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ABSTRACT 

 

Background Molecular-based companion diagnostic tests are being used with increasing 

frequency to predict their clinical response to various drugs, particularly for molecularly 

targeted drugs. However, invasive procedures are typically required to obtain tissues for this 

analysis. Circulating tumor cells (CTCs) are novel biomarkers that can be used for the 

prediction of disease progression and are also important surrogate sources of cancer cells. 

Because current CTC detection strategies mainly depend on epithelial cell surface markers, 

the presence of heterogeneous populations of CTCs with epithelial and/or mesenchymal 

characteristics may pose obstacles to the detection of CTCs. 

Methods We developed a new approach to capture live CTCs among millions of peripheral 

blood leukocytes using a green fluorescent protein (GFP)-expressing attenuated adenovirus, 

in which the telomerase promoter regulates viral replication (OBP-401, TelomeScan).  

Results Our biological capturing system can image both epithelial and mesenchymal tumor 

cells with telomerase activities as GFP-positive cells. After sorting, direct sequencing or 

mutation-specific polymerase chain reaction (PCR) can precisely detect different mutations in 

KRAS, BRAF and KIT genes in epithelial, mesenchymal, or epithelial–mesenchymal 

transition-induced CTCs as well as in clinical blood samples from colorectal cancer patients. 

Conclusion This fluorescent virus-guided viable CTC capturing method provides a non-

invasive alternative to tissue biopsy or surgical resection of primary tumors for companion 

diagnostics.  
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Significance of this study 

 

What is already known about this subject? 

 The molecular characterization of CTCs based on genetic alterations facilitates the 

administration of molecular targeted drugs for preventing metastatic progression in 

individual cancer patient. 

 Heterogeneous populations of CTCs with epithelial and/or mesenchymal characteristics 

make difficult to detect the entire CTCs because CTC detection mainly depends on 

epithelial cell surface markers. 

 

What are the new findings? 

 Our fluorescent virus OBP-401 selectively labeled human CTCs with fluorescence 

among millions of peripheral blood leukocytes. 

 Our biological capturing system can image both epithelial and mesenchymal tumor cells 

with telomerase activities as GFP-positive cells. 

 

How might it impact on clinical practice in the foreseeable future? 

 Because current CTC detection strategies mainly depend on epithelial cell surface 

markers, the presence of heterogeneous populations of CTCs with epithelial and/or 

mesenchymal characteristics may pose obstacles to the detection of CTCs.  

 Fluorescent virus-based biological capture system is a promising tool for monitoring 

genetic alterations in both epithelial and mesenchymal types of CTCs. 
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INTRODUCTION 

 

The rapid evolution of genetic and genomic technologies in regards to predictive 

pharmacogenetic biomarkers for molecularly targeted therapies (e.g., monoclonal antibodies 

and small-molecule tyrosine kinase inhibitors) have resulted in tremendous advances in 

personalized oncologic treatment
1
. The current commonly used biomarkers include human 

epidermal growth factor receptor 2 (HER2) for the use of trastuzumab in breast and gastric 

cancer
2,3

, KRAS for the use of cetuximab and panitumumab in colorectal cancer
4
, 

echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) 

for the use of crizotinib, and epidermal growth factor receptor (EGFR) for the use of erlotinib 

and gefitinib, in non-small cell lung cancer
5,6

, and BCR–ABL for the use of tyrosine kinase 

inhibitors in chronic myeloid leukemia
7
. Companion diagnostic assays are designed to 

accompany specific therapies and help guide selection of patients according to expected drug 

responses. While the use of these assays has led to a shift in paradigms from disease-based 

therapeutic regimens to molecular target-based protocols
8,9

, many of these molecular 

diagnostic modalities have onerous specimen requirements, such as needle core biopsies or 

surgical sampling of tumor tissues that can be invasive.  

 Circulating tumor cells (CTCs), first described in 1869 by Ashworth
10

, are often 

present in the peripheral blood of patients with advanced cancers. However, as CTCs are very 

rare within the bloodstream, detection of CTCs can be difficult. The most commonly used 

CTC detection method is the CellSearch system
11,12

, which can enrich CTCs using 

magnetized antibodies that target the major epithelial cell surface marker, epithelial cell 

adhesion molecule (EpCAM). More recently, genetic analysis of the EGFR gene using the 

EpCAM-dependent CTC-chip detection system has been described for the surveillance of 
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CTCs in patients with lung cancers
13

. CTCs are thought to contain the metastasis-initiating 

tumor cells that form metastatic colonies at distant organs
14,15

, but recent studies have 

suggested that there are heterogeneous populations that include CTCs with both epithelial and 

mesenchymal characteristics
16

, which are associated with epithelial-mesenchymal transition 

(EMT)
17

. Recently, EpCAM-positive and EpCAM-negative CTCs from breast cancer patients 

have been shown to exhibit high potential to metastasize to the lung and brain, respectively, 

in nude mice
18,19

. In colorectal cancer patients, not only captured cytokeratin (CK)-positive 

CTCs, but also co-captured CK-negative cells have been shown to possess complex 

aneuploidy
20

. Moreover, it has been reported that plastin3 (PLS3), which is a novel marker 

for EMT, was detected in EpCAM-positive and EpCAM-negative CTCs in colorectal cancer 

patients with distant metastasis
21

. These findings indicate the presence of CTCs without 

epithelial markers in colorectal cancer patients. Therefore, development of a CTC capture 

system that functions independent of the epithelial cell marker is required to precisely assess 

the sensitivity of highly metastatic tumor cells to molecularly targeted drugs. 

Epithelial and mesenchymal types of malignant tumor cells possess high telomerase 

activity to maintain the length of telomere during aberrant cell proliferation, suggesting the 

potential of the telomerase activity as a general tumor marker
22

 and therapeutic target
23

. We 

previously developed a green fluorescent protein (GFP)-expressing telomerase-specific 

replication-competent adenovirus (OBP-401, TelomeScan) that drives the adenoviral E1A and 

E1B genes under the hTERT gene promoter for telomerase-dependent virus replication. OBP-

401 enables the visualization of viable epithelial and mesenchymal types of human tumor 

cells with telomerase activity as GFP-positive cells
24,25

. OBP-401-mediated GFP labeling is a 

useful method to detect viable CTCs in patients with gastrointestinal cancers
26,27

 and ovarian 

cancers
28

. The present study extends on our previous work by exploring the potential of an 
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OBP-401-based biological CTC capture system for the surveillance of genetic mutations in 

viable CTCs as a novel non-invasive companion diagnostic strategy.  

 

MATERIALS AND METHODS 

 

Cell lines 

The human colorectal cancer cell lines, SW480, HCT116 and HT29; the human pancreatic 

cancer cell line, Panc1; the human lung cancer cell line, A549 and H1299; the human GIST 

cell line, GIST882; and the human normal esophageal fibroblasts, FEF3, were purchased 

from the American Type Culture Collection. All cell lines were cultured according to the 

manufacturer’s specifications. There are four types of KRAS gene mutations (G12D, G12V, 

G12S, G13D) in Panc1, SW480, A549 and HCT116 cells, respectively. HT29 cells have one 

mutation (V600E) in the BRAF gene, whereas GIST882 cells harbor one mutation (K642E) in 

the KIT gene. Normal FEF3 cells have no mutations in the KRAS, BRAF or KIT genes. 

To obtain the EMT-induced human cancer cells, A549 cells were treated with TGF-β 

(10 ng/ml) for 72 h. EMT induction was defined as a morphological change to spindle type 

and a change in the EMT-related marker expression, including downregulation of epithelial 

markers (EpCAM and E-cadherin) and upregulation of the mesenchymal marker (N-

cadherin). 

 

Recombinant adenovirus 

OBP-401 is a telomerase-specific replication-competent adenovirus variant, in which the 

hTERT gene promoter drives the expression of E1A and E1B genes that are linked to an 

internal ribosome entry site and in which the GFP gene is inserted into the E3 region under a 
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cytomegalovirus (CMV) promoter (figure 1A)
24-26

. OBP-401 was purified by 

ultracentrifugation using CsCl step gradients. Viral titers were determined by a plaque-

forming assay using 293 cells, and the virus was stored at −80°C. 

 

Immunocytochemical staining 

The cells seeded on tissue culture chamber slides were fixed in 4% paraformaldehyde for 15 

minutes on ice. The slides were subsequently incubated with the PE-conjugated mouse anti-

EpCAM antibody (BioLegend, San Diego, CA, USA) for 1 h on ice. Then the slides were 

analyzed using an inverted fluorescent microscope (Olympus; Tokyo, Japan). 

 

Flow cytometry 

The cells (1 × 10
5
 cells) were labeled with primary mouse antibodies for EpCAM, E-cadherin, 

N-cadherin (BioLegend) and CAR for 30 min on ice and were analyzed using flow cytometry 

(FACS Array; Becton Dickinson, Mountain View, CA, USA). 

 

CTC model 

CTC models were established by incubation with tumor cell lines (SW480, HCT116, HT29, 

Panc1, EMT-induced A549 and GIST882 cells) in 5 ml of blood (containing approximately 

3.5 × 10
7
 white blood cells) from a healthy volunteer. 

 

DNA extraction from CTC model and clinical samples 

The protocol for DNA extraction from the CTC model or clinical samples is shown in figure 

2A and Supplementary figure 1. Approximately 5 ml of blood was incubated with lysis buffer 

containing ammonium chloride to remove the red blood cells. These cells were then infected 
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with OBP-401 at 1 × 10
6
 PFU and incubated for 24 h. Thereafter, the cell pellets were labeled 

with anti-CD45 antibody conjugated with PE and sequentially sorted by FACS Aria (Becton 

Dickinson, San Jose, CA, USA). We set the P1 gate to obtain viable cells, the P2 gate to 

detect GFP-positive cells without intrinsic fluorescence and the P3 gate to detect only GFP-

positive tumor cells without the hematopoietic CD45 marker. Cells in the P2 or P3 gates were 

collected and stored temporarily at −30°C. DNA was extracted from captured cells using a 

QiaAMP DNA Mini kit (Qiagen, Valencia, CA, USA). The DNA solution mixed with DNA 

polymerase, and each primer was subjected to PCR analysis. Five ml of blood samples were 

collected with consent from patients with colorectal cancer, according to a protocol approved 

by the institutional review board at Okayama University Graduate School. 

 

Gene mutation analysis by direct sequencing 

Taq polymerase, forward primer and reverse primer were mixed with eluted DNA solution, 

and DNA was amplified using the PCR Thermal Cycler. Primer sequences and PCR settings 

are shown in Supplementary Table S1. Using the PCR products, the sequence of each gene 

was analyzed with ABI PRISM 3100 Genetic Analyzer (Life Technologies, Carlsbad, CA, 

USA). 

 

Gene mutation analysis by ASB-PCR 

ASB-PCR for the KRAS and BRAF genes was performed with a primer set of TaqMan 

Mutation Detection Assays (Applied Biosystems, Foster City, CA, USA), as described in a 

previous report
29

. This assay amplifies only mutant alleles with mutant-specific primers and 

prevents the amplification of wild-type alleles using blocking oligonucleotides. Genetic 

mutations of target genes were analyzed with StepOnePlus™ real-time PCR system (Applied 
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Biosystems). Genotyping Master mix and Mutation Detection Assay were mixed with two 

sets of eluted DNA solution, and this mixture was applied to real-time PCR analysis. The 

mutation detection method was customized as follows. The PCR cycle number was set to 70 

cycles for the efficient amplification of small copy numbers of target genes. A total cell count 

was restricted to less than 50 cells/well to prevent non-specific amplification of wild-type 

alleles. The sensitivity and specificity were analyzed using a mixture of KRAS/BRAF wild-

type and mutant cells. Genetic mutation was recognized as positive when the amplification 

for mutant alleles using specific primer was detected. 

 

RESULTS 

 

Fluorescent imaging of human cancer cells with differential EpCAM expression 

OBP-401 (TelomeScan) was previously constructed by inserting the GFP gene under the 

control of the CMV promoter at the deleted E3 region of the telomerase-specific replication-

selective type 5 adenovirus OBP-301 (Telomelysin) (figure 1A). To assess the potential of 

OBP-401-mediated biological imaging, we used four epithelial types of human cancer cell 

lines (Panc1, SW480, HCT116 and HT29) that differentially express EpCAM in 

immunocytochemistry (figure 1B) and fluorescence-activated cell sorting (FACS) analysis 

(figure 1C). All cell lines could be visualized by OBP-401-induced GFP expression in a dose-

dependent manner independently with EpCAM expression (figure 1D). The expression level 

of coxsackievirus and adenovirus receptor (CAR), which is associated with adenovirus 

infectivity, was almost similar among cell lines (figure 1E). These results suggest that OBP-

401-mediated biological imaging is a useful method to detect human cancer cells regardless 

of high- or low-EpCAM expression. 
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Fluorescence-guided isolation of CTCs with multi-laser FACS 

We used OBP-401 to establish a simple ex vivo method to capture viable human CTC in the 

peripheral blood for genetic analysis. By spiking a certain number of human cancer cells that 

have different types of genetic mutations in the KRAS or BRAF gene in 5 ml of blood from 

healthy volunteer, we made CTC models with different types of genetic mutations. As 

illustrated in figure 2A and Supplementary figure 1, following the lysis of red blood cells 

(RBC) in 5 ml aliquots of CTC models or whole blood samples obtained from patients, the 

cell pellets were subsequently incubated with OBP-401 at 1 × 10
6
 plaque-forming units 

(PFU) for 24 h, labeled with anti-CD45 antibody conjugated with phycoerythrin (PE), and 

sequentially sorted by FACS. In preliminary experiments using CTC models, we found 

suitable conditions for sorting only GFP-positive CTCs by excluding auto-fluorescent 

allophycocyanin (APC)-positive cells at the P2 gate and hematopoietic CD45-positive cells at 

the P3 gate (figure 2B). The GFP-positive cells could be detected in the CTC model under a 

fluorescent microscope (figure 2C). 

 

Genetic analysis of OBP-401-labelled GFP-positive cells using direct sequencing 

FACS-isolated GFP-positive CTCs at the P3 gate were analyzed genetically by direct 

sequencing (Supplementary Table 1). The expected genetic mutations in the KRAS or BRAF 

gene were precisely detected in all CTC models containing four human cancer cell lines by 

direct sequencing (figure 3A and Supplementary figure 2), indicating that the OBP-401-based 

biological capture system is effective for the collection of CTCs expressing various levels of 

EpCAM marker. Recent studies have demonstrated that a heterogeneous population of CTCs 

are present within individual cancer patients and that these CTCs have both epithelial and 
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mesenchymal markers, suggesting the diverse genetic variations with wild-type and mutant-

type genes in the populations of CTCs. To evaluate the minimum purity limitation of mutant-

type CTCs in the genetic analysis using direct sequencing, SW480 cells (KRAS G12V 

mutant) were mixed with H1299 cells (KRAS wild-type) at a 50%, 40%, 30%, 20% or 10% 

purity ratio. KRAS gene mutation could be detected by direct sequencing only in the samples 

containing more than a 30% purity ratio of SW480 cells (figure 3B). Thus, high purity of 

mutant-type CTCs in heterogeneous populations is necessary for detection of genetic 

alterations by direct sequencing. 

 

Genetic analysis of OBP-401-labeled GFP-positive cells using ASB-PCR 

To further increase the sensitivity to detect genetic alterations in the heterogeneous 

populations of CTCs, we next evaluated the potential of the Allele-Specific Blocker (ASB)-

PCR method using four types of mutation-specific primers for the KRAS or BRAF genes. 

Before analyzing the human cancer cells, we confirmed that there was no amplification of 

PCR products in the human normal fibroblast with wild-type KRAS and BRAF genes or in 

blood obtained from normal healthy volunteers by ASB-PCR with mutation-specific primers 

(Supplementary figure 3).  

When we analyzed five human cancer cells mixed with 100 human normal fibroblasts 

at a purity ratio of approximately 5%, ASB-PCR using all types of primers detected the 

expected mutations in the GFP-positive cells (Supplementary Table 2). In the CTC models 

containing 10 human cancer cells with different types of KRAS and BRAF gene mutations, 

ASB-PCR analysis detected the expected genetic mutations in the GFP-positive cells at the 

P3 gate (Table 1). Moreover, ASB-PCR analysis could detect the genetic alterations in the 

GFP-positive cells at the P2 gate without exclusion of CD45-positive normal blood cells 
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(figure 3C), whereas at least 50 tumor cells were required for direct sequencing in the 

presence of CD45-positive cells at the P2 gate (figure 3D). These results suggest that the 

ASB-PCR method is more simple and sensitive than direct sequencing for detection of 

genetic alterations in the heterogeneous populations of CTCs. 

 

Fluorescence-guided capture of EMT-induced and mesenchymal CTCs 

nduction of EMT in CTCs has recently been demonstrated in patients with advanced breast 

cancers
17

. EMT-induced CTCs frequently formed metastatic colonies in the brain and lung of 

nude mice
19

, suggesting that highly malignant EMT-induced CTCs must be detected to 

predict metastatic progression in cancer patients. We used A549 human lung cancer cells with 

KRAS gene mutation (G12S) and EpCAM-negative GIST882 mesenchymal human tumor 

cells with KIT gene mutation (K642E), which is frequently mutated in more than 70% of 

gastrointestinal stromal tumors (GIST)
30

. OBP-401 infection efficiently induced GFP 

expression in both cell lines in a dose-dependent manner (figure 4A).  

When treated with the EMT inducer, transforming growth factor-β (TGF-β), A549 

cells showed spindle-shape morphological changes (figure 4B) and altered EMT-related 

biomarker expression, such as EpCAM and E-cadherin downregulation and N-cadherin 

upregulation (figure 4C). In contrast, CAR expression was not affected after TGF- treatment 

(figure 4C) and, therefore, OBP-401 efficiently induced GFP expression in the TGF--treated 

A549 cells (figure 4D). In addition, GIST882 cells were confirmed to be EpCAM-negative 

(figure 4E). When 10 EMT-induced A549 cells were spiked in blood samples, the expected 

genetic mutation (G12S) in the KRAS gene was detected by direct sequencing and by ASB-

PCR analysis (figure 4F-G and Table 1). In contrast, the expected KIT gene mutation could be 

detected at the P3 gate by direct sequencing in the CTC model containing 100 GIST882 cells 
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(figure 4F) but not in that with 10 cells, presumably due to the low expression of CAR. These 

results suggest that the targeted genetic mutations in EMT-induced and mesenchymal CTCs 

are also detectable by the OBP-401-based CTC capture system, although the sensitivity is 

dependent on the CAR expression. 

 

Detection of genetic mutations in CTCs in colorectal cancers patients 

Finally, the blood samples obtained from eight patients with KRAS- or BRAF-mutated 

colorectal cancers were analyzed by the OBP-401-based CTC capture system and by ASB-

PCR technology. In preliminary experiments, the number of GFP-positive cells at the P3 gate 

was less than 10 cells in some clinical blood samples and, therefore, we performed ASB-PCR 

analysis using GFP-positive cells at the P2 gate. Among the eight blood samples from 

patients with various stages of colorectal cancer, the same KRAS and BRAF gene mutations as 

in the primary tumors were detected in the CTCs of two advanced colorectal cancer patients 

(figure 4H and Table 2). The other six patients showed no detectable genetic abnormalities in 

blood samples, although the KRAS gene mutations were observed in their primary tumors. 

Three patients without metastatic lesions did not have large CTC count, and 

chemotherapeutic treatment in the other three patients with metastatic disease may have 

resulted in reduced number of CTCs. Although further large-scale clinical trials are required, 

our results suggest that the OBP-401-based telomerase-dependent biological CTC capture 

system is useful for genetic analysis of CTCs in the blood samples from cancer patients. 

 

DISCUSSION 

 

The co-development of a targeted therapy together with its companion diagnostic test, which 
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guides selection of patients and provides surrogate markers to monitor responses, is a key 

part of personalized medicine. The selection of targeted therapies for individual patients is 

currently made by analyzing the primary tumors, although there are very few cells within the 

primary tumors that are responsible for metastasis or recurrence, and these cells may have 

additional genetic abnormalities. The present study demonstrated that CTCs obtained non-

invasively are a promising alternative to surgically resected or biopsied tumor tissues for real-

time molecular characterization. A telomerase-dependent biological CTC capture system was 

clinically useful for the detection of mutations in different target genes, such as KRAS, BRAF 

and KIT, even in EpCAM-negative cells among highly heterogeneous CTC populations.  

 We applied telomerase-specific OBP-401 to selectively label human neoplastic cells 

with GFP signals and confirmed its broad infectivity independent of EpCAM expression, 

which was consistent with observations from our previous reports that OBP-401 induced GFP 

expression in both epithelial and mesenchymal types of tumor cells
24,25

. Recent studies have 

demonstrated that highly metastatic tumor cells are involved in both EpCAM-positive and 

EpCAM-negative subpopulations of CTCs in the blood of breast cancer patients
18,19

. During 

anticancer treatment, the characteristics of CTCs dynamically change between epithelial and 

mesenchymal types of CTCs within individual cancer patients
17

. Further, platelet-derived 

TGF- secretion induces EMT with metastatic potential in CTCs
31

. These findings indicate 

that single CTCs frequently turn the EMT switch on or off in the microenvironment of the 

bloodstream. In contrast, high telomerase activity is a general functional biomarker for 

stabilization of the telomere in epithelial and mesenchymal malignant tumor cells during 

aberrant proliferation. In fact, high hTERT mRNA levels have been detected in the blood 

samples of cancer patients
32-34

. Moreover, hTERT overexpression has been shown to be 

positively associated with EMT induction in human cancer cells
35

. When the telomerase 



Shigeyasu et al., page 15 

 

activity in the CTCs is suppressed in circulating cells, these CTCs undergo programmed cell 

death (i.e., apoptosis or senescence). Thus, the telomerase activity may be superior to the 

unstable epithelial cell marker as a general biomarker for the detection of viable CTCs in the 

blood. Moreover, GFP-labeled CTCs by OBP-401 infection are considered to be useful for 

direct determination of drug sensitivity and metastatic potential, as well as determination of 

tumor heterogeneity
36-39

. 

A number of approaches based on the physical and biological properties of CTCs have 

been studied to distinguish CTCs from the surrounding normal hematopoietic cells and to 

capture them for further analysis. The CellSearch system, which is the only test approved by 

the US Food and Drug Administration (FDA) to detect CTCs, uses magnetized antibodies 

against EpCAM for positive selection and uses CD45 for leukocyte depletion. Another 

popular technology for CTC enrichment is a microfluidic-based device called the CTC-chip; 

this device can isolate and analyze CTCs using EpCAM-coated microposts. Our OBP-401-

based CTC detection has been previously compared with the CellSearch assay in metastatic 

breast cancer patients
40

. Although both assays exhibited comparable detection rates, the 

numbers of CTC-positive cells between both assays were not significantly correlated. Nine 

out of 50 (18%) cases were positive by both methods, while 12 (24%) and 18 (36%) patients 

showed positive cells with the OBP-401 assay and the CellSearch assays individually, 

respectively. We speculate that CTCs detected by OBP-401 primarily detect EpCAM-

negative tumor cells while the CellSearch method detects epithelial non-tumor cells as well, 

including circulating fibroblasts.  

Our strategy involves conventional FACS to capture OBP-401-labelled GFP-positive 

CTCs. OBP-401 infection increases the signal-to-background ratio as a tumor-specific probe, 

because the fluorescent signal can be amplified only in viable human tumor cells by viral 
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replication. We excluded the autofluorescence-positive cells at the P2 gate and the 

hematopoietic CD45-positive cells at the P3 gate. When at least 10 human cancer cells were 

spiked in 5 ml of blood from a healthy volunteer, the number of GFP-positive cells detected 

at the P3 gate was almost the same as the number of spiked tumor cells, suggesting that the 

P3 gate contains pure CTCs. However, the P2 gate may be contaminated with non-CTC cells. 

Indeed, ASB-PCR analysis detected the expected gene mutations in the KRAS and BRAF 

genes at the P2 gate, whereas the P3 gate was necessary when direct sequencing was applied. 

Recently, a combination of the CellSearch system and genetic analysis was also performed to 

detect genetic mutations in rare CTCs from cancer patients. Mostert et al. compared the three 

types of PCR-based genetic analysis of CTCs, and ASB-PCR, used in our study, was the most 

sensitive method for detecting KRAS and BRAF gene mutations in the CTCs from patients 

with metastatic colorectal cancers
41

. In addition, as our data demonstrated that direct 

sequencing was limited if CTC-derived DNA had more than 30% purity, we conclude that, 

together with FACS-isolated OBP-401-infected GFP-expressing CTCs, the ASB-PCR is a 

suitable assay for non-invasive companion diagnostics in cancer patients. The specificity of 

the ASB-PCR assay allowed us to use the P2 gate for clinical samples even in the presence of 

non-CTC cells.  

Mutation in KRAS and BRAF genes is highly associated with resistance to the anti-

EGFR antibody, cetuximab, in colorectal cancer patients
42,43

. In fact, the appearance of KRAS 

gene mutant DNA is associated with resistance to cetuximab in patients with KRAS wild-

type colorectal cancers
44

. In colorectal cancer patients, the frequency of the KRAS and BRAF 

gene mutations is significantly higher in liver metastasis than in primary tumors
45

, and KRAS 

and BRAF gene mutant status is significantly associated with poor outcomes
46

. These findings 

suggest that genetic analysis for the KRAS and BRAF gene mutation in CTCs can be used as a 
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“liquid biopsy” to monitor resistance to cetuximab and to predict the metastatic potential in 

patients with KRAS wild-type colorectal cancers. 

It is also worth noting that OBP-401-based biological CTC capture system is applicable 

to the genetic analysis of CTCs with mesenchymal characteristics, including GISTs and 

osteosarcomas
25

, although the CellSearch system is also useful for detection of epithelial 

CTCs. Approximately 80% of GIST cells harbor a mutation in the KIT gene
30

, which is 

significantly associated with disease recurrence and poor outcomes
47

. Recently, the small 

molecule tyrosine kinase inhibitor imatinib has been shown to be effective against KIT-

mutated GIST that is refractory to conventional chemotherapy
48

. In contrast, bone and soft 

tissue sarcoma cells, which make up one of the most notorious types of malignant 

mesenchymal tumor, are also detectable as GFP-positive cells by OBP-401 infection
25

. 

Frequent lung metastasis has been shown to be a poor prognostic factor in patients with 

osteosarcoma, but the potential of CTC enumeration in osteosarcoma patients remains to be 

elucidated. Thus, the characterization of CTCs using the OBP-401-based biological CTC 

capture system may be a useful strategy for monitoring metastatic progression in patients 

with GIST or osteosarcomas as well as in those with epithelial malignant tumors. 

The combination of the OBP-401-based CTC capture system and genetic analysis 

using ASB-PCR detected KRAS and BRAF mutations in blood samples obtained from 

colorectal cancer patients, and these mutations were identical to those seen in the primary 

tumors. This novel “liquid biopsy” via a simple blood test could be carried out in real time 

and enables optimized and timely decisions for therapeutic intervention. However, the 

technology has to be further validated in large clinical studies with defined endpoints.  In 

addition, one limitation of our study was that it was difficult for ASB-PCR to detect 

uncommon genetic abnormalities. Regardless, when frequently occurring genetic mutations 
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are targeted for the surveillance of CTCs, the ASB-PCR method would be a useful and highly 

sensitive method for detecting the small number of CTCs with genetic mutations. In contrast, 

if the identification of genetic traits in highly metastatic CTCs is the main goal, a genome-

wide approach should be considered for the genetic analysis of CTCs. For example, genome-

wide transcriptome analysis has been performed to identify a wide range of copy number 

alterations in the entire CTCs using array-comprehensive genomic hybridization (aCGH)
49

. 

Moreover, genetic analysis in single CTC has been recently used to clarify the global gene 

alterations using aCGH and next-generation sequencing
50,51

. Thus, the comprehensive 

analysis of genetic alterations in individual CTCs from cancer patients would provide novel 

insight into the identification of the genetic signature in association with metastatic 

progression. 

In summary, we established a telomerase-dependent biological CTC capture system for 

genotyping of epithelial, mesenchymal, and EMT-induced types of CTCs using OBP-401 and 

FACS analysis. This technology facilitates the surveillance of genetic alterations in viable 

CTCs in cancer patients, and large-scale clinical studies of this strategy are warranted.  
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Figure Legends 

 

Figure 1 OBP-401-mediated GFP expression in human cancer cells with different levels 

of EpCAM expression. (A) Schematic DNA structure of OBP-401 (TelomeScan). OBP-401 is 

a telomerase-specific replication-competent adenovirus variant in which the hTERT promoter 

element drives expression of the E1A and E1B genes linked with internal ribosome entry sites 

(IRES), and the GFP gene is inserted under the CMV promoter into the E3 region. (B) 

Immunofluorescence staining of EpCAM in four human cancer cell lines (Panc1, SW480, 

HCT116, and HT29 cells). EpCAM expression under fluorescence microscopy (top panels) 

and phase-contrast microscopy (bottom panels). Original magnification: ×100. (C) Flow 

cytometric analysis of EpCAM expression in four human cancer cell lines. Cells are 

incubated with anti-EpCAM antibody. An isotype-matched normal mouse IgG1 is used as a 

control. (D) Cells re-infected with OBP-401 at MOIs of 10, 100 or 1000 PFU per cell and 

assessed for GFP expression under fluorescence microscopy 24 h after infection. (E) 

Expression of CAR is analyzed using flow cytometry in four human cancer cell lines. 

 

Figure 2 A simple fluorescent virus-guided capturing system of CTC. (A) Cell isolation 

steps in the OBP-401-based CTC capturing system. CTC models containing the spiked 

human cancer cells in 5 ml of blood sample or clinical blood samples obtained from cancer 

patients are incubated with RBC lysis buffer for 6 minutes. After centrifugation, cell pellets 

are then infected with OBP-401 at 1 × 10
6
 PFU and incubated for 24 h. Thereafter, cells are 

incubated with anti-CD45 antibody, and the cell pellet was sorted by FACS. DNA extracted 

from FACS-sorted GFP-positive cells is subjected to direct sequencing or allele-specific 

blocker PCR (ASB-PCR) analysis. (B) Each gate is set to capture the GFP-positive CTCs by 
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FACS analysis. After isolating only viable cells at the P1 gate, the P2 and P3 gates are set to 

exclude the intrinsic fluorescence-positive cells and CD45-positive normal blood cells, 

respectively. (C) Representative image of GFP-positive CTC in blood sample containing 

SW480 cells after infection with OBP-401. Original magnification: ×200.  

 

Figure 3 Genetic mutation analysis of human CTCs by direct sequencing and mutation-

specific PCR. (A) Detection of KRAS or BRAF gene mutation in the CTC models containing 

10 human cancer cells by direct sequencing of GFP-positive cells at the P3 gate. The number 

of cells in the P3 gate and the mutation pattern in each model is indicated. (B) The minimal 

purity of tumor cells for direct sequencing to detect the expected gene mutations is evaluated. 

SW480 (KRAS G12V) cells re mixed with H1299 (KRAS wild-type) cells at 50%, 40%, 30%, 

20% and 10% of purity ratios. DNA is extracted from cell mixtures, and the KRAS gene 

mutation is analyzed by direct sequencing. (C) ASB-PCR-mediated detection of KRAS and 

BRAF gene mutations in GFP-positive cells at the P2 or P3 gate in the CTC models 

containing as few as 10 SW480 cells and HT29 cells. When KRAS and BRAF genes contain 

targeted mutations, mutation-specific curves cross their threshold of detection. (D) Detection 

of KRAS gene mutation by direct sequencing of GFP-positive cells at the P2 gate without 

CD45 depletion requires at least 50 SW480 cells in the CTC model.  

 

Figure 4 Fluorescent virus-guided capture and genetic mutation analysis of human 

mesenchymal or EMT-induced tumor cells. (A) A549 human lung cancer cells and GIST882 

human gastrointestinal stromal tumor cells are infected with OBP-401 at MOIs of 10, 100 or 

1000 PFU per cell. GFP expression is assessed under the fluorescent microscope 24 h after 

virus infection. (B) Morphological change of A549 cells treated with TGF-β. A549 cells are 
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treated with TGF-β (10 ng/ml) for 72 h and stained with crystal violet. Original 

magnification: ×200. (C) Flow cytometric analysis of epithelial (EpCAM and E-cadherin) 

and mesenchymal (N-cadherin) cell surface marker and CAR expression in A549 cells treated 

with or without TGF-β. (D) GFP expression in TGF-β-treated A549 cells after infection with 

OBP-401 at MOI of 100 PFU per cell for 24 h. Original magnification: ×200. (E) Flow 

cytometric analysis of epithelial (EpCAM and E-cadherin) and mesenchymal (N-cadherin) 

cell surface marker and CAR expression in GIST882 cells. (F) Detection of KRAS and KIT 

gene mutations by direct sequencing of GFP-positive cells at the P3 gate requires 10 TGF-β-

treated EMT-induced A549 cells and 100 GIST882 cells in the CTC models, respectively. (G) 

Detection of KRAS gene mutations in GFP-positive cells at the P2 or P3 gate in the CTC 

models containing as few as 10 of TGF-β-treated A549 cells by ASB-PCR. Mutation-specific 

curves for KRAS gene cross their threshold of detection. (H) Representative computed 

tomography images of colon cancer patient with lung, spleen, and ovary metastases. The 

primary tumors and CTCs show the BRAF V600E mutation.  
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Table 1. Data for mutation-specific PCR in the genetic analysis of CTC models 

CTC model FACS analysis Genetic analysis 

Cancer cells Cell type Gene status 
Number of 

cancer cells 
Gate 

Number of GFP-
positive cells 

Purity of cancer 
cells (%) 

Primer Amplification 

Ct values 

1st PCR 2nd PCR 

Panc1 Epithelial KRAS G12D 10 

P2 29  34.5  KRAS G12D ＋ 37.1  36.1  

P3 6  100.0  KRAS G12D ＋ 35.3  38.2  

SW480 Epithelial KRAS G12V 10 

P2 105  9.5  KRAS G12V ＋ 45.0  56.5  

P3 13  76.9  KRAS G12V ＋ 41.6  52.0  

HCT116 Epithelial KRAS G13D 10 

P2 23  43.5  KRAS G13D ＋ 47.5  37.2  

P3 18  55.6  KRAS G13D ＋ 37.0  44.0  

HT29 Epithelial BRAF V600E 10 

P2 34  29.4  BRAF V600E ＋ 34.0  NA 

P3 9  100.0  BRAF V600E ＋ 40.0 NA 

EMT-induced A549 Mesenchymal KRAS G12S 10 

P2 77  13.0  KRAS G12S ＋ 41.9  43.5  

P3 17  58.8  KRAS G12S ＋ 51.1 64.7 

NA: not amplified.  
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Table 2. Data for mutation-specific PCR in the genetic analysis of patient samples 

Patients FACS analysis Genetic analysis 

Tumor    site Stage 
Gene status of 
primary tumor 

Metastasis Gate 
Number of GFP-

positive cells 
Primer Amplification 

Ct values 

1st PCR 2nd PCR 

Colon I KRAS G13D None P2 6  KRAS G13D - NA NA 

Colon II KRAS G13D None P2 20  KRAS G13D - NA NA 

Colon II KRAS G12D Liver P2 95  KRAS G12D ＋ 55.1 61.0  

Colon III KRAS G13D None P2 913  KRAS G13D - NA NA 

Colon III BRAF V600E 
Lung, Spleen,  

Ovary 
P2 138  BRAF V600E ＋ 63.0 NA 

Colon IV KRAS G12D Liver P2 14  KRAS G12D - NA NA 

Colon IV KRAS G12V Liver P2 74  KRAS G12V - NA NA 

Colon IV KRAS G12V Lung P2 53  KRAS G12V - NA NA 

NA: not amplified.  
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