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Abstract 

BACKGROUND: Poly-ether-ether-ketone (PEEK) has biomechanical and chemical properties that 

are excellent for biomedical applications; however, PEEK adhesion to bone or chondral tissue 

proceeds slowly due to poor hydrophilicity and other surface characteristics. 

OBJECTIVE: We investigated the structural change, hydrophilicity, and cytocompatibility of a 

PEEK surface after 172-nm xenon excimer UV-irradiation.  

METHODS: The surface characteristics before and after irradiation were evaluated by contact angle 

and ATR-FTIR measurements. Mouse osteoblast-like cells (MC3T3-E1) were cultured on PEEK 

plates and collected after 6, 12, and 24 h for cell adhesion analysis by crystal violet staining (CVS) 

and scanning electron microscopy (SEM).  

RESULTS: UV irradiation improved PEEK surface hydrophilicity, as indicated by a significant drop 

in water contact angle (p < 0.05). Irradiated PEEK showed additional peaks around 3370 cm
-1

 and 

1720 cm
-1

, highlighting the generation of hydroxyl and carbonyl groups. CVS and SEM revealed 

improved adhesion to the PEEK surface after UV-irradiation.  

CONCLUSION: Our results suggest that 172-nm UV-irradiated PEEK may be used in biomedical 

applications that require good cell adhesion. 
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1. Introduction 

Poly-ether-ether-ketone (PEEK) has stable and desirable biomechanical and chemical 

properties and produces no cytotoxic side effects [1,2]. Metal alloys are typically used for joint 

replacement in orthopedic surgery; however, they are stiffer than human bone and can cause 

periprosthetic resorption of the bone through stress protection [3]. The good mechanical and chemical 

properties of PEEK avoid the disadvantages of metal and provide a suitable implant material [4]. 

PEEK elasticity is similar to that of human bone, so stress protection is not expected after 

implantation. It has a good combination of stiffness, tensile strength, distortion, abrasion, and fatigue 

resistance; it thus seems suitable for syndesmoplasty [4]. However, PEEK adhesion to the bone or 

chondral tissue proceeds slowly because of the roughness, wettability, and chemical composition of 

the PEEK surface [5,6]. 

Several reports have described PEEK surface modifications, including plasma treatment, to 

provide a better substrate for cell attachment and proliferation [4,7,8]. UV irradiation is another 

effective technique for modifying polymer surface characteristics [2,3]. UV irradiation can be 

performed rapidly, is low-cost, and no bulk materials are lost during treatment [9,10]. Changes in the 

chemical composition of the PEEK surface through excimer laser treatment has been reported [11-13], 

but to the best of our knowledge, no similar report has described the use of excimer lamps to improve 

cell adhesion to PEEK. 
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In this study, we investigated the structural change, hydrophilicity, and cytocompatibility of 

PEEK surfaces after UV irradiation with a 172-nm xenon excimer lamp. PEEK surfaces were 

irradiated for various periods and cell adhesion was monitored over time. The excimer lamp used in 

this study is suitable for irradiation of large complex shapes, such as orthopedic implants.  
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2. Materials and Methods 

2.1 Materials 

PEEK substrates (Victrex PEEK 450G, Yaojima Proceed Co., Ltd., Japan) were polished with 1.2~1.8 

µm cerium oxide particles (SHOROX grade A-10, Showa Denko K.K., Japan). The polished PEEK 

plates (surface roughness Ra ≈ 20 nm) were 1 mm thick and 10 mm in diameter. 

 

2.2 UV irradiation 

All samples were washed with acetone and distillated water to remove low-molecular-weight products, 

and then dried at room temperature. UV treatment was performed with an excimer irradiation unit 

with a 10 mW/cm
2
 Xe2 excimer lamp at 172-nm in N2 gas. The samples were fixed at a distance of 10 

mm and irradiated for 1 and 6 h. PEEK plate groups were classified as non-UV-irradiated (UV0), 1-h 

irradiated (UV1), and 6-h irradiated (UV6). 

 

2.3 Surface analysis 

Surface hydrophilicity was evaluated by measuring water contact angles. Measurements were 

performed at room temperature using a DM-501 contact angle meter (Kyowa Interface Science Co., 

Ltd., Japan). Changes in surface functional groups were estimated by ATR-FTIR. Spectra were 

collected with an FTIR spectrometer (Spotlight100S, Perkin Elmer, Inc.) by a universal attenuated 

total reflection infrared method [14] with a resolution of 4 cm
-1

 and averaged over eight scans. 



7 

 

 

2.4 Cells and cell culture 

Mouse osteoblast-like cells (MC3T3-E1) were cultured on the irradiated and non-irradiated PEEK 

plates. Cells were plated at a 100,000 cells/well in DMEM with L-glutamine and phenol red 

supplemented with penicillin–streptomycin and 10% fetal bovine serum. We collected the plates after 

6, 12, and 24 h culture to analyze cell adhesion. 

 

2.5 Cell adhesion assay 

Adhered cells were analyzed by crystal violet staining (CVS) as described by Saotome et al. [15]. 

After washing with PBS, the adhered cells were fixed and stained with 0.05% crystal violet for 30 min. 

After washing with distillated water and drying, the dye was solubilized with methanol, transferred to 

96-well plates, and absorbance was measured at 540 nm in a microplate reader.  

 

2.6 Scanning electron microscopy 

Adhered cells were observed by scanning electron microscopy (SEM) after being washed with 

serum-free medium, fixed with 2.0% glutaraldehyde and 2.0% formaldehyde in PBS for 8 h, and then 

washed with PBS for 1 h. The cells were dehydrated through an increasing ethanol gradient to 

absolute ethanol, then substituted and dried with tert-butyl alcohol. The cells were mounted on 

specimen stubs and sputter-coated with osmium. Samples were examined using an electron 
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microscope (HITACHI Scanning Electron Microscope Model S-4800, Japan) with 15-kV accelerating 

voltage. 

 

2.7 Statistical analysis 

Contact angle measurements were performed five times and CVS assays were repeated seven times. 

Results are reported as the mean ± standard error of the mean. Significant differences were evaluated 

by Student’s t-test. P-values < 0.05 were considered statistically significant. 
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3. Results 

 

3.1 Contact angle  

UV irradiation improved PEEK surface hydrophilicity (Fig. 1). The average contact angle on the UV0, 

UV1, and UV6 PEEK surfaces was 87.1° ± 3.4°, 60.9° ± 4.1°, and 61.4° ± 5.1°, respectively (Fig. 1, 

A-D). The contact angles of UV1 and UV6 were significantly lower than that of UV0 (P < 0.05; Fig. 

1D).  

 

3.2 FTIR spectroscopy  

A peak around 3370 cm
-1

 was also observed in irradiated samples and was attributed to the hydroxyl 

group (Fig. 2A). In the carbonyl region, spectral differences revealed the presence of a maximum 

around 1720 cm
-1

 (Fig. 2B) representing the C=O stretching frequency of aromatic esters and 

accounting for the photo-transformation of the benzophenone units.  

 

3.3 CVS and SEM analyses 

CVS and SEM analyses showed improved cytocompatibility of the PEEK surface after UV irradiation. 

In the CVS assay, there was significantly higher absorbance on UV1 and UV6 than on UV0 after 6, 

12, and 24 h culture (Fig. 3). There were more adhered cells on UV1 and UV6 than on the UV0 PEEK 

surfaces (p < 0.05). SEM showed adhered cells on the UV1 and UV6 PEEK surfaces (Fig. 4).  
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4. Discussion 

 

PEEK compatibility with osteocartilaginous tissues is relatively low in spite of its desirable 

biomechanical and stable chemical properties [1,2,5,6]. Biomaterial compatibility is influenced by 

hydrophobicity, surface roughness, and chemical properties [16,17]. Several studies have reported 

PEEK-associated processes such as composite formation, surface coating, and surface treatment 

[4,18-22]. Plasma surface treatment forms a hydrophilic organization on the PEEK surface, thus 

improving hydrophilicity and cytocompatibility [4]. Electron beam deposition, which is a surface 

coating technique, also improves PEEK cytocompatibility without influencing its mechanical 

properties [19]. Roughness and surface chemistry in particular control protein adsorption to the 

extracellular matrix, which is responsible for successful adhesion of endogenous cells to the 

biomaterial and for stable bonding of the implant to the surrounding tissue [4]. 

One of the major mechanisms for improving PEEK hydrophilicity and cytocompatibility by 

UV-irradiation is surface modification in the form of carbonyl and hydroxyl structures on the PEEK 

surface, as shown by FTIR. UV irradiation is effective for various kinds of materials, and the 

formation of functional groups by UV irradiation is thought to be equivalent to those formed by 

plasma treatment [23]. UV irradiation alters the molecular structure of starch-based surfaces, 

improving their hydrophilicity and cytocompatibility [23]. UV irradiation also improves the molecular 

structure and cytocompatibility of titanium surfaces [24]. In our study, UV irradiation improved the 
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hydrophilicity and cytocompatibility of PEEK surfaces (Fig. 1, 3). Our technique is simpler and costs 

less than other surface treatment or coating methods. Our results suggest 1 h UV-irradiation may be 

sufficient to improve PEEK surface biocompatibility.  

It is important to note that PEEK covalent bonds degrade at 172 nm UV. However, in this 

study it was observed that only the surface response is altered, potentially leaving the 

mechanical strength of the material intact. Thus, this experiment examines only the initial 

stability, and long-term clinical stability needs to be examined in vivo in the future. 

In conclusion, the molecular structure and cytocompatibility of PEEK surfaces was 

improved by UV irradiation. Our results suggest UV irradiation may be useful for improving cell 

adhesion to PEEK surfaces. 
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Figure legends 

 

Fig. 1  

H2O contact angle. The average H2O contact angle on UV0 (A), UV1 (B), and UV6 (C) PEEK 

surfaces was 87.1° ± 3.4°, 60.9° ± 4.1°, and 61.4° ± 5.1°, respectively (n = 5). UV-irradiation reduced 

the H2O contact angle in the UV1 and UV6 groups (D); * p < 0.05 

 

Fig. 2  

FTIR spectroscopy. UV1 and UV6 showed additional peaks around 3370 cm
-1

 (A) and 1720 cm
-1

 (B), 

indicating OH and C=O stretching. 

 

Fig. 3  

CVS assay. Significantly higher absorbance in the UV1 and UV6 groups indicated greater cell 

adhesion; * p < 0.05 

 

Fig. 4  

SEM analysis. UV0 (A-C), UV1 (D-E), UV6 (G-H). Cultivation time: 6 h (A, D, G), 12 h (B, E, 

H), 24 h (C, F, I). More adhered cells were observed on the UV1 and UV6 vs. the UV0 surfaces 

after 6 h culture; Bars, 100 μm 
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