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Persistent infection with hepatitis C virus (HCV) often causes chronic hepatitis,  and then shows a high 
rate of progression to liver cirrhosis and hepatocellular carcinoma.  To clarify the mechanism of the 
persistent HCV infection is considered to be important for the discovery of new target(s) for the devel-
opment of anti-HCV strategies.  In the present study,  we found that the expression level of annexin A1 
(ANXA1) in human hepatoma cell line Li23-derived D7 cells was remarkably lower than that in paren-
tal Li23 cells,  whereas the susceptibility of D7 cells to HCV infection was much higher than that of Li23 
cells.  Therefore,  we hypothesized that ANXA1 negatively regulates persistent HCV infection through 
the inhibition of viral RNA replication.  The results revealed that HCV production was significantly 
inhibited without a concomitant reduction in the amount of lipid droplets in the D7 cells stably express-
ing exogenous ANXA1.  Further,  we demonstrated that ANXA1 negatively regulated the step of viral 
RNA replication rather than that of viral entry in human hepatocytes.  These results suggest that 
ANXA1 would be a novel target for the development of anti-HCV strategies.
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ersistent infection with hepatitis C virus (HCV) 
frequently causes chronic hepatitis,  and then 

shows a high rate of progression to liver cirrhosis and 
hepatocellular carcinoma.  HCV is an enveloped posi-
tive single-stranded RNA (9.6 kb) virus belonging to 
the Flaviviridae family [1].  The HCV genome encodes 
a single polyprotein precursor of approximately 3,000 
amino acids,  which is cleaved by host and viral pro-
teases into at least 10 proteins in the following order:  
core,  envelope 1 (E1),  E2,  p7,  non-structural protein 
2 (NS2),  NS3,  NS4A,  NS4B,  NS5A,  and NS5B 

[2-4].
　 The previous standard therapy for patients with 
chronic hepatitis C consisted of a combination of 
pegylated-interferon (PEG-IFN) and ribavirin (RBV),  
and achieved a sustained virological response (SVR) in 
about half of patients treated [5].  Recently,  several 
direct-acting antiviral agents (DAAs) have been devel-
oped to inhibit the functions of HCV proteins such as 
NS3-4A (serine protease),  NS5A,  and NS5B (RNA-
dependent RNA polymerase).  Among these DAAs,  an 
HCV NS3-4A protease inhibitor,  telaprevir,  is cur-
rently used in combination with PEG-IFN and RBV as 
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the standard therapy for patients possessing HCV of 
genotype 1b [6].  Although this therapy has improved 
the SVR by more than 70ｵ [7],  it has several prob-
lems,  such as severe side effects,  emergence of 
resistance viruses,  and high treatment cost [8,  9].  
Therefore,  the identification of novel host factor(s) as 
a target of the anti-HCV agents is important for the 
further development of anti-HCV strategies.
　 We recently demonstrated that human hepatoma 
HuH-7 cell line-derived RSc cells were much more 
highly permissive for HCV-JFH-1 (genotype 2a) 
infection than parental HuH-7 cells [10].  Our previ-
ous studies using RSc cells demonstrated that DDX3 
[11],  ATM [12],  and several proteins (TSG101,  
Alix,  Vps4B,  etc.) in the ESCRT system [13] were 
required for HCV RNA replication or HCV produc-
tion.  In addition,  we recently found that Rab18 was 
also required for viral assembly of HCV in RSc cells 
[10].
　 On the other hand,  in 2009,  we found that a human 
hepatoma cell line,  Li23,  whose expression profile 
was distinct from that of HuH-7,  also showed good 
susceptibility to HCV-JFH-1 as well as efficient HCV 
RNA replication [14,  15].  Furthermore,  by serial 
subcloning of Li23 cells,  we recently isolated D7 
cells,  which were highly permissive for HCV-JFH-1 
infection [16].  These results suggest that some com-
mon host factor(s) are required for susceptibility to 
HCV as positive or negative regulator(s) in both RSc 
and D7 cells.
　 We recently identified annexin A1 (ANXA1) as one 
of the genes showing irreversible downregulated 
expression during the long-term (more than 2 years) 
replication of HCV RNA [17].  ANXA1,  which 
belongs to the annexin family,  was identified as a 
calcium ion (Ca2+)-dependent phospholipid-binding 
protein on the plasma membrane [18].  ANXA1 exerts 
anti-inflammatory activity through the inhibition of 
phospholipase A2 (PLA2),  which is involved in the 
biosynthesis of inflammatory mediators [19].  ANXA1 
is also a secreted protein,  and blocks the inflamma-
tory response by inhibiting the transmigration of leu-
kocytes [20].  On the other hand,  ANXA1 has also 
been shown to have the biological function of inhibiting 
infection by cytomegalovirus [21].
　 Based on the above results,  we here decided to 
focus on clarifying the relation between the expression 
level of ANXA1 and the susceptibility to HCV.  Here,  

we show that ANXA1 is required for regulation of the 
susceptibility to HCV as a negative regulator in human 
hepatocytes.

Materials and Methods

　 Cell culture. The human hepatoma Li23 cell 
line,  which was established and characterized in 
2009,  consists of human hepatoma cells from a 
Japanese male (age 56) [14].  The Li23 cells and 
Li23-derived sOLc,  ORL8c,  and D7 cells were cul-
tured in modified medium for human immortalized 
hepatocytes,  as described previously [14,  16].  Human 
hepatoma Huh7.5 cells were provided by Apath LLC 
(Brooklyn,  NY,  USA).  BOSC23 cells were cultured 
in Dulbeccoʼs modified Eagleʼs medium (Invitrogen,  
Carlsbad,  CA,  USA) supplemented with 10ｵ fetal 
bovine serum as previously described [22].
　 Ectopic expression of ANXA1 in D7 cells.
ANXA1 cDNA containing a full-length open reading 
frame was introduced into D7 cells by pCX4bsr retro-
viral transfer,  and subsequently D7 cells stably 
expressing exogenous ANXA1 (designated D7/ANXA1 
cells) were selected by blasticidin as previously 
reported [23].  We also introduced the pCX4bsr vec-
tor into D7 cells,  and then blasticidin-resistant D7 
cells (designated D7/Control cells) were used as the 
control cells.
　 HCV infection. The cells (0.8×106 cells/well 
at 6-well plate) were cultured for 24h before the 
infection with HCV-JFH-1 (genotype 2a) at a multi-
plicity of infection (MOI) of 1.  Total cellular RNA was 
extracted from HCV-JFH-1-infected cells at each time 
point (6,  24,  or 72h) after the infection,  as noted in 
the figure legends.  Cell lysates were prepared from 
HCV-JFH-1-infected cells at 72h after the infection 
for the Western blot analysis.  HCV-JFH-1-containing 
culture media were also collected at 24h after the 
infection,  and then were passed through a 0.22-µm 
filter to exclude the cell debris.  The obtained super-
natant was used as the inoculum to monitor extracel-
lular HCV infectivity.  Quantitative RT-PCR was used 
to measure the levels of viral RNA replication in 
Huh7.5 cells at 72h after the inoculation.
　IFN-α treatment. IFN-α treatment was per-
formed as described previously [24].  Briefly,  D7/
Control cells were infected with HCV-JFH-1 at an 
MOI of 1,  and then the culture media were replaced 
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with fresh media containing IFN-α (0,  1.25,  2.5,  or 
5IU/ml) at 6h after the infection.  At 24h after the 
substitution of fresh media,  the total cellular RNA 
was extracted from IFN-α-treated cells.
　 Quantitative RT-PCR analysis. To deter-
mine the RNA levels of ANXA1 and HCV,  total cel-
lular RNAs were prepared using the ISOGEN RNA 
extraction reagent (Nippon Gene,  Toyama,  Japan).  A 
SYBR Premix Ex Taq (TaKaRa Bio,  Otsu,  Japan) 
and LightCycler real-time PCR system (Roche 
Diagnostics,  Basel,  Switzerland) were used to per-
form quantitative RT-PCR.  The primer sets for 
ANXA1 [17],  HCV [25],  and GAPDH [26] were 
used for PCR.  The levels of ANXA1 mRNA and HCV 
RNA were normalized by the level of GAPDH mRNA.  
In vitro-transcribed HCV-JFH-1 RNA was used as the 
standard to calculate the amount of HCV RNA in 
HCV-JFH-1-infected cells.  Data are shown as the 
means±SD from at least three independent experi-
ments.
　 Flow cytometric analysis. D7/ANXA1 cells 
were treated with BODIPY 493/503 (Invitrogen) to 
label intracellular lipid droplets (LDs).  The mean 
fluorescence intensity of BODIPY-labeled cells was 
measured by using a FACScan system (Becton,  
Dickinson and Company,  Franklin Lakes,  NJ,  USA).
　Western blot analysis. Preparation of cell 
lysates,  SDS-polyacrylamide gel electrophoresis,  and 
immunoblotting were performed as previously described 
[27].  Anti-ANXA1 (Invitrogen),  anti-Core (CP11;  
Institute of Immunology,  Tokyo,  Japan),  and anti-β
-actin (AC-15; Sigma-Aldrich,  St. Louis,  MO,  USA) 
antibodies were used as primary antibodies.  HRP-
conjugated anti-mouse-IgG and anti-rabbit-IgG were 
used as secondary antibodies (Cell Signaling Technology,  
Beverly,  MA,  USA).  Immunocomplexes were detected 
by using a Renaissance enhanced chemiluminescence 
assay (PerkinElmer Life Sciences,  Wellesley,  MA,  
USA) as previously described [28].
　Statistic analysis. Determination of the signifi-
cance of differences among groups was assessed using 
the Studentʼs t-test.  P values of less than 0.05 were 
considered statistically significant.

Results

　 ANXA1 expression was extremely low in D7 
cells,  which are highly permissive for HCV-

JFH-1 infection. We previously demonstrated that 
ORL8c cells were more permissive for HCV-JFH-1 
infection than the parental Li23 cells (Fig.  1A and 
[14]).  During the process of searching for a host 
factor that might alter this viral susceptibility,  we 
carried out a cDNA microarray analysis using Li23 
and ORL8c cells.  Consequently,  we noticed that the 
expression level of ANXA1 in ORL8c cells was 
remarkably lower than that in Li23 cells (data not 
shown).  In a separate study performed around the 
same time,  we have independently isolated D7 cells,  
which were highly permissive for HCV-JFH-1 infec-
tion,  by the serial subcloning of ORL8c cells (Fig.  
1A) [16].  To check whether the expression level of 
ANXA1 is correlated with viral susceptibility,  we 
examined the levels of intracellular HCV RNA after 
HCV-JFH-1 infection and the expression levels of 
ANXA1 using Li23 cells and Li23-derived sOLc,  
ORL8c,  and D7 cells (Fig.  1A).  Susceptibility to 
HCV was evaluated with a quantity of the intracellu-
lar HCV RNA at 72h after HCV-JFH-1 infection.  
The results revealed that the HCV susceptibility of 
these cells was highest in D7 cells,  followed in order 
by ORL8c,  sOLc,  and Li23 cells (Fig.  1B).  However,  
this order was reversed for the mRNA levels of 
ANXA1,  which were highest in Li23,  followed by 
sOLc,  ORL8c,  and D7 cells (Fig.  1C).  We confirmed 
that the protein levels of ANXA1 were lower in sOLc,  
ORL8c,  and D7 cells compared with Li23 cells (Fig.  
1D).  From these results,  we hypothesized that ANXA1 
negatively regulates the susceptibility to HCV,  although 
it remains uncertain which step in the HCV life cycle 
ANXA1 regulates.
　 Exogenous expression of ANXA1 in D7 cells 
inhibited HCV production. To evaluate the 
above-described hypothesis,  we first prepared D7 cells 
stably expressing exogenous ANXA1 (D7/ANXA1 
cells).  We confirmed that D7/ANXA1 cells exhibited 
sufficiently high-level expression of ANXA1 at both the 
mRNA (Fig.  2A) and protein (Fig.  2B) levels in 
comparison with the control D7/Control cells.  We 
first examined the effect of ANXA1 expression on the 
cell growth rate of D7/ANXA1 cells,  but found that 
ANXA1 had no effect on the growth rate (Fig.  2C).  
We next examined the quantity of LDs,  which are 
important organelles for the production of HCV-
JFH-1 [29],  and which are induced by various cel-
lular stresses,  such as inflammation [30].  The results 
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revealed that ANXA1 had no significant effect on the 
quantity of LDs (Fig.  2D).  Interestingly,  however,  
we found that the ANXA1 expression significantly 
inhibited the infectious viral production from the 
HCV-JFH-1-infected D7/ANXA1 cells compared with 
the HCV-JFH-1-infected D7/Control cells (Fig.  2E).  
These results indicate that ANXA1 negatively regu-

lates the HCV production without affecting the cell 
growth and the quantity of LDs.
　 ANXA1 negatively regulates the viral RNA 
replication step after HCV infection. To clarify 
which step of the life cycle of HCV is prevented by 
ANXA1,  we first examined whether ANXA1 inhibits 
the step of viral RNA replication.  We compared the 
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Fig. 1　 Extremely low expression of ANXA1 in human hepatoma cell line Li23-derived D7 cells,  which are highly permissive for HCV-
JFH-1 infection.  A,  Lineage of Li23-derived cell lines.  HCV RNA-replicating cell lines (sOL,  OL8,  and ORL8) are sequentially estab-
lished by the transfection of subgenomic or genome-length HCV RNA as shown by the arrows with solid lines [14].  sOLc,  OL8c,  and 
ORL8c cells were prepared as cured cells by the elimination of HCV RNA from sOL,  OL8,  and ORL8 cells,  respectively.  The arrows with 
dashed lines show the elimination of HCV RNA by interferon treatment.  D7 cells were isolated from ORL8c cells by serial subcloning with 
limited dilution [16]; B,  Quantitative RT-PCR analysis of HCV RNA in Li23 cells and Li23-derived cells at 72h after HCV-JFH-1 infec-
tion.  The experiments were performed as described in the Materials and Methods; C,  Quantitative RT-PCR analysis of ANXA1 mRNA in 
Li23 cells and Li23-derived cells.  The levels of ANXA1 mRNA were calculated relative to the level in Li23 cells,  which was assigned as 
100%; D,  Western blot analysis of Li23 cells and Li23-derived cells for ANXA1.  The lower molecular weight band (corresponding to 
N-terminal-cleaved ANXA1 [37]) was not observed in Li23-derived cells because its expression was extremely low.  β-actin was 
included as a loading control.
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levels of intracellular HCV RNA between D7/
ANXA1 and D7/Control cells at 24h after HCV-
JFH-1 infection.  The results revealed that the level 
of HCV RNA in the HCV-JFH-1-infected D7/
ANXA1 cells was significantly lower than that in the 
infected D7/Control cells (Fig.  3A).  The inhibitory 
effect of ANXA1 on HCV RNA replication was 
roughly equivalent to that of 1.25IU/ml of IFN-α 

(Fig.  3B).  In addition,  we noticed that the inhibition 
of HCV RNA replication by ANXA1 was at the same 
level as that of HCV production (Fig.  2E).  Moreover,  
we confirmed by Western blot analysis that the level 
of core protein in the D7/ANXA1 cells was also 
decreased compared with that in the control cells 
(Fig.  3C).  We next examined whether ANXA1 inhib-
its the step of viral entry.  We compared the levels of 
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intracellular HCV RNA between D7/ANXA1 and 
D7/Control cells at 6h after HCV-JFH-1 infection.  
The results revealed that ANXA1 did not reduce the 
level of intracellular HCV RNA (Fig.  3D).  These 
results indicate that ANXA1 negatively regulates the 
step of viral RNA replication rather than that of viral 
entry.

Discussion

　 In the present study,  we found that HCV RNA 
replication was significantly inhibited by ANXA1 
expression in Li23-derived D7 cells.  Since this 
inhibitory phenomenon was not accompanied by an 
ANXA1-induced reduction of LDs,  we were not able 
to clarify the mechanism by which ANXA1 negatively 
regulates HCV RNA replication.  However,  as one 
possibility,  it is thought that ANXA1 blocks HCV 
RNA replication through the inhibition of PLA2 
gamma (PLA2G4C),  because it has been reported 
that PLA2 gamma is involved in viral RNA replication 
and assembly of HCV [31].  However,  our cDNA 
microarray analysis revealed that the level of 
PLA2G4C expression was very low in Li23 cells or 
Li23-derived cells as well as HuH-7 cells (data not 
shown).  From this fact,  we were able to exclude the 
possibility that ANXA1 blocks HCV RNA replication 
through the inhibition of PLA2G4C.  However,  the 
members of the PLA2 superfamily are organized into 
16 groups based on their amino acid sequences and 6 
types based on their characteristics [32].  Therefore,  
we are currently examining whether ANXA1 inhibits 
other groups of PLA2.
　 On the other hand,  ANXA1 was recently reported 
to be required for the production of interferon  
(IFN)-β through the association with TBK-1 [33].  
We also recently reported that HCV-JFH-1 infection 
induced the production of IFN-β through the TLR3/
TRIF/TBK-1 signaling pathway [25].  On the other 
hand,  it was previously reported that HCV NS3 
inhibited the production of IFN-β through the associa-
tion with TBK-1 [34].  Therefore,  further analysis 
will be needed to evaluate the hypothesis that ANXA1 
inhibits HCV RNA replication through the production 
of IFN-β.
　 RSc and D7 cells were much more highly permis-
sive for HCV infection than their parental HuH-7 and 
Li23 cells,  respectively [14,  16].  Interestingly,  the 

expression levels of ANXA1 in both RSc and D7 cells 
were extremely low compared with those of HuH-7 and 
Li23 cells (Fig.  1C and data not shown for RSc and 
HuH-7 cells),  although the gene expression profile of 
Li23 cells or Li23-derived cells was distinct from that 
of HuH-7 cells or HuH-7-derived cells [14,  15,  35].  
ANXA1 may be an important host factor for the 
blocking of HCV proliferation in human hepatocytes.
　 On the other hand,  glucocorticoids were previously 
reported to increase the expression and function of 
ANXA1 [36].  The upregulation of ANXA1 by gluco-
corticoids may achieve both anti-HCV RNA replica-
tion and anti-inflammatory effects in the liver.  
Furthermore,  since glucocorticoids are widely used as 
immunosuppressive agents,  they may be useful to 
block the cellular immunity after liver transplantation.  
Therefore,  we suggest that ANXA1 is a novel target 
for the development of anti-HCV strategies.
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