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Zusammenfassung
Bei der traditionellen Lichtfeldauswertung hat jedes Bild gleichen spektralen Inhalt,

was zu konstanten Intensitätswerten in der Epipolar Plane Image (EPI) Mannig-

faltigkeit führt. Diese Art von Lichtfeld wird auch homogenes Lichtfeld genannt.

Im Gegensatz dazu unterscheiden sich Heterogene Lichtfelder darin, dass die einzelnen

Bilder verschiedene Eigenschaften besitzen, wie beispielsweise unterschiedliche Lumi-

nanzen oder durch verschieden Spektralfilter unterschiedlichen spektralen Inhalt.

Um heterogene Lichtfelder auswerten zu können, wird eine entsprechende Methode zur

Berechnung von Orientierungen in heterogenen EPIs benötigt. Dazu werden die einzel-

nen Komponenten der Strukturtensoranalyse in Bezug auf ihre Funktion analysiert und

alternative Methoden zur Orientierungsanalyse wie beispielsweise die singular value

decomposition analysiert. Schlussendlich führen diese Analysen zu neuen Konzepten,

die den Strukturtensoransatz verbessern, wodurch dessen Genauigkeit gesteigert und

eine Anwendbarkeit auf heterogene Lichtfelder möglich wird. Während der aktuelle

Strukturtensor nur Orientierungen mit konstanter Pixelintensität entlang der Orien-

tierungsrichtung schätzen kann, ist der neu entworfene Strukturtensor in der Lage auch

Orientierungen mit sich ändernden Intensitätsstrukturen zu schätzen. Zusätzlich wird

es aufgrund einer viel höheren Robustheit gegen Belichtungsschwankungen möglich,

aufgenommene Lichtfelder mit einer viel höheren Zuverlässigkeit auszuwerten.

Um das volle Potential dieses verbesserten Stukturtensors zu nutzen, ist es wichtig das

Lichtfeldkamerasetup so anzupassen, dass die Szene perfekt in den ±45◦ Orientierung-

bereich passt. Diese Voraussetzung führt zu einer direkten Verbindung zwischen dem

Lichtfeldkamerasetup und dem wie ein Pyramidenstumpf geformten relevanten Mess-

raumvolumen.

Wir zeigen, dass hochpräzise Tiefenkarten berechenbar werden, was einen positiven

Einfluss auf die Güte nachfolgender Prozessierungen hat und besonders bei der sRGB

Farbrekonstruktion in Lichtfeldern mit unterschiedlich spektral gefilterten Bereichen zu

sehen ist. Zusätzlich wird ein Global Shifting entwickelt, was eine Überschreitung der

zugrundeliegenden Limitierung des ±45◦ Orientierungsbereichs ermöglicht, um somit

einen größeren Tiefenbereich schätzen zu können und eine zusätzliche Steigerung der

Präzision zu erreichen. Hierdurch wird zudem ermöglicht spherische Lichtfelder zu un-

tersuchen, bei denen der ±45◦ Orientierungsbereich regelmäßig überschritten wird. Die

Forschung an spärischen Lichtfeldern war in enger Zusammenarbeit mit dem ”German

Center for Artificial Intelligence (DFKI)” in Kaiserslautern.





Summary
In traditional light-field analysis, images have matched spectral content which leads to

constant intensity on epipolar plane image (EPI) manifolds. This kind of light field is

termed homogeneous light field.

Heterogeneous light fields differ in that contributing images may have varying prop-

erties such as exposure selected or color filter applied. To be able to process hetero-

geneous light fields it is necessary to develop a computation method able to estimate

orientations in heterogeneous EPI respectively. One alternative method to estimate

orientation is the singular value decomposition. This analysis has resulted in new con-

cepts for improving the structure tensor approach and yielded increased accuracy and

greater applicability through exploitation of heterogeneous light fields. While the cur-

rent structure tensor only estimates orientation with constant pixel intensity along the

direction of orientation, the newly designed structure tensor is able to estimate orien-

tations under changing intensity. Additionally, this improved structure tensor makes

it possible to process acquired light fields with a higher reliability due to robustness

against illumination changes.

In order to use this improved structure tensor approach, it is important to design

the light-field camera setup that the target scene covers the ±45◦ orientation range

perfectly. This requirement leads directly to a relationship between camera setup for

light-field capture and the frustum-shaped volume of interest.

We show that higher-precision depth maps are achievable, which has a positive impact

on the reliability of subsequent processing methods, especially for sRGB color recon-

struction in color-filtered light fields.

Aside this, a global shifting process is designed to overcome the basic range limitation of

±45◦ to estimate larger distances and to increase additionally the achievable precision

in light-field processing. That enables the possibility to research spherical light fields,

since the orientation range of spherical light fields typically overcomes the ±45◦ limit.

Research in spherically acquired light fields has been conducted in collaboration with

the German Center for Artificial Intelligence (DFKI) in Kaiserslautern.
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1 Introduction
Light-field imaging has established itself over the past few years as promising new

research field in computer vision. Its areas of application are wide spread and reach from

viewpoint interpolation [42, 60, 8] through super-resolution [90, 28] to refocusing [63].

Still, light-field imaging’s most basic and perhaps most important application may be

in depth estimation. Due to the steady improvements in modern computing, it is now

possible to process the huge amount of data in a light field in seconds or less. Light-

field imaging itself has a lot of advantages in comparison with other ranging methods.

It provides the estimates of scene depth without invoking the matching that causes

uncertainties in binocular and multi-view stereo algorithms. Because of this, it is faster

in estimating depth and makes it possible to gather much more information from the

captured scene.

We want to begin by introducing alternate methods for estimating scene geometry,

highlighting the advantages and disadvantages of the different methods. Then, we will

detail what of light-field analysis brings to the problem and explain the contributions

of this thesis.

1.1 Alternate Ranging Methods

There are several major differing approaches to obtain depth information from a scene.

They can be split into two main classes. The first class are passive methods using the

environmental light to obtain depth information. Associated methods are binocular or

multi-view stereo algorithms. The second class uses active illumination like a fringes
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Figure 1.1: (a) illustrates the epipolar geometry for verged cameras. The epipoles El and

ER are located inside the image. All epipolar lines intersect in the epipole. The epipolar lines

can be determined by the fundamental matrix and a reference point in the other image. (b)

shows a stereo camera setup with two parallel looking cameras. As one can see the epipolar

lines are horizontally aligned. Thus the epipoles are located at infinity.
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Figure 1.2: Illustrates the imaging of two points located at different depths Z1 and Z2. In

the first camera both points are imaged onto the same position. In the second camera both

points are imaged onto a different position. The distance between both projection points is

termed disparity d1 and d2.

projector, laser light or coherent light. The most common methods for active and

passive illumination are detailed in the following and its advantages and disadvantages

are highlighted.

Stereo imaging

One of the first established methods to estimate range is termed stereo imaging or

triangulation. This method is based on the binocular vision [36] of humans and other

animals which use visual information derived from their two eyes to determine binoc-

ular disparities [9, 72] and hence depth. While the perception of binocular disparity

occurs naturally when viewing a scene, this can also be obtained artificially through

the separate presentation of two different images to each eye using stereoscopic display

methods, such as in a Viewmaster or, more currently, in the Oculus Rift [21].

To estimate disparities, stereo triangulation methods exploit the epipolar geometry to

efficiently determine correspondence of points in the two images. The parallax observed

between corresponding points is the disparity, and this corresponds inversely to dis-

tance from the viewer. To find correspondences, the fundamental matrix F [57, 33] is

used to compute epipolar lines in the second camera with respect to a reference point

in the first camera, as illustrated in figure 1.1 (a).

All such determined scan lines intersect in a mathematical object termed the epipole,

which is defined as the intersection of the line joining the two camera’s centers of

projection and the imaging plane. Knowing this epipole is essential to understand

the camera geometry, and thus for doing image triangulation. A special stereo setup

with parallel-directed cameras orthogonal to their baseline has its epipoles at infinity,

as shown in figure 1.1 (b). All epipolar lines in this configuration are horizontally
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Figure 1.3: Shown are different models of time-of-flight cameras. (a) Argos 3D-P100 with

up to 160 fps and 160×120 pixels [6], (b) PMDs CamCube with 204×204 pixels and SBI [67],

(c) SwissRanger 4000 of MESA Imaging having 176 × 144 pixels [81] and (d) TOF-camera

having 176× 144 pixels

aligned, and this simplifies the correspondence search to image rows only. Imagery in

this form, after lens distortion correction, is termed rectified. In light-field imaging,

rectified images are mandatory. To extract epipolar-plane images (EPIs) which are

first defined by H. Baker [7], all cameras need to be located at a common camera plane

having parallel viewing direction and epipoles at infinity. How to extract EPIs out of

the lumigraph, we detail in section 2.1. To determine scene depth we define a stereo

camera setup as shown in figure 1.2. Both cameras are assumed to have the same focal

length f . The distance between the cameras is termed their baseline b. The difference

of the relative projection of a world point P is termed disparity d. Thus resulting depth

can be computed by

Z =
fb

d
(1.1)

which shows that the disparity is inversely proportional to the distance Z of the ob-

ject [38].

Stereo algorithms can estimate disparity fairly reliably in regions where there are no

specularities or occlusions. In regions with low contrast or with high sensor noise,

however, most implementation have difficulties. Additionally, many stereo implemen-

tations only possess a discretized resolution which results in visible depth steps in 3D

reconstructions. To achieve a sub-pixel accuracy requires more effort and analysis.

Time-of-Flight cameras

Time-of-flight cameras (ToF cameras) are systems that measure distance based on

the speed of light and the time taken for signal return. LIDAR (Light Detection And

Ranging) is a form of ToF sensing, where one measures distance by illuminating a target

with a laser and analyzing the reflected light. Sensors in ToF cameras are more complex

than sensors in normal passive cameras. Each pixel needs to be able to determine

independently the time from signal emission to reception. To accommodate this, the
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(a) (b) (c)

Figure 1.4: Shows the distance measurement of time-of-flight cameras [84]. The switches G1

and G2 trigger the pixel memory elements S1 and S2 as shown in (a). While the reflected light

arrives with a time delay tD the memory elements fill with respect to the delay respectively (b).

The ratio between S1 and S2 define the distance D of the object. The overall measurement is

shown in (c).

pixels of ToF cameras need to be larger – as much as 10 times the size in normal

CCD cameras – often about 10µm. Most commercially available ToF cameras achieve

sensor resolutions of about 320 x 240 pixels [78] or less. Furthermore it is only possible

to determine depth information of materials able to reflect the incident laser light

frequency toward the emitting source (the scatter that this necessitates is part of

the reason why ToF sensing elements must be large). Also multi path propagation

or interference between two ToF cameras can lead to ghosting effects – ambiguity in

distance arises since the time for signal return may be incorrect. ToF cameras are

able to estimate distances from a few decimeters to about tens of meters with a depth

resolution of about 1 cm. The main advantages of these systems are their high frame

rate (about 160 frames per second) and lack of need for any sort of the signal matching

involved with passive range correspondence-based ranging. To determine the depth,

each ToF camera has two storage elements S1 and S2. These elements are alternately

triggered at the same frequency as the emitted light pulse. Due to the time delay

td of the returned light, the ratio between the collected signal in S1 and S2 changes

with respect to the underlying distance as shown in figure 1.4. Thus the depth can be

computed by

D =
cairt0
2

· S2

S1 + S2

(1.2)

where cair is the speed of light in air.

Interferometry

This technique exploits the interference ability of light and extracts information about

its wave character [17]. It is an important method in fields of fiber optics, optical metrol-

ogy, remote sensing, surface profiling, velocimetry [65] and many more. Interferometry

typically uses a single light source emitting coherent light. The emitted light enters a
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Figure 1.5: Demonstrates the mechanism of interferometry. The emitted light enters a beam

splitter which separates the wave in a reference wave, which gets reflected at a mirror and in a

second wave, which hits the target scene. The reflected wavefronts of both directions interfere

while entering the camera’s lens. The camera captures the interference pattern.

beam splitter which splits the wave into two identical beams as shown in figure 1.5.

While one beam is directed toward a mirror to act as reference wave, the second beam

is reflected toward the target surface which modifies the wavefront. After entering the

camera the reflected wavefront undergoes constructive or destructive interference with

the reference wave. Due to the appearing phase difference of both waves, the distance

can be measured by the phase difference itself or by the resulting intensity deviation of

the mixed signal. The depth resolution of this method depends on the wavelength λ em-

ployed, the image distance with respect to the back principal plane d and the diameter

of the exit pupil l. Thus it can be expressed for air environments as

δz = 4
λd2

l2
. (1.3)

In contrast the spatial resolution is limited by the Rayleigh criterion [73]. The minimal

resolvable separation termed Rayleigh distance δ [29] is therefore

δx = 1.22
λd

l
. (1.4)

It is not effective to estimate objects larger than the wavelength of the light employed.

Additionally, thermal expansion and mechanical disturbances need to be considered.

Structured Light

This method uses active illumination to recover scene geometry. Here, the target is

illuminated with a known pattern, such as fringes or grids. To project such patterns,

two methods have been established. The first method uses laser interference and the
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second uses non-coherent light, which means commercial video projectors can be used.

Laser interference methods allow very fine patterns and have an unlimited depth of

field, but there are difficulties in providing the ideal beam geometry. Additional prob-

lems appear due to speckle, noise or self interference with reflected beams.

In contrast, the projection method commonly uses fringe patterns which deform on

striking the surface, and whose analysis allows to estimate depth and surface infor-

mation. The basic principle of this method is shown in figure 1.6. Typical measuring

devices consist of one stripe projector and at least one camera, while a second camera

on the opposite side saves the calibration of the gamma curve of the projector and

has been established as useful. To triangulate reliably, a linear mapping of the light

intensities between camera and projector is necessary. Thus with two identical cam-

eras a significant effort of the gamma calibration is saved. Unfortunately this method

is very sensitive to ambient light, performing best in darkened rooms. Additionally it

cannot be used to scan shiny surfaces or objects with many intricate details where the

patterning becomes too complex for analysis.

projector

camera 1
camera 2

Figure 1.6: Illustrates a structured light setup. It consists of two opposing cameras and one

central fringe pattern projector. The depth information is encoded in the displacement of the

fringes projected onto the surface of the objects.

1.2 Motivation

In contrast to other depth sensing methods, light-field imaging provides a new class to

analyze 3D geometry of a captured target scene. Light fields can be acquired by moving

a single camera on a regular grid either horizontally, vertically or in both directions.

Using a single camera restricts the acquisition to static scenes, while using camera ar-

rays allow the capturing of dynamic scenes and light-field movies. In addition to spatial

scene information, light fields capture angular information due to the different camera

positions. That idea was first described in 1908 by Gabriel Lippmann who termed it
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Integral Photography [52]. The term light field was introduced by A. Gershun [27] in

1936. After an additional 60 years, light-field imaging was reformulated as a display

technology in computer graphics by Gortler et al. [30] and Levoy et al. [49]. The first

applications in light-field imaging focused on view interpolation because light fields

yield the possibility of generating novel views without explicitly knowing the 3D geom-

etry [45]. Nevertheless light-field imaging provides the possibility to determine scene

geometry due to the available angular information.

Additionally, light fields contains information about the Bidirectional Reflectance Dis-

tribution Function (BRDF). The BRDF describes the angular dependent intensity

change of the reflected light on opaque surfaces with respect to the incidence angle and

the surface normal. While in reality almost all materials have an angular dependent

BRDF (these are termed Non-Lambertian surfaces), only a few materials exist with

pure Lambertian properties (i.e. constant BRDF).

Stereo algorithms suffer from Non-Lambertian surfaces and are not able to find corre-

spondences when the intensity of two corresponding points changes significantly due

to the differing view perspectives. Fortunately, with just a small angular deviation be-

tween two viewpoints, the assumption of constant BRDF (the Lambertian assumption)

is generally valid. In case of larger angular deviation it is possible to use multi-view

stereo approaches which provide more correspondences and make it possible to analyze

also Non-Lambertian surfaces, however algorithms used in this become more and more

complex [39, 40].

In contrast, light fields not only allow estimation of the scene geometry but also pro-

vide the ability to analyze the BRDF. Aside from this, as is shown in this thesis, light

fields are not restricted to image elements that retain color or intensity distribution

across views. It is possible to capture light fields, while each image has slightly dif-

ferent properties such as different exposure values or applied color filters. This opens

new possibilities in analyzing scenes: for example, hyper-spectral information can be

extracted, or one-shot high-dynamic-range (HDR) images become achievable without

applying complex algorithms. Due to the nearly continuous disparity space, we can not

only attain higher quality image information, but also better surface normals for use

in describing the underlying 3D geometry.

Contribution: The purpose of this thesis is to present an analysis of heterogeneous

light fields. Thus an improved Structure Tensor is introduced which not only estimates

homogeneous light field orientation with higher confidence, but is also applicable to

the analysis of heterogeneous light fields. While the traditional Structure Tensor fails

totally in processing heterogeneous light fields, the mechanism we adapt – the Structure

Tensor – still achieves good results. To prove the robustness of the new Structure

Tensor against changing illumination, we introduce and analyze illumination gradient

light fields. Aside from this, we also process color-filtered light fields and use them to

obtain dense disparity maps. The resulting disparity maps of color-filtered light fields

are used to reconstruct a hyper-spectral image for each light field with respect to a



8 Chapter 1. Introduction

V
V
V

V

V

V
V V V V

V

V
V

V

V

VVV

V
V

V
V

V
V

VV
VV

V

V

V
V V

V
V

V
V
V
V

V
V

V
V

V

V

V

V

V

VVV
V

V
V

V

V

V

V V

V

V

V
V

V
V V V V V V

V

V
VVV

V V V
V

V

V
V

V
V

V V

V V

V

V

P1

P2

P4

P7P6

P5

P9

L10

P11

P12

P13

P8

P3

(a)

V

V

V

V

s

t

y

x

L1

L2

(b)

Figure 1.7: (a) illustrates that incident light becomes scattered in all possible directions by

hitting the surface of objects. Each reflected ray can be described by the plenoptic function P .

(b) visualizes the lumigraph representation L of a light field.

reference view. These hyper-spectral images are later mapped to the sRGB space.

In addition to the analysis of heterogeneous light fields, we perform an accuracy and

precision analysis of the newly developed Structure Tensor. By these analyses it has

become possible to determine requirements on the camera setup and the target scene

for obtaining high quality depth reconstructions.

Further, we present analysis of spherical light fields, through a cooperation with the

DFKI in Kaiserslautern. Initial steps are also presented in the analysis of temporal

light fields.

1.3 Light-Field definition

In considering the light field, we first need to think about light within a ray representa-

tion. Light is filling space, in all directions, with rays of various intensities. These rays

spread without interfering with each other while traveling independently though space.

Light hitting an object surface at position (Xw, Yw, Zw) becomes scattered and reflects

in a pencil of rays from the object surface. The reflection direction of each ray of the

pencil as seen in figure 1.7 (a) is describable by (Θ, φ) . This model of light traveling

through space is described by the plenoptic function.

The plenoptic function was introduced by Adelson and Bergen [2] in 1991. The result-

ing parametrization for a specific wavelength λ of the light to a given time t is described

by

P = P (Θ, φ, λ, t,Xw, Yw, Zw) (1.5)

This parametrization defines a light field in a very detailed manner, yet an even higher

dimensional description is possible, including factors such as polarization and the light

incident angle. This high dimensional representation is, unfortunately, not suitable
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for use in computational imaging. With modern cameras only capturing a discrete

number of wavelengths in bands such as red, green and blue, or in a monochromatic

integrated band, we may ignore wavelength. Furthermore, through considering only

static scenes, we may ignore the temporal variation and consider the time component

as constant. Thus the plenoptic function becomes a manageable version with reduced

dimensionality.

P = P (Θ, φ,Xw, Yw, Zw) (1.6)

This parametrization is simpler but still ill-suited for computer graphics. In computer

graphics images are parametrized in the (x, y) image space. Thus the plenoptic function

is represented by the lumigraph, as introduced by Gortler et al. [30]. The lumigraph

parametrizes the light field with respect to camera position (s, t) and pixel location

(x, y) as visualized in figure 1.7 (b). The light-field representation becomes

(Θ, φ,Xw, Yw, Zw) → (s, t, x, y) (1.7)

L(s, t, x, y) := P (Θ, φ,Xw, Yw, Zw). (1.8)

With this assumption all cameras are considered as located on a common plane with

parallel viewing direction. This implies that all epipoles are located at infinity, facili-

tating the extraction of epipolar-plane images [7] from the captured data. A detailed

explanation of the Lumigraph and how to slice out EPIs is given in chapter 2.

1.4 Light-Field Acquisition

The lumigraph enables the acquisition of light fields using two different methods. The

first method uses cameras having a micro lens array in front of the image sensor as

realized by T. Georgiev [23], T. Lumsdaine [56] and C. Perwass [66]. These kinds of

cameras are also termed plenoptic cameras. The principal behind plenoptic cameras

V
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V
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V

fmain b c

V V

Main Lens
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a b,c(a) (b)

Figure 1.8: (a) shows the principle of a plenoptic camera. The micro-lens array is located at

the focus point of the main lens. (b) illustrates the focused plenoptic camera. The micro-lens

array is located behind the focal point of the main lens. Thus, the resulting image contains

hundreds of micro images.
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is that incident light becomes separated through positioning of a micro lens array

before the image sensor, enabling the acquisition of angular information in addition to

the obvious spatial chrominance information. A disadvantage of this sort of plenoptic

camera is the loss of spatial resolution due to separation across angular distributions.

The distinction behind the plenoptic camera [63] and what is called the focused

plenoptic camera [24, 25] is shown in figure 1.8 (a). The plenoptic camera has its micro

lens array directly at the focal point of the main lens with the micro lenses focused

at infinity. Thus only the same surface point is split into its angular components

which is spatially imaged onto the sensor chip. The final resolution is through this

determined by the number of micro lenses. That means, the resulting image has a

very low spatial resolution but possesses depth information. In contrast, the focused

plenoptic camera has the micro lens array placed behind the main lens focus point as

shown in figure 1.8 (b). The micro lenses now satisfy the lens equations and display

focused micro images onto the sensor chip. This design allows to acquire images which

trades angular resolution for higher spatial resolution. Thus the number of micro

lenses and the number of achievable resolution is decoupled which is a significant

improvement [55]. Unfortunately, the lower angular resolution can lead to undesired

aliasing artifacts.

7 (a) (b)

Figure 1.9: (a) shows a camera array, having cameras located on a regular grid structure. It

consists of 36 cameras, mounted in a 6×6 structure. (b) shows a translation-stage setup with

mounted camera. This setup is well-suited to acquire high quality light fields of close objects.

The second method to acquire light fields uses arrays of discrete cameras (camera ar-

rays) to capture light fields as shown in figure 1.9 (a). An advantage of this method

is that the single images have a much higher resolution than plenoptic cameras. Fur-

thermore, no special optics are necessary which means that any commercially available

camera is a suitable component. Willburn et al. [94] present a camera array consisting

of 100 cameras mounted on a regular grid in a 10×10 structure to capture scenes from

different directions in a single shot. With either approach – plenoptic capture or camera-

array capture – high precision calibration of the system is indispensable. Additionally,
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the localization and consistency of the imaging elements is of great consequence, as

described by Y.Xu et al. [95]. Cameras with large differences in their characteristics

decrease the possibility of high precise measurements. The size of each single camera

also influences the process, as it established the minimal separation possible across the

array. Densely sampled light-field imaging of nearby objects is clearly a challenge due

to the mechanical restrictions presented by current capture systems. To overcome this

restriction in the density of imaging, it is possible to use a single camera mounted

on a translation stage as demonstrated by V.Vaish et al. [89], C.Kim et al. [43] and

J.Unger et al. [87]. Precision placement makes it possible to capture dense and high-

precision light fields and reduces the complexity in calibrating the system – eliminating

the need for extrinsic analysis (aside from modeled orientation errors), and leaving only

the intrinsic of the single camera to be defined. All acquired light fields presented in

this thesis were obtained with an Owis Limes 170 high-precision translation stage and

an sCMOS PCO edge 5.5 USB 3.0 camera as shown in figure 1.9 (b). The digitally

synthesized light fields were rendered with Blender [13] using the developed light-field

toolbox described in the Appendix D.





2 Orientation Estimation

2.1 The lumigraph light-field representation

A light field is defined, as in the lumigraph [30], by two parallel planes Π and Ω. The

Ω-plane addresses the coordinates (x, y) ∈ Ω of image observations and the Π-plane

defines the location of the focal points (s, t) ∈ Π of each camera. A 4D color light field

can thus be defined as

L : Ω× Π → R (s, t, x, y) 7→ L(s, t, x, y), (2.1)

where L(s, t, x, y) defines the pixel intensity value of the ray defined (x, y) in the im-

age plane and (s, t) in the focal plane. 2D slices from L are termed epipolar-plane

images [14] (EPIs) Σ. In a 4D light field two different epipolar-plane images can be

extracted as illustrated in figure 2.2. The first relates to the horizontal camera direction

and the second to the vertical camera direction. Epipolar-plane images related to the

horizontal camera direction are described by the equation

St∗,y∗ : Σt∗,y∗ → R (2.2)

(x, s) 7→ St∗,y∗(x, s) := L(s, t∗, x, y∗) (2.3)

where t and y take the values t∗ and y∗ to obtain the EPI. In contrast, EPIs related to

the vertical camera direction s and x take the values s∗ and x∗. The addressed EPIs

are described by the equation

Ss∗,x∗ : Σs∗,x∗ → R (2.4)

(y, t) 7→ Ss∗,x∗(y, t) := L(s∗, t, x∗, y). (2.5)

In the following computations, vertical and horizontal EPIs are computed identically.

For ease of review, all further equations will be expressed with respect to horizontal

EPIs St∗,y∗ , abbreviated with S.

Figure 2.1: Shows a light field consist of 13 images. An EPI, addressed at the red horizontal

line, is shown below. It contains depth dependent orientation information of each captured

object.

13
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Horizontal captured

Light Field

Figure 2.2: Representation of a cross light field and its representation as 3D image volumes

with respect to the capture direction. In a horizontal light field case, EPIs are achieved by slic-

ing horizontally the image volume. In the vertical case EPIs are achieved by slicing vertically

the image volume.
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2.2 2D Structure Tensor

To estimate the disparity maps of a given scene using EPIs, one has to estimate the

underlying orientations that relate to the scene geometry. Thus estimating orientations

For this, we use the 2D Structure Tensor, which determines the underlying orientation

in the 2D epipolar-plane images, see figure 2.1. The 2D Structure Tensor J is defined

as:

J = τ ∗





(

∂Ŝ
∂x

)2
∂Ŝ
∂x

· ∂Ŝ
∂s

∂Ŝ
∂s

· ∂Ŝ
∂x

(

∂Ŝ
∂s

)2



 =:

(

Jxx Jxs
Jxs Jss

)

(2.6)

with the abbreviation

Ŝ := σ ∗ S, (2.7)

where σ defines the inner Gaussian smoothing of the EPI and τ the outer Gaussian

smoothing, applied on the Structure Tensor components. To achieve a disparity map d

all EPIs in the light field must be processed. The Structure Tensor is applied on each

EPI independently, as shown in figure 2.3 (a). The disparity itself is computed by

d = tan

(

1

2
arctan

(

2Jxs
Jxx − Jss

))

(2.8)

as given in Wanner et al. [92], where only the Structure Tensor components are neces-

sary to obtain the disparity.

In a 4D light field, two disparity maps are computable, one with respect to the hor-

izontal light field dhori and one with respect to the vertical light field dvert. The final

disparity map dfinal is achieved by merging the horizontal and vertical disparity map

solutions with respect to a reliability measure termed the coherence c. Coherence, com-

puted for both the vertical cvert and horizontal chori light fields, is represented by the

equation introduced in Bigun et al. [11]

c :=

√

(Jxx − Jss)2 + 4(Jxs)2

(Jxx + Jss)2
. (2.9)

The merging process between the vertical and horizontal light fields can be described

by:

dfinal =







dhori chori > cvert
dvert cvert > chori
0 else

(2.10)
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(a) (b)

Figure 2.3: (a) visualizes the sphere of influence of the Gaussian filter, to estimate the ori-

entation of the blue center point. This scenario is used in the 2D Structure Tensor. (b) repre-

sents the sphere of influence for the 2.5D Structure Tensor. Here also neighboring EPIs are

influencing the orientation estimation of the underlying blue center point.

2.3 2.5D Structure Tensor

While the 2D Structure Tensor uses information from just a single 2D EPI to com-

pute the orientation, the 2.5D Structure Tensor incorporates information from the local

3D image environment which interconnects the local orientations across EPIs, see im-

age 2.3 (b). Its computation for the horizontal and the vertical light fields is achieved

by the same Structure Tensor as introduced in equation 2.6. The only difference is the

shape of the inner and outer Gaussian smoothing filters. The 2.5D Structure Tensor

extends the smoothing range from the 2D EPI in the (s, x) domain to the 3D light field

volume (s, x, y) which then involves also the local image information of neighboring

EPIs. Due to the transfer of the smoothing of the inner Gaussian and outer Gaussian

into the 3D domain, there is more global support for the local orientation computa-

tion. Thus smaller kernels can be used to achieve results having precision similar to

those of the 2D Structure Tensor. The merge of the vertical and horizontal light fields

also depends on the coherence 2.9 as a reliability measure. An advantage of the 2.5D

Structure Tensor is that the same kernel size attains higher precision than for the 2D

case due to its inclusion of more data. A disadvantage is that by increasing the support

it reduces discrimination at sharp transitions between objects at different depths – the

standard boundary definition problem.

2.4 3D Structure Tensor

In contrast to the 2D and the 2.5D Structure Tensors, where only derivatives in x and

s directions are analyzed, the 3D case involves components in the y direction as well.

The 3D Structure Tensor, as described in Muehlich et al. [62], is defined by:

J = τ ∗













(

∂Ŝ
∂x

)2
∂Ŝ
∂x

· ∂Ŝ
∂s

∂Ŝ
∂x

· ∂Ŝ
∂y

∂Ŝ
∂s

· ∂Ŝ
∂x

(

∂Ŝ
∂s

)2
∂Ŝ
∂s

· ∂Ŝ
∂y

∂Ŝ
∂y

· ∂Ŝ
∂x

∂Ŝ
∂y

· ∂Ŝ
∂s

(

∂Ŝ
∂y

)2













=:





Jxx Jxs Jxy
Jxs Jss Jys
Jyx Jys Jss



 (2.11)
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which is a symmetric 3×3 matrix. The given 3D Structure Tensor represents a positive-

semi definite covariance matrix. Thus, it has only real positive eigenvalues related to

an orthogonal eigenvector system. These properties make it possible to compute the

eigenvectors directly from the given Structure Tensor representation. To know which

eigenvector is pointing in the direction of the underlying orientation, a closer look at

the eigenvalues λ1 > λ2 > λ3 is necessary, as described in [38]. There are four different

cases to consider:

• 3D-Cube: Gray values do not change in any dimensions, see image 2.4 (d)

λ1 ≈ 0, λ2 ≈ 0, λ3 ≈ 0

→ Orientation estimation is not possible

• 2D-Plane: Gray values changes in 1 dimension only, see image 2.4 (c)

λ1 > 0, λ2 ≈ 0, λ3 ≈ 0

→ e1 is the eigenvector that points stable in normal direction of the orientation.

• 1D-Line: Gray values are constant in 2 dimension, see image 2.4 (b)

λ1 > 0, λ2 > 0, λ3 ≈ 0

→ e3 is the eigenvector that points stable in orientation direction.

• 0D-Spot: Gray values change in all dimensions, see image 2.4 (a)

λ1 > 0, λ2 > 0, λ3 > 0

→ Disparity estimation is not possible.

e1 e3

e2

e1

e3

e2
v

v v

v

v

v

e1

e3

e2v

v

v

(a) (b) (c) (d)

Figure 2.4: (a) The eigenvectors for a 0D-Spot. (b) 1D line orientation in 3D light field vol-

ume. The orientation is represented by the eigenvector with the smallest eigenvalue. (c) Eigen-

vectors for a 2D plane orientation occurring in the light field volume evaluation. The eigen-

vector with the largest eigenvalue points stable in normal direction of the orientation. (d) 3D

cube, all eigenvalues are small.

For the final orientation analysis the second and the third cases have to be taken

into account. Due to the fact that two eigenvectors are needed for a stable orientation

estimation, a reliability measure is necessary to uniquely distinguish them. Thus two
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reliability measures are defined:

c12 =
λ1 − λ2

λ1 + λ2

c12 ∈ [0, 1] (2.12)

c23 =
λ2 − λ3

λ2 + λ3

c23 ∈ [0, 1] (2.13)

This two measures are opposed, and the perfect indicator to distinguish the two cases

are explained above

c23 < c12 → e1 (2.14)

c12 < c23 → e3 (2.15)

For the two remaining cases both reliability measures are close to zero and indicate a

poor orientation estimate. To compute the final disparity value the computed eigen-

vectors are interpreted as normal vectors in the case of a 2D plane and as direction

vectors in case of a 1D line. In both cases the first two eigenvector components point

either in the normal direction for the 2D plane or in the orientation direction for the

1D line.

2.5 4D Structure Tensor

The separation into horizontal and vertical light fields as employed in other Structure

Tensor methods is not required in the 4D Structure Tensor approach. To achieve a 4D

light-field representation we first consider the 2D light-field approach. In the 2D light

field the Structure Tensor is given by the equation

J = τ ∗





(

∂Ŝ
∂x

)2
∂Ŝ
∂x

· ∂Ŝ
∂s

∂Ŝ
∂s

· ∂Ŝ
∂x

(

∂Ŝ
∂s

)2



 =:

(

Jxx Jxs
Jxs Jss

)

. (2.16)

as previously illustrated. This Structure Tensor can be associated with the optical flow

for one-dimensional horizontal movements given by the equation

∂I

∂x
Vx +

∂I

∂s
= 0. (2.17)

The transfer of this optical flow to describe vertical and horizontal movements of a

light field leads to the following optical flow equation

∂I

∂x
Vs +

∂I

∂y
Vt +

∂I

∂s
+

∂I

∂t
= 0. (2.18)

This optical flow approach combines both light-field directions. Considering an equal

baseline of the vertical and horizontal light-field directions, the resulting estimated

velocity for both directions become Vs = Vt = V . Thus the optical flow equation can

be expressed by
(

∂I
∂y

+ ∂I
∂y

)

V +
∂I

∂s
+

∂I

∂t
= 0 (2.19)
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Transferring the achieved optical flow approach back to a Structure Tensor formulation,

the 4D Structure Tensor approach becomes

J = τ ∗





(

∂I
∂x

+ ∂I
∂y

)2 (

∂I
∂x

+ ∂I
∂y

)

(

∂I
∂s

+ ∂I
∂t

)

(

∂I
∂x

+ ∂I
∂y

)

(

∂I
∂s

+ ∂I
∂t

) (

∂I
∂s

+ ∂I
∂t

)2



 =:

(

Jxyxy Jxyst
Jxyst Jstst

)

. (2.20)

To obtain the final disparity map we use the previously introduced equation 2.10.

2.6 Benchmarking Results

To compare the reliability of each introduced Structure Tensor, we analyze four different

synthetically generated test scenes, shown in Appendix B. Onto the Structure Tensor

results, only a coherence thresholded (c > 0.9) is applied, but aside this, no further

post processing. To compare the different Structure Tensor implementations we use the

peak-signal-to-noise ratio (PSNR). For the evaluation of disparity maps we define the

PSNR as

PSNR = 10 log10
MAX

MSE
(2.21)

where MSE defines the mean squared error, relative to known ground truth values and

MAX the maximal disparity value, which is set to 25 px. The PSNR for different test

scenes can be seen in table 2.1. For the applied Structure Tensors we set the inner Gaus-

sian smoothing to σ[5×5] = 0.5 and the outer Gaussian smoothing to τ[9×9] = 1.3. The

Scharr filter and the Gaussian derivative filter was used to compute the desired deriva-

tives. A detailed explanation about the inner and outer Gaussian filter and the optimal

selections of the filter values σ and τ is discussed in section 6. The resulting disparity

maps and the measured mean relative error maps are shown in the Appendix B.

PSNR [%] Gaussian derivative filter Scharr filter

Scene 2D 2.5D 3D 4D 2D 2.5D 3D 4D

Buddha 24.77 25.01 23.07 22.98 24.71 24.88 24.15 22.90

StillLife 21.92 23.13 19.16 20.50 22.98 23.72 24.77 20.62

MonaRoom 21.69 24.05 20.16 22.98 23.66 24.84 20.98 24.03

Papillion 20.73 24.10 19.42 21.14 22.82 25.89 24.12 23.44

Table 2.1: Comparison of the peak-signal-to-noise ratio (PSNR) for different synthetically

rendered scenes (which provides ground truth). The selected inner Gaussian smoothing is

σ[5×5] = 0.5 and the selected outer Gaussian smoothing is τ[9×9] = 1.3. The best Structure

Tensor results are highlighted in green.
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(a)

(b)

Figure 2.5: (a) shows the center view image of the processed light field which consists of 21

images. (b) shows the point clouds of the 2.5D Structure Tensor on the top in contrast to the

2D Structure Tensor at the bottom. It illustrates that the 2.5D Structure Tensor interconnects

the EPI rows (horizontal direction), while the 2D Structure Tensor keeps them independent.

Thus much smoother surfaces are possible.

2.7 Conclusion

The overview in table 2.1 shows that the PSNR values are similar. In general, the 3D

Structure Tensor has the worst PSNR and its computation time is high in comparison

with the other methods. This cost can be seen as the requirement to compute eigenval-

ues and eigenvectors for each pixel in a defined evaluation window around each pixel

estimate. Following the estimation, the eigenvector representing the correct orienta-

tion has to be identified by a reliability measure. This computation is more expensive

than that for the other Structure Tensor implementations where only two equations

are solved in obtaining the disparity and coherence maps.

The performance of the 4D Structure Tensor is similar to that of the 2D Structure
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Tensor. It produces smoother estimates at pixels having the same flow orientation in

both directions (i.e., the same depth), but is weaker at object boundaries, where the

contrast in orientations causes problems, as also observed in the 2.5D case. The 2D

Structure Tensor shows an overall acceptable disparity map, with boundaries appear-

ing to be better detected than in the other methods. Object surfaces seem smoothest

with the 2.5D Structure Tensor. This accounts for the 2.5D method having the best

PSNR measures, although its smooth surfaces come at the cost of reduced sharpness

at object boundaries. For general applications the 2D Structure Tensor may be most

recommended. If there is a preference for smooth-surface results, the 2.5D Structure

Tensor is the better choice, as shown in figure 2.5.





3 Light-Field Camera Design

3.1 Introduction

Capturing a light field without knowledge of the required setup can lead to unusable

image data and poor disparity estimation. Thus it is important to consider how to

design a light-field acquisition system, and this involves understanding what we term

the bounded frustum that encloses the scene volume of interest. With a properly defined

setup, high quality light fields can be acquired that enable reaching the full potential

of the Structure Tensor ranging analysis methodology. In this chapter we introduce the

bounded frustum and discuss, over a variety of defined light-field setups, the precision

attainable in each through a precomputation analysis. For the application, we designed

a light-field camera configuration program that maps between setup parameters and

system quantitative performance. This was introduced in C. This chapter is edited

from a publication in SPIE2015 Videmetrics Range Imaging and Application [19]
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Figure 3.1: This image illustrates the generalization of the mapping from depth space into

the disparity space for arbitrary camera array setups which are definable by its specific Θ

value. The reddish region represents the bounded frustum and the greenish region represents

the depth of field.
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FrustumFrustum

Aperture Angle

V

V

Figure 3.2: The frustum depends from a designed light-field camera setup. For all objects

inside this frustum it is possible to determine the depth information but it also guarantees

that all objects are imaged onto the wanted disparity range ∆d around the horopter disparity.

3.2 Optimal estimation range determination

The light-field setup can be defined by its principal parameters of focal length f[m],

baseline b[m] and pixel pitch p[m]. These parameters determine not only the light-field

camera design but also the relationship between depth Z[m] and disparity d[px] through

the equation

Z[m] =
f[px]b[m]

d[px]
(3.1)

with

f[px] =
f[m]

p[m]

. (3.2)

To compute orientation using the Structure Tensor, disparity must lie in a symmetric

2px range (|∆d| = 2px) around a given horopter disparity dH , see figure 3.1. This

information leads to

d+ = dH +
∆d

2
and d− = dH − ∆d

2
(3.3)

which defines a depth range (equation 3.1),

∆Z = Z− − Z+ = f[px]b[m]

(

1

d+
− 1

d−

)

. (3.4)

where Z− defines the far distance limit and Z+ the near distance limit, as shown in figure

3.1. When the underlying scene has a larger depth range than defined by ∆Z, a global

shift must be applied to extend the measurable range (as introduced in chapter 4).

Otherwise, as discussed in the previous section, a new horopter disparity dH and/or

the principal parameters have to be adapted to adjust the depth range accordingly.

In contrast, if the target scene is more shallow than the designed frustum then the

disparity resolution decreases for the given target scene, and this waste of attainable

resolution should also be avoided. In addition to the depth constraint, it is important
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to consider a specific field of view F within the measure distance to ensure that all

parts of the target scene are observed by all cameras. The field of view (FOV) can be

defined either by that of the reference camera or by the joint scene content seen by all

cameras, which then becomes

F (Zi) =
SZi

f[m]

− b[m]C Zi ∈ {Z+, ..., Z−} (3.5)

where S denotes the sensor size and C the number of cameras in the relevant direction.

In contrast to a shrinking field of view with increasing number of cameras at a selected

depth, the aperture angle remains constant and is defined as

FoV (p[m], R, f[m]) =
180◦

π
· 2 · tan−1

(

p[m]R

2f[m]

)

(3.6)

where R is image resolution. The introduced depth range together with the frame size

define a frustum which determines the volume where the entire scene content should be

located, as shown in figure 3.2. These boundary conditions, plus the fact that a finite

number of objectives and cameras are available, limit a possible setup configuration in

its minimal and maximal achievable baseline b[m] and focal length f[px]. Thus, with light-

field cameras, it is important to define the bounded frustum with respect to operational

requirements. The complexity of all control parameters and the dependence of the

bounded frustum on the scene’s depth of field make it challenging to design a setup

satisfying all constraints. Nevertheless, this effort is important for light-field imaging,

as it can help to prevent unintended estimation failures. Thus we define

Θ[pxm](f, b, p) = f[px]b[m] =
f[m]b[m]

p[m]

(3.7)

which combines chosen baseline, focal length and pixel pitch into a single conceptual pa-

rameter Θ – a rule of thumb. This Θ can also be derived directly by the bounded

frustum depth constraint:

Θ[pxm](∆d,∆Z,ZH) =
∆dZ2 +∆dZH

√

Z2
H +∆Z2

2∆Z
, (3.8)

where ZH denotes the horopter depth and ∆d the disparity range of the selected setup.

Alternatively, Θ can be derived by using the equivalent horopter disparity dH instead

of ZH :

Θ[pxm](∆d,∆Z, dH) =
∆Z

∆d
d2H − ∆Z∆d

4
. (3.9)

This combination of the frustum with the principal camera parameters facilitates de-

signing a light-field camera setup. In addition, having a Depth of Field (DoF ) enclosing

the bounded frustum as shown in figure 3.1, sharp images are captured.
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Figure 3.3: Shows the relation between the Depth of Field and the circle of confusion size.

3.2.1 The Depth of Field (DoF)

The depth of field, as shown in figure C.4, is with respect to the principal parameters,

dependent on focal length and pixel pitch, which limits the size of the circle of confusion

c. This brings the advantage of baseline-independent determination of the depth of

field. Thus it is possible to use baseline adjustments to ensure the frustum lies within

a defined depth of field, delivering consistently sharp images. To determine the depth

of field we use the following equations

H =
f2
[m]

c·F
+ f[m] (3.10)

ZN =
(H−f[m])s

H+(s−2f[m])
(3.11)

ZF =
(H−f[m])s

H−s
(3.12)

DoF = ZF − ZN (3.13)

where H defines the hyper-focal distance, ZN the near, ZF the far distance limits, and

F the aperture stop. But the depth of field is not the only factor limiting sharpness. A

small aperture stop introduces diffraction artifacts, which also must be avoided. These

artifacts become visible when the cutoff frequency is less than twice the reciprocal of

the pixel pitch

F =
λ

2p[m]

(3.14)

where λ is the wavelength of the incident light, p[m] the pixel pitch and F the aperture

stop with respect to the exit pupil. In simple pin-hole camera approximations the

entrance and exit pupils coincide, while in real camera systems they differ. The aperture

stop of the objective is related to the entrance pupil while the diffraction limit is related

to the exit pupil, thus the obtained value has to be converted into the entrance pupil

accordingly. To convert one into the other one needs the pupil ratio, which is the

diameter of the exit pupil divided by the diameter of the entrance pupil. The pupil

ratio should be known by the objective’s manufacturer.
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3.3 Accuracy and Precision

Accuracy describes the difference between an estimated value and its reference value.

Assuming a distribution of measured values, accuracy is the distance between the mean

value of the estimation distribution and the reference value, as seen in figure 3.4. This

means that the estimated disparities within a precision range σdst cannot be separated

reliably. Precision represents a measure of the distance between two neighboring ori-

entations, making it possible to assign both uniquely to the related reference value. In

this section the geometric as well as the Structure Tensor based accuracy and precision

are computed and evaluated for the Sobel and the Scharr filters. For this purpose we

generate synthetic EPIs having orientations from −1px to +1px as shown in figure 3.5.
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Figure 3.4: The accuracy is defined by the distance between a reference value and a measured

mean value µ of a value distribution. The precision σdst describes the distribution of the

measured values around the mean value.

3.3.1 Precision computation

The precision to separate two orientations is computed by taking M different EPIs

and evaluating the estimated orientation at N different uniformly distributed positions.

Thus we assume for each orientation i ∈ N a normally distributed estimation N (µi, σi)

in the valid orientation range from −1px and +1px. The precision is then defined as

the 2σi environment around the mean value µi covering 95.4% of all estimations of

the assumed Gaussian-distributed orientation measures. The resulting overall precision

Figure 3.5: This figure shows synthetic EPIs to support analysis of Structure Tensor preci-

sion. Two examples are shown, where each EPI has different colors and textures. The EPIs

contain orientations from −1px tp 1px to evaluate the full possible orientation range.
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becomes

σdst =

√

√

√

√

1

N

N
∑

i

(µi)2 +
4

N

N
∑

i

(σi)2. (3.15)

Aside from the 2σi orientation precision, this formula also considers the systematic

error µi, which occurs when using rotational-asymmetric derivative filters such as the

Sobel filter. The systematic error represents the achieved accuracy, as one can see in

figure 3.8. Due to the fact that the achieved accuracy is much larger than the achieved

precision we could also neglect the accuracy for the overall precision computation.

3.4 Accuracy and precision in light-field estimation

We assume a light-field setup consisting of a camera array with each camera having

different characteristics such as tolerance in the baseline σb and tolerance in the focal

length σf . These inaccuracies affect the orientation estimation. An inaccurate baseline

has the effect that linear orientation features in the EPI take on jitter, as seen in

figure 3.6. A closer look at the shown orientations reveals a depth-dependent jitter

where close objects are more affected. Scene objects at the same depth Z display the

same jitter ratio, while closer objects have a larger jitter than objects farther away.

For an accurate depth reconstruction, a bias in the baseline between two cameras

can cause a geometrical depth inaccuracy σZgeo
. Thus we define the depth inaccuracy

dependent on the baseline jitter, which becomes

σZgeo
=

Z

b0
σb, (3.16)

where b0 represents the underlying ground truth baseline.

A focal length deviation, without considering distortion effects, has an effect similar

to the baseline deviation, as one can see in figure 3.7. There is also a depth dependent

Figure 3.6: This shows the effect of inaccuracy in the baseline, which causes a depth-

dependent jitter in the epipolar-plane image. The same base EPI is shown in both cases,

with a horopter placed first at a far distance and then at a close distance. Baseline jitter has

increasing influence for objects closer to the camera.

jitter observable in the EPI, but with a different distribution. This happens because of

the object’s projection onto the image sensor. The more an object moves away from the

lens center, the more the perspective projection influences its observed shape and size.
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Thus, EPI regions having scene content close to the lens border show a larger jitter

effect. Lens distortion will further increase this effect for real lenses. The resulting

geometrical depth inaccuracy σZgeo
occurring due to a focal length inaccuracy σf can

then be defined as

σZgeo
=

Z

f0
σf (3.17)

where f0 denotes the ground truth focal length. In a resulting light-field camera setup

these effects are superimposed and are visible as depth-dependent orientation jitter in

the EPI domain. Considering a light-field setup with a deviation in baseline and focal

length, the combined depth inaccuracy becomes

σZgeo
=

√

(

Z

b0
σb

)2

+

(

Z

f0
σf

)2

. (3.18)

Figure 3.7: Inaccuracy in camera focal length causes jitter with a parabolic distribution

in EPI space. The top image shows the jitter distribution of a plane located at a distant

position of the camera array, and the bottom shows the same plane close to the camera.

Jitter distribution looks like a zoomed part of the top image which means that the jitter ratio

increases.

3.4.1 Structure Tensor Accuracy and Precision

To determine the resulting precision of the Structure Tensor orientation estimation, an

orientation jitter value σj must be defined to address the amount of jitter in the dispar-

ity space. This makes it possible to generate synthetic scenes having a certain amount

of baseline or focal length jitter while knowing the related orientation jitter value σj

in disparity space. This transfer of the jitter values σb and σf into disparity space has

the advantage that they become depth independent which means that different jitter

values can lead to different depths Z at the same orientation jitter σj. The transfer of

baseline jitter σb and focal length jitter σf can be described by the equation

σpx =
f0b0
Z

√

(

σb

b0

)2

+

(

σf

f0

)2

, (3.19)

where f0 denotes the focal length and b0 the baseline without jitter. Next we compute

the Structure Tensor precision related to the defined σpx value and are able to use
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the resulting Structure Tensor precision values σdst as shown in table 3.1 to directly

connect them with an underlying baseline and focal length jitter. The final Structure

Tensor dependent depth precision σZst
can now be referred to scene dependent focal

length σf and baseline jitter σb values and can be computed with the formula

σZ =
Z2

f0b0
σdst(σpx), (3.20)

where Z is the depth at which we want to estimate the precision. The combination of

the geometrical depth inaccuracy and the Structure Tensor depth inaccuracy gives an

overall depth precision for the entire setup and can be computed by the formula

σZ =

√

(

Z2

f0b0
σdst(σpx)

)2

+

(

Z

b0
σb

)2

+

(

Z

f0
σf

)2

. (3.21)

σpx 10−5 2 ∗ 10−5 3 ∗ 10−5 4 ∗ 10−5 5 ∗ 10−5 6 ∗ 10−5 7 ∗ 10−5

Sobel 0.0615 0.0603 0.0612 0.0062 0.0625 0.0614 0.0619

Scharr 0.0077 0.0080 0.0087 0.0093 0.0103 0.0111 0.0118

σpx 8 ∗ 10−5 9 ∗ 10−5 10−4 2 ∗ 10−4 3 ∗ 10−4 4 ∗ 10−4 5 ∗ 10−4

Sobel 0.0621 0.0611 0.0610 0.0691 0.0727 0.0774 0.0845

Scharr 0.0131 0.0147 0.0148 0.0276 0.0410 0.0443 0.0678

σpx 6 ∗ 10−4 7 ∗ 10−4 8 ∗ 10−4 9 ∗ 10−4 10−3

Sobel 0.1015 0.1136 0.1244 0.1491 0.1668

Scharr 0.0734 0.1016 0.1104 0.1166 0.1232

Table 3.1: The table shows the resulting precision σdst of the Structure Tensor with respect to

the used derivative filter and the amount of disparity jitter σpx. A visualization of the values

are shown in figure 3.9

3.5 Results

3.5.1 Precision distribution analysis

Since the precision distribution is imaged with box-whisker diagrams, it is possible to

analyze the underlying distribution and get a feeling for the achievable precision. The

red horizontal line of a box-whisker diagram in the center defines the median value of

the distribution. 50% of all estimations starting from 25% of all measured values to 75%

of all measured values is covered with the blue region. The whiskers cover 99.3% of all

measurements covering 0.35% through 99.65%. Measured values outside of the whisker

region are called outliers and are marked as red crosses in the diagram. The shapes of

the distributions, as seen in figure 3.10, gives information about not only the rotation



3.5. Results 31

0.2

0.1

0

-0.1

--0.2
−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

disparity [px]

Estimation error of the Sobel filter

e
s
ti
m

a
ti
o

n
 e

rr
o

r[
p

x
]

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
Estimation error of the Scharr filter

e
st

im
a

tio
n

 e
rr

o
r[

p
x]

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

disparity [px]

Figure 3.8: The upper graph shows precision with the Sobel filter, evaluated at EPIs shown

in figure 3.5, and the lower graph shows precision for the same EPIs using the Scharr filter.

The blue horizontal dashed line illustrate the resulting precision. One can see the rotation

asymmetry, the poorer precision for the Sobel filter, and the superiority of the Scharr filter.

10
−5

10
−4

10
−3

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

standard deviation [px]

p
re

c
is

io
n

 [
p

x
]

Precision of Sobel filter for orientation jitter

10
−5

10
−4

10
−3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

standard deviation [px]

p
re

c
is

io
n

 [
p

x
]

Precision of Scharr filter for orientation jitter

Figure 3.9: The images show the resulting precision ∆dst(σpx) for a different disparity jitter

σpx in the EPI. The first image shows the result for the Sobel filter and the second for the

Scharr filter. The blue curves shows independent measurements, while the red curve illustrates

the average value.
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Q1 Q3

IQR

Median

Q3 + 1.5 × IQRQ1  1.5 × IQR
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Figure 3.10: This picture illustrated how a Gaussian distribution is imaged with a box-

whisker diagram [15]. The center box (blue) covers 50% of all points. Almost all other points

are in case of a underlying Gaussian distribution are covered with the whiskers on each side

(black lines). When there are still some outliers they become displayed as red crosses outside

the whiskers.

symmetry of each derivative filter but also the underlying estimation distribution. The

distribution of the mean values in each box-whisker plot shows the systematic error of

each derivative filter. This error is caused by the rotation symmetry. Non-symmetric

filters such as Sobel show a large sine-curve progression while optimized filters such as

Scharr minimize this error. Another important fact that one can observe from the huge

amount of outliers in the measurements is that the distribution is not Gaussian. The

underlying distribution must be peaked around the median value having a large flat

noise value environment as it is sketched in figure 3.11 by the green distribution. This

kind of distribution causes the whiskers to shorten and the outlier range to increase.

For such a distribution the 2σ range defines a good upper limit estimation precision.

3.5.2 The optimal measurement

Using the introduced equations for Θ we are able to define a bounded frustum with

respect to a given camera setup, and vice versa. To simulate a cross light-field con-

figuration, as shown in figure 2.2, we present a Blender scene with 11 horizontal and

11 vertical cameras sharing a center view. Further, we position the scene content com-

pletely inside the defined frustum.

After capturing the first set of views, we twice decrease the baseline, each time by a

factor of two, to obtain a larger frustum over the Buddha scene. Here we ensure that,

after the baseline reduction, the scene content remains inside the bounded frustum.

On applying the Structure Tensor computations to the rendered data for center view

depth maps, we triangulate the resulting estimates, forming 3D point clouds. This is
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Figure 3.11: The high number of outliers (red crosses), for each analyzed orientation as

shown in figure 3.8, a non Gaussian distribution is assumed. Thus the underlying distribution

must have a shape, proposed by the green curvature.

a useful representation for comparing estimated depths. The resulting point clouds,

as shown in figure 3.14, illustrate the reduction in depth resolution due to decreasing

the baseline. This happens because the frustum depth (∆Z) increases with decreasing

baseline. Thus the scene depth reduces with respect to the frustum depth range and

depth resolution decreases, resulting in a higher inaccuracy as seen in figure 3.14.

The same straight-forward procedure to obtain a bounded frustum is now applied on

a real scene. The scene was captured with an IDS UI-1240ML-C-HQ camera utilizing

a Kowa f = 5mm/F1.8 objective. The camera was mounted on a 2D gantry able to

move with high accuracy (< 5µm) in vertical and horizontal directions. This captured

light field also consists of 11 images in each direction.

(a)

(b)

Figure 3.12: (a)Shows the camera array used to capture a chessboard calibration pattern.

(b) Shows the EPIs of a chessboard calibration target. The upper image shows EPI resampling

using OpenCV’s camera calibration, and the lower shows the result using a specialized light-

field calibration method (Kurillo et al. [46]). The advantage of light-field calibration over the

standard methods is evident.
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3.5.3 Synthetic data

Figure 3.13: Shown is one of the center-view images of the analyzed cross light fields. The

light field is synthetically rendered.

(a) (b) (c)

Figure 3.14: A cross light-field dataset, as shown in figure 2.2, is generated in Blender using

a virtual camera of resolution 1280 × 960 px and focal length of 10mm. Column (a) has a

baseline of 4mm, (b) 2mm, and (c) 1mm. Top- and side-view point clouds are shown. The

images illustrate the decrease of precision with a decreasing baseline which shows that the

frustum becomes larger than the target scene and the disparity resolution decreases.
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3.5.4 Real data

Figure 3.15: Shown is one of the center-view images of the analyzed cross light fields. The

light field is real captured.

(a) (b) (c)

Figure 3.16: Acquired is a cross light-field dataset, as shown in figure 2.2, using an IDS

UI-1240ML-C-HQ camera with 1280×960 px resolution and a 5mm Kowa objective. Column

(a) has a decremental baseline of 4mm, (b) 2mm, and (c) 1mm. Top- and side-view point

clouds are shown. As observed with synthetic data, the images illustrate the decrease of pre-

cision with a decreasing baseline which shows that the frustum becomes larger than the target

scene and the disparity resolution decreases.
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3.6 Conclusion

Due to the fact that variations in the focal length and in the baseline cause a rapid

decrease in precision, it is necessary to calibrate the acquisition setup with an accurate

calibration tool. Unfortunately most of the common calibration toolboxes are not suf-

ficiently accurate to be used in light-field imaging, as shown in figure 3.12. Access to

a calibration tool designed for EPI-based light-field imaging (such as that introduced

by Kurillo et al. [46]) is indispensable for discrete-imager light-field camera studies.

Nonetheless, even a highly accurate optimization is only able to minimize the error,

and not to remove it. This is because of the depth dependency of the error and the

impracticality of constructing a camera with ideal positioning and ideal optical char-

acteristics. An image taken by an acquisition system, having an erroneous focal length

and having an erroneous baseline contains occlusions valid for this position and ob-

ject sizes valid for this focal length. No calibration can correct the parallax shift or

the size of an image without knowing the scene depth – which is what we want to

estimate (the proverbial chicken-and-egg problem). To overcome many of the problems

associated with camera arrays, a high-precision translation stage can be seen as a good

alternative in capturing light fields where scene dynamics are not an issue. Here, the

calibration simplifies to a single camera’s intrinsics, and known relative position is pre-

cise enough that one may neglect the baseline calibration. Thus is it possible to align

the defined frustum perfectly to the scene, and due to the high-precise and constant

translation it results in the exploitation of the maximal precision possible with the

Structure Tensor based orientation estimation within the 2px range.



4 Sparse light field evaluation

In this chapter, we remove the restriction of Structure Tensor’s 2 px disparity range

by performing a global shift on the EPIs/Images to align about selected horopters.

Through the use of several such horopters, we can obtain independent estimates of

depth centered around a selection of distances. These results are merged based on their

computed coherence values. The final combined disparity map represents the global

range solution, as shown in figure 4.5. This use of shifting to horopter values makes it

possible to analyze light fields acquired with fewer cameras and having greater inter-

camera separations, with the disparity ranges are considerably larger than structure-

tensor’s expected 2 px.

4.1 The Horopter, human vision perception

In the eleventh century, Ibn al-Haytham discovered the horopter, building on the binoc-

ular vision work of Ptolemy. He discovered that objects lying at the fixation point of

a binocular lens system result in a single image, whereas objects off the fixation point

result in double images [37]. The phenomena was given the name horopter by Belgian

mathematician Franciscus Aguilonius in 1613. In light-field imaging, the horopter de-

scribes a global disparity shift of each image along the epipolar line (see figure 4.2).

Objects located at the horopter are imaged onto the same pixel in each final shifted

image – they exhibit zero disparity. In contrast to human eyeball vision where the

horopter is a sphere, in light-field imaging with planar sensors the horopter is a plane,

and lies parallel to the camera plane as shown in figure 3.4.1.

Eye focus distance 

2o 2o

4o

8o

16o

4o

8o

16o Human Vision

Horopter Plane

Light Field

Horopter Plane

V

V

Z

X

Figure 4.1: The horopter in human eye perception defines a curvature around the human

head. Its curvature changes for different eye focus distances. In light-field imaging the horopter

is a parallel plane with respect to the camera sensor orientations.

37
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Epipolar line

Image frame

Moving direction

Figure 4.2: This figure shows the global shifting in the image domain. Each image is indi-

vidually shifted along the epipolar line. The amount of shifting is related to a defined horopter

depth. All objects in the image located at the horopter depth then have zero disparity in the

resulting shifted light field.

4.2 Image representation of global shift

On capturing a set of light-field images, it is usually not practical to simply apply the

Structure Tensor and compute a disparity map. An initial shifting will be mandatory

to align images at the desired zero disparity to ensure there is a measurable range of

± 1 pixel is attained, meeting the requirements of the Structure Tensor. The amount

of initial shifting depends on the light-field setup as well as on the defined frustum,

as described in chapter 3. This two-pixel range arises because orientations larger than

this ± 1 pixel will appear discontinuous and be fragmented to the filter. To make

the structure-tensor-based orientation estimation applicable on light fields exhibiting

extreme orientation variations, or where the content is very near and the ”vergence

point” of the camera system is far away (at infinity, for example), a global disparity

shift must be applied to the input images to, effectively, bring that distant vergence to

the central area of the scene content. This is akin to focusing. Such a global disparity

shift, as introduced in [20], can be applied several times, selecting different horopter

distances for each, effectively resampling the scene range in units of 2-pixel disparity

to

DHi
∈ {DH1 , ..., DHN

|DH1 < ... < DHN
}, (4.1)

where N denotes the number of positions of the horopter. In depth space, horopter

distances are depth dependent and thus a non-linear series of displacements should be

applied to avoid regions being redundantly estimated (see figure 4.3). To obtain linear
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Figure 4.3: Illustrates the mapping between the horopter depth values DHi
and the horopter

disparity values dHi
. While the global shifts, represented by the translated horopter position,

are linear in the disparity domain, in the depth domain it has a nonlinear relation which is

defined by the camera setup parameters.

shifts, the global shifting is transferred to the depth independent disparity space by

using the equation

dH =
fb

DH

, (4.2)

where f denotes the focal length and b the baseline of the camera system. As seen

in figure 4.3 the global shifting is now linearized and depth independent. For a closed

disparity map computation, a maximal possible global shift of 2 px is possible. The

global shifting process in the disparity domain is defined by the equation

dHi
= 2n n ∈ Z. (4.3)

This 2 px shift distance is deduced from the maximal possible orientation range, but

may also be chosen smaller. Thus no overlap appears and the entire scene is computed

in an efficient way.

Considering a 4D light-field representation given by the equation

L : Ω× Π → R (s, t, x, y) 7→ L(s, t, x, y), (4.4)

the resulting shifted images Is,t are described by the equation

Î is,t : Is,t → R (4.5)

(x, y) 7→ Î is,t(x, y) := L(s, t, x+∆x(s), y +∆y(t)) (4.6)
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dH0 = 0

dH1 = 2

dH2 = 4

dH3 = 6

dH4 = 8

dH5 = 10

dH6 = 12

Figure 4.4: This image shows the global shifting for the Buddha scene, where different

horopter disparities dHi
are applied. The shown EPIs are related to the upper image row at

the red crossing horizontal line.

with

∆x(s) :=
(sref − s)

s
dHi

, and ∆y(t) :=
(tref − t)

t
dHi

, (4.7)

where sref and tref define a reference image, mostly the center view, to which the global

shifting relates.

4.3 EPI representation of global shifting

Global shifting is applied on horizontal Σt∗,y∗ and vertical Σs∗,x∗ EPIs and illustrated in

figure 4.4. As earlier, we will only describe the horizontal direction of processing in the

following description. A shifted EPI Ŝi
t∗,y∗ at a defined horopter disparity dHi

becomes

Ŝi
t∗,y∗ : Σt∗,y∗ → R (4.8)

(x, s) 7→ Ŝi
t∗,y∗(x, s) := L(s, t∗, x+∆x(s), y∗) (4.9)

with

∆x(s) :=
(sref − s)

s
dH , (4.10)

which defines the amount of displacement ∆x(s) for each row in an EPI to satisfy the

horopter definition.
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4.4 Global disparity map

After applying the global shifts, a tuple of disparity maps is computed,

di(x, y) ∈ {d1(x, y), ..., dN(x, y)}, (4.11)

where each relates to a given horopter displacement dHi
, as shown in figure 4.5(a). In

addition to the disparity maps, the coherence maps are additionally computed

ci(x, y) ∈ {c1(x, y), ..., cN(x, y)} (4.12)

as shown in figure 4.6 (a). For the final disparity map d(x, y) and its related coherence

map c(x, y), a filtering based on coherence is applied, described by the formula

d(x, y) = dI(x, y) + dHi
(4.13)

c(x, y) = cI(x, y), (4.14)

where

I(x, y) = argmax
i

{ci(x, s)} (4.15)

indexes the highest reliability at each coordinate. This disparity merge is shown in

figure 4.5 (b) with coherence in figure 4.6 (b).

4.5 Conclusion

Global shifting makes it possible to arbitrarily extend the 2 px range of the Structure

Tensor. A global solution is achieved through merging disparity layers of size 2 px using

their computed coherence values. With this, it becomes possible to use this light-field

approach in analyzing scenes of much greater disparity range, such as those typical

of the Middlebury data sets (see figure 4.7). In addition, this permits extending the

accuracies and precisions achievable to these multiples of 2 px disparity ranges.
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dH3 = 10

dH2 = 8

dH1 = 6

dH0 = 4

(a) (b)

Figure 4.5: Illustrated is the merge of local disparity maps dHi
(x, y) processed at different

horopters Hi. For the superimposition the additional computed coherence maps are used. (a)

shows the local disparity maps which relate to different global shifts. (b) displays the merged

disparity maps, shown for each iteration step.
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dH3 = 10

dH2 = 8

dH1 = 6

dH0 = 4

(a) (b)

Figure 4.6: Shows the superimposition of the local coherence maps ci(x, y) via coherence

merge to achieve a final coherence map. (a) displays the local coherence maps related to dif-

ferent global shifts. (b) shows the merged coherence maps. In each iteration step the coherence

map fills up.
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Figure 4.7: This figure shows the resulting disparity map at the bottom and the related view

on top of the Middlebury Aloe dataset [35, 77]. The entire disparity range of the shown scene

is 40 px, starting from 51 px down to 11 px. The entire light field consists of 7 images and is

processed with the proposed global shifting method.



5 Coherence Analysis
Coherence is an indicator for the validity of disparity estimations. It is used in global

shifting to merge shifted layers. This metric works because coherence drops toward zero

when orientation is outside of the measurable pixel range. We now consider a cross-

shaped light-field configuration where vertical and horizontal disparity maps can be

merged. Coherence can also be used as a merge decision criterion here, as it represents

the reliability of orientation estimations – orientations in one direction may provide

better estimates than in the other, and coherence can be used to distinguish them.

In this chapter we analyze the use of coherence for this merging and determine the re-

lationship between coherence values, estimated disparity, and ground truth value. We

analyze the coherence distribution with respect to the disparity error distribution of the

Structure Tensor as shown in figure 5.1 (a). The disparity error distribution illustrates
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Figure 5.1: (a)The image on the left shows the precision evaluation of the Structure Tensor

using the Scharr derivative filter. The image on the right shows the related coherence values.

(b) This figure shows the estimation distribution for all measured orientations before thresh-

olding (red) and after thresholding (green). One can see that the outliers are reduced by simply

applying a constant coherence thresholding.
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(a) (b) (c)

Figure 5.2: The bare Structure Tensor result without any applied coherence threshold is

shown in (a) while in image (b) a coherence threshold of ηth = 0.85 and in (c) of ηth = 0.95

is applied. Filtered disparity values become black.

the deviation of hundreds of estimates with respect to the ground truth disparity. The

related coherence values are shown to the right in 5.1 (a).

As first evaluation we apply a coherence threshold c and observe the influences to the

precision of the Structure Tensor. We remove disparity values whose coherence values

are below a predefined threshold. The result with respect to the old disparity error

distribution is shown in figure 5.1 (b). An applied coherence threshold improves the

resulting precision due to the removal of major outliers. We experimented with differ-

ent distributions metrics on the underlying coherence distributions, but this did not

yield any improvements. As one can see in table 5.1, larger threshold values improve

the resulting precision but decrease the number of estimates, resulting more sparse

disparity maps, as illustrated in figure 5.2. With this evaluation metric it seems diffi-

cult, unfortunately, to reliably discern erroneous disparity estimates from correct ones.

To get an impression of this we image the computed disparity error for d = 0.25 px

and d = 0.5 px together with the related coherence values, as shown in figure 5.3. It

illustrates the correlation between thresholded values (red) and the related disparity

estimations. Obviously, not only outliers are removed, but precise estimates as well.

Coherence Threshold Sobel Scharr Gaussian derivative

[3× 3] [7× 7]

no threshold 0.1149 0.0425 0.17 0.014

0.98 0.1149 0.0401 0.14 0.0132

0.998 0.1069 0.0306 0.09 0.0120

0.9995 0.0728 0.0168 0.025 0.0077

Table 5.1: This table shows the precision increase for different applied coherence thresholds.

The inner Gaussian filter is selected as σ[3×3] = 0.4 and the outer Gaussian filter as τ[3×3] =

0.6. For the Gaussian derivative, two kernel sizes have been applied. The first [3 × 3] to

compare with the Sobel and Scharr filters directly and the second [7× 7] with a larger kernel.
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Figure 5.3: This figure shows the disparity estimation error and the coherence value for

(a) 0.25 px and (b) 0.5 px using the Scharr filter. The applied coherence threshold is 0.9995.

Filtered pixels are shown red.

This indicates that the estimation quality is only weakly correlated with the applied

coherence measure.

By definition the coherence is defined as the quotient of the eigenvectors λ1 and λ2 of

the processed Structure Tensor gradients ∂x and ∂s, as shown in figure 5.4. Thus the

coherence can be alternatively expressed by

c =
λ1 − λ2

λ1 + λ2

(5.1)

as described in Jähne [38]. That means coherence defines how well an orientation can

be determined in the EPI and not how reliable it is with respect to the true orientation.

Thus poor estimations can have high coherence values and good estimations can have
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Figure 5.4: Shows the derivative distribution of ∂x and ∂s for each point of a predefined

orientation. The coherence is then defined by a ratio between the eigenvalues as given in

equation 5.1.
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low coherence values.

Now considering a 4D light field such as a cross-shaped light field. In this kind of

light field, the vertical and the horizontal directions are processed independently (see

figure 5.5 (a)+(b)). For the common view, represented by the central image, it is

possible to determine a superimposed disparity map by using the equation 2.10 (see

figure 5.5 (c)).

Due to the weak correlation between coherence and disparity, the superimposition

of the vertical and horizontal directions does not necessarily improve the resulting

disparity map. In horizontal light fields vertical scene edges can be estimated perfectly,

while horizontally aligned scene edges cannot be detected at all. In vertical light fields

this property is reversed. Thus, at regions where the vertical and horizontal light field

have different content, the superimposition obtains good results while in regions both

direction has similar content the merging can also worsen the result.

As a final evaluation we compare the superimposed disparity maps achieved by

selecting disparity based on coherence versus ground truth based on the minimal

distance between estimation and ground truth. For this evaluation we define a

cross-shaped light field, with its central image shown in figure 5.6 (c). As expected,

the results show that vertical edges are selected from the horizontal light field and

horizontal edges are selected from the vertical light field, see figure 5.6 (a). Aside from

this, we see that in contrast to the selection with respect to the ground truth value

as illustrated in figure 5.6 (b), the patches of the coherence merged result are larger

and have a different distribution. In the case of the squared foreground object, which

is barely visible, it also shows that an inverted selection with respect to the coherence

would lead to better results.

(a) (b) (c)

Figure 5.5: (a) shows the resulting disparity map of a horizontal light field while (b) shows

the resulting disparity map of a vertical light field. (c) shows the superimposed result using

the coherence as decision criterion for merging.
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(a) (b) (c)

Figure 5.6: (a) shows the selection decision with respect to the coherence map of the vertical

and horizontal direction. In this image red is selected from the vertical direction and green

from the horizontal direction. (b) shows the selection decision with respect to the ground truth

disparity. In this image red is selected from the vertical direction and green from the horizontal

direction. (c) shows the center view of the captured light field.

5.1 Conclusion

The observed weak correlation persists into the global shifting process, where sepa-

rate layers must be combined. Thus the coherence is predestined because only valid

and invalid measurements need to be separated. A coherence threshold, improves the

quality of the estimation visibly, since values not related to a valid orientation get can-

celed and thus the precision increases. Unfortunately it does not guarantee that poor

estimates are also canceled. That’s because the coherence only indicates,in how good

an orientation can be detected but not in how good it represents the correct orienta-

tion. Coherence is our main tool in combining the vertical and horizontal directions.

But with the shown weak correlation, it is clear that an improvement in this decision

process could lead to better results.





6 Asymmetric Gaussian filter

(a) (b)

Figure 6.1: (a) demonstrates the shape of an asymmetric Gaussian kernel. The shape of

both directions are determined by the smoothing values 3σx and 3σs. (b) shows a second kind

of asymmetric Gaussian kernel where an initial symmetric Gaussian kernel is cut into an

asymmetric shape.

In the Structure Tensor orientation estimation two Gaussian filters are needed as shown

in equation 2.6. The first Gaussian filter σ termed the inner acts as low pass filter.

Since cameras capture spacial frequencies of arbitrary distances it is not avoidable that

aliasing appears. That means, the remaining task of the inner Gaussian filter is to

reduce occurring image noise. Thus the inner Gaussian filter represents a denoising

filter. The second Gaussian filter τ termed outer is also a low pass filter. Since it is

applied when the Structure Tensor components are already computed and noise is

already removed its purpose is the weighted averaging of neighboring Structure Tensor

components, which smooths the resulting disparity map. Thus the outer Gaussian

filter represents an averaging filter. The shape of both Gaussian filters is assumed to

be symmetric, but what happens when using asymmetric Gaussian kernel to estimate

disparities. There are two possible asymmetric Gaussian kernel shapes which can be

utilized for the inner or the outer filters. A short illustration about these two possible

filter configurations is shown in figure 6.1. The first asymmetric Gaussian filter has a

shape defined by a 3σi environment where i ∈ {x, s} means the shape in image x and in

camera direction s are independent. The second asymmetric Gaussian filter assumes a

symmetric Gaussian kernel having one smoothing value σ while its shape is truncated

with respect to the shape in image direction xg and camera direction sg.

In this chapter asymmetric filters are evaluated in their advantages and disadvantages

for different filter sizes and shapes as well as for their applicability in light-field imaging.

To aid in analyzing the influence of asymmetric kernels in disparity estimation, we use

a test scene as shown in figure 6.2. While the underlying disparity remains constant in

the EPI, color and spacial frequency change randomly. Using several different samples

it is possible to attain highly reliable evaluations.

51
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6.1 Inner Gaussian filter evaluation

For the precision evaluation of symmetric as opposed to asymmetric Gaussian filter,

200 arbitrary EPIs are analyzed. The precision result for the symmetric and the two

different asymmetric cases is shown in figure 6.3. First, symmetric Gaussian filters

having shapes of [5×5], [7×7] and [9×9], with a smoothing value σ steadily increasing,

are analyzed as reference.

Second, asymmetric Gaussian filters having a 3σi shape are analyzed. Its shape defined

by σx and σs changes accordingly to the underlying σ. The resulting shape is computed

through:

σx = σ (6.1)

σs = σmax − σ | σmax ∈ {1, 1.5, 2.5}. (6.2)

where σ and the starting shapes are given as depicted in figure 6.3. Finally, the asym-

metric Gaussian filters with a cropped shape of [5× 12] and [12× 5] are analyzed. As

one can see, asymmetric filters defined by σx and σs lead to lower precisions than a

symmetric kernel. Additionally, one can see that when these asymmetric kernels pass

a symmetric shape they achieve the similar precision as well as its highest precision.

On the other hand truncated asymmetric kernels achieve results similar to symmetric

Figure 6.2: Shown is a scene to a given depth profile, as shown in the top plot. The scene

is represented by an EPI as shown below and used to evaluate the asymmetric Gaussian

kernel. While the underlying disparity is not changing in the EPIs used for this analysis, the

orientations spacial frequency and color can change randomly.
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kernels. For this reason, it can be considered to use them instead of their symmetric

counterparts.
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Figure 6.3: The image shows the precision analysis for different Gaussian filter implemen-

tations. A symmetric and two types of asymmetric Gaussian filter are analyzed. The starting

shape for asymmetric filter defined by σx and σs are shown in the plot by rectangular boxes.

The analysis shows that the best precision is still achievable with symmetric filters.

6.2 Outer Gaussian Filter evaluation

The outer Gaussian Filter is evaluated with the same strategy as the inner Gaussian

filter. Shown in figure 6.4 are symmetric Gaussian kernels acting as precision references.

We overlay the results of the asymmetric Gaussian kernel defined by σx and σs and the

results of the truncated asymmetric Gaussian kernel defined by σ and its asymmetric

shape. As one can see in figure 6.4, the influence on precision differs from that of

the inner Gaussian filter, the estimation precision improves with increasing filter size.

Nevertheless we see behavior for the outer Gaussian filter similar to that of the inner

Gaussian filter. While asymmetric Gaussian filters defined by σx and σs behave even

worse by having no clear influence, truncated asymmetric Gaussian kernels behave

once again similar to the symmetric ones. Thus also here it can be considered to use

truncated asymmetric rather than symmetric Gaussian kernels.

6.3 Object Transitions

In the evaluations presented above we determined that symmetric and truncated asym-

metric filter both achieved good results. Now we want to analyze the behavior of object

boundaries of these filter implementations. The assumed behavior is that an increasing

kernel shape in the image direction results in worse transition between two different
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Figure 6.4: The evaluation of the outer Gaussian filter leads to similar results as for the

inner Gaussian filter evaluation. Symmetric kernels and cut asymmetric kernels achieve the

best precision while asymmetric kernels defined by asymmetric Gaussian filter defined by σx

and σs lead to worse precisions.

disparities. That means to improve object boundaries we need to use truncated asym-

metric kernels having a shape with xg < sg. This kind of asymmetry considers more

information in the camera direction sg than in the image direction xg, which should

lead to sharper object transitions. The result of this analysis is shown in figure 6.5. As

one can see, the use of a truncated asymmetric Gaussian filter with xg < sg leads to

better object transitions but also increases the noise level.

This happens because fewer neighboring pixels are used in comparison with the sym-

metric Gaussian filter. For a similar number of pixels the observed noise level remains

the same, which is implicitly proven by the averaging property of the outer Gaussian

filter.

6.4 Conclusion

Truncated asymmetric Gaussian kernels achieve improved precision results while en-

hancing boundaries. Thus the usage of such filters presents a good alternative to sym-

metric Gaussian filters. The general inner Gaussian filter represents an anti-aliasing

filter to reduce the noise level in the EPIs where a cut-off frequency defines the maxi-

mal allowed frequency. By definition the cut-off frequency becomes

fc =
√

2 ln(c) ∗ σf =
1

2s
(6.3)

where c denotes the power reduction ratio in the power spectra and s the sampling

frequency, which becomes the pixel pitch. To determine the matching value σ for the

inner Gaussian filter to cut off at fc, we have to take into account the standard deviation
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Figure 6.5: (a) shows the evaluation of symmetric Gaussian filter. The inner Gaussian

σ = 1.3 has a shape of [9× 9] and the outer Gaussian filter τ = 2.5 has a shape of [17× 17]

lead to boundary transitions as shown in the zoomed regions. (b) shows the evaluation of a

truncated asymmetric Gaussian filter. The inner Gaussian σ = 1.3 has a shape of [3 × 9]

while the outer Gaussian filter τ = 2.5 has a shape of [17× 5]. That means the kernel shape

in image direction is decreased which results in an improved boundary transition. Due to the

reduced neighboring influence a higher noise ratio appears in contrast to the symmetric result

visible in the increased number of spikes.

σf of the Fourier transform of a Gaussian filter and the relation between both. This

relation can be expressed by

σ · σf =
1

2π
. (6.4)

Inserting equations 6.3 into this expression leads to

σ =

√

2 ln(c)s

π
. (6.5)

In the image domain this becomes

σpx =
σ

s
=

√

2 ln(c)

π
. (6.6)

The resulting standard deviation σpx for a Gaussian filter having its cut-off frequency

at the full-width half-maximum (FWHM) position is given for c = 2. Thus the standard

deviation σpx becomes 0.375 which implies a small filter shape.

For outer Gaussian filters a truncated asymmetric filter results in improved object

transitions with similar precision. The usage of truncated asymmetric kernel for the

outer Gaussian filter is recommended while its averaging value τ can be selected with

respect to the smoothness desired in the result.





7 Orientation Analysis as Eigen-

value Problem Representation

The Structure Tensor analysis can also be viewed as Singular Value Decomposition

(SVD) – also known as principal component analysis (PCA) – to compute the under-

lying orientations in an epipolar-plane image.

In this chapter we introduce PCA/SVD and Canonical Correlation Analysis (CCA) as

alternative methods to estimate orientation. Using the SVD method within a defined

evaluation window Ei in the EPI the right-singular vectors which relate to the under-

lying column space describe the orientation, as shown in figure 7.1.

Beside that we introduce the transition from evaluation window based PCA or CCA

approaches to a pixel-based orientation estimation. We will see that pixel-based ap-

proaches lead to the Structure Tensor equations as introduced in chapter 2. In the

precision evaluation of different approaches, we also evaluate advanced Structure Ten-

sors which are able to distinguish between two orientations, such as transparent overlays

or occluding orientations as introduced by T. Aach et al. [1].

Finally we introduce the second-order Structure Tensor and derive an improved Struc-

ture Tensor for single orientation estimation which yields a more robust estimate and

adds the possibility of analyzing heterogeneous light-field structures which result from

arrays of cameras having different modalities, e.g. varying exposure time from camera

to camera.

7.1 Principal component analysis (PCA)

The PCA is mostly used in statistics to distinguish principal components vt of data,

where t defines the number of possible principal components. In orientation analysis

we use principal component analysis to determine the underlying orientation inside an

evaluation window E in the epipolar-plane image S. Within each evaluation window,

having N pixels, we need to compute the derivatives ∂Di

∂x
and ∂Di

∂y
with i ∈ N . This

derivative matrix H can be defined as

H =

(

E ∗ ∂(σ ∗ S)
∂x

,E ∗ ∂(σ ∗ S)
∂y

)

=





















h1

h2

...

hi

...

hN





















with hi = (Dx,i, Dy,i) (7.1)
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Figure 7.1: Illustrates the principle of the orientation estimation using the principal compo-

nent analysis. In the underlying EPI an evaluation window is convoluted with the EPI. Inside

each evaluation window the orientation is estimated using the singular value decomposition.

where σ is Gaussian smoothing to reduce noise and Dx,i, Dy,i are the derivative values

in the evaluation window. Direction derivatives in E are represented as column vectors.

A visualization of these data is plotted with its principal components in figure 7.2. As

one would suspect, the first principal component v1 represents the normal direction of

the underlying orientation and points in the direction with maximum variance σ1 of

the data.
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Figure 7.2: (a) shows the first estimated principal component (black line). (b) shows the

related second principal component (blue line), perpendicular to the first one.
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The first principal component is computed with the equation

v1 = arg max
||v1||=1

(

∑

i

(hiv1)
2

)

. (7.2)

An equivalent matrix notation representation of this equation is given by

v1 = arg max
||v1||=1

(

||Hv1||2
)

= arg max
||v(1)||=1

(

vT1 H
THv1

)

(7.3)

with the definition, that vi has to be a unit vector, the equation also satisfies

v1 = argmax

(

vT1 H
THv1

v1Tv1

)

. (7.4)

For a symmetric matrix such as HTH the maximum value possible occurs when v is

the eigenvector, and the quotient becomes the largest eigenvalue. The first principle

component, represented with the first eigenvector is drawn in figure 7.2. To compute

the next principle component we have to apply an orthonormal projection into the

data space by removing the previous principal component using Gram-Schmidt

Ĥ = H −
k−1
∑

s=1

Hvsv
T
s . (7.5)

SVD in PCA

The characteristic that the maximum argument is reached means that the solution of

the equation is the largest eigenvalue (singular value) which is also the maximal value

attainable. To apply the SVD we have to define the factorization of the matrix H as

H = U ΣV ∗ (7.6)

where V contains the sought orientation vectors, because our initial matrix H contains

all derivatives in its columns direction. This means each column is one space of the ma-

trix H and the singular vectors sought are represented by the right singular vectors V ,

which are related to the column space. A detailed explanation about the factorization

is given in the following section.
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7.2 Introduction SVD

The singular value decomposition is used to compute the singular vector matrix

U[m×m], V[n×n] and the singular value matrix Σ[m×n] of a matrix H[m×n] while m and n

define the dimensions of the matrix. Every real or complex matrix possesses at least

one singular-value decomposition which solves the equations

H vi = σiui or H∗ui = σivi. (7.7)

where i ∈ 1, ...,min(m,n).

The matrix H[m×n] itself is a composition of its left singular vectors U[m×m], its rectan-

gular diagonal matrix Σ[m×n], containing all eigenvalues, and its right-singular vectors

V[n×n]. This leads to the following representation

H = U ΣV ∗. (7.8)

with

U∗U = I and V ∗V = I (7.9)

where the columns of U are orthonormal eigenvectors of H H∗ and the columns of V

are orthonormal eigenvectors of H∗H. The matrix Σ contains the square roots of the

eigenvalues for H H∗ and H∗ H. This can directly be used to solve the given eigenvalue

problem from equation 7.7.

The two introduced matrices H H∗ and H∗H formulate the core of the singular value

decomposition and are of the following shape

HH∗ = U ΣV ∗V Σ∗U∗ = U(ΣΣ∗)U∗ (7.10)

and

H∗H = V Σ∗U∗U ΣV ∗ = V (Σ∗Σ)V ∗. (7.11)

where V and U becomes the eigenvectors and Σ a diagonal matrix with the squares

of the eigenvalues. To determine the eigenvalues and eigenvectors we have to solve the

equations

det(H H∗ − sI) = 0 and det(H∗ H − sI) = 0 (7.12)

to determine the related vectors V and U as well as the eigenvectors Σ̂ = σ1, .., σn

which are the same for both matrices. The computed eigenvalues Σ̂ are the squares

of the sought singular values. The entries in the singular value matrix Σ are then the

square roots of the computed eigenvalues.

In the following computations we are always interested in the right-singular vectors

V[n×n] and the related eigenvalues because they describe the orientation in the EPI, as

explained earlier.
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Reduced SVDs

In applications it is very unusual to use the full SVD, because of the increased memory

and computation time. Thus, depending on the problem, reduced versions of the SVD

are preferred. The first version is the thin SVD,

H = Un Σn V
∗ (7.13)

where only the first n components if n < m of U corresponding to the row vectors of

V ∗ are computed. Then U is [n × n], Σ is [n × n] and V remain the same size. The

second reduced form is the compact SVD,

H = Ur Σr V
∗
r (7.14)

where only the r components with non zero singular values are computed. Thus Ur is

[m × r], Σr is [r × r] and Vr is [r × n]. The third and the most reduced form is the

truncated SVD

H̃ = Ut Σt V
∗
t (7.15)

where only the t largest singular values are computed. The matrix Ut becomes [m× t],

Σr becomes [t× t] and Vt is [t×n]. In the case of the orientation analysis t = 1, because

we are just interested in the right singular vectors V1 with the largest eigenvalue. Thus

we achieve a reduction in SVD computation cost through focusing on the part needed.

7.3 Canonical-correlation analysis (CCA)

As introduced in section 7.1 we utilize the derivative matrix

H =

(

E ∗ ∂(σ ∗ S)
∂x

,E ∗ ∂(σ ∗ S)
∂y

)

= (Hx, Hy) (7.16)

to compute orientation with singular value decomposition. This is the first and simplest

method to compute a single orientation contained in an evaluation window. Another

method is the usage of covariance matrices

C(Hx, Hy) =

(

var(Hx, Hx) cov(Hx, Hy)

cov(Hy, Hx) var(Hy, Hy)

)

(7.17)

with

var(Hx, Hx) =

∑n

i=1(Hx,i −Hx,µ)(Hx,i −Hx,µ)

n
(7.18)

and

cov(Hx, Hy) =

∑n

i=1(Hx,i −Hx,µ)(Hy,i −Hy,µ)

n
. (7.19)
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In the variance equation, the denominator is n − 1 if the mean value of the un-

derlying distribution is not known. Looking at figure 7.2, a zero mean assumption

Hµ = (Hx,µ, Hy,µ) = (0, 0) can be made. This means the denominator of the variance

is n instead of n− 1. This leads to the following vector notation

C(Hx, Hy) =
1

n

(

H∗
xHx H∗

xHy

H∗
yHx H∗

yHy

)

=
1

n
H∗H (7.20)

which has beside a constant factor the same shape as the definition in equation 7.11

to compute the right singular values. This means, using the covariance matrix C, the

problem to compute the orientation is reduced from an SVD to an eigenvalue problem.

det (C(Hx, Hy)− sI) = 0 (7.21)

Next we want to reduce the evaluation window to a size of one pixel and apply a

Gaussian filter to the resulting matrix. Then orientation evaluation becomes point

wise and can be described with the following equation

J(Dx, Dy) = τ ∗
(

D2
x DxDy

DyDx D2
y

)

(7.22)

with

Dx =
∂(σ ∗ S)

∂x
and Dy =

∂(σ ∗ S)
∂y

(7.23)

which is the Structure Tensor representation. The closed form for estimating orientation

is then given by the equation

dst = tan

(

1

2
arctan

(

2
D̂xD̂y

D̂2
x − D̂2

y

))

(7.24)

with

D̂x = Dx ∗ τ and D̂y = Dy ∗ τ. (7.25)

7.3.1 Single Orientation estimation with PCA and CCA

Using the singular value decomposition and the canonical correlation analysis offers

several different ways to compute orientation. We introduce these in the next subsec-

tion. In fact the SVD can be reduced to the same eigenvalue problem as described by

the CCA, which represents a more practical and faster implementation. In addition,

the reduction of the evaluation window and an application of a Gaussian filter leads

to a pixel wise computation of the underlying orientation. The relation between the
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introduced methods is visualized in figure 7.3 In the next sections we introduce dif-

ferent methods to compute orientation in an EPI, using the SVD and the CCA. Both

methods are nearly complementary in their precision but differ in their computational

effort.

Figure 7.3: Overview about correlation between the principal component analysis (PCA), the

single value decomposition (SVD), the canonical correlation analysis (CCA) and the Structure

Tensor.

PCA with Dx and Dy

The resulting precisions σdPCA
are computed with the PCA approach

H =

(

E ∗ ∂(σ ∗ S)
∂x

,E ∗ ∂(σ ∗ S)
∂y

)

= (Hx, Hy) (7.26)

by using two different box filter sizes.

The first box filter is E[3×3] and the second is E[7×7]. Subscripts denote the box size. The

resulting orientation dPCA of this method is attained by computing the ratio between

the two components of eigenvector V1, and is described by the formula

dPCA =
V1,2

V1,1

with V1 =

(

V1,1

V1,2

)

(7.27)

The resulting precisions σdPCA
are compared to the precision σdst attained with the

closed form orientation analysis

dst = tan

(

1

2
arctan

(

2D̂xD̂y

D̂2
x − D̂2

y

))

. (7.28)
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The precision results are shown in table 7.1.

σ[3×3] = 0.4 dst PCA E[3×3] PCA E[7×7]

σdst σdPCA
σdPCA

Sobel 0.073 0.062 0.044

Scharr 0.016 0.012 0.0061

Gaussian [3× 3] 0.081 0.069 0.053

Gaussian [7× 7] 0.0037 0.0026 0.00059

Table 7.1: The table shows the precision σdst and σdPCA
for different derivative filter and

different box filter sizes. While the inner Gaussian filter stays constant, the outer Gaussian

smoothing for dst is set to τ[5×5] = 0.6.

PCA with D2
x, DxDy and D2

y

This method uses a modified version of the derivative vector from section 7.3.1. The

new derivative vector evaluates orientation by the equation

H =

(

E ∗
(

∂(σ ∗ S)
∂x

)2

, E ∗
(

∂(σ ∗ S)
∂x

∂(σ ∗ S)
∂y

)

, E ∗
(

∂(σ ∗ S)
∂y

)2
)

(7.29)

= (Hx,x, Hx,y, Hy,y) . (7.30)

To analyze precision, the result of the Structure Tensor orientation estimation is com-

puted first with equation 7.28 as reference value. Next, the precision for a box filter

E[3×3] and E[7×7] is computed. After solving the eigenvalue problem the resulting eigen-

vector matrix V is a 3× 3 matrix having the following shape

V =





V1,1 V2,1 V3,1

V1,2 V2,2 V3,2

V1,3 V2.3 V3,3



 = (V1, V2, V3) . (7.31)

The resulting eigenvector V3 related to the smallest eigenvalue can be used to estimate

occluded orientations which is introduced by Mülich et al. [62]. The first two dimen-

sions of the eigenvector V1, with respect to the largest eigenvalue, describe the single

orientation in the EPI and can be computed using the formula

d =
V1,1

V2,1

. (7.32)

The resulting precision of this method is shown in table 7.2.
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σ(3×3) = 0.4 dst PCA E[3×3] PCA E[7×7]

σdst σdPCA
σdPCA

Sobel 0.07 0.067 0.058

Scharr 0.016 0.013 0.0052

Gaussian [3× 3] 0.077 0.075 0.062

Gaussian [7× 7] 0.0037 0.003 0.0008

Table 7.2: The table shows the precision σdst and σdPCA
for different derivative filter and

different box filter sizes. Chosen is a constant inner Gaussian smoothing. The outer Gaussian

smoothing used for dst is set to τ[5×5] = 0.6.

CCA with Dx and Dy

The next method uses the canonical correlation analysis to estimate orientation. This

evaluation uses the derivative vectorH from equation 7.16 and computes the covariance

matrix for all values inside the evaluation window E[3×3]

C(Hx, Hy) =
1

n

(

H∗
xHx H∗

xHy

H∗
yHx H∗

yHy

)

=
1

n
H∗H. (7.33)

Next we reduce the size of the evaluation window E[1×1] to one pixel. This reduction

modifies the CCA in a way that, with an additional Gaussian Filter τ , it becomes the

Structure Tensor

J(Dx, Dy) = τ ∗
(

D2
x DxDy

DyDx D2
y

)

(7.34)

with

Dx =
∂(σ ∗ S)

∂x
and Dy =

∂(σ ∗ S)
∂y

. (7.35)

The resulting orientation is also given by the eigenvector V1 with respect to the largest

eigenvalue. Thus the disparity can be computed using equation 7.27. The results of the

precision evaluation are shown in the next table 7.3.

CCA with D2
x, DxDy and D2

y

Now we want to compute the single orientation using the CAA applied to the derivative

vector H introduced in equation 7.30. The resulting covariance matrix C(Hx, Hy) used

for the orientation estimation with a given evaluation window E has the following

shape

C(Hx, Hy) =
1

n





(H∗
x,xHx,x) (H∗

x,xHx,y) (H∗
x,xHy,y)

(H∗
x,xHx,y) (H∗

x,yHx,y) (H∗
x,yHy,y)

(H∗
x,xHy,y) (H∗

x,yHy,y) (H∗
y,yHy,y)



 =
1

n
H∗H. (7.36)



66 Chapter 7. Orientation Analysis as Eigenvalue Problem Representation

σ[3×3] = 0.4 dst PCA E[3×3] PCA τ

σdst σdPCA
σdPCA

Sobel 0.069 0.093 0.069

Scharr 0.013 0.027 0.017

Gaussian [3× 3] 0.074 0.112 0.071

Gaussian [7× 7] 0.0034 0.0065 0.0036

Table 7.3: The table shows the precision σdst and σdPCA
for different derivative and box filter

sizes. The inner Gaussian smoothing is σ[3×3] = 0.4. While the outer Gaussian smoothing,

used for dst and PCA τ , is set to τ[5×5] = 0.6.

For the second evaluation we reduce the evaluation window E[1×1] again to one pixel.

Then the covariance matrix also becomes a Structure Tensor. This Structure Tensor

can be used to estimate double orientations in the occlusion case, as discussed in the

PCA subsection. The Structure Tensor is given by the equation

J(Dx, Dy) = τ ∗





D4
x D3

xDy D2
xD

2
y

D3
xDy D2

xD
2
y DxD

3
y

D2
xD

2
y DxD

3
y D4

y



 (7.37)

with

Dx =
∂(σ ∗ S)

∂x
and Dy =

∂(σ ∗ S)
∂y

(7.38)

The resulting eigenvectors are three-dimensional and the eigenvector V1, related to the

largest eigenvalue, describes the underlying orientation in its first two components, as

introduced in equation 7.32. The results of the precision analysis are shown in table 7.4.

σ[3×3] = 0.4 dst PCA E[3×3] PCA τ

σdst σdPCA
σdPCA

Sobel 0.07 0.07 0.067

Scharr 0.016 0.021 0.013

Gaussian [3× 3] 0.076 0.079 0.075

Gaussian [7× 7] 0.0037 0.005 0.003

Table 7.4: The table shows the precision σdst and σdPCA
for different derivative and box

filter sizes. The inner Gaussian smoothing remains constant for all measurements while the

outer Gaussian smoothing used for dst and the PCA τ is set to τ[5×5] = 0.6.

CCA with D2
xx, Dxy and Dyy

As a final method, we wish to take advantage of the second order derivatives. They

can be used either to separate two transparent overlying orientations, as introduced in
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Wanner et al. [91], or to estimate a single orientation. Thus we introduce the derivative

vector

H =

(

E ∗ ∂2Ŝ

∂x2
, E ∗ ∂2Ŝ

∂x∂y
, E ∗ ∂2Ŝ

∂y2

)

(7.39)

= (Hxx, Hxy, Hyy) . (7.40)

Next, we directly apply the canonical correlation analysis to the defined derivative

vector. The resulting covariance matrix becomes

C(Hxx, Hxy, Hyy) =
1

n





(H∗
xxHxx) (H∗

xxHxy) (H∗
xxHyy)

(H∗
xxHxy) (H∗

xyHxy) (H∗
xyHyy)

(H∗
xxHyy) (H∗

xyHyy) (H∗
yyHyy)



 =
1

n
H∗H. (7.41)

Reducing this matrix to a pixel-wise evaluation and an additional Gaussian filter τ

leads to the following Structure Tensor

J(Dxx, Dxy, Dyy) = τ ∗





DxxDxx DxxDxy DxxDyy

DxxDxy DxyDxy DxyDyy

DxxDyy DxyDyy DyyDyy



 (7.42)

with

Dxx =
∂2(σ ∗ S)

∂x2
, Dyy =

∂2(σ ∗ S)
∂y2

and Dxy =
∂2(σ ∗ S)
∂x∂y

. (7.43)

3D side view

(a)

3D top view

(b)

Figure 7.4: (a) shows the 3D visualization of the second order Structure Tensor. All deriva-

tive values of H are located on a cone surface (red dots). The blue lines represent the ori-

entation estimation solution. (b) shows the top view of the 3D graph. It shows that the 2D

projection of the data matches with the single orientation.

To analyze the behavior of this Structure Tensor for each orientation we use an eval-

uation EPI as shown in figure 7.5. The visualization of the geometrical orientation of
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the H vector components in a 3D space is seen in figure 7.4. This visualization con-

tains the derivative values, represented as red dots for each pixel in the small windows,

and shows the estimated orientation of the Structure Tensor for the central pixel as

blue lines. The top view of the 3D space reveals that a 2D projection of the 3D data

already contains the single orientation. Thus, the single orientation is computable in-

dependently from the third dimension of the H vector. That leads to a new derivative

vector

H =

(

E ∗ ∂2Ŝ

∂x2
, E ∗ ∂2Ŝ

∂x∂y

)

= (Hxx, Hxy) . (7.44)

With the dimension reduced H vector the covariance matrix becomes

C(Hxx, Hxy) =
1

n

(

(H∗
xxHxx) (H∗

xxHxy)

(H∗
xxHxy) (H∗

xyHxy)

)

=
1

n
H∗H. (7.45)

Decreasing the evaluation window to one pixel and the application of Gaussian smooth-

ing τ leads to a Structure Tensor representation defined by

J(Dxx, Dxy) = τ ∗
(

DxxDxx DxxDxy

DxxDxy DxyDxy

)

. (7.46)

The shape of this Structure Tensor is similar to the first introduced Structure Tensor

from equation 7.28. The only difference is an additional derivative filtering in the x

direction. Taking this into account, we select a derivative filter with (2R−1) elements.

Figure 7.5: EPIs used to compute the derivative of the second order Structure Tensor and

represent it in a 3D space as seen in figure 7.4.

The advantage of an odd symmetry filter with (2R−1) elements is shown by its transfer

function as describe by Jähne [38]. Thus, the transfer function for the smallest possible

derivative filter becomes

D =
1

2
[−1 0 1] ❞ t cos(πk̂) 0 ≤ k̂ ≤ 1 (7.47)

where k̂ denotes the normalized wave number. As one can see, this filter attenuates

both low frequencies and high frequencies. With this understanding, the usage of an

inner Gaussian filter becomes obsolete since its main purpose was anti-aliasing, noise

removal and value averaging, all of which, aside from the averaging, is now done by the

additional derivative filter. The averaging is transferred to the outer Gaussian filter,

which has negligible effect on its value, and its shape doesn’t change by the defined

offset. This makes the entire processing not only faster, due to the removal of the inner
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dst d′st dimpr d′impr

∆dst ∆d′st ∆dimpr ∆d′impr

Sobel 0.071 0.065 0.07 0.064

Scharr 0.016 0.007 0.012 0.0067

Gaussian [3× 3] 0.075 0.071 0.074 0.069

Gaussian [7× 7] 0.0037 0.0005 0.001 0.00049

Table 7.5: The table shows the precision ∆dst and ∆dimpr for different derivative filter

and Gaussian smoothing values. For dst and dimpr we use an inner Gaussian smoothing of

σ[3×3] = 0.4 and an outer Gaussian smoothing τ[5×5] = 0.6. For d′st and d′impr we use an inner

Gaussian smoothing with σ[3×3] = 0.7 and and outer Gaussian smoothing with τ[5×5] = 1.6.

Gaussian filter, but also applicable to heterogeneous light fields. Thus the new derived

Structure Tensor becomes

J = τ ∗





(

∂Ŝ
∂x

)2
∂Ŝ
∂x

· ∂Ŝ
∂s

∂Ŝ
∂s

· ∂Ŝ
∂x

(

∂Ŝ
∂s

)2



 =:

(

Ĵxx Ĵxs
Ĵxs Ĵss

)

(7.48)

with the abbreviation

Ŝ :=
∂S

∂x
. (7.49)





8 Heterogeneous Light Fields
In contrast to traditional binocular or multi-view stereo approaches, the redundant

sampling of light-field imaging (i.e. more than two views for triangulation) allows one

to obtain dense and high quality depth maps with significant increase in accuracy and

reliability. It also extends capabilities beyond those of traditional analysis methods.

For example, previously, a constant intensity has been assumed for estimating disparity

from orientations in most approaches to analysis of epipolar-plane images (EPIs). Here,

we introduce an adapted structure-tensor approach which improves depth estimation.

This extension also includes a model of non-constant intensity on EPI manifolds. We

derive an approach to estimate high quality depth maps in luminance gradient light

fields, as well as in color-filtered light fields. Color-filtered light fields pose particular

challenges due to the fact that structures can change significantly in appearance or

completely vanish with wavelength. We demonstrate solutions to this challenge and

obtain a dense sRGB image reconstruction in addition to dense depth maps. This and

the next chapter were submitted for consideration to the IEEE CVPR 2016 conference.

8.1 Introduction

The basis of light-field [27] imaging is the plenoptic function as introduced in [2]. It

represents a multi-dimensional function describing all the information available of light

reflected from a scene. This comprises the direction and spectral radiance of the light.

To capture light fields, the plenoptic function is simplified in its dimensionality to

a four dimensional subspace, at times termed the lumigraph. This light field repre-

sentation was first introduced in computer graphics by both Gortler et al. [30] and

Levoy et al. [49]. The lumigraph describes the ray path parameterized by two parallel

planes. Along the ray path, radiance remains constant. More generally, every ray leav-

ing a particular surface point appears the same – that is, the appearance of the surface

point is independent of the perspective from which it is viewed. This is referred to

as exhibiting Lambertian behavior. Due to this constraint, most methods to compute

disparities such as [91, 43, 14, 20, 18] relate only to light fields having this property.

Even for binocular or multi-view stereo approaches, as proposed in [50, 41, 22, 70]

correspondence between points is modeled by having the same appearance from any

view.

Thus, current cameras such as Raytrix [66] and Lytro [26] focus on reconstruction

from input images having similar color information. A violation, in case of images

captured with different color filters or illuminations, needs sophisticated pre-processing

algorithms to adapt the data for the depth estimation, as in the work of Yong et al. [34].

In that approach, the input image data is mapped to a log-chromaticity color space

71
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Figure 8.1: This EPI has a linear illumination gradient in vertical direction. The first row

of the shown EPI related to the first captured image of the heterogeneous light field while

the last row is related to the last captured image. As one can see the illumination increases

continuously. The red line shows the position where the shown EPI is extracted.

to obtain an illumination-independent color representation for finding corresponding

points in the input data. Thus neither multi-view stereo nor current light-field imaging

address the direct computation of depth maps from heterogeneous input data. Such

heterogeneous, or hyper-spectral, images may be generated using a single camera with

revolving color filters before the objective, as described in Tominaga [85]. Unfortunately

with this setup, it is not possible to make depth estimates on the underlying scene.

Here, we present heterogeneous light fields which have properties that change between

captured images – such as with the presence of illumination gradients or the application

of colored filters. We demonstrate that a modified structure tensor is able to process

heterogeneous light fields. We analyze the limits of both illumination gradients and

randomly illuminated light fields. Furthermore, we show that even for color filtered

light fields the structure tensor approach computes highly reliable depth information

locally which can be merged to a dense depth map. With this dense depth map it

is possible to compute a hyper-spectral image with respect to a reference view out

of the used color filtered light field. To visualize the obtained hyper-spectral image

we introduce a method to approximate the sRGB color space from the hyper-spectral

information and display the final RGB reconstruction.

Figure 8.2: This EPI has a random distributed illumination in vertical direction. The first

row of the shown EPI is related to the first captured image of the heterogeneous light field

while the last row is related to the last captured image. The red line shows the position where

the shown EPI is extracted.
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8.2 Illumination gradient light field

In this section we analyze the precision attained with the newly defined Structure

Tensor from equation 7.48 for different derivative filters in contrast to the traditional

Structure Tensor. For this, we compute the precision as described in Diebold et al. [20]

and discussed in the last chapter. For evaluation purpose several synthetic EPIs where

generated, covering a discretized angular space between [−45◦, 45◦] as shown in fig-

ure 7.5. The resulting overall precision for all evaluated orientations i ∈ N becomes

σd =

√

√

√

√

1

N

N
∑

i

(µi)2 +
4

N

N
∑

i

(σi)2 (8.1)

where σi defines the standard deviation of the evaluated estimations and µi denotes

the mean values. We additionally consider systematic errors that arise. The results of

the precision analysis are shown in table 8.1. As one can see, precision increases, but

the question remains of how it changes under luminance-gradient light fields.
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Figure 8.3: Shows the PSNR of the shown scenes (a) for different applied illumination

gradients ∆I. Figure (b) shows the PSNR applied on the entire disparity map as well as only

to coherence thresholded θ = 0.8 values. For the Buddha scene the traditional implementation

of the structure tensor is shown as black dashed line. As one can see, the PSNR remains

almost constant until a gradient limit is reached, here around ∆I = 0.85. In contrast, the

PSNR of the traditional structure tensor drops down instantly.
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Figure 8.4: Shows an example of a linear heterogeneous light field. Each image is captured

with a different color filter having a full width half mean of 10nm. The red line shows the

position, where the shown EPI is extracted. In color filtered light fields the intensity changes

in orientation direction with respect to the underlying color content.

In luminance-gradient light fields, the illumination changes from image to image, which

is termed illumination gradient ∆I in the following. To analyze these kinds of heteroge-

neous structures, we apply an illumination gradient ∆I to synthetically rendered light

fields as shown in figure 8.3. An example of a luminance-gradient light field and the

appearance of a resulting EPI are shown in figure 8.1. To compare the reliability of the

Structure Tensor for different illumination gradients we compute for each evaluation

scene the PSNR with respect to the ground truth disparity map. The results for dif-

ferent ∆I are shown in figure 8.3. As one can see, the new Structure Tensor keeps an

almost constant PSNR until the illumination gradient reaches a limiting value. From

there, the PSNR immediately decreases. The entire evaluation is made with 16bit im-

ages since it is essential to avoid saturation. In the event of saturated regions, the

PSNR will decrease due to missing orientation information, and not because of the

applied gradient. Thus, 16 bit images allow isolating the influence of the illumination

gradient on the estimation result. Aside from the PSNR of the improved Structure

Tensor, the PSNR of the traditional Structure Tensor of the Buddha scene is shown

in figure 8.3. As one can directly see, the traditional Structure Tensor is not able to

process a heterogeneous light field. Furthermore, we analyze heterogeneous light fields

having random illumination distributions as shown in figure 8.2. Here, we randomly

Derivative Filter σd for J1 σd for J2 σd for J3

Sobel 0.0588 0.0322 0.0315

Scharr 0.0299 0.0082 0.0085

Gaussian 3x3 0.0698 0.0321 0.0326

Table 8.1: The table shows the resulting precision of the traditional structure tensor J1

proposed by Wanner [92] in comparison to the new structure tensor with an applied inner

Gaussian filter J2, and without an additional inner Gaussian Filter J3. The evaluation is

made for different possible derivative filters of the same shape. As one can see, the new

structure tensor outperforms in the Scharr filter implementation the traditionally structure

tensor by far.
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shuffle the image related multiplier which was used to achieve the illumination gradi-

ent in the EPI. The results of this evaluation are shown in figure 8.5, illustrating the

applicability to acquired light fields. Small illumination variations invariably occur in

acquired light fields. Illumination differences appear due to flickering of the light source

or because of varying camera properties across the light field array, i.e. exposure time

or sensitivity. Thus, the designed Structure Tensor not only improves the estimation

result in homogeneous light fields but also makes it possible to process heterogeneous

light fields.

8.3 Color-filtered light fields

In this section we introduce color-filtered light fields as shown in figure 8.4. Color-

filtered light fields are captured with color filters of different wavelengths so that each

image of a light field contains differing color information. The used band-pass filters

have a full-width half-mean of 10 nm and are uniformly distributed in the color spec-

trum between 400 nm and 700 nm. This means the color-filtered light field contains

the full spectral information of the underlying scene distributed over 31 images. After

generating synthetic color-filtered light fields, we apply the introduced structure tensor

J3 to test scenes such as the rainbow textured scene shown in figure 8.6 (a). Due to
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PSNR for random illumination light fields

Buddha

ConeHead

LivingRoom

Ruin

Buddha (thresh)

ConeHead (thresh)

LivingRoom (thresh)

Ruin (thresh)

Buddha(tranditional)

Figure 8.5: Illustrates the PSNR for different applied randomly shuffled illuminations defined

by an underlying illumination gradient ∆I. The figure shows the PSNR calculated for the

entire disparity map as well as only for coherence thresholded θ = 0.8 values. For the Buddha

scene the traditional implementation of the Structure Tensor is shown as black dashed line.

As one can see keeps the PSNR quiet constant while the PSNR of the traditional Structure

Tensor drops down instantly.
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400nm

500nm

600nm

Input data

merged disparity map disparity map after TV
RGB reconstructions

local disparity map

(a) (b) (c) (d) (e)

Figure 8.6: (a) shows the reference image of the light field which become transformed into a

color filtered light field. (b) are the local disparity estimations. (c) shows the merged disparity

map out of the local disparity maps. (d) shows the final disparity map after total variation we

applied. (e) shows the final disparity estimation.

its breadth of color, this scene illustrates that the structure tensor is able to locally

estimate the underlying orientation with respect to the visible wavelength. The local

estimation results for 500 nm, 600 nm and 700 nm are depicted in figure 8.6 (b).

8.3.1 Color merge and total variation

It is necessary to merge the local disparity estimations into a reference view r ∈ Π to

obtain a dense disparity map. Thus the measured disparity needs to be transferred in

the reference view. To select single disparity values, we use examine coherence order

and replace estimations in the reference view with smaller coherence value. For the

entire merging, we select each row s ∈ Π\r in the EPI and transfer the local disparity

estimation of each pixel x to the addressed position ys in the reference view r which is

given by the equation

ys = |x+ s · ds(x)| (8.2)

where the absolute value ensures only even pixel values are addressed in the reference

view. That is important to consider since two or more local disparity estimates ds(x) at

different positions x can address the same pixel in the reference view. This can happen

when one object occludes another. The disparity merge can finally be described by

dr(ys) = ds(x) | cs(x) > cr(ys), ds(x) > dr(ys) (8.3)

where dr and cr are initialized with the local result of the reference view. Rounding of

the applied pixel position introduces error in the resulting disparity map. To minimize

this error we determine the actual shift position x̂ in row s. The new position becomes

x̂ = ys − s · ds(x). (8.4)
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When the disparity value at the new position ds(x̂) is within an epsilon environment

ǫ with respect to the initial disparity value ds(x), it replaces the initial disparity value

at location x. A reverse disparity value calculation checks whether the rounding has

caused an object boundary to be crossed and, if so, rejects (in this case the selected

disparity ds). The final merged disparity map for a reference view of the rainbow

textured scene is shown in figure 8.6 (c). Unfortunately, it still contains some small

patches with undefined disparity values. For the further processing, it is necessary to

have a dense disparity map. Thus we apply a second-order total variation, as introduced

in the following subsection 8.3.2, on the merged disparity map. The proposed second

order total variation approach minimizes the functional

FTV2(u) :=
1

2
‖u− f‖22 + αTV (u) + βTV 2(u) (8.5)

where α, β > 0 denote regularization parameters. The result after the applied second

order total variation is shown in figure 8.6 (d). The final hyper-spectral image can now

be determined by addressing all color values along the orientations whose direction is

given by the achieved disparity map.

PSNR [dB]

Buddha 24.94

ConeHead 31.39

LivingRoom 25.80

Ruin 33.31

Table 8.2: Shows the PSNR of the disparity estimation result, with respect to the ground

truth for synthetically generated color-filtered light fields.

8.3.2 Total Variation - A combined first and second Order TV

Processing light fields with the Structure Tensor approach results in sparse disparity

maps, as shown in figure 8.8 (b). Due to its local processing, these disparity maps

exhibit not only artifacts and high noise levels but also regions D without disparity

information. To achieve fully populated disparity maps we introduce a combined first

and second order total variation algorithm which applies denoising and inpainting to

the computed disparity map f : Ω → R, Ω ⊂ R
2.

For a suitable total variation in light-field imaging, we represent the regularization

result by the function u : Ω → R, where Ω defines a domain with Lipschitz boundary,

as described by K. Bredies [16]. The total variation then becomes

TV l(u) :=

∫

Ω

1

2
|∇lu| du (8.6)
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(a) (b) (c)

Figure 8.7: (a) shows the center view of a captured metal test part. The two inserted lines

address the row and column, where the EPIs is cut out. The related EPIs are shown on the

right side and at the bottom. (b) represents the estimated disparity map using the traditional

Structure Tensor as introduced in equation 2.6. (c) shows the improved estimation after ap-

plying our proposed new Structure Tensor 7.48.

where l = 1, 2 dependent on the total variation order. With this, the minimization

problem is given by

min
u

∫

Ω\D

1

2
‖u− f‖22 dx+ Φ(u) | ∀x ∈ Ω (8.7)

where Φ(u) is known as regularization which becomes a combined adaptive second-

order total variation as introduced by F.Lenzen et al. [47, 48] and K. Papafitsoros [64].

The proposed combined second order total variation approach minimizes the functional

FTV 2(u) := (λ)
1

2
‖u− f‖22 + (1− λ)αTV (u) + βTV 2(u) (8.8)

where α, β > 0 denote regularization parameters and λ : Ω → [0, 1] a trade off

between the controlling of the first order and the data fitting. This trade off λ becomes

the coherence value c of the related disparity value, and represents the novelty of this

approach. For a coherence value of zero (c = 0) , the data fitting is switched off and

a pure first and second order inpainting is applied to the data. In contrast, when the

coherence value becomes one (c = 1) the data fitting is switched on, the first order is

switched off, and only the second order total variation denoises the result.

To use the TV on input data that is not continuously differentiable, we intro-

duce a dual variable ξ ∈ R
2 which encodes the discontinuities. Here, the norm of the

gradient of u becomes the scalar product defined by

|∇lu| = sup
ξ∈Ψ

< ξ,∇lu >, (8.9)

where Ψ defines a disk, scaled by τl ∈ R at each point x ∈ Ω:

Ψ =
{

ξ ∈ C∞(Ω,R2l), ∀x ∈ Ω : ‖ξ(x)‖2 ≤ τl
}

(8.10)
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(a) (b) (c)

Figure 8.8: (a) shows the center view input image of a captured light field. (b) shows the

computed disparity map. Invalid disparity values are colored in blue. (c) shows the result after

the second order total variation approach was applied. The related point cloud is shown in

figure 8.10.

and C∞ defines functions that are differentiable over all degrees. Equation 8.9 obviously

reaches its maximum when the dual variables point in the gradient direction. Thus it

is possible to express the underlying total variation for the first and second order as

TV l(u) := sup
ξ∈Ψ

{∫

Ω

< ξ,∇lu > dx

}

= sup
ξ∈Ψ

{∫

Ω

u divlξ dx

}

(8.11)

8.3.3 Energy minimization using a primal dual algorithm

The proposed variational approach is based on the primal dual algorithm first

introduced by T. Pock et al. [68, 69] which applies a steepest ascent onto the primal

variable and a steepest descent on the dual variable. This approach gets extended to

the second order as shown by F. Lenzen et al. [48]. The proposed algorithm becomes

ξi+1
l = ΠΨl

(

ξil + α∇lui
+

)

, (8.12)

ui+1 = ui + σ λ
(

ui − f
)

(8.13)

ui+1 = ui+1 +
(

1− λ
)

ρ div ξ1 + β div2 ξ2 (8.14)

ui+1
+ = 2ui+1 − ui, (8.15)

where an extrapolation step of u is added to determine ξi+1
l , which needs to be back-

projected onto the scaled unit disk. The back-projection can be expressed by the for-

mula

(ΠΨl
ξl)(x) =

ξl(x)

max{τl, ‖ξl(x)‖}
. (8.16)

The comparison between a first-order only regularization and an added second order

regularization is shown in figure 8.9. To use only the first order total variation, the



80 Chapter 8. Heterogeneous Light Fields

regularization variable β needs to be set to zero, which will deactivate the second order

term. The advantage of the enabled second order total variation can be seen in the

comparison of figure 8.9 and in the point cloud result 8.10.

(a) image position
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Figure 8.9: (a) shows a scan line close to the image center of the light field as shown in

figure 8.8(a). (b) shows the content of the left green box which shows the surface of the sail.

8.3.4 Adaptive edge regularization

For this approach we consider α, β as dynamic variables, which vary depending on the

image location. We define α(x), β(x) : Ω → R+, ∀ x ∈ Ω with respect to the edge

map E(x) of the input data f . The new α(x) and β(x) become

α(x) = E(x) ·
(

α(x)− αedge

)

+
(

1− E(x)
)

· αedge (8.17)

β(x) = E(x) ·
(

β(x)− βedge

)

+
(

1− E(x)
)

· βedge (8.18)

with αedge ≪ α and βedge ≪ β as reduced edge mobility, which avoids an over smoothing

and a loss of contrast at edges. Unfortunately, this adaptivity of the edge mobility is

only possible if the center view possess full edge information. In some heterogeneous

light fields it is not possible to use this edge mobility adaptation. Thus α, β remain as

constant factors.

8.3.5 Occlusion Detection

The reconstruction of the correct color information at object boundaries is not possible

for linear color-filtered light field setups, as illustrated in figure 8.12. That implies, for

achieving correct color information even for object boundaries, symmetric color filter

setups are unavoidable. Nevertheless it is important to detect occluded areas, to apply

an occlusion handling respectively.

Thus, the read-out direction along orientations become mirrored with respect to the

central reference view, before hitting the occluded areas, see figure 8.11.
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(a)

(b)

(c)

Figure 8.10: Images on the left side show the 3D reconstruction based on the related disparity

maps on the right. The result shown in (a) belongs to the Structure Tensor resulting disparity

map. (b) shows the result after an applied first order total variation and (c) the result after

the enabled second order total variation.

V V

V V V V
V

Figure 8.11: Shown is the inversion of the color read-out direction for orientations hitting

an occluded area – illustrated by blue arrows. Occluded areas are marked in yellow color and

double occlusion areas are green encircled.
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To obtain the needed occlusion maps, the disparity maps related to the central three

images of the light field are used, as shown in figure 8.13 (a), to detect occlusion areas

by checking disparity consistency along the estimated orientation. While foreground

objects keep a constant disparity value along the entire orientation, background con-

tent becomes occluded and thus a disparity change implies an occlusion. Thus it also

400nm700nm

Color reconstruction area

Object

Figure 8.12: This image shows the occlusion problem appearing in heterogeneous light-field

setups. While foreground objects cover partially background seen by other cameras, a lack of

spectral information appears in such areas as illustrated. Thus bandpass filter related bad spots

are the consequence.

becomes possible to determine the direction of the occlusion (right or left side of the

object). The resulting occlusion map, as shown in figure 8.13 (b), addresses occluded

regions as well as its direction. By using symmetric light-field setups and the described

occlusion handling, it is possible to enhance the color of object boundaries significantly,

as shown in figure 8.14.

Unfortunately also double occlusion is possible. Double occlusion appears, when back-

ground is occluded alternately by two foreground objects while moving the camera to

acquire the light field. At such areas, it is not possible to determine the correct spectral

information for the background. Thus a symmetric color-filtered light field in vertical

direction can help, to resolve double occluded areas, as long as double occlusion not

(a) (b)

Figure 8.13: (a) shows the three central estimated disparity maps, which are used to deter-

mine an occlusion map, which is shown in (b).
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also appears at the same position in vertical direction. Double occlusion correction is

not analyzed in this chapter, because the main focus of this work are three-dimensional

heterogeneous light fields.

8.3.6 sRGB reconstruction

For an RGB color reconstruction from spectral images we need to find a method to

determine the (R,G,B) values from the pixel values Si of the captured spectral images

i ∈ N . For this, we use the approach of Tominaga [85]. He proposes that the CIE color

space (X, Y, Z) can be determined by the pixel values Si multiplied by a weighting

function M




X

Y

Z



 = M ·







S
′

1
...

S
′

N






. (8.19)

The weighting function to approximate the CIE color space can be determined by

approximating the CIE color matching functions. Thus the camera quantum efficiency

QEcam(λ) and the spectral sensitivity functions BPi(λ) of the image i related band

pass filter as well as the spectral color distribution LS(λ) of the light source need to

be known. Then the CIE color matching functions (x̄(λ), ȳ(λ), z̄(λ)) can be estimated

by the formula





x̄(λ)

ȳ(λ)

z̄(λ)



 = M ·







QE
′

1(λ)
...

QE
′

N(λ)






+ e(λ) (8.20)

with

QE
′

i(λ) = BPi(λ) ·QEcam(λ) · LS(λ) (8.21)

where e denotes noise. For the best possible approximation of the CIE color matching

function we introduce the functional FM which minimizes the area difference between

the color matching function and the obtained approximation of M for the entire fre-

quency domain Λ with λ ∈ Λ. The proposed functional becomes

FM = min
~k

∫

Λ





x̄(λ)

ȳ(λ)

z̄(λ)



−M3xN ·QE
′

cam(λ) dλ. (8.22)

After determining the weighting function M , we can transfer the spectral information

to the CIE color space using equation 8.19. Next we convert the CIE color space as

proposed by Tominaga [85] to sRGB color space [80]





Rlinear

Glinear

Blinear



 = T





X

Y

Z



 (8.23)
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(a)

(b)

(c)

Figure 8.14: (a) shows the RGB-reconstruction for a linear-color-filtered light field setup

sampling the spectrum from 400nm till 700nm in 10nm steps using color filters with a full

width at half maximum of 10nm. As on can see, blue content is missing on the right and red

content is missing on the left. Thus the remaining color becomes more intense. (b) shows a

RGB-reconstruction of a symmetric color-filtered light field setup, sampling the spectrum from

400nm-700nm-400nm in 20nm steps using the same filter. (c) shows the RGB-reconstruction

after the application of the proposed occlusion handling with some remaining double occlusion

artifacts.



8.4. Results 85

with

T =





3.2406 −1.5372 −0.4986

−0.9689 1.8758 0.0415

0.0557 −0.2040 1.0570



 . (8.24)

For the final visualization we also apply a gamma correction of γ = 0.68 to the linear

RGB-space which transforms the linear values into sRGB.

8.4 Results

As result for homogeneous light fields, we show the comparison of the new structure

tensors with respect to the traditional structure tensor implementation proposed in

Wanner et al. [92]. Their implementation leads to the result shown in figure 8.7(a),

while our proposed method shows a full coverage of the captured metal evaluation part

as demonstrated in figure 8.7(b).

Next, we want to show the applicability of the proposed structure tensor to color-

filtered light fields and the RGB reconstruction for one synthetic example and for four

real captured light fields. To acquire heterogeneous light fields properly it is important

to use linear-ordered color filters. They provide a more stable estimation for intensity

gradients as shown for linear illumination gradient light fields in contrast to random

distributed filters configurations. Due to that a constant quality in the orientation

estimation of color-filtered light fields is guaranteed, as long as the gradient is not

reaching the critical maximum. Furthermore, considering a color distribution of objects

placed in the scene, as shown in figure 8.16 (c), it becomes important to select the filter

respectively, to ensure color dependent orientations to appear. To estimate orientation

for colors, only seen by one filter, is not possible. Thus we can derive two constraints

• For broad color spectra of target object, the used band pass filter can have a

narrow bandwidth to obtain analyzable orientation.

• For narrow color spectra of target objects, the used band pass filter needs to be

chosen that an orientation are visible in at least 5 neighboring images to guarantee

a valid estimation.

As shown in figure 8.4, the EPI contains local orientation information while black

transitions illustrate vanishing color content. Figure 8.15(a) shows the center view

image of the initial synthetic homogeneous light field. This light field contains 31 images

which was converted to a color-filtered light field as shown in figure 8.4. Each image is

filtered with a band-pass filter having a full width at half maximum of 10 nm. The filters

are uniformly distributed in 10 nm steps between 400 nm and 700 nm. The resulting

RGB images of the synthetic light field is seen in figure 8.15(c).

The real color-filtered light fields are captured with a PCO-edge 5.5 camera, mounted

on a high-precise translation stage. For the heterogeneous data we have a symmetric
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light-field configuration starting from 400 nm to 700 nm and back to 400 nm while each

filter has a full width at half maximum of 10 nm. The filters employed are 400 nm,

450 nm, 500 nm, 515 nm, 532 nm, 550 nm, 560 nm, 589 nm, 600 nm, 650 nm, 700 nm and

back down to 400 nm. The processing results of the acquired color-filtered light fields

are shown in figure 8.16(c). Input data and additional images are provided in the

additional material.

(a) (b) (c)

Figure 8.15: (a) shows the original RGB center view of a cross shaped light field which

consists of 11 images. (b) shows the final disparity result of the color filtered light field after

the applied second order total variation. (c) shows the RGB reconstruction of the computed

hyper-spectral image.

8.5 Conclusion

The modified structure tensor approach introduced in the last chapter significantly

reduces the error in the estimate of orientation in EPIs compared to the traditional

structure tensor. We also demonstrate that the modified structure tensor has the advan-

tage of high reliability in processing heterogeneous light fields. This makes it possible to

better analyze acquired light fields since varying camera properties and flickering light

sources inevitably cause illumination variations. It is nearly impossible to capture real

homogeneous light fields having constant illumination along the orientation. But with

the new designed structure tensor these small variations do not disturb the estima-

tion; in fact they enhance the result. Additionally, metallic surfaces may be analyzed

with greater density and accuracy, as shown in figure 8.7. Furthermore, we applied the

structure tensor to color-filtered light fields. Here we have seen that the orientation

computation is only possible in regions where the orientation remains visible in the

EPI.

Thus we introduced a method to merge local estimations in a reference view to achieve

a denser disparity map for that view. After applying a total variation approach to

obtain a dense disparity map, we use the disparity information to address the hyper-

spectral information along the orientation line. To prove this concept, we reconstructed

the sRGB color space from the captured hyper-spectral information for both acquired

and synthetic light fields. For this purpose we approximated the CIE color matching
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(a) (b) (c)

Figure 8.16: (a) shows the merged disparity maps. (b) shows the result after the applied

second order total variation. (c) shows the RGB reconstruction of the real captured light

fields.

function with the used band-pass filters and successfully approximated the CIE-color

space. Finally the CIE-color space is mapped onto the sRGB color space. The resulting

sRGB images are shown in figure 8.16 where one can see that, due to the height reliabil-

ity of the estimated disparity, the color reconstruction matches the object boundaries

perfectly. Color-filtered light fields hold a more densely sampled spectra as it is possible

for a single camera. Thus an advanced analysis in the color domain is possible. Possible

applications are in food surveillances, e.g to distinguish different cheeses by compar-

ing their spectra, or to determine if food is still eatable or not. Another application

is the study about defects in skin, where bacteria or chemical changes influencing the

color spectra. It also opens the possibility to use the structure tensor for other types of

heterogeneous light fields like for light fields with applied polarization filters to obtain

BRDF information.





9 Spherical Light Fields
The following chapter is based on a cooperation with Bernd Krolla of the Augmented

Vision department at DFKI Kaiserslautern and partially published in the Proceedings

of the British Machine Vision Conference [44]. A full-view spherical camera exploits its

Figure 9.1: The left image shows the captured 360◦ spherical center view image of the HCI

optics laboratory. The right image shows a part of the 3D reconstruction.

extended field of view to map the complete environment onto a 2D image plane. Thus,

with a single shot, it delivers more information about the surroundings than can be

gathered with a normal perspective or plenoptic camera, as commonly used in light-field

imaging. However, in contrast with a light-field camera, a spherical camera does not

capture directional information about the incident light and, thus, a single shot from a

spherical camera is not sufficient to reconstruct 3D scene geometry. In this chapter

we introduce a method combining spherical imaging with the light-field approach.

To obtain 3D information with a spherical camera, we capture several independent

spherical images by applying a constant vertical offset between the camera positions and

combine the images in a Spherical Light Field (SLF). We can then compute disparity

maps by Structure Tensor orientation analysis on epipolar-plane images which, in this

context, are 2D cuts through the spherical light field with constant azimuth angle. This

method competes with the acquisition range of laser scanners and allows for a fast and

extensive recording of a given scene.

9.1 Introduction

Since projects such as Microsoft Street Side [61] or Google Street View [4] have

provided numerous spherical images to online users, spherical imaging has experienced

increasing attention in the recent past. To acquire such spherical images, a wide

variety of hardware devices is available, delivering results of varying quality and

accuracy. The devices separate into professional solutions [93, 79, 53, 71] and consumer

89
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oriented camera devices such as [83, 76]. Torii et al.[86] provide a fundamental and

elegant definition of spherical cameras, subsuming central dioptric and catadioptric

cameras under the assumption of known camera parameters into this camera model

Spherical cameras are able to handle interesting application scenarios not realizable

with standard perspective cameras. Pagani et al. [5] researched Structure from Motion

approaches using full spherical cameras, whereas the work of Aly and Bouguet [3]

is more focused on the calibration of unordered sets of spherical images. Gutierrez

et al. [31] showed that visual SLAM can be performed without loss of image features

caused by camera rotation when using spherical instead of perspective cameras. Fur-

thermore, as application oriented approaches, 3D reconstruction using multi-spherical

stereo has been employed to reconstruct the 3D environment of a static scene [32].

The combination of omnidirectional images with High Dynamic Range (HDR)

imaging as introduced in [59, 75] expands image processing possibilities such as noise

reduction, shadow handling or avoidance of under- and over-exposed image regions. In

addition to spherical image acquisition, light-field imaging has gained more and more

attention. In this chapter we introduce the acquisition of spherical light fields and the

determination of the 3D geometry by using the Structure Tensor orientation estimation.

Related work.

The interface between light-field imaging and omnidirectional camera systems has

been addressed by recent research whereas, to the best of our knowledge, full spherical

images have not been considered. Birklbauer and Bimber created panorama light fields

by stitching multiple perspective light fields taken by a rotating light field camera [12].

Due to the devices employed [58, 74] the vertical field of view (FOV) remained

limited. Taguchi et al.[82] used an array of spherical mirrors to model catadioptric

cameras for wide-angle light-field rendering. While providing dense depth estimation

and refocusing capabilities for the captured scenes, the setup entailed decreasing

tangential resolution close to the mirror borders, limiting the FOV to 150◦ × 150◦.

Unger et al. [88] employed a capture configuration similar to Taguchi, as well as a

fisheye-camera translated on a plane to capture hemispherical HDR images of a scene.

Aiming at the rendering of artificial objects in the captured environment, the total

acquisition time took up to 12 hours for a single scene. This restricts the application

scenario to indoor static environments, since constant illumination conditions during

the acquisition are crucial for the subsequent light-field processing. An alternative

approach to obtain full spherical depth and disparity maps for a surrounding scene is

to use laser scanners, which measure the depth in a bounded range around the device.

Even though these devices achieve highly accurate reconstructions, they are in general

high-priced devices and the resulting scans are commonly provided without texture

information of the scene.
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Figure 9.2: (a) Spherical image acquisition using a rotating tripod mounted camera equipped

with a fish eye lens. (b) The image results from the back projection of 3D points M(x, y, z) to

their corresponding image points m(θ, φ) assuming C to be the cameras center of projection.

(c) In the current work, the resulting image is a High Dynamic Range (HDR) image with a

resolution of 14000×7000 pixel and is parametrized using spherical coordinates φ[0, 2π) and

θ[0, π].

Contributions

In this chapter, we combine spherical imaging with light-field analysis and introduce

the concept of Spherical Light Field (SLF) recording. To capture an SLF, we obtain

several spherical images from different elevations. This results in a 3D data structure

parametrized by the two angular directions and the height of the capturing device. We

show that by computing 2D cuts through this structure with fixed azimuth angle, we

obtain the analogue of an epipolar-plane image, where we can efficiently perform depth

reconstruction via orientation analysis. Furthermore, this makes it possible to directly

adapt light field analysis techniques which rely on epipolar-plane image analysis to

the scenario of omnidirectional scene acquisition. Compared to conventional light-field

cameras, we acquire significantly more information about the surrounding scene. In

particular, we also capture the scene in high dynamic range. In the context of this

work, we can thus benefit especially from improved texture representation as well as

improved illumination estimation to increase the performance of subsequent analysis

of the SLF. We demonstrate that SLF offers the possibility of very short acquisition

times using small sets of 9-13 high-resolution spherical images for disparity estimation.

9.1.1 Spherical image acquisition

Our proposed approach for SLF acquisition relies on the utilization of spherical cameras

as shown in figure 9.2 (a). A convenient description of this camera type is provided by

Torii et al. [86], who consider a spherical camera to consist of a camera center C with

a surrounding unit sphere acting as projection surface. This definition implies that no

intrinsic parameters such as focal length or distortion values known from perspective

imaging need to be considered. According to the collinearity constraint, any 3D point

M of the camera’s environment is mapped via the camera center C to its corresponding

image point m, see figure 9.2 (b). Any position within the resulting spherical image is
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(a) (b)

Figure 9.3: (a) Parametrisation of the Spherical Light Field. (b) Example of an Epipolar

Plane Image (EPI) assembled from 15 images.

uniquely defined by the image coordinates φ ∈ [0, 2π) and θ ∈ [0, π). By applying the

Mercator projection [10], the spherical image is mapped conformally onto an image on

a cylindrical surface Π, see figure 9.2 (c). Note that this kind of data representation

implies a significant distortion of image content close to the image poles (θ → 0 and θ →
π). However, it assures that any content of the scene is shifted along the latitude-axis of

the image, with respect to vertical displacement of the camera position. Therefore, this

representation is suitable for epipolar-plane image (EPI) reconstruction, as outlined in

the following section.

9.1.2 Spherical Light Fields

To describe an SLF, we define a new parametrization for the camera domain and the

surrounding spherical 2D mapped image, see figure 9.3 (a). We take the cylindrical

surface Π and denote the center line with Ω. The cylindrical surface Π is parametrized

by image coordinates (φ, θ) ∈ Π. The line Ω contains the focal points t ∈ Ω of all

possible camera positions in the vertical direction. A Spherical Light Field can now be

described by a function

L : Ω× Π → R (t, φ, θ) 7→ L(t, φ, θ), (9.1)

where L(t, φ, θ) defines the intensity of the incident light ray in the image plane (φ, θ)

passing through the focal point t. To estimate the disparity, we address a 2D slice Σφ∗

of the SLF by setting φ to a fixed value φ∗. The restriction of the light field to such a

slice is called an epipolar-plane image (EPI), and formally defined as

Sφ∗ : Σφ∗ → R (9.2)

(θ, t) 7→ Sφ∗(θ, t) := L(t, φ∗, θ). (9.3)

An example is shown in figure 9.3 (b). Assuming a Lambertian scene, the EPI yields

information about the disparity of a scene point in the form of oriented lines. Each

line corresponds to the projection of a scene point, and its slope is directly related

to parallax, so is in a one-to-one correspondence with the distance of this point from

the camera center. To compute the disparity on the EPI, we can thus perform an

orientation analysis on the given EPI Sφ∗ , using the structure tensor

J = τ ∗
(

(

Sθ

)2
Sθ St

St Sθ

(

St

)2

)

=:

(

Jθθ Jθt
Jθt Jtt

)

(9.4)
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with the abbreviations

St := σ ∗ ∂S

∂t
, Sθ := σ ∗ ∂S

∂θ
. (9.5)

The orientation angle and thus the disparity map d for the EPI Sφ∗ can be computed

directly from the components of the structure tensor via

d = tan

(

1

2
arctan

(

Jtt − Jθθ
Jθt

))

. (9.6)

As a reliability measure of the estimated disparity, one can employ the coherence κ

defined by

κ =

√

(Jtt − Jθθ)
2 + 4Jθt

(Jtt + Jθθ)
2 . (9.7)

The full set of disparity and coherence maps is computed by iterating over all EPIs from

the SLF and storing the computed disparity and coherence values at the corresponding

azimuthal slice.

9.2 Results

To acquire spherical images in real environments, we use the omnidirectional diop-

tric Civetta camera manufactured by Weiss AG [93], see figure 9.2 (a). This camera

is equipped with a fish eye lens and provides omnidirectional 360◦×180◦ HDR images

by stitching multiple perspective images together. Since the camera software handles

distortion and overlaps of the input images, the resulting spherical HDR images com-

ply with the spherical camera model introduced previously. By applying the Mercator

projection, they are mapped to a plane and stored as EXR-files [51] with a resolution

of 14000 × 7000 pixels, see figure 9.2 (c). The file size of up to 320MB results from a

combination of high resolution and a 24bit HDR color representation. For the capturing

process, we need to consider that the camera requires a static scene to provide accurate

results. Since the HDR characteristic of the images is obtained by capturing multiple

images with varying exposure time from the same position, moving objects cause arti-

facts in the resulting image. To acquire the actual SLF, camera positions of increasing

height were engaged by varying the tripod’s elevation by a fixed amount on the order

of several millimeters. In addition to the desired pixel offset along the latitude coor-

dinate θ, minor offsets along the longitude coordinate φ also occurred due to manual

adjustment of the tripod height. Thus, to assure optimal data quality for a reliable EPI

generation, a realignment of the images was performed as a first post-processing step

after image capture. To perform the image realignment along the φ coordinate, stan-

dard computer vision methods were applied by extracting and matching SIFT-features

[54] from the different images. To improve the robustness of the realignment, feature
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extraction was limited to a strip along the image equator (+/- 60◦ latitude) by mask-

ing distorted image regions close to the image poles. After rejecting match outliers,

the average offset between the images could be retrieved up to subpixel precision, and

this was used to align the captured set of spherical images. For 3D reconstruction we

applied the structure tensor as introduced in chapter 2 followed by second order total

variation as introduced in chapter 8.3.2. The result in figure 9.4 and figure 9.5 shows

the point cloud of a courtyard and the HCI optics lab in larger scale.

Figure 9.4: The top image shows the captured 360◦ spherical center view image of a court

yard. The bottom image shows a part of the 3D reconstruction.
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Figure 9.5: The top image shows the captured 360◦ spherical center view image of the HCI

optics laboratory. The bottom image shows a part of the 3D reconstruction.

9.3 Conclusion

We capture spherical light fields in real-world environments using full spherical cameras.

The mapping of the resulting spherical images to a conformal representation on a 2D

plane allows to easily construct epipolar-plane images, on which it is possible to apply
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orientation analysis for fast and accurate disparity estimation. The resulting full view

spherical disparity maps can then be employed for a 3D scene reconstruction of the

cameras surroundings. Furthermore, combining spherical and HDR imaging approaches

for the capturing of real scenes can greatly simplify the task of disparity estimation

due to e.g. improved contrast. The concept of spherical light fields presents a promising

avenue to expand the applications for light-field processing, in particular towards those

which require a detailed and complete map of the surroundings.



10 Conclusion
In this thesis we introduced various types of Structure Tensor implementations and

analyzed their achievable precision. This starts from the normal 2D Structure Tensor

applicable on each EPI independently followed by the 2.5D and 3D Structure Tensor,

up to the 4D Structure Tensor applicable only over the entire light field. As we have

shown, the 2.5D Structure Tensor obtains the best precision results.

Additionally, we evaluated the impact of using an asymmetric Gaussian filter in the

Structure Tensor computation. Here we determined that truncated asymmetric Gaus-

sian filter obtains similar results to symmetric Gaussian filter but leads to even better

definition at transitions between objects. Aside from this, we analyzed the usability of

the coherence measure in global shifting and integration of the vertical and horizontal

direction estimates in cross-shaped light-field configurations. Unfortunately, we found

that while it operates perfectly for the global shifting, coherence is a poor indicator for

choosing among vertical and horizontal light field estimates.

Further, to achieve high quality light fields, we found that having the correct configura-

tion is as important as having the correct equipment. Thus we focused on the light-field

setup itself, and how to determine setup configurations to optimally resolve the needed

depth range in obtaining high quality depth maps.

In the second half of the thesis, singular value decomposition and canonical correlation

analyses were introduced and used to estimate orientation in EPIs. It was shown that

these approaches can be converted from one to the other, as well as being transferred to

the Structure Tensor representation. With this conversion tool it was possible to derive

an improved metric for single orientation estimation from the second-order Structure

Tensor, which is also used to separate reflective and transparent orientation layers [91].

The derived improved Structure Tensor achieves more than higher precisions, it is also

able to process heterogeneous light fields such as the introduced illumination-gradient

light fields and the color-filtered light fields. For the color-filtered light field we addi-

tionally showed how to achieve high reliable dense disparity maps which can be used

to determine hyper-spectral images and RGB-reconstructions of real captured scenes.

Further investigations are made in cooperation with B. Krolla of the DFKI in Kaiser-

slautern about spherical light fields and its correct mapping to achieve full 360◦ dis-

parity maps and from this full 3D reconstructions.

In the appendix we introduce temporal light fields which exploit the temporal direction

to apply a foreground object removal.
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11 Outlook
The improved structure tensor introduced in this thesis does not only achieve better

results in analyzing homogeneous light fields, it also extends the area of application to

heterogeneous light fields. Unfortunately, the boundary value problem remains, even

for the improved structure tensor. That means boundaries between two neighboring

objects are bad estimated, as shown in the analysis of asymmetric Gaussian kernel.

There we achieved an improvement but no optimal solution. This problem could be

solved by combining the structure tensor with the zero crossing method. Zero crossings

determine transitions between objects better and could enhance the introduced total

variation, that correct transitions become more defined.

Aside this, new application methods are possible using heterogeneous light fields, such

as food inspection or material classification. Considering other heterogeneous light fields

like polarized light fields also the analysis of BRDF information becomes feasible. In the

end, due to the fast processing of the structure tensor and the possibility to parallelize

the EPI processing, also movie analysis becomes an important field of research in near

future.
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A Temporal Light Fields
The previously introduced light fields are all captured in horizontal or vertical spatial

directions to achieve epipolar-plane images (EPIs) which encode scene depth informa-

tion. In this chapter we introduce temporal light fields by acquiring temporal image

sequences using a single camera at a fixed position. The acquisition of the sequences

can be triggered in equidistant or random times, depending on the intended use. In its

properties, a temporal light field is closely related to an optical flow approach. Using

equidistant trigger times makes temporal light fields suitable to determine object ve-

locities which are encoded as slopes in the horizontal and vertical EPIs.

Additionally, temporal light fields are suitable for applying foreground/background

segmentation, and thus can support foreground object removal.

Considering moving foreground objects against a static background makes it possible

to segment foreground and background related regions by analyzing slopes in the ver-

tical and horizontal EPIs. Thus a reconstruction of the full static background without

interfering foreground objects is possible. In the following we want to detail how this

foreground object removal works and to demonstrate its applicability to some exemplar

data sets. For the analysis, only horizontal EPIs are considered since this suffices for a

demonstration of foreground removal.

A.1 Foreground object removal

For the proposed foreground object removal algorithm, images can be captured at ran-

domly times. Each sequence can consist of arbitrary mount of images while a minimal

required number of 10 images is mandatory for this method. Otherwise the needed

filter operations are not properly applicable. A subset of such a sequence is shown

Figure A.1: A subset of the captured temporal light field. The full light field contains 47

images while only 9 are displayed. At the red horizontal line an EPI is sliced out and plotted

below. The larger version of the input subset is shown in figure A.3.
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(a)

(b)

Figure A.2: (a) This image shows the gray scaled value related color sorted EPI. (b) This

image shows the mask which addresses background related content. In this image, white ad-

dresses background-related content and black foreground-related content.

in figure A.1 which contains in total 47 images. The displayed EPI shows that ev-

erything related to the background has vertical orientation, while everything else has

other slopes. Thus, to extract the background, it is only necessary to determine regions

having vertical orientations.

With the assumption that interfering objects can appear randomly at each position in

the EPI makes it likely that no vertical orientation can be found in some EPI regions.

To avoid this we sort the colors in each EPI row with respect to its gray scaled con-

verted value. That guarantees that pixel with similar color content are close to each

other as shown in figure A.2 (a).

An additional property which can be seen in the sorted EPI is that interfering objects

are either moved to the upper, to the lower or to both boundaries of the image. Thus

the correct background-related content needs to be centrally located in temporal EPI

direction. The analysis of this central EPI region is evaluated in two ways. Firstly, to

address foreground-related image content we apply the Structure Tensor. By exploit-

ing coherence c and disparity d estimates we can address background-related content

by checking for vertical orientations with a high reliability. Thus we use a coherence

threshold ξ and a disparity threshold χ, to address background-related content which

has c > ξ and |d| < χ. Anything else is classified as foreground content. Unfortunately,

texture-less regions will also be defined as foreground. To avoid that, we secondly focus

exclusively on the vertical gradient η. Regions with vertical gradients below a thresh-

old θ relate to the background, and everything above this threshold θ relate to the

foreground. By merging both constraints we obtain binary masks, which address fore-

ground and background regions as seen in figure A.2 (b). The shown masks relate to

the sorted EPI as shown in figure A.2. After addressing all background-related pixels

we can postulate that more than 50% of the addressed pixels relate to the background.

Thus it is possible to determine for each EPI column a median value, and average all

pixels inside an ǫ environment around this median value. This final averaging reduces

image noise and also represents the extracted static background as demonstrated in

figure A.3.
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Figure A.3: Shown is a subset of 9 images. The entire temporal light field consists of 47

images in total. The bottom image represents the final background reconstruction where all

the foreground content is removed.
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Figure A.4: This temporal light field consists of 42 images in total. Shown is a subset of 3

images. The right-most image represents the background reconstruction.

Figure A.5: The temporal light field consists of 53 images in total. Here only 3 images are

selected and shown. The right-most image shows the final background reconstruction using all

images.



B Orientation estimation

Disparity evaluation for the 2D Structure Tensor (Scharr filter)

Figure B.1: The first column shows the center view image. The second column shows the

related disparity map. The last row visualizes the mean relative error distribution in the image.

The chosen inner Gaussian smoothing is σ[5×5] = 0.5 and the outer Gaussian smoothing is

τ[9×9] = 1.3
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Disparity evaluation for the 2.5D Structure Tensor (Scharr filter)

Figure B.2: The first column shows the center view image. The second column shows the

related disparity map. The last row visualizes the mean relative error distribution in the image.

The chosen inner Gaussian smoothing is σ[5×5] = 0.5 and the outer Gaussian smoothing is

τ[9×9] = 1.3
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Disparity evaluation for the 3D Structure Tensor (Scharr filter)

Figure B.3: The first column shows the center view image. The second column shows the

related disparity map. The last row visualizes the mean relative error distribution in the image.

The chosen inner Gaussian smoothing is σ[5×5] = 0.5 and the outer Gaussian smoothing is

τ[9×9] = 1.3
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Disparity evaluation for the 4D Structure Tensor (Scharr filter)

Figure B.4: The first column shows the center view image. The second column shows the

related disparity map. The last row visualizes the mean relative error distribution in the image.

The chosen inner Gaussian smoothing is σ[5×5] = 0.5 and the outer Gaussian smoothing is

τ[9×9] = 1.3
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Figure C.1: This figure shows the front end of the designed program. The program itself helps

the user to find a valid light field camera setup. Thus the user gets informed about wrong placed

parameter and is also supported by auto-completion if parameters can be computed.

C.0.1 Detailed derivation of Theta

For the depth reconstruction of the obtained disparity map the camera parameter focal

length f , baseline b and pixel pitch p are needed. These parameters define the relation

between the depth Z and the disparity d, as given by the equation

Z[m] =
f[px] b[m]

d[px]
with f[px] =

f[m]

p[m]

, (C.1)

This equation maps the computed disparity information back onto a depth value and is

not only valid for light-field imaging but also for stereo or multi-view stereo approaches.

In light-field imaging using the Structure Tensor approach, it is only possible to com-

pute the disparity in a 2 px range ∆d around a given horopter disparity dh as seen in

figure 3.1. Thus the generalized disparity boundaries become

d+ = dH +
∆d

2
, d− = dH − ∆d

2
(C.2)
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which leads to

∆d = d+ − d−. (C.3)

This constraint with equation C.1 provides the depth borders and the depth range

∆Z = Z− − Z+ (C.4)

where, to keep the depth range positive, the related depth border values swap position.

When the target scene exceeds the depth borders the detectable disparity range is

also exceeded, and a global shift needs to be applied to keep the slopes in measurable

range. This process of global shifting was introduced in Diebold et al.[20] and explained

in chapter 4 for extending the measurable range of light-field processing for sparsely

sampled data sets.

On the other hand, if the target scene depth range is smaller than ∆Z then the disparity

resolution attained is less than possible. Thus it can be worth knowing the range of

scene depth in order to adapt one’s processing to attain the highest quality light-field

range estimates.

Knowing the range of depths ∆Z at a certain distance ZH and knowing the disparity

range ∆d, a constraint for the principal camera parameter is attained through equation

C.1 in equation C.2 and used to establish depth borders, leading to

Z− =

f[m] b[m]

p[m]
ZH

(

f[m] b[m]

p[m]
−∆dZH

) (C.5)

Z+ =

f[m] b[m]

p[m]
ZH

(

f[m] b[m]

p[m]
+∆dZH

) (C.6)

These results are inserted in equation C.3 and rearrangement to the principal camera

parameter. The resulting equation becomes

f[m] b[m]

p[m]

=
∆dZ2

H +∆dZH

√

Z2
H +∆Z2

∆Z
(C.7)

where the principal camera parameter reduces to a single conceptual parameter

θ(b, f, p) =
f[m] b[m]

p[m]

:= θ(∆Z,∆d, ZH) (C.8)

This variable θ defines the linkage between depth range ∆Z at a given distance ZH

and the disparity range ∆d constraints with the camera parameters. This makes both

directly comparable and simplifies definition of the light-field camera setup, since the

depth borders are more often of interest.
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Figure C.2: Illustrates the projection of the depth domain to the disparity domain for a

given camera array setup.

C.0.2 The bounded frustum

In addition to a given depth range, the frame size FH of my camera setup is also

defined by the principal camera parameter. In light-field imaging the resulting frame

size is defined by the visible depth content of all cameras. Thus it becomes

FH =
R[px]ZH

f[px]
− b[m]C (C.9)

where R[px] is the image resolution and C the number of cameras employed. Together

with the depth range constraint, this spans a frustum-shaped volume which defines

the measurable extent of the light-field camera. Objects to be measured must lie inside

this frustum.

In addition, the depth of field DoF needs to enclose the defined frustum, as shown

in figure 3.1. That ensures that all captured images are sharp in the range of interest.

These boundary conditions and the fact that just a finite number of objectives and

cameras are available limit possible setup configurations in their minimal and maximal

achievable baseline b and focal length f . Capturing a light-field scene without knowledge

of the setup will lead to poor use of the data. The complexity of the controllable

parameters and the constraints coupling depth of field, field of view, and the bounded

frustum make it difficult to design a setup satisfying all requirements. In order to

prevent unintended results and to provide adequate control over the capturing process,



114 Appendix C. Light-Field Camera Configurator

it is important to put thought into the setup. With this in mind, it became clear that

an interactive utility supporting these calculations would be useful.

We designed a toolbox, shown in figure C.1, that automatically completes the setup,

where possible, and also informs the user when parameters are inconsistent with the

overall setup.

C.0.3 Usage of the light field camera configurator

Parameters which can be derived from entered values are automatically inserted and

will be updated when changing related input parameters. Parameters are interpreted

as inputs when the ”fix it” flag 34 is tagged. An active fix it flag locks the related

parameter and the program can no longer change its value. Only values not so flagged

will be adapted automatically (the flag can be unset at any time).

If a valid value has been entered, the input window 32 is set to green, indicating that

it is consistent with other related values. When the entered value is not consistent, or

it cannot yet be compute, the input window is set to red. Information outputs which

require no input are grayed. Next we will introduce one method to define a light-field

setup. In general there are several different methods to find a suitable setup, but we

focus on the most intuitive one, starting with the principal camera parameter.

Step one: The light-field camera parameter

To define a light-field camera setup we start with the camera parameters ( 1 - 7 ).

These parameters can be selected as initial requirement but can also be fixed if the

camera is known. Without a known camera, it is better to start with the bounded

frustum. Note that for a fully defined camera parameter set, it is not necessary that

all input windows 32 be set.

C.0.4 Step two: The bounded frustum

First is to establish the disparity range around the selected horopter ( 9 , 10 ). Alter-

natively, the near disparity 14 and the far disparity 13 can be entered. If a known

camera is selected, the bounded frustum is defined. An alternative way to define the

bounded frustum is to define the relative depth values instead of the disparity values

( 11 , 12 or 15 , 16 ). When the camera setup is not defined, the bounded frustum can

be selected first by using the depth range ∆Z 11 , the disparity range ∆d 9 and a

depth location such as ZH . After entering these parameters, the value θ 8 can be

computed, which provides initial constraints on the camera setup.

C.0.5 Step three: Depth of Field

The depth of field 27 is an equally important part of the light-field camera configurator.

It is defined as the difference between the near limit distance 25 and the far limit



115

b
a
s
e
li
n
e
 t

(v
e
rt

)

v

v

v

v

v

v

v

v

b
a
s
e
li
n
e
 t

(v
e
rt

)

baseline s
(hori)

baseline s
(hori)

v

v

v

t

sz

2

2

Figure C.3: Camera array example. The baseline defines the distance from either two neigh-

boring vertical or two horizontal cameras.

distance 26 . To compute depth of field, the subject distance 20 , the f-number 22

and the circle of confusion 23 are needed. A rule of thumb is to choose the circle of

confusion as twice the size of the pixel pitch to guarantee optimal sharpness. Additional

information about the depth of field gives the hyperfocal distance 24 . It is a special

subject distance beyond which the far limit distance becomes infinity.
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Figure C.4: Shows the relation between the Depth of Field and the circle of confusion size.

C.0.6 Step four: Blender and precision evaluation

To export the setup to the blender environment, the number of vertical and horizontal

cameras 28 are required. Only rectangular grid structures can be exported.

For an evaluation of errors occurring due to misaligned cameras or varying focal lengths,

a baseline jitter 30 or a focal length jitter 29 can be applied. Additionally, a misalign-

ment of the camera orientation 31 can be applied. All entered jitter values are normally
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distributed and added to the mean values of each camera respectively. The entered val-

ues define the standard deviation of the normal distribution.

Finally, the geometrical and estimation precisions are computed 34 . In the first line

the geometrical precision is computed, which describes the depth computation error

(standard deviation) with respect to a baseline jitter. In the second line the estimation

precision is computed, relating to the disparity 35 value. For the Structure Tensor

method, this describes the minimal distance distinguishable between two disparities.
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Parameter list

1 f[m] Focal length for each camera in the array.

2 b[m] The distance of two neighboring cameras.

3 Rx[px],Ry[px] Image resolution.

4 β The aspect ratio, computed from the image size.

5 P[m] Distance between two neighboring photo-sensitive areas (same color).

6 α Pixel aspect ratio, computed from the pixel pitch.

7 S[m] Sensor size resulting from Pixel Pitch and Resolution.

8 θ[px·m] Theta is defined as the product of baseline (2) and focal length (1).

9 ∆d[px] The disparity range in which one wants to measure disparities .

10 dH[px] The disparity horopter. Related to depth horopter

11 ∆D[m] Depth range, which is defined by the disparity range.

12 ZH[m] Horopter depth is the counterpart of the horopter disparity .

13 d−[px] The minimum disparity value.

14 d+[px] The maximum disparity value.

15 Z+[m] The minimum allowed depth value.

16 Z−[m] The maximum allowed depth value.

17 ZHopt[m] Turning point in depth-disparity-diagram.

18 F[m] Resulting Field of View of light-field camera.

19 γ[deg] Aperture Angle of the camera setup.

20 s[m] Focus point of each camera lens (needed to compute the DoF).

21 Subject Distance can be locked to the horopter depth.

22 F# focal ratio, f-ratio, f-stop.

23 c[m] Circle of confusion, necessary to compute the depth of field.

24 H[m] Distance to focus where far limit distance is at infinity.

25 ZN [m] Near distance limit of acceptable sharpness.

26 ZF [m] Far distance limit of acceptable sharpness.

27 DoF[m] Depth of field. Difference between near and far distances.

28 Numbers of cameras in a light-field array. (rectangular grids only)

29 ∆f ,∆b,∆r Additive normally distributed focal length inaccuracy, baseline jitter

(Axis eligible) and rotation jitter (Axis eligible).
30 Input window.

31 Units of the values.

32 ”Fix it” flags to define fixed input values.

33 Lock tag, vertical and horizontal direction changes parallel.

34 Depth estimation inaccuracies for Structure Tensor estimation and geo-

metrical inaccuracies.
35 ∆dgeo,∆dst Structure Tensor precision assumption.

36 Simple mode and extended mode switch.
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C.0.7 Equations List:

9 ∆d = d+ − dH (C.10)

9 ∆d = dH − d− (C.11)

11 ∆Z = Z− − ZH (C.12)

11 ∆Z = ZH − Z+ (C.13)

11 ∆Z = Z− − Z+ (C.14)

5 P[m] =
S

R
(C.15)

5 Py =
Px

α
(C.16)

5 Px = Pyα (C.17)

24 H =
f 2
[m]

Fc
+ f[m] (C.18)

25 ZN =

(

H − f[m]

)

s

H +
(

s− 2f[m]

)(C.19)

26 ZF =

(

H − f[m]

)

s

H − s
(C.20)

27 DoF = ZF − ZN (C.21)

18 FH =
SZH

f
− b[m]C (C.22)

7 S = RP[m] (C.23)

7 S =
RxS

Ry

(C.24)

7 S =
RyS

Rx

(C.25)

4 β =
Rx

Ry

(C.26)

2 bm =
θpxP[m]

f[m]

(C.27)

6 α =
Px

Py

(C.28)

17 ZHopt =
√

f[m]b[m] (C.29)

14 d+ = 2∆d+ d− (C.30)

14 d+ = ∆d+ dH (C.31)

14 d+ =
θpxP[m]R

SZ+

(C.32)

13 d− = d+ − 2∆d+ d−(C.33)

13 d− = dH −∆d (C.34)

13 d− =
θpxP[m]R

SZ−

(C.35)

fpx =
f[m]R

S
(C.36)

fpx =
θpxP[m]R

bS
(C.37)

1 f[m] =
θpxP[m]

b
(C.38)

10 dH =
d1− d+

2
(C.39)

10 dH =
θpxP[m]R

ZHS
(C.40)

16 Z− = ∆Z + Z+ (C.41)

15 Z+ = Z− −∆Z (C.42)

3 R =
S

P[m]

(C.43)

3 R = βRy (C.44)

3 R =
Rx

Asp
(C.45)

3 bm =
θpxP

f[m]

(C.46)

8 θpx =
f[m]b[m]

P[m]

(C.47)
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9 ∆d =
θpx (ZH − Z+)

ZHZ+

(C.48)

9 ∆d =
θpx (Z− − ZH)

ZHZ−

(C.49)

16 Z− =
θpxZH

(θpx −∆dZH)
(C.50)

15 Z+ =
θpxZH

(θpx +∆dZH)
(C.51)

12 ZH =
Z−θpx

(θpx +∆dZ−)
(C.52)

12 ZH =
Z+θpx

(θpx −∆dZ+)
(C.53)

12 ZH =
θpx
dH

(C.54)

19 γ =
360

Π
· arctan

(

S

2f[m]

)

(C.55)

θpx =
∆dZ2

H +∆dZH

√

Z2
H +∆Z2

∆Z
(C.56)

34 ∆Zgeo = Z

√

(

∆b

b

)2

+

(

∆f

f

)2

D ∈ {Z+, ...., Z−} (C.57)

34 ∆Zst =
Z2∆dst
bfpx

Z ∈ {Z+, ...., Z−} (C.58)

3 R =
Z−ZH∆ZS

θpxP[m] (ZH − Z+)
(C.59)

3 R =
Z2

H∆dS +∆dSZH

√
ZH +∆Z

∆ZθpxP[m]

(C.60)

3 R =
Z−ZH∆ZS

θpxP[m] (Z1 − ZH)
(C.61)

7 S =
θpxP[m]R (Z− − ZH)

ZHZ−∆d
(C.62)

7 S =
θpxP[m]R (ZH − Z+)

ZHZ+∆d
(C.63)

7 S =
θpxP[m]∆ZR

∆d
(

Z2
H + ZH

√
ZH +∆Z

) (C.64)





D Light-Field Acquisition Toolbox
For the evaluation of synthetic generated images we implemented a light-field acquisi-

tion toolbox for bender. Blender [13] is a free software to render images or movies of

3D modeled scenes. This software is used because it provides depth information with

respect to the rendered images and the possibility to write own extensions in python 3.

The programmed blender toolbox is also written in python 3 and simplifies the place-

ment of camera arrays to capture light fields of static or dynamic scenes. An image of

the control terminal of the programmed toolbox is shown in figure D.1.

The toolbox is suitable to set all light-field camera related parameters. Additional it

is possible to load predefine setups generated with the light-field camera configurator

as introduced in C. That enables the visualization of the frustum for the defined setup

and makes it possible to place scene content at the computed distance as shown in

figure D.6. Next we want to give some examples about different possible light field

camera configurations possible to create directly with the toolbox.

vertical image

resolution

focal length horizontal image

resolution

de ne sensor

size

pixel aspect rato.

Can be de ned

in x-direction

or in y-direction.

size of sensor in

xed direction

select camera

alignmet

numbers of cameras.

First in horizontal,

second vertical

direction.
baseline, distance

between two

neighboring cameras

either in vertical (y) or

horizontal (x) direction

generate set with the

above set number

select Camera

array with the

above set number

and add the

set to the other

selected cameras

switch between cameras

in one light eld setup

render light eld

delete set with the

above set number

set LF reference

number

load light eld

setup from ini- le

lock / unlock loaded

light eld properties.

If locked parameter

cannot be changed.

Figure D.1: Shows the toolbox embedded in blender to define light-field camera setups.
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Regular light-field configuration

Figure D.2: This images show two setup examples of a regular light-field configuration. The

first for a parallel aligned cameras and the second with focused cameras.

Circular light-field configuration

Figure D.3: This images show two setup examples of a circular light-field configuration. The

first for a parallel aligned cameras and the second with focused cameras.
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Spherical light-field configuration

Figure D.4: This images show two setup examples of a spherical light-field configuration.

The first for a parallel aligned cameras and the second with focused cameras.

Special light-fields configuration

inward looking cameras

outward looking cameras

Figure D.5: This images show two setup examples of a special light-field configuration. The

first for inward looking cameras and the second for outward looking cameras.
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Figure D.6: Shows a loaded setup defined with the light-field camera configurator. Now aside

the camera array also the related frustum is displayed. Scenes can now be positioned inside

the frustum.



E Heterogeneous Light Fields

E.1 Color filtered light field image data

The supplementary material contains all captured image data with respect to the real

captured color filtered light fields used for the RGB reconstruction. Additionally we

provide RGB captured images of the objects as reference for the colors. The RGB

images are taken with a Sony ILCE-7E camera while the light-field data is captured

with a PCO edge 5.5 camera.

Figure E.1: The horse scene. The RGB image is taken with a Sony ILCE-7E camera. It is

not representing the ground truth color but illustrates the color distribution of the object. The

heterogeneous light field is captured with a PCO edge 5.5 camera. The captured heterogeneous

light field contains 21 images (top left to bottom right). The filters employed have a full

width half mean value of 10nm with the given mean values: 400nm, 450nm, 500nm, 515nm,

532nm, 550nm, 560nm, 589nm, 600nm, 650nm, 700nm and back down to 400nm.
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Figure E.2: The butterfly scene. The RGB image is taken with a Sony ILCE-7E camera. It is

not representing the ground truth color but illustrates the color distribution of the object. The

captured heterogeneous light field contains 21 images (top left to bottom right). The filters

employed have a full width half mean value of 10nm with the given mean values: 400nm,

450nm, 500nm, 515nm, 532nm, 550nm, 560nm, 589nm, 600nm, 650nm, 700nm and back

down to 400nm.
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Figure E.3: The worm scene. The RGB image is taken with a Sony ILCE-7E camera. It is

not representing the ground truth color but illustrates the color distribution of the object. The

heterogeneous light field is captured with a PCO edge 5.5 camera. The captured heterogeneous

light field contains 21 images (top left to bottom right). The filters employed have a full

width half mean value of 10nm with the given mean values: 400nm, 450nm, 500nm, 515nm,

532nm, 550nm, 560nm, 589nm, 600nm, 650nm, 700nm and back down to 400nm.
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Figure E.4: The pirate scene. The RGB image is taken with a Sony ILCE-7E camera. It is

not representing the ground truth color but illustrates the color distribution of the object. The

heterogeneous light field is captured with a PCO edge 5.5 camera. The captured heterogeneous

light field contains 21 images (top left to bottom right). The filters employed have a full

width half mean value of 10nm with the given mean values: 400nm, 450nm, 500nm, 515nm,

532nm, 550nm, 560nm, 589nm, 600nm, 650nm, 700nm and back down to 400nm.
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(a) (b)

(c) (d)

Figure E.5: (a) shows the central image of the heterogeneous light field given in figure E.3.

An EPI slice, related to the red line is shown underneath. The same for the worm light field

in (b) which relates to figure E.2.(c) shows the central image of the heterogeneous light field

given in figure E.1. An EPI slice, related to the red line is shown underneath. The same for

the pirate light field in (d) which relates to figure E.4.
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Figure E.6: shows the center view of a metal test part and a vertical and horizontal EPI

slice related to the position of the green and blue line. The EPIs illustrate the influence of

illumination flickering.
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[48] F. Lenzen, H. Schäfer, and C. Garbe. Denoising Time-Of-Flight Data with Adap-

tive Total Variation. In Proceedings ISVC, pages 337–346. Springer, 2011.

[49] M. Levoy and P. Hanrahan. Light field rendering. In Proc. SIGGRAPH, pages

31–42, 1996.

[50] R. Li, Z. Bing, and L. Ming. A New Three-Step Search Algorithm for Block Motion

Estimation. In IEEE Trans. Circuits And Systems For Video Technology, 2004.

[51] I. Light and Magic. OpenEXR fileformat. http://www.openexr.com/, 2013.
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