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ZERO MEAN CURVATURE SURFACES IN

LORENTZ-MINKOWSKI 3-SPACE AND

2-DIMENSIONAL FLUID MECHANICS

S. Fujimori, Y. W. Kim, S.-E. Koh, W. Rossman, H. Shin, M. Umehara,

K. Yamada and S.-D. Yang

Abstract. Space-like maximal surfaces and time-like minimal surfaces
in Lorentz-Minkowski 3-space R

3
1 are both characterized as zero mean

curvature surfaces. We are interested in the case where the zero mean
curvature surface changes type from space-like to time-like at a given
non-degenerate null curve. We consider this phenomenon and its in-
teresting connection to 2-dimensional fluid mechanics in this expository
article.

1. Introduction

We denote by R
3
1 := {(t, x, y) ; t, x, y ∈ R} the Lorentz-Minkowski 3-

space with the metric 〈 , 〉 of signature (−,+,+). Space-like maximal sur-
faces and time-like minimal surfaces in Lorentz-Minkowski 3-space R

3
1 are

both characterized as zero mean curvature surfaces. This is an expository
article about type changes of zero mean curvature surfaces in R

3
1. Klyachin

[17] showed, under a sufficiently weak regularity assumption, that a zero
mean curvature surface in R

3
1 changes its causal type only on the following

two subsets:

• null curves (i.e., regular curves whose velocity vector fields are light-
like) which are non-degenerate (cf. Definition 2.1), or

• light-like lines, which are degenerate everywhere.

Recently, actual occurrence of the second case was shown in the authors’
work [5]. So we now pay attention to the former possibilities: Given a non-
degenerate null curve γ in R

3
1, there exists a zero mean curvature surface

which changes its causal type across this curve from a space-like maximal
surface to a time-like minimal surface (cf. [10, 11, 12], [17], [16] and [14]).
This construction can be accomplished using the Björling formula for the
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Figure 1. Hyperbolic catenoids C+, C−.

Weierstrass-type representation formula of maximal surfaces. By unifying
the results of Gu [10], Klyachin [17], and [14], we explain the mechanism for
how zero mean curvature surfaces change type across non-degenerate null
curves, and give ‘the fundamental theorem of type change for zero mean
curvature surfaces’ (cf. Theorem 2.19) in the second section of this paper.
Locally, such a surface is the graph of a function t = f(x, y) satisfying

(1.1) (1− f2y )fxx + 2fxfyfxy + (1− f2x)fyy = 0.

We call this and its graph the zero mean curvature equation and a zero mean

curvature surface or a zero mean curvature graph, respectively.
As pointed out in [4], the space-like hyperbolic catenoid

(1.2) C+ = {(t, x, y) ∈ R
3
1 ; sin

2 x+ y2 − t2 = 0}
and the time-like hyperbolic catenoid

(1.3) C− = {(t, x, y) ∈ R
3
1 ; sinh

2 x+ y2 − t2 = 0}
are both typical examples of zero mean curvature surfaces containing sin-
gular light-like lines as subsets (cf. Figure 1). The space-like hyperbolic
catenoid C+ is singly periodic.

Also, both the space-like Scherk surface (cf. [4])

(1.4) S+ = {(t, x, y) ∈ R
3
1 ; cos t = cos x cos y}

and the time-like Scherk surface of the first kind (cf. [4])

(1.5) S− = {(t, x, y) ∈ R
3
1 ; cosh t = coshx cosh y}

contain singular light-like lines as subsets (cf. Figure 2). As seen in the
left-hand side of Figure 2, S+ is triply periodic.

As an application of the results in Section 2, we show in Section 3 that
C+ and C− induce a common zero mean curvature graph (cf. Figure 3, left)

(1.6) C0 = {(t, x, y) ∈ R
3
1 ; t = y tanhx}
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via their conjugate surfaces. The graph C0 changes type at two non-degenerate
null curves. Similarly, we also show that the Scherk-type surfaces S+ and
S− induce a common zero mean curvature graph via their conjugate surfaces
(cf. Figure 3, right)

(1.7) S0 = {(t, x, y) ∈ R
3
1 ; e

t coshx = cosh y},
which changes type at four non-degenerate null curves. These two phenom-
ena were briefly commented upon in [4]. The entire zero-mean curvature
graphs C0 and S0 were discovered by Osamu Kobayashi [18]. On the other
hand, the above three examples (1.4), (1.5) and (1.7) are particular cases
of the general families presented in Sergienko and Tkachev [20, Theorem 2].
Moreover, several doubly periodic mixed type zero mean curvature graphs
with isolated singularities are given in [20]. Space-like maximal surfaces
frequently have singularities. See the references [2], [21] and [9] for general
treatment of these singularities.

Figure 2. Scherk-type surfaces S+ and S−.

In Section 4, we remark on an interesting connection between zero mean
curvature surfaces in R

3
1 and irrotational two-dimensional barotropic steady

flows, where the fluid is called barotropic if the pressure p is a function
depending only on the density ρ. In fact, the stream function ψ(x, y) satisfies
(cf. [19], see also Proposition 4.1 in Section 4)

(1.8) (ρ2c2 − ψ2
y)ψxx + 2ψxψyψxy + (ρ2c2 − ψ2

x)ψyy = 0,

where c is the local speed of sound given by c2 = dp/dρ (cf. (4.1)). We
choose the units so that ρ = 1 and c = 1 when ψx = ψy = 0. Then the
product ρc is equal to 1 if

(1.9) p = p0 −
1

ρ
,
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Figure 3. Zero mean curvature graphs C0 and S0 (the curves
where the surfaces change type are also indicated).

for a constant p0, which implies that the graphs of zero mean curvature
surfaces can be interpreted as stream functions of a virtual gas with (1.9).
(In fact, p is approximately proportional to ρ1.4 for air.) As an application
of the singular Björling formula for zero mean curvature surfaces (cf. Theo-
rem 2.19), we can construct a family of stream functions which change from
being subsonic to supersonic at a given locally convex curve in the xy-plane.
The velocity vector fields of these gas flows diverge at the convex curve,
although the streaming functions are real analytic.

2. Type change of zero mean curvature surfaces

In this section, we discuss type change for zero mean curvature surfaces,
by unifying the results of Gu [10, 11, 12], Klyachin [17] and four of the
authors here [14].

A regular curve γ : (a, b) → R
3
1 is called null or isotropic if γ′(t) :=

dγ(t)/dt is a light-like vector for all t ∈ (a, b).

Definition 2.1. A null curve γ : (a, b) → R
3
1 is called degenerate or non-

degenerate at t = c if γ′′(c) is or is not proportional to the velocity vector
γ′(c), respectively. If γ is non-degenerate at each t ∈ (a, b), it is called a
non-degenerate null curve.

We now give a characterization of zero mean curvature surfaces that
change type across a real analytic non-degenerate null curve. Given an
arbitrary real analytic null curve γ : (a, b) → R

3
1, we denote the unique

complex analytic extension of it by γ again throughout this article, by a
slight abuse of notation. We consider the two surfaces

Φ(u, v) :=
γ(u+ iv) + γ(u− iv)

2
,
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and

Ψ(u, v) :=
γ(u+ v) + γ(u− v)

2
,

which are defined for v sufficiently close to zero. We recall the following
assertion:

Proposition 2.2 ([10, 11, 12], [17] and [14]). Given a real analytic non-

degenerate null curve γ : (a, b) → R
3
1, the union of the images of Φ and Ψ

given as above are subsets of a real analytic immersion, and the intersection

is γ. Moreover, Φ gives a space-like maximal surface and Ψ gives a time-like

minimal surface if v is sufficiently close to zero. Furthermore, this analytic

extension of the curve γ as a zero mean curvature surface does not depend

upon the choice of the real analytic parametrization of the curve γ.

Proof. We give here a proof for the sake of the readers’ convenience. We
have that

Φ(u, v) =

∞
∑

n=0

(−1)nγ(2n)(u)v2n

(2n)!
, Ψ(u, v) =

∞
∑

n=0

γ(2n)(u)v2n

(2n)!

near v = 0, where γ(j) = djγ/dtj . In particular, if we set

F (u, v) :=
∞
∑

n=0

γ(2n)(u)vn

(2n)!
,

then it gives a germ of a real analytic function satisfying

F (u,−v2) = Φ(u, v), F (u, v2) = Ψ(u, v),

which prove that the images of Φ and Ψ lie on a common real analytic
surface. Since γ is non-degenerate, the two vectors

Fu(u, 0) = γ′(u), Fv(u, 0) =
γ′′(u)

2
are linearly independent, and F gives an immersion which contains γ.

Moreover, it can be easily checked that Φ gives a space-like maximal
surface (cf. Lemma 2.16) and Ψ gives a time-like minimal surface.

We now show the last assertion: Since the surface is real analytic, it is
sufficient to show that given an arbitrary real analytic diffeomorphism µ
from (a, b) onto its image in R,

Ψ(u, v) =
γ(u+ iv) + γ(u− iv)

2
and Ψ̃(u, v) =

γ̃(u+ iv) + γ̃(u− iv)

2

induce the same surface as their graphs, where γ̃(t) := γ(µ(t)). We define
A, B by

A = (µ(u+ v) + µ(u− v))/2, B = (µ(u+ v)− µ(u− v))/2.
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Thus it is sufficient to show that the map

(u, v) 7→ (A,B)

is an immersion at (u, 0). In fact, the Jacobian of the map is given by

J = det

(

µ′(u) 0
0 µ′(u)

)

6= 0.

�

Definition 2.3. Let Ω2 be a domain in R
2 and f : Ω2 → R a C∞-function

satisfying (1.1). We set

B := 1− f2x − f2y .

A point p on Ω2 is called a non-degenerate point of type change1 with respect
to f if

B(p) = 0, ∇B(p) 6= 0,

where ∇B := (Bx, By) is the gradient vector of the function B.

Since ∇B does not vanish at p, the function f actually changes type at
the non-degenerate point p.

Proposition 2.4 ([11, 12]). Under the assumption that B(p) vanishes, the
following two assertions are equivalent.

(1) p is a non-degenerate point of type change.

(2) p is a dually regular point in the sense of [11], that is, fxxfyy−(fxy)
2

does not vanish at p.

Proof. Note that (∇B)T = −2H(∇f)T , where T is the transpose and H :=
(

fxx fxy
fxy fyy

)

. Note also that B(p) = 0 implies that ∇f(p) 6= 0.

Now suppose that (2) holds. Then detH(p) 6= 0, which with ∇f(p) 6= 0
implies that H(p)(∇f(p))T 6= 0, that is, (1) holds.

Suppose on the contrary that (2) does not hold. By a suitable linear
coordinate change of (x, y), we may assume without loss of generality that
fxy(p) = 0. Then either fxx(p) = 0 or fyy(p) = 0. Also, the zero mean
curvature equation

0 = (1− f2y )fxx + 2fxfyfxy + (1− f2x)fyy

with B(p) = 0 and fxy(p) = 0 imply that

fx(p)
2fxx(p) + fy(p)

2fyy(p) = 0.

1In Gu [11], ‘dual regularity’ for points of type change is equivalent to our notion.
Klyachin [17] did not define this particular notion, but used it in an essential way.
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This with fxx(p) = 0 or fyy(p) = 0 implies that

H(p)(∇f(p))T =

(

fx(p)fxx(p)
fy(p)fyy(p)

)

=

(

0
0

)

,

so (1) does not hold. �

Moreover, the following assertion holds:

Proposition 2.5 ([11, 12], [17]). Let γ be a real analytic non-degenerate null

curve, and let fγ be the real analytic function induced by γ as in Proposition

2.2, which satisfies (1.1). Then the image of γ consists of non-degenerate

points of type change with respect to fγ.

Note that the conclusion is stronger than that of Proposition 2.2.

Proof. Let γ be a non-degenerate null curve. Without loss of generality, we
may take the time-component t as the parameter of γ. Then we have the
expression

γ(t) = (t, x(t), y(t)) (a < t < b)

such that

(2.1) x′(t)2 + y′(t)2 = 1.

Since γ is non-degenerate, it holds that

(2.2) 0 6= γ′′(t) = (0, x′′(t), y′′(t)).

Differentiating the relation t = f(x(t), y(t)), we have that

(2.3) x′(t)fx(x(t), y(t)) + y′(t)fy(x(t), y(t)) = 1.

On the other hand, the relation B = 0 implies that

(2.4) fx(x(t), y(t))
2 + fy(x(t), y(t))

2 = 1.

Then by (2.1), (2.3) and (2.4), it holds that

x′(t) = fx, y′(t) = fy.

Thus we have that

(x′′, y′′) =
d

dt

(

fx(x(t), y(t)), fy(x(t), y(t))

)

(2.5)

= (x′fxx + y′fxy, x
′fxy + y′fyy)

= (fxfxx + fyfxy, fxfxy + fyfyy) = −1

2
∇B.

By (2.2), we get the assertion. �

Conversely, we can prove the following.
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Proposition 2.6 ([11, 12], [17, Lemma 2]). Let f : Ω2 → R be a C∞-

function satisfying the zero mean curvature equation (1.1), and let p =
(x0, y0) ∈ Ω2 be a non-degenerate point of type change. Then there exists

a non-degenerate C∞-regular null curve in R
3
1 with image passing through

(f(x0, y0), x0, y0) and contained in the graph of f .

Proof. By the implicit function theorem, there exists a unique C∞-regular
curve σ(t) = (x(t), y(t)) in the xy-plane with p = σ(0) so that B = 0 along
the curve. Since B = 0 on σ, the velocity vector σ′ is perpendicular to
∇B. Since ∇f is also perpendicular to ∇B, we can conclude that ∇f is
proportional to σ′. In fact

−1

2
∇f · ∇B = (fx, fy)

(

fxfxx + fyfxy
fxfxy + fyfyy

)

= f2xfxx + 2fxfyfxy + f2yfyy

= (1− f2y )fxx + 2fxfyfxy + (1− f2x)fyy

− (1− f2x − f2y )(fxx + fyy)

= 0.

Since f2x + f2y = 1, by taking an arclength parameter of σ, we may set

x′ = fx, y′ = fy,

and then
B = 1− f2x − f2y = 1− (x′)2 − (y′)2 = 0

holds along σ, which implies that t 7→ (t, x(t), y(t)) is a null curve. Since

d

dt
f(x(t), y(t)) = x′fx + y′fy = f2x + f2y = 1,

there exists a constant c such that f(x(t), y(t)) = t+ c. By translating the
graph vertically if necessary, we may assume that

f(x(t), y(t)) = t

holds for each t. Then we obtain the identity (2.5) in this situation, which
implies that ∇B(p) = (x′′(0), y′′(0)) 6= 0, namely,

(a, b) ∋ t 7→ (f(x(t), y(t)), x(t), y(t)) = (t, x(t), y(t)) ∈ R
3
1

gives a non-degenerate null curve near t = 0 lying in the graph of f . �

Definition 2.7 ([3]). Let Σ2 be a Riemann surface. A C∞-map ϕ : Σ2 →
R

3
1 is called a generalized maximal surface if there exists an open dense

subset W of Σ2 such that the restriction ϕ|W of ϕ to W gives a conformal
(space-like) immersion of zero mean curvature. A singular point of ϕ is a
point at which ϕ is not an immersion. A singular point p satisfying dϕ(p) = 0
is called a branch point of ϕ. Moreover, ϕ is called a maxface if ϕ does not
have any branch points. (A maxface may have singular points in general).
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Remark 2.8. The above definition of maxfaces is given in [3], which is simpler
than the definition given in [21] and [9]. However, this new definition is
equivalent to the previous one, as we now explain. Suppose that ϕ|W is a
conformal (space-like) immersion of zero mean curvature. Then ∂ϕ = ϕz dz
is a C

3-valued holomorphic 1-form onW , where z is a complex coordinate of
Σ2. Since ϕ is a C∞-map on Σ2, ∂ϕ can be holomorphically extended to Σ2.
Then the line integral Φ(z) =

∫ z
z0
∂ϕ with respect to a base point z0 ∈ Σ2

gives a holomorphic map defined on the universal cover of Σ2 whose real
part coincides with ϕ(z) − ϕ(z0). The condition that ϕ does not have any
branch point implies that Φ is an immersion. Moreover, since ϕ is conformal
on W , the map Φ satisfies

−(dΦ0)
2 + (dΦ1)

2 + (dΦ2)
2 = 0

(

Φ = (Φ0,Φ1,Φ2)
)

,

namely, Φ is a null immersion. So ϕ satisfies the definition of maxface as in
[21] and [9]. We call Φ the holomorphic lift of the maxface ϕ.

Remark 2.9. By the above definition, maxfaces are orientable. However,
there are non-orientable maximal surfaces, as shown in [6]. The definition
of non-orientable maxfaces is given in [6, Def. 2.1]. In this paper, we work
only with orientable maximal surfaces. It should be remarked that non-
orientable maxfaces will be orientable when taking double coverings.

Let ϕ : Σ2 → R
3
1 be a maxface with Weierstrass data (G, η) (see [21] for

the definition of Weierstrass data). Using the data (G, η), the maxface ϕ
has the expression

(2.6) ϕ = Re(Φ), Φ =

∫ z

z0

(−2G, 1 +G2, i(1 −G2))η.

The imaginary part

(2.7) ϕ∗ := Im(Φ) : Σ̃2 −→ R
3
1

also gives a maxface called the conjugate surface of ϕ, which is defined on
the universal cover Σ̃2 of Σ2. The following fact is known:

Fact 2.10 ([21, 9]). A point p of Σ2 is a singular point of ϕ if and only if

|G(p)| = 1.

Definition 2.11. A singular point p of ϕ is called non-degenerate if dG
does not vanish at p.

Fact 2.12 ([21, 9]). If a singular point p of ϕ is non-degenerate, then there

exists a neighborhood U of p and a regular curve γ(t) in U so that γ(0) = p
and the singular set of ϕ in U coincides with the image of the curve γ.

This curve γ is called the singular curve at the non-degenerate singular
point p.
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Definition 2.13. A regular curve γ on Σ2 is called a non-degenerate fold

singularity if it consists of non-degenerate singular points such that the real
part of the meromorphic function dG/(G2η) vanishes identically along the
singular curve γ. Each point on the non-degenerate fold singularity is called
a fold singular point.

A singular point of a C∞-map ϕ : Σ2 → R
3 has a fold singularity at

p if there exists a local coordinate system (u, v) centered at p such that
ϕ(u, v) = ϕ(u,−v). Later, we show that a non-degenerate fold singularity
is actually a fold singularity (cf. Lemma 2.17).

Suppose that p is a non-degenerate fold singular point of ϕ. The following
duality between fold singularities and generalized cone-like singularities (cf.
[7, Definition 2.1]) holds:

Proposition 2.14 ([16]). Let ϕ : Σ2 → R
3
1 be a maxface and ϕ∗ the con-

jugate maxface. Then p is a non-degenerate fold singular point of ϕ if and

only if it is a generalized cone-like singular point of ϕ∗.

Proof. This assertion is immediate from comparison of the above definition
of non-degenerate fold singularities and the definition of generalized cone-
like singular points as in [7, Definition 2.1 and Lemma 2.3]. �

We now show the following assertion, which characterizes the non-degenerate
fold singularities on maxfaces.

Theorem 2.15. Let ϕ : Σ2 → R
3
1 be a maxface which has non-degenerate

fold singularities along a singular curve γ : (a, b) → Σ2. Then γ̂ := ϕ ◦ γ is

a non-degenerate null curve, and the image of the map

(2.8) ϕ̃(u, v) :=
γ̂(u+ v) + γ̂(u− v)

2

is real analytically connected to the image of ϕ along γ as a time-like minimal

immersion. Conversely, any real analytic zero mean curvature immersion

which changes type across a non-degenerate null curve is obtained as a real

analytic extension of non-degenerate fold singularities of a maxface.

This assertion follows immediately from Fact 2.12 and the following Lem-
mas 2.16 and 2.17.

Lemma 2.16. Let γ : (a, b) → R
3
1 be a real analytic non-degenerate null

curve. Then

ϕ(u+ iv) :=
γ(u+ iv) + γ(u− iv)

2

gives a maxface with non-degenerate fold singularities on the real axis.
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Proof. We set z = u+ iv. Then it holds that

ϕz =
1

2
(ϕu − iϕv) =

1

2
γ′(u+ iv),

where γ′(t) := dγ(t)/dt. Since γ is a regular real analytic curve, the map

(2.9) Φ(u+ iv) := γ(u+ iv)

gives a null holomorphic immersion if v is sufficiently small. Thus ϕ = Re(Φ)
gives a maxface.

Since γ is a null curve, it holds that

(2.10) γ′0(t)
2 = γ′1(t)

2 + γ′2(t)
2,

where we set γ = (γ0, γ1, γ2). Moreover, since γ is a regular curve, (2.10)
implies

(2.11) γ′0(t) 6= 0 (a < t < b).

It can be easily checked that the maxface ϕ has the Weierstrass data

η :=
1

2
(dΦ1 − idΦ2) =

γ′1(z)− iγ′2(z)

2
dz,(2.12)

G := −dΦ0

2η
= − γ′0(z)

γ′1(z)− iγ′2(z)
= −γ

′
1(z) + iγ′2(z)

γ′0(z)
,(2.13)

where we set Φ = (Φ0,Φ1,Φ2) and use the identity

(γ′1 − iγ′2)(γ
′

1 + iγ′2) = (γ′1)
2 + (γ′2)

2 = (γ′0)
2.

In particular, (2.13) implies that |G| = 1 holds on the u-axis, which implies
that the u-axis consists of singular points. By (2.13), dG vanishes if and
only if

∆ := (γ′1 + iγ′2)
′γ′0 − (γ′1 + iγ′2)γ

′′

0 = (γ′0γ
′′

1 − γ′1γ
′′

0 ) + i(γ′0γ
′′

2 − γ′2γ
′′

0 )

vanishes. In other words, ∆ = 0 if and only if (γ′′0 , γ
′′
j ) is proportional

to (γ′0, γ
′

j) for j = 1, 2, namely γ′′ is proportional to γ′. Since γ is non-
degenerate, this is impossible. So the image of the curve γ consists of non-
degenerate singular points (cf. Definition 2.11).

By (2.11), (2.12) and (2.13), we have that

dz

G2η
=

2(γ′1 − iγ′2)

(γ′0)
2

.

Thus the u-axis consists of non-degenerate fold singular points if and only
if the real part of ∆1 := (γ′1 − iγ′2)∆ vanishes. Here

Re(∆1) = γ′0(γ
′

1γ
′′

1 + γ′2γ
′′

2 )− γ′′0 ((γ
′

1)
2 + (γ′2)

2) = γ′0(γ
′

0γ
′′

0 )− γ′′0 (γ
′

0)
2 = 0,

where we used the identity (2.10) and its derivative. This implies that γ
consists of non-degenerate fold singularities. �
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Finally, we prove the converse assertion:

Lemma 2.17. Let ϕ : Σ2 → R
3
1 be a maxface which has non-degenerate

fold singularities along a singular curve γ : (a, b) → Σ2. Then, the space

curve γ̂(t) := ϕ ◦ γ(t) is a non-degenerate real analytic null curve such that

ϕ̂(u, v) :=
1

2

(

γ̂(u+ iv) + γ̂(u− iv)

)

coincides with the original maxface ϕ. In particular, ϕ̂ satisfies the identity

ϕ̂(u, v) = ϕ̂(u,−v).
Proof. The singular set of ϕ can be characterized by the set |G| = 1, where
(G, η) is the Weierstrass data as in (2.6). Let T be a Möbius transformation
on S2 = C ∪ {∞} which maps the unit circle {ζ ∈ C ; |ζ| = 1} to the real
axis. Then T ◦ G maps the image of the singular curve γ to the real axis.
Since dG 6= 0 (cf. Definition 2.11), we can choose T ◦G as a local complex
coordinate. We denote it by

z = u+ iv.

Then the image of γ coincides with the real axis {v = 0}. Let Φ be the
holomorphic lift of ϕ. Since the real axis consists of non-degenerate fold
singularities, Proposition 2.14 implies that Im(Φ) is constant on the real
axis. Since Φ has an ambiguity of translations by pure imaginary vectors,
we may assume without loss of generality that

(2.14) Im(Φ) = 0 on the real axis.

Thus, the curve γ̂ is expressed by (cf. (2.9))

(2.15) γ̂(u) = ϕ(u, 0) = Re
(

Φ(u, 0)
)

= Φ(u, 0),

namely, the two C
3-valued holomorphic functions Φ(u + iv) and γ̂(u + iv)

take the same values on the real axis. Hence Φ(z) = γ̂(u+ iv) and thus

ϕ(z) =
γ̂(u+ iv) + γ̂(u− iv)

2
= ϕ̂(u, v).

So it is sufficient to show that γ̂(t) is a non-degenerate null curve. Since
|G| = 1 on the real axis, there exists a real-valued function t = t(u) such
that

(2.16) G(u) = eit(u) (u ∈ R).

Differentiating this along the real axis, we have Gu(u) = ieit(dt/du). Here,
dt/du does not vanish because dG 6= 0 on the real axis. Since γ consists of
non-degenerate fold singularities,

i
dG

G2η
= −e

−it(u)

w(u)

dt

du
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must be real valued (cf. Definition 2.13), where η = w(z) dz. Since Φ is an
immersion, G must have a pole at z = u if w(u) = 0 (cf. (2.6)), but this
contradicts the fact that |G| = 1 along γ. Thus we have w(u) 6= 0. It then
follows that

ξ(u) := eit(u)w(u) = G(u)w(u)

is a non-vanishing real valued analytic function. Now, if we write γ̂ =
(γ̂0, γ̂1, γ̂2), (2.6) yields

γ̂′0(u) = Re

(

−2G(u)w(u)

)

= −2ξ(u),

and

γ̂′1(u) = Re

(

(1 +G(u)2)w(u)

)

= 2ξ(u) cos t(u),

γ̂′2(u) = Re

(

i(1 −G(u)2)w(u)

)

= 2ξ(u) sin t(u).

This implies that γ̂(u) is a regular real analytic null curve. Since dt/du 6= 0,
the acceleration vector

γ̂′′(u) =
(

log ξ(u)
)′
γ̂′(u) + 2ξ(u)

(

0,− sin t(u), cos t(u)

)

dt

du

is not proportional to γ̂′(u). Thus, γ̂(u) is non-degenerate. �

Corollary 2.18. Let ϕ : Σ2 → R
3
1 be a maxface. Then a singular point

p ∈ Σ2 lies on a non-degenerate fold singularity if and only if there exists a

local complex coordinate z = u + iv with p = (0, 0) satisfying the following

two properties:

(1) ϕ(u, v) = ϕ(u,−v),
(2) ϕu(0, 0) and ϕuu(0, 0) are linearly independent.

Proof. Suppose p is a non-degenerate fold singularity of ϕ. Then (1) fol-
lows from Lemma 2.17, and (2) follows from the fact that the null curve
parameterizing fold singularities is non-degenerate.

Conversely, suppose there is a coordinate system around a singular point
p with p = (0, 0) which satisfies (1) and (2). Differentiating (1), we have that
ϕv(u, 0) = 0. Let Φ be a holomorphic lift of ϕ. Since Φ is a null holomorphic
map, the relation ϕv(u, 0) = 0 implies that

0 = 〈Φz(u, 0),Φz(u, 0)〉 = 4 〈ϕz(u, 0), ϕz(u, 0)〉 = 〈ϕu(u, 0), ϕu(u, 0)〉 ,

where 〈, 〉 is the canonical inner product of R3
1. This implies γ : u 7→ ϕ(u, 0)

is a null curve. By the condition (2), this null curve is non-degenerate. Then
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by Lemma 2.16,

ϕγ(u+ iv) :=
γ(u+ iv) + γ(u− iv)

2

is a maxface such that γ parametrizes a non-degenerate fold singularity of
ϕγ . Moreover, Φγ := γ(u + iv) gives a holomorphic lift of ϕγ (cf. (2.9)).
Since

Φz(u, 0) = 2ϕz(u, 0) = γ′(u) = (Φγ)z(u, 0),

the holomorphicity of Φ and Φγ yields that Φz(z) coincides with (Φγ)z(z).
Thus Φ coincides with Φγ up to a constant. Then ϕγ coincides with ϕ, and
we can conclude that γ parametrizes a non-degenerate fold singularity of
ϕ. �

So far, we have looked at the singular curves of maxfaces. Now we turn
our attention to the singular curves of zero mean curvature surfaces and
prove the following assertion, which can be considered as the fundamental
theorem of type change for zero mean curvature surfaces:

Theorem 2.19 (Gu [10, 11, 12] and Klyachin [17]). Let γ : (a, b) → R
3
1 be

a non-degenerate real analytic null curve. We set

ϕ̂γ(u, v) :=















γ(u+ i
√
v) + γ(u− i

√
v)

2
(v ≥ 0),

γ(u+
√

|v|) + γ(u−
√

|v|)
2

(v < 0),

for sufficiently small |v|. Then ϕ̂γ gives a real analytic zero mean curvature

immersion such that the image of γ consists of non-degenerate points of type

change with respect to ϕ̂γ .

Conversely, let f : Ω2 → R be a C∞-function satisfying the zero mean

curvature equation (1.1), and let p = (x0, y0) be a non-degenerate point

of type change with respect to f , where Ω2 is a domain in the xy-plane.
Then there exists a real analytic non-degenerate null curve γ in R

3
1 through

(f(x0, y0), x0, y0) with ϕ̂γ coinciding with the graph of f in a small neigh-

borhood of p.

This assertion was proved by Gu [10, 11, 12]. Later, Klyachin [17] ana-
lyzed type-changes of zero mean curvature surfaces not only at non-degenerate
points of type changes but also degenerate cases as mentioned in the intro-
duction, and got the same assertion as a corollary. Note that the conclusion
for regularity of the converse statement is stronger than that of Proposi-
tion 2.6. We remark that Gu [12] gave a generalization of Theorem 2.19 for
2-dimensional zero mean curvature surfaces in R

n+1
1 (n ≥ 2).
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Proof. We have already proved the first assertion. (In fact, Proposition 2.5
implies that γ consists of non-degenerate points of type change with respect
to ϕ̂γ .) Then it is sufficient to show the converse assertion, which is proved
in [10, 11, 12] and [17]. Here referring to [17], we give only a sketch of the
proof: Let f : Ω2 → R be a C∞-function satisfying the zero mean curvature
equation (1.1), and let p = (x0, y0) ∈ Ω2 be a non-degenerate point of type
change with respect to f . (As pointed out in Gu [11, 12] and Klyachin [17],
one can prove the real analyticity of f at p, assuming only C3-regularity of
f , using the same argument as below.) By Proposition 2.6, there exists a
C∞-regular curve σ(u) (|u| < δ) such that

γ(u) := (f ◦ σ(u), σ(u))
is a non-degenerate null curve passing through (f(x0, y0), x0, y0), where δ is
a sufficiently small positive number. We set B := 1− f2x − f2y . Let Ω

+ be a
simply connected domain such that B > 0, and suppose that σ lies on the
boundary of Ω+. We set

t = t(x, y) := f(x, y), s = s(x, y) :=

∫ q

q0

−fydx+ fxdy√
B

,

where q0 ∈ Ω+ is a base point and q := (x, y). Since α := (−fydx +

fxdy)/
√
B is a closed 1-form, its (line) integral

∫ q

q0

α does not depend on the

choice of path. Let τ(v) = (a(v), b(v)) (0 ≤ v ≤ ǫ) be a path starting from p
and going into Ω+ which is transversal to the curve σ. Since B(p) = 0 and
∇B(p) 6= 0, there exists a constant C > 0 such that B ◦ τ(v) = Cv+O(v2),
where O(v2) denotes the higher order terms. Then there exists a constant
m such that

∣

∣

∣

∣

∣

∣

∣

−fy ◦ τ(v)
da

dv
(v) + fx ◦ τ(v)

db

dv
(v)

√

B ◦ τ(v)

∣

∣

∣

∣

∣

∣

∣

<
m√
v

for 0 < v ≤ ǫ,

hence

λ :=

∫

τ
|α| <

∫ ǫ

0

m√
v
dv <∞,

which is just the case (1) of [17, Lemma 6], and (t, s) gives an isothermal
coordinate system of Ω+ with respect to the immersion

ϕ : (t, s) 7→ (f(x(t, s), y(t, s)), x(t, s), y(t, s)) = (t, x(t, s), y(t, s)) (s > 0).

Moreover, the function s(x, y) can be continuously extended to the image
of the curve σ. Since σ is an integral curve of ∇f , we may assume that σ
parametrizes the level set s = 0, where we have used the fact that s(x, y)
is constant along each integral curve of ∇f . In particular, ϕ satisfies ϕtt +
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ϕss = 0. Then ϕ(t, s) can be extended to a harmonic R
3-valued function

for s < 0 satisfying ϕ(t, s) = ϕ(t,−s) via the symmetry principle (see the
proof of [17, Theorem 6]). In particular, f is a real analytic function whose
graph coincides with the image of ϕ on Ω+ near p. Moreover t 7→ ϕ(t, 0)
parametrizes the curve γ (cf. [17, Page 219]). By Corollary (2.18), γ can
be considered as a non-degenerate fold singularity of the maxface (t, s) 7→
ϕ(t, s). (In fact, the condition (2) of Corollary (2.18) corresponds to the
fact that γ is a non-degenerate curve near p.) Then Theorem 2.15 implies
that ϕ̂γ coincides with the graph of f on a sufficiently small neighborhood
of p. �

As an application of Theorem 2.19, embedded triply periodic zero mean
curvature surfaces of mixed type in R

3
1 with the same topology as the

Schwarz D surface in the Euclidean 3-space R
3 have been constructed, in

[8].

3. The conjugates of hyperbolic catenoids and Scherk-type

surfaces

The two entire graphs of n variables

f1(x1, . . . , xn) := x1 tanh(x2),

f2(x1, . . . , xn) := (log coshx1)− (log cosh x2),

given by Osamu Kobayashi [18], are zero mean curvature hypersurfaces in
R

n+1
1 which change type from space-like to time-like. When n = 2, the image

of f1 is congruent to C0 and the image of f2 is congruent to S0. On the other
hand, the space-like catenoid C+ (resp. the space-like Scherk surface S+) and
the time-like catenoid C− (resp. the time-like Scherk surface S−) are typical
examples of zero mean curvature surfaces which contain singular light-like
lines. Moreover, they are closely related to C0 (resp. S0) by taking their
conjugate surfaces as follows:

Fact 3.1 ([18], [14] and [4]). The conjugate space-like maximal surface of

the space-like hyperbolic catenoid C+ and the conjugate time-like minimal

surface of the time-like hyperbolic catenoid C− are both congruent to subsets

of the entire graph C0.
The space-like hyperbolic catenoid C+ was originally given by Kobayashi

[18] as the catenoid of 2nd kind, and he also pointed out that the space-like
part C+

0 of C0 is the conjugate surface of C+ (see [18]). C+
0 is connected and

is called the space-like hyperbolic helicoid. The time-like part C−

0 of C0 splits
into two connected components, each of which is congruent to the time-like

hyperbolic helicoid (see Figure 3, left). The entire assertion, including the
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case of the time-like part, has been pointed out in [14, Lemma 2.11 (3) ] and
the caption of Figure 1 in [4] without proof.

Proof. We give a proof here as an application of the results in the pre-
vious section. A subset of the space-like hyperbolic catenoid C+ can be
parametrized by

ϕ1(u, v) = (coshu sin v, v, sinh u sin v) = −Re i(sinh z, z, cosh z),(3.1)

ψ1(u, v) = (− coshu sin v, v,− sinh u sin v),

where z = u + iv. In fact, C+ is the union of the closure of the images of
ϕ1 and ψ1. The surface ϕ1 has generalized conical singularities at (u, nπ)
for any u ∈ R and n ∈ Z, as pointed out in [4]. Using this, one can easily
compute that the conjugate of ϕ1 is congruent to the following surface

ϕ∗

1(u, v) : = − Im i(sinh z, z, cosh z) = −Re(sinh z, z, cosh z)(3.2)

= −(sinhu cos v, u, cosh u cos v).

By Proposition 2.14, the conjugate surface has non-degenerate fold singu-
larities. Then by Theorem 2.15 one can get an analytic continuation of ϕ∗

1

as a zero mean curvature surface in R
3
1 which changes type across the fold

singularities. We can get an explicit description of such an extension of ϕ∗
1

as follows: We set

(t, x, y) = ϕ∗

1(u, v) = −(sinhu cos v, u, cosh u cos v).

Then the surface has fold singularities at (u, nπ) for any u ∈ R and n ∈ Z.
Then it holds that

t

y
= tanhu = − tanhx

and the image of −ϕ∗
1 is contained in the surface C0.

On the other hand, a subset of the time-like hyperbolic catenoid C− has
a parametrization

(3.3) ϕ2(u, v) :=
1

2
(sinhu+ sinh v, u+ v, cosh u− cosh v) =

α(u) + β(v)

2
,

where

(3.4) α(u) := (sinhu, u, cosh u), β(v) := (sinh v, v,− cosh v).

Also

(3.5) ψ2(u, v) :=
1

2
(− sinhu− sinh v, u+ v,− cosh u+ cosh v)

gives a parametrization of a subset of C−. More precisely, C− is the union of
the closure of the images of ϕ2 and ψ2. We get the following parametrization
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of the conjugate surface ϕ∗
2 of ϕ2

(3.6) ϕ∗

2(u, v) :=
1

2

(

α(u)−β(v)
)

=
1

2
(sinhu−sinh v, u−v, cosh u+cosh v),

where α and β are as in (3.4). (See [13] for the definition of the conju-
gate surfaces of time-like minimal surfaces.) To find the implicit function
representation of the image of ϕ∗

2, take a new coordinate system (ξ, ζ) as

u = ξ + ζ, v = ξ − ζ.

Then

ϕ∗

2(ξ, ζ) = (cosh ξ sinh ζ, ζ, cosh ξ cosh ζ),

which implies that the image is a subset of C0. The entire graph C0 changes
type across two disjoint real analytic null curves {y = ± cosh x}. �

Next, we prove a similar assertion for the Scherk surfaces, which is also
briefly mentioned in the caption of Figure 1 in [4]:

Theorem 3.2. The conjugate space-like maximal surface of the space-like

Scherk surface S+ and the conjugate time-like minimal surface of the time-

like Scherk surface S− of the first kind are both congruent to subsets of the

entire graph S0.

Proof. Using the identities

cos arg z = Re(
z

|z| ), sin arg z = Im(
z

|z| ),

one can prove that a subset of the space-like Scherk surface S+ is parametrized
by the complex variable z as

ϕ1(z) = −Re i

(

log
1 + z2

1− z2
, log

1− z

1 + z
, log

1− iz

1 + iz

)

+
π

2
(1, 1, 1)(3.7)

=

(

arg
1 + z2

1− z2
, arg

1− z

1 + z
, arg

1− iz

1 + iz

)

+
π

2
(1, 1, 1).

In fact, ϕ1(z) is a multi-valued R
3
1-valued function, but can be considered

as a single-valued function on the universal cover of C ∪ {∞} \ {±1,±i}.
We now set

ϕ1(z) =
(

t(z), x(z), y(z)
)

and

ψ1(z) :=
(

π − t(z), x(z), π − y(z)
)

.
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Then S+ is the union of the closure of the images of ϕ1 and ψ1. The
conjugate ψ∗

1 of the space-like Scherk surface ψ1 is obtained by

ψ∗

1(z) = Im i

(

log
1 + z2

1− z2
, log

1− z

1 + z
, log

1− iz

1 + iz

)

(3.8)

=

(

log

∣

∣

∣

∣

1 + z2

1− z2

∣

∣

∣

∣

, log

∣

∣

∣

∣

1− z

1 + z

∣

∣

∣

∣

, log

∣

∣

∣

∣

1− iz

1 + iz

∣

∣

∣

∣

)

.

Since ψ1 admits only generalized cone-like singularities (cf. Proposition 2.14),
ψ∗
1 admits only fold singularities, and has a real analytical extension across

the fold singularities to a time-like minimal surface inR
3
1 (cf. Theorem 2.15).

More precisely, the image of the conjugate ψ∗
1 is contained in the graph S0,

shown as follows: The singular sets of ψ1 and ψ∗
1 are both parametrized as

{z = eiu}. Then the image of a connected component of singular curve by
ψ∗
1 as in (3.8) is parametrized as

(3.9)

γ(u) =
1

2

(

2 log cot u, log
1− cos u

1 + cos u
, log

1 + sinu

1− sinu

)

(

0 < u <
π

2

)

.

By the singular Björling formula (2.8) in Section 2, we have the following
analytic extension of γ

(3.10) ψ̂2(u, v) :=
γ(u) + γ(v)

2
.

Now, we check that the conjugate ψ2 := ψ̂∗
2 of ψ̂2 as in (3.10) coincides

with the time-like Scherk surface S−. By (3.10), the conjugate ψ2 of ψ̂2

is parametrized by (see [13] for the definition of the conjugate surfaces of
time-like minimal surfaces)

ψ2(u, v) =
1

2

(

γ(u) − γ(v)
)

(3.11)

=

(

1

2

(

log(cot u)− log(cot v)
)

,
1

4

(

log
1− cos u

1 + cos u
− log

1− cos v

1 + cos v

)

,

1

4

(

log
1 + sinu

1− sinu
− log

1 + sin v

1− sin v

))

.

We set (t, x, y) = ψ2(u, v), and will show that (t, x, y) lies in S−: In fact, by
(3.11), we have

e2t =
cot u

cot v
=

cos u sin v

sinu cos v
,
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which implies

cosh t =
1

2

(

√

cos u sin v

sinu cos v
+

√

sinu cos v

cos u sin v

)

=
sin(u+ v)√
sin 2u sin 2v

.

Using

e4x =
1− cos u

1 + cos u
× 1 + cos v

1− cos v
=
(

tan
u

2
cot

v

2

)2
,

we have that

coshx =
1√

sinu sin v
sin

u+ v

2
.

Similarly,

cosh y =
1√

cos u cos v
cos

u+ v

2

holds. Hence the analytic extension of the conjugate of S+ coincides with
S0. As pointed out in [14], the space-like part of S0 is connected, and the
time-like part of S0 consists of four connected components, each of which is
congruent to the image of ψ1 (see Figure 3, right). �

In the introduction, we saw that the conjugate surfaces of C+ and C− (resp.
S+ and S−) are both subsets of the same zero mean curvature surface C0
(resp. S0). As pointed out in [14], a similar phenomenon also holds between
elliptic catenoids and parabolic catenoids: The helicoid x sin t = y cos t is
well known as a ruled minimal surface in the Euclidean 3-space R3, and also
gives a zero-mean curvature in R

3
1. The space-like elliptic catenoid

ϕE
+(u, v) := (v, cos u sinh v, sinu sinh v)

and the time-like elliptic catenoid

ϕE
−(u, v) := (v, cosh u sinh v, sinhu sinh v)

induce their conjugate surfaces, both of which are subsets of the helicoids.
The space-like parabolic catenoid, on the other hand,

ϕP
+(u, v) :=

(

v − v3

3
+ u2v, v +

v3

3
− u2v, 2uv

)

is given by Kobayashi [18] as an Enneper surface of the 2nd kind. Consider
the ruled zero-mean curvature surface, which we call the parabolic helicoid

ϕP
0 (u, v) := γ(u) + v(u,−u, 1),

(

γ(u) :=

(

−u− u3

3
,−u+

u3

3
,−u2

))

,
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Figure 4. The completions of parabolic catenoids ϕP
+ (left)

and ϕP
− (right).

where γ(u) is a non-degenerate null curve at which the surface changes
type. If v > 0, ϕP

0 gives the conjugate surface of ϕP
+. If v < 0, ϕP

0 gives the

conjugate surface of the time-like parabolic catenoid 2 given by

ϕP
−(u, v) :=

(

−u− u3

3
− uv2,−u+

u3

3
+ uv2,−u2 − v2

)

.

The image of the parabolic catenoid ϕP
+(u, v) (resp. ϕ

P
−(u, v)) is a subset of

(cf. Figure 4)
(3.12)

12(x2 − t2) = (x+ t)4 − 12y2
(

resp. 12(x2 − t2) = −(x+ t)4 − 12y2
)

.

We call it the completion of the space-like (resp. time-like) parabolic catenoid,
which contains a light-like line

L := {y = x+ t = 0}.
The initial parametrization ϕP

± does not include this line L. Kobayashi [18,
Example 2.3] noticed the line L in the surface and drew a hand-drawn figure
of it that coincides with the left-hand side of Figure 4.

In [4], the zero mean curvature surfaces containing singular light-like lines
are categorized into the following six classes

(3.13) α+, α0
I , α0

II , α−

I , α−

II , α−

III .

The surfaces belonging to α+ (resp. α−

I , α
−

II , α
−

III) are space-like (resp. time-
like). On the other hand, the causalities of surfaces in α0

I and α0
II are not

2In [14, Examples 2.8 and 2.9], these are called spacelike (timelike) parabolic helicoids.
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unique. In fact, the light cone and the hyperbolic catenoids C± are examples
of surfaces3 of type α0

II . We get the following assertion:

Proposition 3.3. The completion of space-like (resp. time-like) parabolic

catenoids gives an example of surfaces of type α0
II at each point (−c, c, 0)

(c 6= 0) on the light-like line L. In other words, both space-like surfaces

and time-like surfaces exist in the class α0
II of zero mean curvature surfaces

containing light-like lines.

Proof. We set

F± := (x+ t){12(x − t)∓ (x+ t)3}+ 12y2.

Then (3.12) is rewritten as F± = 0. We fix a point (−c, c, 0) (c 6= 0) on the
set {F± = 0}. Since

∂F

∂t
(−c, c, 0) = −24t∓ 4(x+ t)3

∣

∣

(t,x)=(−c,c)
= 24c(6= 0),

the implicit function theorem yields that there exists a C∞-function t =
t±(x, y) such that the set {F± = 0} is parametrized by the graph t = t±(x, y)
around the point (−c, c, 0). By [4], we know that t = t±(x, y) has the
following expression

t±(c, y) = −c− α(c)

2
y2 + β(c, y)y3,

where α = α(x) and β = β(x, y) are C∞-functions. Differentiating the
equation F±(t±(x, y), x, y) = 0 with respect to y, we have that

(3.14) −24t(x, y)ty(x, y)− 4(x+ t(x, y))3ty(x, y) + 24y = 0,

where ty = ∂t/∂y. Substituting (t, x, y) = (−c, c, 0), we get

−cty(c, 0) = t(c, 0)ty(c, 0) = 0,

which implies that

(3.15) ty(c, 0) = 0.

Differentiating (3.14) with respect to y again, we have

−24t2y − 24t tyy ∓ 12(x + t)2t2y ∓ 4(x+ t)3tyy + 24 = 0.

Substituting (t, x, y) = (−c, c, 0) and (3.15), we get

−24ctyy + 24 = 0,

namely α(c) = 2/c. This implies that t = t±(x, y) is of type α
0
II at (c, 0). �

3In [4], we wrote that the hyperbolic catenoids C± are examples of surfaces of type α
0
I ,

but this is a typographical error. Also, in [4], we wrote that the time-like Scherk surface
of the first kind (resp. of the second kind) is of type α

−

I
(resp. of type α

−

II
), however this

is again a typographical error, and it is, in fact, of type α
−

II
(resp. of type α

−

I
).



ZERO MEAN CURVATURE SURFACES 195

In the authors’ previous work [5], surfaces of type α0
I changing type across

a light-like line have been constructed. The only other possibility for the
existence of surfaces changing type across a light-like line must be of type
α0
II (cf. [4]). So the following question is of interest:

Problem. Do there exist zero-mean curvature surfaces of type α0
II which

change type across a light-like line?

Also, the existence of space-like maximal surfaces of type α0
I is unknown

(the time-like surfaces given in [4, Example 1] are of types α0
I and α−

III).

4. A relationship to fluid mechanics

As mentioned in the introduction, we give an application of Theorem 2.19
to fluid mechanics: Consider a two-dimensional flow on the xy-plane with
velocity vector field v = (u, v), and with density ρ and pressure p. We
assume the following:

(i) The fluid is barotropic, that is, there exists a strictly increasing func-
tion p(s) (s > 0) such that the pressure p is expressed by p = p(ρ).
A positive function c defined by

(4.1) c2 =
dp

dρ
= p′(ρ)

is called the local speed of sound, cf. [1, pages 5–6].
(ii) The flow is steady, that is, v, p and ρ do not depend on time.
(iii) There are no external forces,
(iv) and the flow is irrotational, that is, rot v(= vx − uy) = 0.

By the assumption (ii), the equation of continuity is reduced to

div(ρv) = (ρu)x + (ρv)y = 0.

Hence there exists locally a smooth function ψ = ψ(x, y) such that

(4.2) ψx = −ρv, ψy = ρu,

which is called the stream function of the flow. The following assertion is
well-known:

Fact 4.1. The stream function ψ of a two-dimensional flow under the con-

ditions (i)–(iv) satisfies

(4.3) (ρ2c2 − ψ2
y)ψxx + 2ψxψyψxy + (ρ2c2 − ψ2

x)ψyy = 0.

Proof. By the assumptions (ii), (iii) and (iv), Euler’s equation of motion

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+

1

ρ
grad p = 0
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is reduced to

(4.4) uux + vvx +
px
ρ

= 0, uuy + vvy +
py
ρ

= 0,

that is,

(4.5) dp+ ρq dq = 0 (q = |v| =
√

u2 + v2).

Here, by the barotropicity (i), we have

(4.6) px =
∂

∂x
p(ρ) = p′(ρ)

∂ρ

∂x
= c2ρx, py = c2ρy.

Substituting these into the equation of motion (4.4), we have

(4.7) ρx =
px
c2

= − ρ

c2
(uux + vvx), ρy = − ρ

c2
(uuy + vvy),

and hence

(ρv)x = ρxv + ρvx = − ρ

c2
(uux + vvx)v + ρvx,

(ρv)y = ρyv + ρvy = − ρ

c2
(uuy + vvy)v + ρvy,

(ρu)x = ρxu+ ρux = − ρ

c2
(uux + vvx)u+ ρux,

(ρu)y = ρyu+ ρuy = − ρ

c2
(uuy + vvy)u+ ρuy

hold. Thus, we have

(ρ2c2 − ψ2
y)ψxx = (ρ2c2 − ρ2u2)(−ρv)x

= −ρ2(c2 − u2)
(

− ρ

c2
(uux + vvx)v + ρvx

)

,

ψxψyψxy = −ρ2uv(−ρv)y = ρ2uv
(

− ρ

c2
(uuy + vvy)v + ρvy

)

,

ψxψyψyx = −ρ2uv(ρu)x = −ρ2uv
(

− ρ

c2
(uux + vvx)u+ ρux

)

,

(ρ2c2 − ψ2
x)ψyy = (ρ2c2 − ρ2v2)(ρu)y

= ρ2(c2 − v2)
(

− ρ

c2
(uuy + vvy)u+ ρuy

)

.

Summing these up, it holds that

(4.8) (ρ2c2−ψ2
y)ψxx+2ψxψyψxy+(ρ2c2−ψ2

x)ψyy = ρ3(u2+v2−c2)(vx−uy).

Here, by the assumption (iv), we have vx = uy. Then we have the conclusion.
�
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When ρc = 1, the equation (4.3) coincides with the zero mean curvature
equation (1.1). In this case, (4.1) yields that

(4.9) p = p0 −
1

ρ
,

where p0 is a positive constant. This means that the zero mean curvature
equation induces a virtual gas. For actual gas, the pressure p is proportional
to ργ , where γ is a constant (> 1, γ ≈ 1.4 for air).

Differentiating (4.9), we have that

(4.10) dp =
dρ

ρ2
.

Substituting (4.10) into (4.5), we have that

d

(

− 1

ρ2
+ q2

)

= 0,

that is, there exists a constant k such that

(4.11) − 1

ρ2
+ q2 = k.

Here, by (4.2), it holds that

(4.12) (u, v) =
1

ρ
(ψy,−ψx).

Thus, (4.11) is equivalent to

1− ψ2
x − ψ2

y = −kρ2.
We suppose that 1 − ψ2

x − ψ2
y does not vanish identically. Then k 6= 0 and

we may set
√

|k| = 1/ρ0, where ρ0 is a positive constant. Then we have

ρ = ρ0|1− ψ2
x − ψ2

y |1/2.
Note that by (4.12) and the assumption cρ = 1, the speed |v| = q is greater
than (resp. less than) the speed of sound c, that is, the flow is supersonic

(resp. subsonic), if and only if 1− ψ2
x − ψ2

y < 0 (resp. > 0).
Suppose now that the flow changes from being subsonic to supersonic at

a curve
σ(t) :=

(

x(t), y(t)
)

(a ≤ t ≤ b).

Without loss of generality, we may assume that t is an arclength parameter
of the curve σ. In particular,

ρ = ρ0|1− ψ2
x − ψ2

y |1/2 = 0

holds on the curve σ. Since the local speed of sound is given by

c = ρ−1 = ρ−1
0 |1− ψ2

x − ψ2
y |−1/2,
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the curve σ is a singularity of the flow, although the stream function itself is
real analytic near σ. Moreover, we suppose that each point of the curve σ(t)
is a non-degenerate point of type change with respect to ψ. Then, as seen
in the proof of Proposition 2.6, we can take the parameter t of the curve σ
such that t 7→ (t, σ(t)) gives a non-degenerate null curve in R

3
1. Moreover,

it holds that

x′(t) = ψx

(

x(t), y(t)
)

, y′(t) = ψy

(

x(t), y(t)
)

and x′(t)2 + y′(t)2 = 1. Since ∇B 6= 0 at a non-degenerate point of type
change, the proof of Proposition 2.5 yields that σ′′(t) 6= 0. Since x′(t)2 +
y′(t)2 = 1, this implies that σ(t) is a locally convex curve. Consequently, we
get the following assertion:

Theorem 4.2. Let σ(t) :=
(

x(t), y(t)
)

be a locally convex curve on the xy-
plane with an arc-length parameter t. Then the graph t = ψ(x, y) of the zero

mean curvature surface ϕ̂σ̃ as in Theorem 2.19 associated to the null curve

σ̃ :=
(

t, x(t), y(t)
)

gives a real analytic stream function satisfying (4.3) with
(4.9) (i.e. cρ = 1) which changes from being subsonic to supersonic at the

curve σ. Moreover,

(u, v) :=
1

ρ
(ψy,−ψx)

gives the velocity vector of the flow such that

(1) u2 + v2 diverges to ∞ as (x, y) approaches the image of σ.
(2) The flow changes from being subsonic to being supersonic across σ.
(3) The acceleration vector σ′′(t) points to the supersonic region.

Proof. Since σ is locally convex, its lift σ̃ is a non-degenerate null curve in
R

3
1. Then we can apply Theorem 2.19 for the curve σ̃, and get a graph

ψ(x, y) of a zero mean curvature surface which changes type at σ̃. Then ψ
can be considered as a stream function which changes from being subsonic
to supersonic at the curve σ. We set

P :=
σ(t+ s) + σ(t− s)

2
≈ σ(t) +

σ′′(t)

2
s2,

which is the midpoint of the two points σ(t+ s), σ(t− s) of the curve σ. By
Theorem 2.19, the flow is supersonic at the point P , which proves the last
assertion. �
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