now consider a

subgroup of T ,

G := {
m
∑

i=1

ai
√
nǫfi | a1, . . . , am ∈ Z}.

Let H ⊂ G be a finite subset of G. For any H, Y in Theorem 1 satisfies

Y ∈ S(1) ∩
⋂

p∈H

Wǫ(p).

Here we set

Q = G ∩ (Zn +A(2ǫ)) and γ =

⌊

1− 〈Y 〉
ǫn

⌋

+ 1.

Replacing I in Lemma 4 by H, there exist p, q ∈ H with p 6= q such that
〈Xp

ǫ ,X
q
ǫ 〉 6= 0 for any H ⊂ G with #H ≥ γ since 〈X0

ǫ 〉 = ǫn. Lemma 5
thus implies that p− q ∈ Q \ {0}. Furthermore we find that p−q 6∈ A(2ǫ).
Because any r ∈ G with r 6= 0 satisfies (r, r) ≥ nǫ2, we have r 6∈ B, i.e.,
r 6∈ A(2ǫ). It is clear that Q is symmetric and that 0 ∈ Q. Thus Q, which is
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a subset of G, satisfies Condition A with γ. Now we consider an isomorphism
φ : G ≃ Zm by

∑m
i=1 ai

√
nǫfi 7→ (a1, . . . , am). For ρρρ =

∑m
i=1 ai

√
nǫfi with

a1, . . . , am ∈ Z, write |φ(ρρρ)|F∞ = maxi=1,...,m |ai| =: R. Then |ρρρ|F∞ = R
√
nǫ

and |ρρρ|E∞ ≤ nǫR by Lemma 6. Lemma 1 shows that there exist ρρρ1, . . . ,ρρρl ∈
Q ⊂ G such that they are linearly independent over R and such that

l
∑

i=1

log |φ(ρρρi)|F∞ ≤ l

m
(log γ + C(l)) ,

that is,
l
∑

i=1

log |ρρρi|E∞ ≤ l

m
(log γ + C(l)) + l log ǫ+ l log n.

Here ρρρ1, . . . ,ρρρl are in G∩ (Zn +A(2ǫ)) ⊂ T ∩ (Zn +A(2ǫ)) and they are not
in A(2ǫ). Since

γǫm ≤ 1− 〈Y 〉
ǫn−m

+ ǫm,

we obtain Part (i) of Theorem 1 with

Cl,m,n =
l

m
C(l) + l log n,

where C(l) is in Lemma 1. This completes the proof of Part (i).

Remark 3. Let r1, . . . , rl be as in the proof of Lemma 2. Then ri = |φ(ρρρi)|F∞,
i.e., ri

√
nǫ = |ρρρi|F∞ holds.

Part (ii) : By the assumptions, there exists a constant C, independent of
ǫ, satisfying the following: there exists Y ∈ S(1) (which depends on ǫ) with

H̃m,n
ǫ (Y ) ≤ C with 〈Xp

ǫ , Y 〉 = 0 for all p ∈ T for arbitrary small ǫ > 0.
Now suppose that δ in our proof of Lemma 1 is fixed. Here δ is a sufficiently
small positive real number depending on only l,m, n (and independent of
ǫ). Replacing C(l) by “a constant depending on l and δ”, one can check
that Lemma 1 is still true. Thus Part (i) holds with a constant depending
on δ instead of (1). From the condition of Part (ii), we then have the
following: for any ǫ, 0 < ǫ < 1/2, there exist m linearly independent points
z1(ǫ), . . . , zm(ǫ) ∈ Rn with

(6)
m
∑

i=1

log |zi(ǫ)|∞ ≤ log(C + ǫm) + C ′

such that zi(ǫ) ∈ T ∩Z(ǫ) for i = 1, . . . ,m. Here C ′ depends on m,n, δ and
is independent of ǫ. Moreover we can choose C ′ such that C ′ → Cm,m,n in
(1) as δ → +0.

We now consider the set S in Theorem 1, S = {(z1(ǫk), . . . , zm(ǫk)) | k =
1, 2, . . .} ⊂ Rn×m, where z1(ǫk), . . . , zm(ǫk) are linearly independent points
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in T ∩ Z(ǫk) in (6). Note that they are not in A(2ǫk) and that S is
bounded in Rn×m. Thus there exists an accumulating point {ζζζ1, . . . , ζζζm}
of S. Since each ζζζi is in T ∩ Z(ǫk) for infinitely many ǫk → +0, it must be
in T ∩ (Zn \ {0}). We now show that ζζζ1, . . . , ζζζm are linearly independent
over R. We look back on our proof of Part (i). In the later part of the
proof, for any ǫ > 0 let us now consider D1 = |det((ak,i

√
nǫ)k,i=1,...,m)| =

|det((ak,i)k,i=1,...,m)|(√nǫ)m formed by m linearly independent elements in
Q, ρρρk(ǫ) := ρρρk :=

∑m
i=1 ak,i

√
nǫfi for k = 1, . . . ,m where ak,i depends on ǫ.

From the proofs of Lemma 1 and Lemma 2, one can see that

|det((ak,i)k,i=1,...,m)|
r1 · · · rm

≥ 1−
m
∑

i=2

δi(i− 1)(i+1)/2,

where r1, . . . , rm are in our proof of Lemma 1. Let D2 be the right-hand
side of the last inequality. Suppose that δ in the proof of Lemma 2 is a
sufficiently small positive constant depending only on l,m, n. Then D2 does
not vanish, and it is independent of ǫ. From the proof of Lemma 2, each
ρρρk(ǫ) = ρρρk =

∑m
i=1 ak,i

√
nǫfi for k = 1, . . . ,m in the proof of Part (i) satisfies

that |ρρρk|F∞ = rk
√
nǫ by Remark 3. We thus obtain

D1 ≥ |ρρρ1|F∞ · · · |ρρρm|F∞D2 ≥ |ρρρ1|E∞ · · · |ρρρm|E∞(
√
n)−mD2 ≥ (1−2ǫ)m(

√
n)−mD2

by Lemma 6 and by |ρρρk|E∞ ≥ 1 − 2ǫ. Hence D1 is bigger than a positive
constant independent of ǫ when ǫ is sufficiently small. This shows that
the determinant formed by ζζζ1, . . . , ζζζm is not 0 and that they are linearly
independent over R. Therefore T has m linearly independent ζζζ1, . . . , ζζζm ∈
Zn and we conclude that T is defined over Q. The proof is complete. �

3.2. Proof of Corollary 1. First note that the following inequality holds:
let ǫ, a1, . . . , an be real numbers with ai ≥ 1 for i = 1, . . . , n. Then

(7)
n
∑

i=1

log(ai + ǫ) ≤ n log(1 + ǫ) +
n
∑

i=1

log ai

because ai + ǫ ≤ ai(1 + ǫ).
Proof of Corollary 1. Let T , M and ǫ0 be as in Corollary 1 and let ǫ in
Theorem 1 be given by ǫ0 = nMǫ. To deduce Corollary 1 from Part (i), take
the trivial solution, Y = 0, which is in S(1). Then Part (i) of Theorem 1
says that there exist l linearly independent z1, . . . , zl ∈ T ∩(Zn \ {0} + Z(ǫ))
such that

l
∑

i=1

log |zi|∞ ≤ l

m
log
(

ǫm−n + ǫm
)

+ Cl,m,n.

For any j = 1, . . . , l and for zj , there exist bj ∈ Zn \ {0} and dj ∈ A(2ǫ)
such that zj = bj +dj . By zj ∈ T , we have (ai, zj) = 0 for i = 1, . . . , n−m.
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Then |(ai,bj)| = |(ai, zj) − (ai,dj)| = |(ai,dj)| < nMǫ = ǫ0 . Moreover
we see that 1 ≤ |bj |∞ = |zj − dj |∞ ≤ |zj |∞ + |dj |∞ ≤ |zj |∞ + ǫ, namely
1− ǫ ≤ |zj |∞. Then the inequality (7) gives

l
∑

j=1

log

( |zj |∞
1− ǫ

+
ǫ

1− ǫ

)

≤ l log

(

1 +
ǫ

1− ǫ

)

+

l
∑

j=1

log
|zj |∞
1− ǫ

.

That is,

l
∑

j=1

log (|zj |∞ + ǫ) ≤ l log

(

1 +
ǫ

1− ǫ

)

+
l
∑

j=1

log |zj |∞.

Thus
l
∑

j=1

log |bj |∞ ≤
l
∑

j=1

log(|zj |∞ + ǫ)

≤ l

m
log
(

ǫm−n + ǫm
)

+ l log

(

1 +
ǫ

1− ǫ

)

+ Cl,m,n.

Again, by ǫ = ǫ0/(nM) < 1 and by m < n, (7) gives log(ǫm−n + ǫn) ≤
log(1 + ǫn) + log ǫm−n. Since n ≥ 2 and since M ≥ 1 one sees that ǫ < 1/2
for ǫ0 < 1. Therefore we obtain

l
∑

j=1

log |bj |∞ ≤ l(n−m)

m
log

M

ǫ0
+

l(n−m)

m
log n+

(

l

m
+ l

)

log 2 +Cl,m,n.

The case of l = 1 completes the proof. �

3.3. Proof of Theorem 2. The definition of height of a linear subspace
and detailed discussions can be found in [2] and [7]. We follow Schmidt [7,
Ch. 3].

Let T be a linear subspace of Rn defined over Q with dimR T = m. Then
there exist g1, . . . ,gm ∈ Zn such that

T ∩ Zn = {
m
∑

i=1

bigi | b1, . . . , bm ∈ Z}.

Throughout this section, we write

F = {
m
∑

i=1

βigi | 0 ≤ βi < 1 for i = 1, . . . ,m}

for a fundamental domain of the lattice group T ∩Zn. According to Schmidt
[7, Theorem 1], the height of T ∩Qn equals the volume of F in our proof of
Lemma 7 below; H(T ∩Qn) = µ1(F). We denote it briefly by H(TQ).

Let ǫ, A(ǫ), π and P be as in above.
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Lemma 7. Let T be a linear subspace of Rn with dimR T = m. Suppose
that T is defined over Q. That is, there exist a1, . . . ,an−m ∈ Zn such that

T = {x ∈ Rn | (ai,x) = 0 for i = 1, . . . , n−m}.
Then the inequality

P





⋃

p∈T

π(A(ǫ) + p)



 ≤ Dn−mǫn−mH(TQ)

holds. Here Dn−m is the volume of the (n−m)-dimensional ball with radius√
n/2: Dn−m = π(n−m)/2 (

√
n/2)

n−m
/Γ((n −m+ 2)/2).

Proof. Let F = {f1, . . . , fn} be the orthonormal basis of Rn in our proof
of Theorem 1. Let T⊥ be the orthogonal complement of T . For x =
∑n

i=1 αifi ∈ Rn, we define the natural projections, φ1 : Rn → T by φ1(x) =
∑m

i=1 αifi and φ2 : Rn → T⊥ by φ2(x) = x − φ1(x). Moreover we de-

note the natural inclusions T →֒ Rn by ι1, and T⊥ →֒ Rn by ι2. For
x ∈ T , y ∈ T⊥, we write x ⊕ y = ι1(x) + ι2(y) ∈ Rn. Moreover we set
A×B = {x⊕ y | x ∈ A, y ∈ B} for A ⊂ T , B ⊂ T⊥.

Let E = {e1, . . . , en} be the orthonormal basis of Rn in the preceding
section. Then A(ǫ) = {x ∈ Rn | |x|E∞ < ǫ/2}. Let B0 = {x ∈ Rn | (x,x) <
n(ǫ/2)2} be the ball centered the origin with radius

√
nǫ/2 in Rn. Then

A(ǫ) ⊂ B0. Since φ1(a + p) = φ1(a) + φ1(p) = φ1(a) + p ∈ T and since
φ2(a + p) = φ2(a) ∈ φ2(A(ǫ)) ⊂ φ2(B0) for a ∈ A(ǫ), p ∈ T , we have
a+ p = φ1(a) + p+ φ2(a) ∈ T × φ2(B0). Thus we have

⋃

p∈T

A(ǫ) + p ⊂ T × φ2(B0).

Next, for any subset D of T⊥, we show that π(T ×D) ⊂ π(F×D). Note
that

T = {y +

m
∑

i=1

bigi | y ∈ F, b1, . . . , bm ∈ Z}.

Then (y +
∑m

i=1 bigi) ⊕ d = ι1(y +
∑m

i=1 bigi) + ι2(d) = ι1(y) + ι2(d) +
∑m

i=1 bigi for d ∈ D. Since π(
∑m

i=1 bigi) = 0 we have π((y +
∑m

i=1 bigi) ⊕
d) ∈ π(F×D). Therefore we obtain

π





⋃

p∈T

A(ǫ) + p



 ⊂ π(F× φ2(B0)).

Let µ be the Lebesgue measure on Rn. In general, the inequality P (π(S)) ≤
µ(S) holds for any measurable set S of Rn. Then P (π(F × φ2(B0))) ≤
µ(F × φ2(B0)) = µ1(F) × µ2(φ2(B0)) where µ1 is the Lebesgue measure
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on Rm via T ≃ Rn by
∑m

i=1 αifi 7→ (α1, . . . , αm), and µ2 is the Lebesgue

measure on Rn−m via T⊥ ≃ Rn−m by
∑n

i=m+1 αifi 7→ (αm+1, . . . , αn).
We now write gi =

∑m
j=1 αi,jfj for i = 1, . . . ,m. Then µ1(F) =

|det(αi,j)i,j=1,...,m| and this equals H(TQ), the height of T (see [7, Ch. 3]).

Since φ2(B0) is the ball centered the origin with radius
√
nǫ/2 in T⊥ ≃

Rn−m, µ2(φ2(B0)) = Dm−nǫ
n−m. This completes the proof. �

Here we give our proof of Theorem 2. It also shows that we can take C =
H(TQ)Dn−m where C is the constant in our proof of Part (ii) of Theorem
1. Here H(TQ) is the height of T and Dn−m is in Lemma 7. This is why we

say that H̃m,n
ǫ (Y ) plays a role of height.

Proof of Theorem 2. We only need to show that (II) implies (I). We show
here that there exists a constant C in our proof of Part (ii) of Theorem 1.
The set

⋃

p∈T π(A(ǫ)+p) is open. Let D be the complement of it. Let Y be
the indicator random variable of the measurable set D. That is, for ω ∈ Ω,
Y (ω) = 1 if ω ∈ D, Y (ω) = 0 if not. By definition, we have 〈Y,1〉 = 〈Y, Y 〉.
Then Y ∈ S(1). One can see that Xp

ǫ (ω)Y (ω) = 0 for ω ∈ Ω and for p ∈ T .
Thus 〈Xp

ǫ , Y 〉 = 0. Under the condition (II), we have

〈Y 〉 = P (D) = 1− P





⋃

p∈T

π(A(ǫ) + p)



 ≥ 1−Dn−mǫn−mH(TQ)

by Lemma 7. Let C = Dn−mH(TQ). It follows that there exists Y ∈ S(1)

(which depends on ǫ) with H̃m,n
ǫ (Y ) ≤ C with 〈Xp

ǫ , Y 〉 = 0 for all p ∈ T for
arbitrary small ǫ > 0. �

3.4. Proof of Corollary 2. Let T be in Corollary 2. Then Theorem 2
shows that we can use the accumulating point (ζζζ i)i=1,...,m of S in Theorem
1. Let ǫ → +0 in our proof of Part (ii). Since one can choose δ in the
proof of Part (ii) to be arbitrary small (but δ must be independent of ǫ),
one can check that the following holds by Theorem 1 and by (6): there exist
m linearly independent points ζζζ1, . . . , ζζζm ∈ T ∩ (Zn \ {0}) with

m
∑

i=1

log |ζζζ i|∞ ≤ log(Dn−mH(TQ)) + Cm,m,n.

Since Dn−m and Cm,m,n in (1) are independent of H(TQ), the last inequality
shows Corollary 2. �
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