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Abstract
Inmanycropspecies, DNA fingerprinting is required for theprecise identificationofcultivarstoprotect the

rights of breeders. Many families of retrotransposons have multiple copies throughout the eukaryotic
genome and their integrated copies are inherited genetically. Thus, their insertion polymorphisms among
cultivars are useful for DNA fingerprinting. In this study, we conducted a DNA fingerprinting based on the in-
sertionpolymorphismsofactiveretrotransposon families (Rtsp-1andLIb) insweetpotato.Using38cultivars,
we identified 2024 insertion sites in the two families with an Illumina MiSeq sequencing platform. Of these
insertion sites, 91.4% appeared to be polymorphic among the cultivars and 376 cultivar-specific insertion
sites were identified, which were converted directly into cultivar-specific sequence-characterized amplified
region (SCAR) markers. A phylogenetic treewas constructed using these insertion sites, which corresponded
well with known pedigree information, thereby indicating their suitability for genetic diversity studies. Thus,
the genome-wide comparative analysis of active retrotransposon insertion sites using the bench-top MiSeq
sequencing platform is highly effective for DNA fingerprinting without any requirement for whole genome
sequence information. This approach may facilitate the development of practical polymerase chain reac-
tion-based cultivar diagnostic systemand couldalso be applied to the determination ofgenetic relationships.
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1. Introduction

Globally, the sweet potato [Ipomoea batatas (L.) Lam]
is an important food crop with an annual production of
104 million tons (Food and Agriculture Organization of
the United Nations; http://faostat3.fao.org/, 20 May
2014, date last accessed). This crop is known to be a
valuable foodsource that contains various nutrients, in-
cluding a high starch content, complex carbohydrates,
dietary fibre, vitamins and anthocyanins. In addition
to its high nutrient content, this crop is resilient, easy
to propagate and grows relatively well in infertile and
nitrogen-poor soils. There are over 8000 varieties, in-
cluding wild accessions, landraces and breeding lines
registered with the International Potato Center (http://

cipotato.org/sweetpotato/, 20 May 2014, date last
accessed). Thus, the sweet potato is grown widely and
is used for various purposes throughout the world.
However, the sweet potato is a hexaploid (2n ¼ 6x ¼
90)outbreedingspecieswithahighdegreeofheterozy-
gosity, and genome sequence information is not avail-
able for this species, which has hindered genetic
analyses, the development of molecular markers and
DNA fingerprinting.1–5

Retrotransposons are major components of eukary-
otic genomes and they are present in high copy num-
bers in most of the plants.6–8 Retrotransposons are
divided into two major groups: a group with a long
terminal repeat (LTR) sequence at both ends and
another group without LTRs (non-LTR). The non-LTR
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retrotransposons are further divided into long inter-
spersed nuclearelements (LINEs) andshort interspersed
nuclear elements (SINEs).6–8 In our previous study, we
identified two active retrotransposon families in sweet
potato, i.e. an LTR-type Rtsp-1 and a LINE-type LIb.9,10

These two families exhibited a high degree of insertion
polymorphism andnewly insertedcopieswere inherited
steadily throughout clonal propagation.10 The retro-
transposon insertion polymorphisms found in different
cultivars can be used for DNA fingerprinting.11–16

Next-generation sequencing technology has devel-
oped rapidly in the past few yearsand ithas been utilized
in various fields of genetics, thereby accelerating geno-
mic and genetic research dramatically. More recently,
bench-top high-throughput sequencing instruments
such as the Roche/454 GS Junior (Roche, Basel,
Switzerland), Illumina MiSeq and Ion Torrent PGM (Life
Technologies) have been released, which are capable of
sequencing several megabase to gigabase pairs in a
single lane-sequencing run with enhanced speed and
cost performance.17,18 In particular, the MiSeq system
has the highest throughput per run and the lowest
error rate,17 and the latest version enables to generate
up to 15 Gb per run with 2 � 300 bp reads using new
reagent kits (http://www.illumina.com/systems/miseq.
ilmn, 20 May 2014, date last accessed). These bench-
top systems produce smaller sequence datasets than
traditional high-throughput sequencing instruments
(Roche/454 GS FLXþ and Illumina HiSeq 2000), but
their utilization is increasingly widespread because of
their greater time and cost performance during sequen-
cing analysis, although with modest performance.

In the present study, we conducted DNA fingerprint-
ing based on the insertion polymorphisms of the active
retrotransposon families (Rtsp-1 and LIb) in sweet
potato.Usingabench-top sequencingplatform,wesuc-
cessfully identified 2024 insertion sites in 38 cultivars
based on a single lane-sequencing run. It should be
noted that the insertion sites of the active retrotrans-
poson families were highly polymorphic among those
cultivars. Using the cultivar-specific insertion sites, we
successfully developed sequence-characterized ampli-
fied region (SCAR) markers, which may facilitate the
precise identification of cultivars. Moreover, the geno-
typing data related to the insertion sites can be used
to determine the genetic relationships among cultivars.
The sweet potato is a non-model crop species and its
whole genome sequencing data are not available, but
our method enables efficient genotyping based on a
number of polymorphic retrotransposon insertion sites.

2. Materials and methods

2.1. DNA samples
DNA samples from the 38 sweet potato cultivars

listed in Supplementary Table S1 were provided by the

National Agriculture and Food Research Organization,
Kyusyu Okinawa Agricultural Research Center. Young
leaves were collected from field grown plants and
genomic DNA was extracted using a DNeasy Plant
Mini Kit (Qiagen, Inc., Germany).

2.2. MiSeq library construction
Genomic DNA (5 mg) was separated into fragments

of �6 kb by g-TUBE (Covaris) centrifugation and puri-
fied using a QIAquick PCR Purification Kit (Qiagen).
The purified products were treated with DNA polymer-
ase I and T4 DNA polymerase to convert the heteroge-
neous ends via their physical fragmentation into blunt
ends. The blunt ends were adenylated at the 30 end
using a Klenow fragment that lacked a 50 to 30 exonucle-
ase activity. A forked adapter with a T overhang at the
50 double-stranded end was ligated using T4 DNA
ligase. The retrotransposon insertion sites were specif-
ically amplified using nested polymerase chain reaction
(PCR), where the first PCR was performed with retro-
transposon-specific (Rtsp-1_ppt or LIb_L_D4) and
adapter-specific (AP2) primer combinations using the
ligated products as the template, and the second PCR
was performed with primers for the 30 end sequence
of Rtsp-1 or LIb [adjacent to the 30 end polyadenosine
sequence (poly(A)] and an adapter sequence (AP3)
using the initial PCR products as the template. The
PCR comprises an initial denaturation at 948C for
2 min, which was followed by 30 cycles at 948C for
30 s, 808C for 30 s, 588C for 30 s and 728C for 1 min,
with a final extension at 728C for 15 min. The PCR pro-
ducts were selected by size (300–500 bp) using gel
electrophoresis and purified with a QIAquick Gel
ExtractionKit (Qiagen). TheMiSeq sequencingadapters
were ligated to the size-selected products from each
cultivar using a TruSeq DNA-Sampling Preparation Kit
(Illumina) to obtain cultivar-specific combinations of
the dual index sequences in the adapters (Fig. 1).
Equal amounts of the ligated products from the 38 cul-
tivars were pooled before MiSeq sequencing, and a

Figure 1. Scheme of the MiSeq sequencing library in this study. The
150-bp paired reads (black arrow) represent the junction
sequence of the retrotransposon (Rtsp-1 or LIb) (red box) and
the insertion site sequence from the AP3 adapter (purple box).
The TruSeq adapters used in this study were indexed with short
6–8 bp sequences to facilitate multiplexing in a single
sequencing run. The P5 and P7 sequences (blue box) allowed the
final products to hybridize to the Illumina flow cell. The Rd1 and
Rd2 sequences (green box) served as sequencing primers.
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paired-end sequence of 150 bp was determined at
each end (Fig. 1). MiSeq sequencing was conducted
using the MS-102-1001 MiSeq Reagen Kit (300
cycles) (Illumina). In sequencing run, we added a PhiX
Control v3 (Illumina) at 50% of our library, because
Illumina recommends spike-in a PhiX control DNA for
low diversity library where a significant number of the
reads have the same sequence. It is known that a high-
concentration spike-in (40% or higher) of PhiX
improves matrix generation and phasing/prephasing
calculations and helps balance the overall lack of se-
quence diversity. Our library was considered to have
low diversity nucleotide composition because of the
Rtsp-1 or LIb sequences, or an adaptor AP3 sequence
at the beginning of one read of a sequence pair. This
should be combined with a reduction of the amount
of library used. The sequences of the adapters and
primers are reported in Supplementary Table S2. The
MiSeq reads of this study have been submitted to
DDBJ (http://www.ddbj.nig.ac.jp/, 20 May 2014, date
last accessed) under accession no. DRA001340.

2.3. Data analysis
TheMiSeq outputwas divided into eachcultivar based

on the dual index TruSeq sequence. The sequencing
data were handled using Maser, the pipeline execution
system of the Cell Innovation Program at the National
Institute of Genetics (http://cell-innovation.nig.ac.jp/
index_en.html, 20 May 2014, date last accessed).
When one read of a sequence pair was filtered for
invalid Rtsp-1 or LIb primer sequences, the entire pair
was discarded. The LINE element of LIb has a poly(A)
tail with variable lengths at the integration site.10,19

Those poly(A) sequences were removed from the LIb
reads using the PRINSEQ tool20 before subsequent
data processing. After trimming the Rtsp-1 or LIb
sequences from the reads, they were trimmed further
to 50 bp from the retrotransposon junction and filtered
based on the quality value (QV) for all base calls �20.
Next, the outliers were filtered by trimming them to a
specific length that included most of the sequences
(.99 or .98%), whereas reads shorter than this spe-
cific length were filtered out. Identical sequences
observed in�10 reads were treated as a single sequence
using the FASTA format with read count information,
whereas those with ,10 reads were discarded. Using
the sequences that passed through these processes, we
determined Rtsp-1 and LIb insertion sites according to
the following steps: (i) we conducted all-to-all compari-
son of these sequences to reveal their similarities, which
were used to build clusters that represent an individual
insertion site. It started with the self-alignment of the
producedsequencesviaBLATanalysis21usingthe follow-
ing parameter settings: -tileSize ¼ 8, -minMatch¼ 1,
-minScore ¼ 10, -repMatch ¼ –1 and -oneOff ¼ 2.

BLAT is one of the local pairwise alignment program-
mes.21 (ii) We clustered these sequences into groups
based on their sequence similarity with the results of
pairwise alignments. Ineach cluster, sequenceswerecol-
lected in FASTA format. (iii) We performed a multiple
sequence alignment using these FASTA files for each
cluster to reveal the sequence similarity with ClustalW
program,22 which produced an alignment file per
cluster. Then, we determined the representative se-
quence ineachclusterbasedonthenumberofsequence.
The sequence with the highest number was extracted as
the representative sequence in each cluster. Our results
showed that the sequences to be aligned in each cluster
wereverysimilartoeachother(identityof .90%).These
processes generated the cluster of sequence or non-
clustered sequence with �10 reads as an individual
insertion site that a copy of Rtsp-1 or LIb was inserted
in at least one or more cultivars. However, assigning the
insertion sites to cultivars would probably have caused
some errors, because sequence errors in the index se-
quence may have allocated the reads to an incorrect
cultivar while sequences with small read numbers may
have been incorrectly included in large clusters by the
BLAT analysis. These erroneous assignments would
have resulted in a very small number of reads. Thus,
we set a critical value for determining the presence of
Rtsp-1 and LIb insertions, i.e. if the reads for a cultivar at
a specific insertion site comprise ,0.01% of the entire
reads for that cultivar, we assumed that the retrotrans-
poson was absent from that site. Each cultivar was geno-
typed by combining the presence (1) or absence (0) of
information at each site for all the insertion sites
(Supplementary Tables S3 and S4).

2.4. Development of SCAR markers
We designed the PCR primers to amplify the junc-

tion of the retrotransposon and its insertion site.
Supplementary Tables S3 and S4 showed all genotyp-
ing information (scores 0 and 1) in the cultivars, the
representative sequence in each cluster and non-
cluster sequence. We focused on the putative cultivar-
specific insertion site that was present in one cultivar
(scoring; 1) and absent from others (scoring; 0). The
primer sequence of SCAR marker was designed based
on the representative sequence for the cluster of these
cultivar-specific insertion site (Supplementary Table
S2). The PCR was performed with Rtsp-1-specific primer
(Rtsp-1_ppt) and insertion site-specific (RP_*) primer
combinations using the genomic DNA as the template
(Supplementary Table S2). The PCR comprises an
initial denaturation at 958C for 2 min, which was fol-
lowed by 30 cycles at 958C for 30 s, 588C for 30 s and
728C for 30 s, with a final extension at 728C for
15 min. The PCR products were visualized using 1.5%
agarose gel electrophoresis.
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2.5. Phylogenetic analysis
A distance matrix was calculated from the presence/

absence matrices using Nei’s andLi’s coefficient index23

with the FreeTree program (Supplementary Tables S5
and S6).24 The phylogenetic reconstruction was based
on the neighbour-joining method. Support for the in-
ternal branches in the phylogeny was assessed using
1000 bootstrap replicates. A dendrogram was con-
structed with MEGA5.25

3. Results

3.1. MiSeq sequencing of the Rtsp-1 and LIb
insertion sites

We constructed a MiSeq sequencing library to screen
the junction sequences of the Rtsp-1 and LIb insertion
sites in 38 sweet potato cultivars (Fig. 1). Each cultivar
sample was labelled using a TruSeq DNA-Sampling
Preparation Kit with dual indexing (Fig. 1). The Rtsp-1
and LIb libraries were mixed at a ratio of 4 : 1 to
prepare a single sequencing sample, because the copy
number of Rtsp-1 was estimated to be approximately
four times higher than that of LIb.9,10

A total of 4,401,639 read pairs were obtained from a
single lane-sequencing run using the MiSeq platform,
i.e. 3,567,587 and 834,052 read pairs represented
Rtsp-1 and LIb insertion sites, respectively (Table 1).
The results indicated that the read number ratio in each
library (Rtsp-1 reads ¼ 81.1% and LIb reads ¼ 18.9%)
was close to the expected value (Rtsp-1 reads ¼ 80%
and LIb reads ¼ 20%). Of these read pairs, 86.8% for
Rtsp-1 and 89.8% for LIb had valid retrotransposon-
specific sequences (Table 1), which indicated that
nested PCR could specifically amplify DNA fragments
from the junction sequences of these elements. The
read numbers for each sample are presented in
Supplementary Table S1.

3.2. Identificationof theRtsp-1and LIb insertion sites in
38 cultivars

To identify the Rtsp-1 and LIb insertion sites, we
selected one end of a paired read that contained the
junction sequence of the Rtsp-1 and LIb ends and their
insertion sites. A sequence of 150 bp in the read was fil-
tered based on the valid retrotransposon sequences
and QV scores with base calls �20 in the insertion site
sequence of 50 bp (see Materials and Methods)
(Table 1). After these filtering processes, 63.7 and
51.2% of the reads remained for Rtsp-1 and LIb, respect-
ively (Table 1). These reads were used in the clustering
analysis to obtain sequence information for each inser-
tion site (Table 1). The clustering process was con-
ducted using BLAT,21 where the parameter settings
were -tileSize ¼ 8, -minMatch ¼ 1, -minScore ¼ 10,
-repMatch ¼ –1 and -oneOff ¼ 2, which generated
1497 and 527 clusters or non-clustered single
sequences for the insertion sites of Rtsp-1 and LIb, re-
spectively, where the minimum number of reads
required for an identical sequence was 10 (Tables 1
and 2). We detected Rtsp-1 and LIb in each insertion
site of the 38 cultivars (Supplementary Tables S3
and S4). In the 38 cultivars, the median number of
Rtsp-1 insertion sites per cultivar was 257.5 (range ¼
216–347), whereas that for LIb was 92.5 (range¼

Table 1. Summary of the MiSeq read data processing

Retrotransposon Analysis No. of read pairs No. of collapsed
reads (�10)

Ratio (%) No. of clusters

Rtsp-1 Raw data 3,567,587 100
Validation of retrotransposon sequence 3,095,771 16,428 86.8
Trimming to 50 bp 3,095,771 8038 86.8
QV filtering (�20) 2,292,344 5245 64.3
Outlier filtering (.99%) 2,273,707 5218 63.7
Clustering with BLATa 1497

LIb Raw data 834,052 100
Validation of retrotransposon sequence 743,945 3608 89.2
Poly(A) tail trimming (A � 3) 743,935 3571 89.2
Trimming to 50 bp 743,935 3154 89.2
QV filtering (�20) 434,502 1619 52.1
Outlier filtering (.98%) 427,120 1603 51.2
Clustering with BLATa 527

aThe clusters include groups of two or more sequences and non-clustered single sequences for the insertion sites of Rtsp-1and
LIb, where the minimum number of reads for an identical sequence was 10.

Table 2. Summary of the insertion sites identified

All
insertion
sites

No. of
polymorphic
sites

Polymorphic
ratio (%)

No. of
cultivar-
specific
sites

Cultivar-
specific
ratio (%)

Rtsp-1 1497 1327 88.6 291 19.4

LIb 527 523 99.2 85 16.1

Total 2024 1850 91.4 376 18.6
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67–147)(Fig. 2). Also, the averagenumberof Rtsp-1 in-
sertion sites among 38 cultivars was 259, whereas that
of LIb was 102.6, respectively. Of the 1497 Rtsp-1 inser-
tion sites, 88.6% were polymorphic among cultivars
and 19.4% were identified as cultivar-specific sites,
which were present in only one cultivar and absent
from others (Table 2). For LIb, the same figures were
99.2 and 16.1%, respectively (Table 2). Thus, the inser-
tion sites of these two active retrotransposon families

were found to be highly polymorphic among sweet
potato cultivars.

3.3. Development of SCAR markers for cultivar
identification

We designed PCR primers using the Rtsp-1 insertion
sequences of five cultivar-specific sites (Supplementary
Table S2). We conducted PCR amplification with the
38 sweet potato cultivars using these cultivar-specific
insertion primer (RP_*) and Rtsp-1-specific primer
(Rtsp-1_ppt), which produced single, distinct and clear
bands (Fig. 3). The SCAR markers developed in this
study can be treated as dominant markers and used for
the simple and rapid screening of cultivars.

3.4. Genetic relationships among sweet potato
cultivars

To investigate the genetic relationships among the
38 sweet potato cultivars, we conducted a phylogenetic
analysis based on the Rtsp-1 and LIb insertion sites.
Basically, sweetpotato is cultivatedby vegetativepropa-
gation. However, Japanese sweet potato cultivars had
been developed with crossing the limited number of
cultivars, which indicated most cultivars used in this
study were genetically related. The genetic distance
scores were calculated based on Nei’s and Li’s coefficient
index (Supplementary Tables S5 and S6). The phylogen-
etic trees were constructed using the neighbour-joining
method (Fig. 4 and Supplementary Fig. S1). The genetic
relationships among cultivars based on the Rtsp-1 and
LIb insertion polymorphisms were consistent well each
other (Fig. 4 and Supplementary Fig. S1). Pedigree

Figure 2. The numbers of Rtsp_1 and LIb insertion sites identified in
this study. The box plots show the distributions of these sites in
the 38 cultivars. The central rectangle spans the first quartile to
the third quartile. The line inside the rectangle shows the
median number (257.5 and 92.5 for Rtsp-1 and LIb,
respectively), and the whiskers above and below the box show
the maximum and minimum number, respectively.

Figure 3. Agarose gel image showing the SCAR markers developed in this study. PCR amplification was conducted using the cultivar-specific
insertion primer (RP_*) and the Rtsp-1-specific primer (Rtsp-1_ppt). Descriptions of these primers are provided in Supplementary
Table S2. The arrows indicate the strong and reproducible bands that were specific for each cultivar. Lanes 1–38 correspond to the
cultivars listed in Supplementary Table S1.
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information was known for some cultivars (Supple-
mentary Fig. S2), which was also consistent with the
genetic relationships in the phylogenetic trees. In add-
ition, the parent and offspring cultivars shown in the
pedigree information had lower genetic distance
(Supplementary Tables S5 and S6), which indicated
they are genetically closely-related. This suggests that
obtaining genotyping information based on the active
retrotransposon insertion sites may be useful for

determining the genetic relationships among sweet
potato cultivars.

4. Discussion

In this study, we conducted DNA fingerprinting
based on the insertion polymorphisms of the active
retrotransposon families (Rtsp-1 and LIb) in the sweet

Figure 4. Phylogenetic analysis based on the Rtsp-1 insertion polymorphisms of the cultivars. The phylogenetic tree was constructed using the
neighbour-joining method. The bootstrap values are shown.þThe genetic relationshipsbased on the Rtsp-1and LIb (Supplementary Fig. S1)
insertion polymorphisms were well consistent. *The genetic relationships among cultivars agreed well with the pedigree information
(Supplementary Fig. S2).
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potato. Theapplication ofaMiSeq sequencing platform,
which is a bench-top high-throughput sequencer,
allowed .1.3 Gb of high-quality sequencing data to
be produced at a low cost in a short time. We success-
fully identified 2024 insertion sites for two types of
retrotransposon families and obtained 76,912 (2024
insertion sites � 38 cultivars) genotyping data points
in a single sequencing run. We developed several SCAR
markers based on the cultivar-specific insertion sites
(Fig. 3). This type of marker has several advantages
compared with simple sequence repeat (SSR) marker
or amplified fragment length polymorphism (AFLP)
marker, because they can be used to produce specific
and easily recognizable bands by agarose gel electro-
phoresis (Fig. 3).26–28 Thus, the SCAR markers devel-
oped in this study could be used for the rapid and
precise screening of sweet potato cultivars in breeding
programmes. Furthermore, the genetic relationships
among sweet potato cultivars can be determined based
on the genotyping data, which were demonstrated by
the phylogenetic analysis (Fig. 4 and Supplementary
Fig. S1). Our methods should accelerate sweet potato
genotyping and they provide a practical method forcul-
tivar identification.

The sweet potato is a non-model crop species and its
whole genome sequence information is not available. It
is a hexaploid plant (2n ¼ 6x ¼ 90) with an estimated
genome size of 2200–3000 Mb.29 Recently, compre-
hensive transcriptome sequencing of the sweet potato
was reported in three studies.29–31 Thus, genetic ana-
lyses of the sweet potato based on molecular markers
have been delayed compared with other plant species.
In general, genotyping with a high-throughput sequen-
cing system, such as the Illumina HiSeq 2000, has been
conducted based on single nucleotide polymorphism
(SNP) loci in model species.32–38 If a reference genome
sequence is available, whole genome resequencing or
exome resequencing may be effective for genome-wide
SNP and/or indel calling using multiple samples after
mapping the reads to the reference genome. In non-
model crop species such as the sweet potato, how-
ever, these resequencing methods cannot be applied
because of the lack of reference sequences. Thus, tar-
geting the sequences of highly polymorphic sites in
cultivars may be an efficient alternative method for
genotyping these species. Moreover, high-sensitivity
targeted sequencing is far less expensive and requires
less sequencing data per sample than whole genome
resequencing.14,16,19 Our results demonstrated that
the active retrotransposon insertion sites were highly
polymorphic in cultivated sweet potato varieties, and
the targeted sequencing of these sites could be achi-
eved using a MiSeq bench-top system. Thus, the low
cost and time-saving DNA fingerprinting methods
developed in this study could facilitate the precise
identification of cultivars, as well as being used for

assessments of genetic diversity and conducting
linkage analyses.
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