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Abstract 

Glioblastoma is known to secrete high levels of vascular endothelial growth factor 

(VEGF), and clinical studies with bevacizumab, a monoclonal antibody to VEGF, have 

demonstrated convincing therapeutic benefits. However, its induction of invasive 

proliferation has also been reported. We examined the effects of treatment with 

cilengitide, an integrin inhibitor, on bevacizumab-induced invasive changes in glioma. 

U87ΔEGFR orthotopic rat and mouse models were treated by cilengitide and/or 

bevacizumab intraperitoneally. We analyzed brain tumors histopathologically about the 

three following groups: untreated, treated with bevacizumab, and treated with a 

combination of bevacizumab and cilengitide. Next, the combination group was 

compared to the bevacizumab monotherapy group using microarray analysis of 

extracted RNA from U87ΔEGFR brain tumors. Bevacizumab treatment led to increased 

cell invasion in spite of decreased angiogenesis. In the combination group, the depth of 

tumor invasion was significantly less than with only bevacizumab. Pathway analysis 

using the microarray data demonstrated the inhibition of invasion-associated genes such 

as the integrin-mediated cell adhesion pathway in the combination group. This study 

showed that the combination of bevacizumab with cilengitide exerted its anti-invasive 

effect by suppressing the integrin-mediated cell adhesion pathway. The elucidation of 

this mechanism might contribute to the treatment of bevacizumab-refractory glioma. 
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Introduction 

Glioblastoma is one of the most frequent and aggressive intracranial neoplasms in 

humans and its prognosis remains poor despite the advancement of basic and clinical 

research. The median survival of patients diagnosed with glioblastoma is approximately 

12–14 months [1]. The typical features of malignant glioma include aggressive 

proliferation, a strong invasive capacity, and extensive angiogenesis. Recently, new 

therapeutic agents such as various molecular targeted drugs have been developed and 

clinical trials have been conducted.  

Glioblastoma cells are known to secrete high levels of vascular endothelial growth 

factor (VEGF), and clinical studies with the humanized monoclonal antibody 

bevacizumab, which targets the pro-angiogenic VEGF, have demonstrated significant 

therapeutic benefits in patients with recurrent glioblastoma [2-4]. Recently, the results 

of the positive phase III AVAglio and RTOG 0825 studies, which were presented at the 

49th Annual American Society of Clinical Oncology (ASCO) Meeting in 2013, showed 

that bevacizumab in combination with radiation and temozolomide chemotherapy 

reduced the risk of progression-free survival in patients with newly diagnosed 

glioblastoma; however, overall survival did not reach statistical significance. Although 

anti-VEGF therapies including bevacizumab have been shown to decrease vascular 

permeability rapidly, which manifests as a decrease in contrast on enhanced magnetic 

resonance imaging, they do not improve the long-term outcome of patients [5]. Piao et 

al. showed that anti-VEGF therapy induces a phenotypic shift toward a more invasive, 

aggressive, and treatment-resistant phenotype associated with mechanisms similar to the 

epithelial to mesenchymal transition [6].  

Integrins control the attachment of cells to the extracellular matrix (ECM) and 

participate in processes such as cell migration, differentiation, and survival during 

embryogenesis, angiogenesis, wound healing, and cellular defense against genotoxic 

assaults [7]. Several integrin-targeted drugs are in clinical trials as potential compounds 

for the treatment of cancer. Cilengitide (EMD121974), a cyclic 

arginine-glycine-aspartic (RGD) acid pentapeptide, is an αvβ3 and αvβ5 integrin 

antagonist that induces anoikis and apoptosis in human endothelial cells and brain 

tumor cells [8,9]. Cilengitide might inhibit adhesion to the ECM, thereby suppressing 

the invasion of glioma [10]. This agent is currently being assessed in phase III trials for 

glioblastoma patients and phase II trials for other types of cancers, with promising 

therapeutic outcomes reported to date [11].  

The purpose of this study was to investigate the phenotypic changes in radiographic 

tumor progression that have been observed in some patients receiving bevacizumab. We 
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found that anti-VEGF treatment led to perivascular and subpial tumor invasion. 

Moreover, we investigated the pathological and molecular changes of the 

anti-angiogenic and anti-invasive effects using combination therapy of bevacizumab 

and the integrin antagonist cilengitide. 

 

 

Materials and Methods 

Glioma cell line and drug 

The human glioma cell line U87ΔEGFR was seeded in tissue culture dishes (BD Falcon, 

Franklin Lakes, NJ, USA) and cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS), 100 U penicillin, and 0.1 

mg/mL streptomycin. U87ΔEGFR cells were prepared and maintained as described 

previously [12]. Cilengitide (EMD121974) was generously provided by Merck KgaA 

(Darmstadt, Germany) and the Cancer Therapy Evaluation Program, National Cancer 

Institute, National Institutes of Health. Bevacizumab was provided by Genentech (San 

Francisco, CA, USA) /Roche (Basel, Swiss) /Chugai Pharmaceutical Co (Tokyo, Japan). 

 

Brain xenografts 

All experimental animals were housed and handled in accordance with the guidelines of 

the Animal Research Committee of Okayama University. Before implantation, 85–90% 

confluent U87ΔEGFR cells were trypsinized, rinsed with DMEM supplemented with 

10% FBS, and centrifuged at 100 × g for 5 min; the resulting pellet was resuspended in 

phosphate-buffered saline (PBS), and the cell concentration was adjusted to 1.0 × 10
5
 

cells/μL. U87ΔEGFR cells (5 µL) were injected into athymic rats (F344/N-rnu/rnu; 

CLEA Japan, Inc., Tokyo, Japan) and U87ΔEGFR cells (2 µL) were injected into 

athymic mice (balb/c-nu/nu; CLEA Japan, Inc, Tokyo, Japan). The animals were 

anesthetized and placed in stereotactic frames (Narishige, Tokyo, Japan) with their 

skulls exposed. Tumor cells were injected with a Hamilton syringe (Hamilton, Reno, 

NV, USA) into the right frontal lobe (in the athymic rats: 4 mm lateral and 1 mm 

anterior to the bregma at a depth of 4 mm; in the athymic mice: 3 mm lateral and 1 mm 

anterior to the bregma at a depth of 3 mm) and the syringe was withdrawn slowly after 5 

min to prevent reflux. The skulls were then cleaned and the incision was sutured. PBS, 

bevacizumab (for the athymic mice and rats: 6 mg/kg), cilengitide (for the athymic mice 

and rats: 10 mg/kg), or a combination of bevacizumab and cilengitide of the same 

amount was administered 3 times/week intraperitoneally, starting on day 5 after tumor 

cell implantation. 
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Transmission electron microscopy 

Athymic rats harboring U87ΔEGFR brain tumors were sacrificed at 18 days after tumor 

implantation and 6 times administration of PBS, bevacizumab, cilengitide, or the 

combination of bevacizumab and cilengitide. The brains were removed and fixed 

immediately by perfusion of 2% glutaraldehyde. After fixation in 2% osmium tetroxide, 

the samples were dehydrated and embedded in Spurr’s resin. Thin sections poststained 

with salts of uranium and lead were cut to approximately 60 nm using an 

ultramicrotome (Leica EM UC6, Wetzlar, Germany). The samples were observed under 

a transmission electron microscopy (Hitachi H-7650 TEM, Tokyo, Japan).  

 

Histopathological analysis of glioma  

For histopathological analysis, athymic rats harboring U87ΔEGFR brain tumors were 

sacrificed at 18 days after tumor implantation. Athymic rats were anesthetized, 

euthanized by cardiac puncture, perfused with 100 mL PBS, and fixed with 50 mL 4% 

paraformaldehyde (PFA). The brains were removed and stored in 4% PFA for 12–24 h. 

Hematoxylin and eosin (HE) staining was performed as described previously [13]. For 

immunohistochemistry of PFA perfusion-fixed frozen sections, snap-frozen tissue 

samples were embedded in optimal cutting temperature compound for cryosectioning, 

and 16-μm thick sections were processed for indirect immunofluorescence. After 

blocking non-specific binding with 10% normal goat serum, the slides were incubated 

overnight at 4°C with primary antibodies, including those targeting rat endothelial cell 

antigen 1 (RECA-1) (1:20, mouse monoclonal; Abcam, Inc., Cambridge, UK), von 

Willebrand factor (1:250, rabbit polyclonal; Abcam, Inc., Cambridge, UK), integrin 

αvβ3 (1:100, mouse monoclonal; Abcam, Inc., Cambridge, UK), and integrin αvβ5 

(1:75, mouse monoclonal; Abcam, Inc., Cambridge, UK), after blocking with 10% 

normal goat serum. After three washes with PBS containing 0.01% Tween 20 for 5 min, 

the slides were incubated with Alexa Fluor
®

 594-conjugated and Alexa Fluor
®
 

488-conjugated secondary antibodies (Abcam, Inc., Cambridge, UK) and 

4',6-diamidino-2-phenylindole (DAPI) (1:500) (Invitrogen, Carlsbad, CA, USA) in PBS 

for 60 min. The slides were then washed in PBS and mounted. 

 

Microarray analysis  

Orthotopic U87ΔEGFR xenograft mouse models treated with bevacizumab or the 

combination of bevacizumab and cilengitide were sacrificed at 18 days after tumor 

implantation (n = 3 per treatment). Approximately 40 mg of brain tumor samples were 
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excised cleanly from each mouse and RNA was extracted using TRIzol (Life 

Technologies, Carlsbad, CA, USA) and an RNeasy Mini Kit (QIAGEN, Venlo, 

Netherlands). They were analyzed using a CodeLink™ Human Whole Genome 

Bioarray (Applied Microarrays, Inc., Tempe, AZ, USA). We entrusted the microarray 

analyses to Filgen, Inc. (Nagoya, Japan). Briefly, for each bioarray, 10 μg of 

biotin-labeled aRNA, which was prepared using a MessageAmp™ II-Biotin Enhanced 

Kit in a total volume of 25 µL, were added to 5 μL of 5× fragmentation buffer, which 

was then incubated at 94°C for 20 min. Thereafter, 10 μg fragmented cRNA, 78 μL 

hybridization buffer component A, and 130 μL hybridization buffer component B were 

added, and the final volume was brought up to 260 μL with water. The resultant 

hybridization reaction mixture was incubated at 90°C for 5 min, after which 250 μL 

were slowly injected into the input port of each array, and the ports were sealed with 

sealing strips. The bioarrays were incubated for 18 h at 37°C while shaking at 300 rpm. 

A consistent hybridization time was maintained for comparative experiments. Following 

the incubation, the bioarrays were washed with 0.75 TNT buffer (0.10 M Tris-HCl, pH 

7.6, 0.15 M NaCl, 0.05% Tween 20) and incubated at 46°C for 1 h. Each slot of the 

small reagent reservoir was then filled with 3.4 mL Cy5-streptavidin working solution, 

and the array was incubated at 25°C for 30 min. Thereafter, the bioarrays were washed 4 

times for 5 min each with 1 × TNT buffer at 25°C, rinsed twice in 0.1× SSC (Ambion, 

Austin, TX, USA)/0.05% Tween 20 for 30 s each, and immediately dried by 

centrifugation for 3 min at 25°C. Finally, the arrays were scanned using a 

GenePix4000B Array Scanner (Molecular Devices, Sunnyvale, CA, USA). A gene was 

defined as being upregulated when the combination therapy/bevacizumab monotherapy 

average intensity ratio was >2.0, and downregulated when the combination 

therapy/bevacizumab monotherapy ratio was <0.5. We performed pathway analysis on 

the genes with increased and decreased expression using Microarray Data Analysis Tool 

Ver3.2 (Filgen, Inc., Nagoya, Japan). The data were extracted using the following 

criteria: Z-score > 0 and P-value < 0.05. 

 

Quantitative reverse-transcription polymerase chain reaction (QRT-PCR) 

Total RNA was isolated from cultured U87ΔEGFR cells treated with cilengitide (1.0 

μM for 16 h) and untreated control U87ΔEGFR cells using an RNeasy
®

 Mini Kit 

(QIAGEN, Hilden, Germany). In vivo, total RNA was extracted from the brain tumor 

tissue of mice that had been treated with PBS or cilengitide using the TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. RNA 

was reverse transcribed with oligo dT primers using the SuperScript III First-Strand 

http://en.wikipedia.org/wiki/Hilden
http://en.wikipedia.org/wiki/Germany
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Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA, USA) according to 

manufacturer’s instructions. Primers specific to each gene were designed using Primer 3 

Plus Software (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) and 

synthesized by Invitrogen. The resulting cDNA was amplified by PCR using the 

gene-specific primers and the 7300 Real Time PCR system (Applied Biosystems, Foster 

City, CA, USA) and a QuantiTectTM SYBR® Green PCR Kit (QIAGEN, Hilden, 

Germany). A log-linear relationship between the amplification curve and quantity of 

cDNA in the range of 1–1000 copies was observed. The cycle number at the threshold 

was used as the threshold cycle (Ct). Changes in the expression of mRNA were detected 

from 2-ΔΔCt using the 7300 Real Time PCR System with Sequence Detection Software 

(version 1.4; Applied Biosystems, Foster City, CA, USA). The amount of cDNA in each 

sample was normalized to the crossing point of the housekeeping gene glyceraldehyde 

3-phosphate dehydrogenase (GAPDH). The following thermal cycling parameters were 

used: denaturation at 95°C for 10 min followed by 45 cycles at 94°C for 15 s, 55°C for 

30 s, and 72°C for 30 s. The relative upregulation of mRNA for each gene in the control 

was calculated using their respective crossing points with the following formula, as 

previously described [14]:  

F = 2
(TH − TG) − (OH − OG)

 where, F = fold difference, T = control, O = treated cell or 

tumor, H = housekeeping gene (GAPDH), and G = gene of interest. 

c-src tyrosine kinase primers: 

    CSK F (forward), 5′-GAATACCTGGAGGGCAACAA-3′  

CSK R (reverse), 5′-ATTCCGAAACTCCACACGTC-3′  

caveolin 3 primers: 

    CAV3 F (forward), 5′-TTTGCCAAGAGGCAGCTACT-3′  

    CAV3 R (reverse), 5′-ACCCTTTACTGGAGCCACCT-3′ 

GAPDH primers:  

GAPDH F (forward), 5′- GAGTCAACGGATTTGGTCGT-3′ 

GAPDH R (reverse), 5′-TTGATTTTGGAGGGATCTCG-3′ 

 

To assess the gene expression of caveolin 3 and c-src tyrosine kinase with 

QRT-PCR, athymic mice harboring U87ΔEGFR brain tumors were sacrificed at 18 days 

after tumor implantation. The tumor-bearing right hemispheres of the brains were 

excised and processed for RNA.  

 

Statistical analysis 

Student’s t test was used to test for statistical significance. Data are presented as the 

http://en.wikipedia.org/wiki/Carlsbad,_California
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
http://en.wikipedia.org/wiki/Foster_City,_California
http://en.wikipedia.org/wiki/Foster_City,_California
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Hilden
http://en.wikipedia.org/wiki/Germany
http://en.wikipedia.org/wiki/Foster_City,_California
http://en.wikipedia.org/wiki/United_States
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mean ± standard error. P < 0.05 was considered statistically significant. All statistical 

analyses were performed with the use of SPSS statistical software (version 20; SPSS, 

Inc., Chicago, IL, USA). 

 

 

Results 

Anti-angiogenic effect of bevacizumab 

U87ΔEGFR orthotopic tumors proliferate with aggressive angiogenic growth (Figure 

1A). Treatment with bevacizumab reduced angiogenesis in U87ΔEGFR orthotopic 

tumor tissues in the rat with a regression of tumor size (Figure 1B). The density of 

tumor vessels was significantly decreased by bevacizumab (Figure 1C). The short 

diameter of tumor vessels tended to be larger, but there was no significant difference 

(Figure 1D). Quantitative assessment of tumor vascularity results in a remarkable 

regression of tumor vessels (Figure 1E).  

 

Microstructure of tumor vessels in the border area with bevacizumab treatment  

The structure of the blood-brain barrier of cerebral capillaries was composed of a single 

endothelial cell, juxtaposing membranes with a tight junction, pericytes attached to the 

abluminal surface of endothelial cells, a basal lamina surrounding these cells, and close 

contact with the plasma membranes of astrocyte end-feet [15]. We observed that there 

was no space between the basal lamina and astrocyte end-feet (AE) for capillaries in the 

contralateral normal brain (Figure 2A). The fuzzy basal lamina and loose ECM were 

observed at perivascular space in the center area of an untreated U87ΔEGFR tumor (see 

Supplementary Figure 1A). In the center area of a bevacizumab-treated U87ΔEGFR 

tumor, ECM was thickened and numerous collagen fibers were increased at perivascular 

space (see Supplementary Figure 1B). In contrast, there was a distance of more than 250 

nm between endothelial cells and tumor cells and there was also a fuzzy basal lamina 

near the border area of the tumor (Figure 2B). When treated with bevacizumab, the 

distance between the endothelial cells and tumor cells was reduced in conjunction with 

the normalization and orderliness of the basal lamina (Figure 2C, D).    

 

Anti-angiogenic therapy induced an invasive phenotype in the orthotopic glioma 

model 

The rat orthotopic glioma model implanted with U87ΔEGFR cells displayed angiogenic 

growth and well-defined borders toward the brain tissue (Figure 3A). However, after 

anti-VEGF therapy with bevacizumab, we observed increased cell invasion and vascular 
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co-option (Figure 3B).  

 

Integrin αvβ3 and αvβ5 expression in glioma cell lines 

Using immunohistochemistry, we demonstrated that U87ΔEGFR cells expressed high 

levels of αvβ3 and αvβ5 integrin (Figure 4A, B). Furthermore, integrin αvβ3 and αvβ5 

was immunohistochemically expressed at tumor endothelial cells and surrounding 

tumor cells in the rat orthotopic glioma model with U87ΔEGFR cells (Figure 4C, D). 

Therefore, we examined the combined effect of the integrin inhibitor cilengitide and 

bevacizumab on glioma models in vivo. 

 

Effect of cilengitide on bevacizumab-induced invasion 

The rat orthotopic glioma model with U87ΔEGFR cells die at approximately 20 days 

after implantation. Tumors in the untreated group were strongly proliferative and 

expanded with well-defined borders (Figure 5A). When treated with bevacizumab, the 

tumor surface became irregular, and strong invasiveness was induced in the U87ΔEGFR 

model (Figure 5B). Thus, when this model was treated with a combination of 

bevacizumab and cilengitide, the depth of tumor invasion was remarkably decreased 

(Figure 5C and D). These results demonstrated that cilengitide reduced 

bevacizumab-induced invasion. 

 

Effects on the structure of tumor vessels by combination treatment with bevacizumab 

and cilengitide 

We also focused on the effect of combination therapy with anti-VEGF and anti-integrin 

agents on tumor vessels. The vascularity of tumors treated with bevacizumab and 

cilengitide was strongly suppressed (Figure 6A). Similar to bevacizumab-treated tumors, 

cluttered and dense ECM around endotherial cells following combination therapy was 

observed by a transmission electron microscopy (see Supplementary Figure 1C). 

Notably, the tumor vessels around the area of the tumor border retained an orderly 

structured basal lamina (Figure 6B and C). Although the density of tumor vessels 

following combination therapy was inhibited to the same extent as with bevacizumab 

monotherapy (Figure 6D), the diameter of tumor vessels following combination therapy 

was significantly smaller than following bevacizumab monotherapy (Figure 6E).  

Additionally, vascularity of tumors following combination therapy was significantly less 

than that of bevacizumab-treated tumors (Figure 6F). 

 

Microarray analysis of the effect of combination treatment compared to bevacizumab 
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monotherapy on the U87ΔEGFR orthotopic mouse model  

To characterize the molecular mechanisms underlying the anti-invasive response to 

combination therapy, we analyzed the changes in gene expression of tumor tissues in 

the U87ΔEGFR orthotopic mouse model treated with bevacizumab and cilengitide 

combination therapy compared to bevacizumab monotherapy. We identified 947 

differentially expressed genes between bevacizumab-treated U87ΔEGFR glioma tissue 

and bevacizumab plus cilengitide-treated U87ΔEGFR glioma tissue, which consisted of 

486 upregulated genes and 461 downregulated genes (Figure 7A). Further, we 

characterized the functional significance of these dysregulated genes using pathway 

analysis. For the downregulated genes, the following three significantly enriched 

pathways were identified: integrin-mediated cell adhesion pathway, signaling of 

hepatocyte growth factor (HGF) receptor pathway, and GPCRs, class C metabotropic 

glutamate, pheromone pathway (Table 1). For the upregulated genes, the following 

three significantly enriched pathways were identified: inflammatory response pathway, 

serotonin receptor 2 and ELK-SRF-GATA4 signaling pathway, and serotonin receptor 

4-6-7 and NR3C signaling pathway (Table 2). 

 

Validation of the microarray results 

To confirm the reliability of the results from the microarray analysis, caveolin 3 and 

c-src tyrosine kinase, which were included in the integrin-mediated cell adhesion 

pathway and associated with tumor invasion, were verified by QRT-PCR analysis. The 

relative expression of caveolin 3 and c-src tyrosine kinase in the U87ΔEGFR mouse 

orthotopic model treated with cilengitide and bevacizumab was significantly reduced 

compared with bevacizumab monotherapy by 0.38-fold and 0.44-fold, respectively (p < 

0.05) (Figure 7B).  

 

 

Discussion 

Tumor angiogenesis in the glioma orthotopic models was decreased by treatment with 

bevacizumab. Conversely, bevacizumab treatment resulted in enhanced tumor invasion. 

In this study, we demonstrated that cilengitide, an inhibitor of these integrins, inhibited 

bevacizumab-induced glioma invasion in vivo. Microarray analysis of combination 

treatment compared to bevacizumab monotherapy on the U87ΔEGFR orthotopic mouse 

model showed that pathways such as the integrin-mediated cell adhesion pathway or 

signaling of HGF receptor pathway were associated with the anti-invasive mechanism 

of cilengitide. Moreover, we focused on the ultra-micro structure of tumor vessels. 
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Since a tight junction was maintained between the endothelial cells, disintegration of a 

basal lamina was considered to represent a broken blood-brain barrier. This observation 

revealed that bevacizumab increased perivascular ECM such as collagen fibers in the 

central area of the tumor and closed the normal blood-brain barrier with an orderly 

ECM wall in the border area of the tumor. Adding cilengitide further reduced the 

number of tumor vessels with a normalized blood-brain barrier at the border of the 

tumor.  

 The conditional approval of bevacizumab by the US Food and Drug 

Administration in 2009 for patients with recurrent glioblastoma was linked to future 

demonstrations of its efficacy in prospective trials of newly diagnosed patients. Two 

such trials were performed, largely in parallel—one by RTOG (RTOG-0825) and one 

by Roche (AVAGlio) [16]. At the 2013 ASCO meeting in Chicago, the results from 

both trials were shown to provide a uniform picture: progression-free survival was 

significantly prolonged, and quality of life was preserved in the AVAGlio trial, but not 

in RTOG-0825. Safety and tolerability were acceptable, but overall survival was not 

improved.  

Several reports mentioned that increased tumor invasiveness is a major refractory to 

the antiangiogenic therapy. de Groot et al. described 3 patients who, during 

bevacizumab therapy, developed infiltrative lesions visible by MRI and presented the 

data that pair imaging features seen on MRI with histopathologic findings [17]. Delay et 

al. revealed hyperinvasive phenotype, which was one of resistance patterns of 

glioblastoma after bevacizumab therapy, was upregulated with integrin signaling 

pathway including integrin α5 and fibronectin 1 [18]. Our results also showed 

bevacizumab treatment led to increased cell invasion in spite of decreased angiogenesis. 

Previous reports showed integrin αvβ3 and αvβ5 plays a central role in glioma 

invasion and inhibition of integrins decreased glioma cell motility in vitro [19,20]. We 

reported that cilengitide exerts its anti-tumor effects by inhibiting tumor angiogenesis 

and invasion or by inducing apoptosis-related pathways [9,13,21]. We recently 

established two novel invasive animal glioma models (J3T-1 and J3T-2) that reflect the 

invasive phenotype of human malignant gliomas [22]. These models were particularly 

beneficial to investigate the anti-invasive effects of cilengitide [13]. Currently, 

cilengitide is being assessed in phase II and phase III trials for patients with newly 

diagnosed glioblastoma [11,23]. Lombardi et al. recently reported two cases with 

bevacizumab-refractory high-grade glioma treated with cilengitide [24].  

Some recent reports proved that the inhibition of VEGF promoted glioma invasion 

through HGF-dependent MET phosphorylation in association with phenotypic changes 
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such as the epithelial to mesenchymal transition [25,26]. The present study 

demonstrated that an antagonist of αvβ3 and αvβ5 integrin prevented 

bevacizumab-induced invasion in orthotopic glioma models that expressed these 

integrins at high levels. In the microarray analysis, combination therapy had reduced 

expression of genes in the integrin-mediated cell adhesion pathway and signaling of 

HGF receptor pathway compared to bevacizumab monotherapy. These data may 

indicate the mechanisms underlying the anti-invasive effects of cilengitide on glioma.  

We showed that bevacizumab and cilengitide reduced tumor vascularity by 

changing the diameter and density of tumor vessels in the in vivo glioma models. Von 

Baumgarten et al. reported that bevacizumab decreased vascular density and normalized 

the vascular permeability of glioma [27]. Conversely, cilengitide was shown to shrink 

the diameter of tumor vessels in angiogenesis-dependent invasive glioma models [13]. 

Moreover, we investigated the ultra-micro structure of tumor vessels and proved that 

bevacizumab reduced the distance between endothelial cells and tumor cells with a 

broken basal lamina at the blood-brain barrier in the border of the tumor. We also 

focused the ECM of gliomas which is considered to play as a critical regulator of 

angiogenesis and invasiveness [28]. In the center area of U87ΔEGFR tumors following 

bevacizumab treatment and combination therapy of bevacizumab and cilengitide, ECMs 

were thickened remarlably at perivascular space with respectively different 

characteristics. Fibronectin, vitronectin, laminin, tenascin, and different types of 

collagen promote invasion of glioma [29,30], in contrast, glycosylated chondroitin 

sulfate proteoglycans consisting ECMs inhibit invasion in glioma [31]. These different 

mechanisms might be necessary for the regulation of tumor angiogenesis and invasion; 

however, the detailed mechanisms have not been elucidated and they need to be 

clarified in the future. 

 

 

Conclusions 

This study showed that anti-VEGF therapy induced glioma invasion despite its intense 

anti-angiogenic effect; however, the combination of bevacizumab with the αvβ3 and 

αvβ5 integrin inhibitor cilengitide exerted a significant anti-invasive effect. We revealed 

that combination therapy suppressed the integrin-mediated cell adhesion pathway as an 

underlying mechanism of its anti-invasive effect.  
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Figure legends 

 

Figure 1 

Anti-angiogenic effect of bevacizumab 

(A) Tumor vessels identified with RECA-1. Untreated U87ΔEGFR orthotopic tumor 

was observed with angiogenic growth. (B) The reduction of tumor vessels with 

bevacizumab therapy. Quantitative assessment of tumor vessels between no treatment 

and bevacizumab therapy was shown in following graphs. (C) Bevacizumab decreased 

vessel density of tumors significantly. (D) There was no significant difference about 

vessel short diameter of tumors. (E) Intensity of vessel area stained with RECA-1 was 

significantly reduced in bevacizumab-treated tumors. Bar: 100 μm. *p < 0.01. HPF, high 

power field.  

 

Figure 2 

Microstructure of tumor vessels in the border area with bevacizumab treatment  

(A) Contralateral normal brain. There was no space between the basal lamina and 

astrocyte end-feet (AE) (black arrowheads). (B) There was a distance of more than 250 

nm around the tumor microvessels; the fuzzy basal lamina and tumor cytoplasm (white 

arrowheads and double-headed black arrows) were separated in the border area of 

untreated U87ΔEGFR tumors. Conversely, a tight junction (white arrows) was 

maintained between the endothelial cells. (C) There was less space between the basal 

lamina and AE in the border area of bevacizumab-treated tumors compared to untreated 

tumors. (D) The distance between the endothelial cells and tumor was significantly 

narrowed in bevacizumab-treated tumors (Bev) compared to PBS-treated tumors (PBS). 

L: Lumen of vessels, Bar: 1 μm. *p < 0.01.  

 

Figure 3 

Anti-angiogenic therapy induces invasion in the orthotopic glioma model 

(A) Well-defined borders toward the brain tissue in an untreated U87ΔEGFR orthotopic 

rat tumor. (B) Tumor cell invasion with vascular co-option in a bevacizumab-treated 

tumor. Bar: 100 μm. 

 

Figure 4 

Expression of integrin αvβ3 and αvβ5 in the glioma cell line 

U87ΔEGFR cells expressed (A) αvβ3 and (B) αvβ5 integrin at a high level, especially 

αvβ3, in immunocytochemistry. (C) Integrin αvβ3 and (D) αvβ5 were expressed at a 
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high level in tumor vessels stained with von Willbrand factor and surrounding tumor 

cells in U87ΔEGFR rat orthotopic tumors. Bar: 50 μm. 

  

Figure 5 

The effect of cilengitide on bevacizumab-induced invasion 

(A) HE staining of an untreated U87ΔEGFR rat orthotopic tumor demonstrated the 

expansion of the tumor with well-defined borders. (B) Following treatment with 

bevacizumab (Bev), the tumor border was irregular with tumor invasion. (C) Tumor 

invasiveness was reduced at the tumor border following combination therapy with 

bevacizumab and cilengitide (Bev+Cile) compared to bevacizumab monotherapy. (D) 

The depth of tumor invasion following treatment with bevacizumab and cilengitide was 

remarkably decreased compared to bevacizumab monotherapy. Bar: 200 μm. *p < 0.01.  

 

Figure 6 

Effects of combination treatment with bevacizumab and cilengitide on tumor vessel 

structure 

(A) The tumor vessels treated with bevacizumab and cilengitide were inhibited more 

strongly than with bevacizumab treatment. Bar: 100 μm. (B) (C) Tumor vessels around 

the tumor border area retained an orderly structured basal lamina. L: Lumen of vessels, 

Bar: 5 μm. (D) The tumor vessel density following combination therapy (Bev+Cile) was 

inhibited to the same extent as with bevacizumab treatment (Bev), and the tumor vessel 

diameter was significantly smaller with combination therapy than with bevacizumab 

treatment (E). (F) Intensity of RECA-1 following combination therapy (Bev+Cile) was 

significantly less than that of bevacizumab-treated tumors. *p < 0.05. HPF, high power 

field.  

 

Figure 7 

Microarray analysis of the effect of combination treatment compared to bevacizumab 

monotherapy 

(A) There were 947 differentially expressed genes between the bevacizumab 

monotherapy group (Bev) and the group with bevacizumab and cilengitide combination 

therapy (Bev+Cile), with 486 upregulated genes and 461 downregulated genes. (B) (C) 

Caveolin 3 (CAV3) and c-src tyrosine kinase (CSK) were significantly decreased by 

combination therapy compared to monotherapy (*p < 0.05) (mean ± SE, n = 3). RQ, 

relative quantification. 
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Supplementary Figure 1 

Microstructure of perivascular space in the center area of U87ΔEGFR rat brain 

tumor   

(A) The fuzzy basal lamina and loose ECM were observed at perivascular space in the 

center area of an untreated U87ΔEGFR tumor. (B) Numerous collagen fibers were 

increased at perivascular space in the center area of a bevacizumab-treated U87ΔEGFR 

tumor. (C) Cluttered and dense ECM around endotherial cells following combination 

therapy was observed. Bar: 500 nm.   
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Tables 

Table 1 

0.5-fold downregulated genes (n = 461) 

Pathway Name Z score P-value Entrez Gene ID Gene Symbol Gene Name 

Integrin-Mediated Cell Adhesion 3.753 0.00398 6654 SOS1 

son of sevenless homolog 1 

(Drosophila) 

 

3.753 0.00398 859 CAV3 caveolin 3 

 

3.753 0.00398 1445 CSK c-src tyrosine kinase 

 

3.753 0.00398 5747 PTK2 PTK2 protein tyrosine kinase 2 

 

3.753 0.00398 53358 SHC3 

SHC (Src homology 2 domain 

containing) transforming protein 3 

 

3.753 0.00398 1793 DOCK1 dedicator of cytokinesis 1 

Signaling of Hepatocyte Growth 

Factor Receptor 

3.604 0.015347 6654 SOS1 

son of sevenless homolog 1 

(Drosophila) 

 

3.604 0.015347 5747 PTK2 PTK2 protein tyrosine kinase 2 

 

3.604 0.015347 1793 DOCK1 dedicator of cytokinesis 1 

GPCRs, Class C Metabotropic 

Glutamate, Pheromone 

3.725 0.026514 55507 GPRC5D 

G protein-coupled receptor, family C, 

group 5, member D 

 

3.725 0.026514 846 CASR calcium-sensing receptor 
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Table 2 

2.0-fold upregulated genes (n = 486) 

Pathway Name Z score P-value Entrez Gene ID Gene Symbol Gene Name 

Inflammatory Response Pathway 3.473 0.017558 3913 LAMB2 laminin, beta 2 (laminin S) 

 

3.473 0.017558 3560 IL2RB interleukin 2 receptor, beta 

 

3.473 0.017558 958 CD40 

CD40 molecule, TNF receptor 

superfamily member 5 

Serotonin Receptor 2 and 

ELK-SRF-GATA4 Signaling 

3.375 0.034361 5604 MAP2K1 mitogen-activated protein kinase kinase 1 

 

3.375 0.034361 2776 GNAQ 

guanine nucleotide binding protein (G 

protein), q polypeptide 

Serotonin Receptor 4-6-7 and 

NR3C Signaling 

3.121 0.041792 5604 MAP2K1 mitogen-activated protein kinase kinase 1 

 

3.121 0.041792 673 BRAF 

v-raf murine sarcoma viral oncogene 

homolog B1 
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