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Abstract
Classical models of pattern formation in systems of reaction-diffusion equations are based
on diffusion-driven instability (DDI) of constant stationary solutions. The destabilisation
may lead to emergence of stable, regular Turing patterns formed around the destabilised
equilibrium. In this thesis it is shown that coupling reaction-diffusion equations with ordinary
differential equations may lead to de-novo formation of far from equilibrium steady states. In
particular, conditions for so called (ε0, A)-stability (resp. stability in epi-graph-topology) are
given, yielding from bistability and hysteresis effects in the null sets of nonlinearities.
A model exhibiting coexistence of Turing-type destabilisation and stable far from equilibrium
steady states, is proposed. It is shown, under suitable conditions, that DDI and (in)stability
can be derived from so called quasi-stationary model reduction. Moreover, similar to a result
for ordinary differential equations, proved by Tikhonov, the dynamical behaviour of the
reduced and the unreduced model are similar. It is shown that the spectral properties of the
operators resulting from linearisation of the unreduced system, determining the long-term
behaviour around a steady state, are reflected in the spectral properties of the operators
resulting from linearisation of the reduced system. The given conditions are satisfied by a
larger range of classical models, as illustrated by application to a degenerate version of the
Lengyel-Epstein model.
The dynamical behaviour of reaction-diffusion equations for large diffusion and on finite time
intervals is essentially reflected by their so called shadow systems. In this thesis, existence and
stability of steady states with jump-type discontinuity is investigated and compared for this
reduction. The results show that, in case of static patterns, not only the short-term behaviour,
but also the long-term behaviour of the reduced system is reflected in the unreduced system.
Moreover, a result showing Turing-type destabilisation for such shadow systems, given in a
joint-paper, is generalised.
Finally, such shadow systems are reduced by application of a quasi-stationary model reduction
leading to a scalar integro-differential equation. It is shown that the quasi-stationary model
reduction is regular in the sense of Turing-type destabilisation and dynamical behaviour on
finite time intervals. Hence, reaction-diffusion-ODE models may be reduced to scalar integro-
differential equations in order to investigate the qualitative behaviour around homogeneous
steady states and the qualitative behaviour on finite time intervals. A hypothesis is that the
long-term behaviour is similar, but a proof is missing.
The result shows that a link between reaction-diffusion-ODE systems and scalar integro-
differential equations exists and that the mechanisms of pattern formation may be investigated
based on the reduction.





Zusammenfassung
Klassische mathematische Modelle zur Beschreibung von Musterbildungsprozessen basieren
auf Turing Instabilität: ein örtlich homogener stationärer Zustand wird durch die zusätzliche
Betrachtung von Diffusion destabilisiert. Diese Destabilisierung kann, unter entsprechenden
Annahmen, zur Konvergenz gegen stationäre Zustände in der Nähe des Ursprungszustands
(Turing Muster) führen. In der vorliegenden Arbeit wird gezeigt, dass die Kopplung von
Reaktionsdiffusionsgleichungen mit gewöhnlichen Differenzialgleichungen zu einer neuartigen
de-novo Bildung von Mustern mit Sprung-Unstetigkeiten führen kann. Es werden Bedingungen
für sogenannte (ε0, A)-Stabilität (auch: Stabilität in der Epigraphtopologie) gezeigt. Die
Stabilität basiert auf Bistabilität und hysteretischen Effekten in der Nullstellenmenge der
Nichtlinearitäten. Es wird ein Modell vorgestellt, das beides, Turing Destabilisierung und
Existenz von (ε0, A)-stabilen stationären Lösungen, die sich nicht in der Nähe des Ursprungszu-
stands befinden, aufweist.
Des Weiteren wird gezeigt, dass es unter entsprechenden Voraussetzungen möglich ist, die
Koexistenz von Turing Destabilisierung und Hysteresis auf Grundlage einer quasi-stationären
Reduktion des Modells festzustellen. Ähnlich zur Tikhonov-Reduktion für gewöhnliche Dif-
ferenzialgleichungen wird gezeigt, dass das dynamische Verhalten der Lösungen der Reak-
tionsdiffusionsgleichungen anhand des quasi-stationären Modells untersucht werden kann. Es
wird gezeigt, dass die spektralen Eigenschaften, die das Langzeitverhalten um eine stationäre
Lösung determinieren, ähnlich sind. Die in dieser Arbeit gezeigten Bedingungen für die
Regularität in diesem Sinne werden von einer größeren Klasse von Gleichungen erfüllt, wie am
Beispiel des Lengyel-Epstein Modells gezeigt wird.
In dieser Arbeit werden Existenz und Stabilität von stationären Lösungen mit Sprung-
Unstetigkeiten für Shadowsysteme untersucht und mit Existenz und Stabiliät der ursprünglichen
Systeme verglichen. Es zeigt sich, dass, im Falle stationärer Muster, nicht nur das Kurzzeitver-
halten, sondern auch das Langzeitverhalten wiedergespiegelt wird. Des Weiteren wird ein
Ergebnis aus einer gemeinsamen Veröffentlichung über Turing Destabilisierung in Shadowsys-
temen verallgemeinert.
Zuletzt wird gezeigt, dass eine quasi-stationäre Reduktion auf Shadowsysteme angewendet
werden kann. Diese Reduktion ist regulär im Sinne der Turing Destabilisierung und auf
endlichen Zeitintervallen. Für die resultierende skalare Integro-Differenzialgleichung wird
gezeigt, dass sie eine Turing Instabilität aufweist und es werden Ergebnisse über das dynamis-
che Verhalten präsentiert. Zusammenfassend wird gezeigt, dass das qualitative Verhalten
von Lösungen bestimmter Reaktionsdiffusionsgleichungen auf Grundlage einer Reduktion zu
skalaren Integro-Differenzialgleichung untersucht werden kann.
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1 Introduction

A huge variety of (de-novo) pattern formation can be observed in nature, such as symmetry
breaking of mouse embryonic stem cell clusters [vdBBJB+14], formation of vegetation on
sand dunes [DW15], development of phenotypes of fruit flies [LJ89], extremity-formation
in sea anemones [GM72], or stripe formation in zebra-fish [QP02]. Patterns have been
observed in chemical reactions as well [LE91]. For a general survey, see [Mur02]. Recently,
pattern formation processes have been used for the description of human diseases or human
development, such as several types of cancer [FMV02], as well as in neurogenesis [LM10].
In this thesis, we describe two aspects of pattern formation using local properties of spatially
homogeneous and spatially inhomogeneous equilibria: The first is destabilisation of a previous
state of the system leading to a dynamically non-constant behaviour. The second is stability
of the arising pattern. A third, non-local, property is the temporal connection of both local
properties by the dynamical behaviour of the considered concentration or substance. We
consider Turing-type destabilisation of spatially homogeneous stationary solutions, also called
spatially homogeneous steady states. Moreover, we investigate stable patterns exhibiting
hysteresis effects. Turing-type destabilisation means that a steady state is stable if inter-
and intra-compartmental interaction is considered to be spatially local (i.e. no spatial
interaction is considered), but is unstable if spatial interaction, such as diffusion, is considered.
In general, Turing-destabilisation is a local phenomenon and does not answer questions
about the dynamical behaviour after destabilisation. However, dynamical behaviour has
been investigated for particular systems of reaction-diffusion equations considering nonlinear
dynamics, for example in [GM72, HN15]. In a system with hysteresis, the output of a system
does not solely depend on the input, but also on the history of the system. Depending on the
history, the response to an input may be different. Here, different branches of steady states,
which are not close to each other, are connected by the solution since it is continuous. The
hysteretic effect takes place at the transition layer connecting the states. An example for sharp
layers is a sharp gradient in morphogen concentration in drosophila, [MSHS07, AFZM15].
Especially, if properties (such as expression of a particular gene) are binary, sharp transition
layers are important in order to not artificially introduce additional states through modelling.
Two of the most common mathematical models used to describe pattern formation processes
in developmental biology are reaction-diffusion equations and structured population models.
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1 Introduction

In [Tur52], Turing proposes activator-inhibitor models to model de-novo pattern formation.
He shows that reaction-diffusion equations (RDE) consisting of one activator, i.e. ∂f/∂u > 0,
and one inhibitor, i.e. ∂g/∂v < 0, such as

∂

∂t
u(x, t) = du∆xu(x, t) + f(u(x, t), v(x, t)), x ∈ I, t > 0,

∂

∂t
v(x, t) = dv∆xv(x, t) + g(u(x, t), v(x, t)), x ∈ I, t > 0,

(u(0), v(0)) ∈ C2(I)2,

∂nu, ∂nv = 0, x ∈ ∂I, t > 0,

(1.1)

with du, dv ≥ 0 and I being the spatial domain, can model spontaneous destabilisation of a
spatially homogeneous steady state. The key idea is the combination of instability with respect
to spatially inhomogeneous perturbation and stability with respect to spatially homogeneous
perturbation.
Under structured population models in their simplest form, we understand systems of type

∂

∂t
u(s, t) = F (u(s, t),

∫
Ω

G(u(τ, t), τ)dτ), s ∈ I, t > 0,

u(0) ∈ C(I).
(1.2)

Models of type (1.2) are also known to exhibit stable spatially inhomogeneous stationary
solutions, [LP14], reflecting a distribution which is stable under certain environmental con-
ditions. Exempli gratia, consider a population whose members have different types of genes
and are not interacting or competing for space or nutrients. It is reasonable to assume that
every sub-population tends to a steady state. However, considering inter-type interaction,
such as competition for space or nutrients, these steady states may be destabilised and a
different pattern may be established. An example for a change of stability through interaction,
the ‘competitive exclusion’, is proposed for biology, see [Har60]. The same principle can
also be shown by modelling competition systems of ordinary-differential equations (ODEs),
see [Mur02]. Hence, structured population models may be interpreted as models of de-novo
pattern formation as well. An important, even distinguishing, difference is that steady states
of scalar reaction-diffusion equations have different stability properties. Considered with
space-independent right-hand side and supplemented with homogeneous Neumann boundary
conditions on a convex domain, the patterns are stable only if they are spatially homogeneous,
see [Ni11], Theorem 2.6. This is not necessarily the case for models of type (1.2).
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In this work, we focus on the following two aspects:

1. Consider a reaction-diffusion-ODE system,

∂

∂t
u(x, t) = f(u(x, t), v(x, t)), x ∈ I, t > 0

∂

∂t
v(x, t) = D∆xv(x, t) + g(u(x, t), v(x, t)), x ∈ I, t > 0

(u(0), v(0)) ∈ (C(I)× C2(I)),

(1.3)

supplemented with homogeneous Neumann boundary conditions for v. Can this system
exhibit coexistence of Turing-type destabilisation and hysteresis, i.e. a spatially homo-
geneous steady state is destabilised due to introduction of diffusion and the solution
converges towards a stable steady state with jump-type discontinuities? Moreover, do
reaction-diffusion-ODE systems exhibit other patterns than reaction-diffusion systems?

2. In which sense are mathematical pattern formation processes in systems of type (1.3)
linked to the formation of stable structure distribution in structured population models,
i.e. systems of type (1.2)? Even though it may be scalar, does an integro-differential-type
system reflect the qualitative properties a reaction-diffusion-ODE system? In particular,
does such system exist for reaction-diffusion-ODE models in item 1.?

Modelling de-novo pattern formation with systems of reaction-diffusion equations has
received intensive attention during the last decades, see e.g. [GM72, MM04, MWB+12, VE09]
and references therein. In his seminal paper [Tur52], Turing proposes a linear system of
reaction-diffusion equations whose spatially homogeneous steady state is stable with respect
to spatially homogeneous perturbations, but unstable with respect to spatially inhomogeneous
perturbations. In his paper, Turing shows that a system consisting of a slowly diffusing
activator and a fast diffusing inhibitor is sufficient to observe this type of instability. Moreover,
he suggests that this observation might not be limited to linear reaction-diffusion equations:
it might be a ruling principle for more general activator-inhibitor type models. Depending on
the type of the system, the solution may converge to a spatially inhomogeneous steady state.
This phenomenon, de-novo formation of patterns, can be observed in a sea anemone like
creature called hydra, see [GM72]. Hydras have axial body shape and the ends of the body are
of different type. Hydra’s so-called head has up to dozens of ‘fibre like’ tentacles used to collect
nutrients. So-called feet lack such tentacles and are not used to collect nutrients. In [GM72],
in order to explain the mechanism of head or foot formation, Gierer and Meinhardt postulate
existence of a so-called ‘positional value’ determining the type of extremities. Assuming
existence of such positional value, e.g. a chemical substance, the authors proposed a reaction-
diffusion model for hydra’s de-novo pattern formation. The model is based on Turing’s
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1 Introduction

idea and exhibits regular patterns. For example, it has steady states corresponding to a
positional value decreasing from one end of an interval to the other, reflecting a head-foot
configuration. However, the model cannot explain the so-called ‘grafting experiment’: if
a sufficient amount of ‘head cells’ of a hydra is transplanted to another position on the
body (not to the foot), a head grows at this position while the original head regenerates,
[Bro09]. This results in a hydra having two (or more) heads, presumably giving the polyp
its name. The Gierer-Meinhardt model has been in the focus of discussion and investigation
during the last four decades as a theoretical model for head and foot formation in hydra, e.g.
in [Tak79, NW06, KW08, WW04, HY15]. In such activator-inhibitor models, the diffusion
coefficient of the activator must be, by several orders of magnitude, smaller than the diffusion
coefficient of the inhibitor. However, diffusion coefficients of diffusive substances in biological
or chemical systems diffuse at similar rates or at least at rates which do not differ by orders
of magnitude. This leaves open the question of applicability of the theoretically motivated
Gierer-Meinhardt model and other systems consisting of reaction-diffusion equations only.
In [KCDB90], de Kepper et al give the first known experimental validation of Turing’s idea
of pattern formation in activator-inhibitor systems of diffusive components. They consider a
chemical reaction of activator-inhibitor type where both species diffuse at similar rates if there
is no further interaction. The authors perform the experiment in a gel reactor which can be
understood as binding to an almost non-diffusive substance. In [LE91], Lengyel and Epstein
model these findings using a system of two reaction-diffusion equations. Since the molecules
are not interacting if they are bound, the non-diffusive species does not act as activator, but
as regulator of the diffusion coefficient of the activator. This is also shown by the authors
of [KGM+15] for the model in [LE91]. The drawback of this approach is that it appears
that the resulting patterns are two times continuously differentiable and highly regular. For
the Gierer-Meinhardt model in one-dimensional spatial domain, non-symmetric patterns of a
distribution of spikes with two possible heights can be constructed, see [WW04]. However,
these regular spikes appear to be unstable as numerical investigations of a Lyapunov-Schmidt
reduction of a certain Gierer-Meinhardt model in [WW04] suggest. Moreover, the spikes
are not irregularly distributed. For other models, stable patterns seem to be periodic or
the position of irregularities predefined, [Tak79, NF87, NT90, HL99]. Consequently, de-novo
formation of regular patterns can be described, but modelling of hydra’s grafting experiment
remains an open question.
On the other hand, in [MC03], Marciniak-Czochra considered the case of an immobile activator,
such as cells on a macroscopic scale producing growth factors. This results in a system of
reaction-diffusion equations coupled to ordinary differential equations. Marciniak-Czochra
shows that for an immobile activator (ODE) and diffusive inhibitor (RDE), diffusion-driven
instability (DDI) can occur. In [Här11], based on the approach in [NF87], we construct
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discontinuous steady states to a specific model of this type. In [MCKS13], the authors show
analytically that these steady states are unstable. Numerical investigations of solutions in
[HMC14] imply grow-up of solutions, i.e. blow up as time tends to infinity. Therefore, examples
for reaction-diffusion-ODE models exhibiting diffusion-driven instability and grow-up can be
found in these papers.
On the other hand, in [MCK06], Marciniak-Czochra presents a reaction-diffusion-ODE model
which does not exhibit diffusion-driven instability, but shows a hysteresis-type pattern in
numerical simulations. Stability of such patterns for another systems without diffusion-driven
instability is shown by Köthe [Köt13] using a model-tailored approach.
We are interested in generalising conditions for stability of steady states with jump-type

discontinuities. For a system with cross-diffusion, stability of steady states with jump-type
discontinuities has been investigated in [Wei83] by Weinberger. We use the same topology
and similar strategy of proof to obtain stability for steady states of more general reaction-
diffusion-ODE systems. It is important to notice that both, diffusion-driven instability and
stability of steady states with jump-type discontinuity are local properties. Consequently, we
present a model with coexistence of diffusion-driven instability and hysteresis. Moreover, we
show that a degenerated version of the model proposed in [LE91] exhibits this property as
well. The jump-type discontinuities can be distributed irregularly. Hence, we are confident
that our model can serve as a prototype model for coexistence of de-novo pattern formation
and manipulation of patterns such as in the grafting experiment of hydra. However, the
model’s drawback is that in numerical simulations for very irregular (‘high frequency’) initial
perturbation of the constant steady state, we observe that the arising pattern is irregular as
well, and that its shape is similar to the shape of the initial conditions. On the other hand,
patterns are not irregularly distributed for regular (‘low-frequency’) initial perturbations. The
solution does not assume values of steady states of the kinetic system. Moreover, the arising
pattern varies as the value of the diffusion coefficient varies and the jump-type discontinuities
do not move. To be precise, we can arbitrarily reduce the measure of the domain on which
they may move. Our conjecture is that the pattern observed in numerical simulations may
be a Turing destabilisation induced pre-pattern. Then, the pre-pattern is followed by a
‘hardening’ of the pattern once it is point-wise sufficiently far away from the destabilised
spatially homogeneous steady state. However, this is just a heuristic description.
The model in this thesis is different from the model with arbitrary small diffusion coefficient
of the activator, i.e. diffusing u in (1.3). In [Rei14], Reichelt considers homogenisation for
periodic coefficients of the right-hand side for a system of reaction-diffusion equations. The
diffusion coefficient of the activator U as well as the coefficients depend on a scaling parameter.
Let f, g, dv in model (1.1) be independent from the scaling parameter, but assume that du
tends towards zero. Reichelt’s result implies that the solution converges towards the solution

5



1 Introduction

of the limit system, i.e. the system for diffusion coefficient being equal to zero. Now, one is
tempted to assume that the behaviour of reaction-diffusion-ODE systems may be merely an
approximation of the behaviour of the corresponding system of reaction-diffusion equations
for small diffusion coefficient. However, this argument is not unconditionally valid. Solutions
converge uniformly on any finite time interval, but uniform convergence on (0,∞) cannot be
proved in such generality since stability properties change.

In this thesis, we show that spatially inhomogeneous steady states with irregularly distributed
jump-type discontinuities are stable. Simulations suggest that, even if very weak diffusion is
introduced to the ODE-compartment, the dynamical behaviour changes qualitatively. The
solution converges towards very regular, periodic Turing patterns. Therefore, our hypothesis
is that the stability properties of patterns and the richness of patterns changes fundamentally
in this limit. Mathematically speaking, the hypothesis is that for all stable (for du = 0)
jump-type steady states, approximating sequences of steady states exist as du tends towards
zero, but they are not necessarily stable.
In Turing-type models, it is uncommon to incorporate integral operators. However, for

reaction-diffusion equations, linear integro-operators such as Hilbert-Schmidt-type operators
are added to the diffusion operator, see e.g. [AC12] and references therein.
However, application of homogenisation techniques to cell population models with diffusive
substances between cells can lead to systems of reaction-diffusion equations, in certain cases
coupled to ordinary differential equations, see [MCP08]. As Turing already supposed in
[Tur52], activators and inhibitors do not necessarily need to be modelled using reaction-
diffusion equations. As mentioned above, non-local spatial operators may facilitate activation
and inhibition by the same compartment at another spatial position. In structured population
models, it is a popular approach to incorporate integral-operators in order to represent
immediate interaction, e.g. in [LP14]. Classical models consider linear integral operators,
such as Hilbert-Schmidt operators in order to model consumption of nutrients or in order to
prevent a population from growing above its environmental capacity.In this dissertation, we
investigate the question whether the qualitative properties of pattern formation in reaction-
diffusion-models, is preserved under reduction to an integro-differential equations. If this is
the case, RDEs can be investigated with the help of the reduced system. Particularly, this
aspect is devoted to the investigation of links between systems of reaction-diffusion equations
coupled to ordinary differential equations, such as (1.3), and structured population models
of integro-differential type, i.e. systems of type (1.2). First, we consider quasi-steady state
reduction of compartments described by ordinary differential equations. Then, we apply a
so-called ‘shadow system’ approximation. Finally, the compartment of the shadow system
which is described by an integro-differential equation is assumed to be in its steady state. We
show that, under certain conditions on the nonlinearities, all these limits are regular in the
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sense of existence of steady states and dynamical behaviour. Moreover, the first two are stable
in the sense of stability-preservation of steady states. In particular, we consider

1. quasi-steady state approximation for reaction-diffusion-ODE models, where an ODE-
compartment is in its steady state,

2. a shadow-system approximation for reaction-diffusion-ODE models, leading to a system
of ordinary differential equations coupled to an integro-differential equation,

3. quasi-steady state approximation for the shadow-system, where the integro-differential
equation is assumed to be in its steady state. This leads to a nonlinear scalar integro-
differential equation.

The first two reductions are shown to be regular in the sense of stability-preservation. Con-
cerning the last reduction, preservation of stability is analytically unknown, but numerical
approximations suggest it.
Throughout this work, we assume twice continuously differentiable kinetic terms and assume
that solutions are uniformly bounded on the time-interval (0,∞) in L∞(Ω)-topology, where
Ω denotes the spatial domain. We are interested in the question whether

• Turing-type instability,

• existence and stability of qualitatively similar steady states,

• dynamical behaviour on finite time intervals,

are invariant under the previously described reductions. Under certain conditions on the
right-hand side, a system and its quasi-steady state approximation can be rewritten as a system
with fewer compartments, having exactly the same steady states. In [Tik52]1, Tikhonov shows
for the kinetic (ODE) system that the solution of the unreduced system converges almost
uniformly towards the solution of the quasi-steady state reduction on any finite time interval
in the so-called Tikhonov limit. Since Tikhonov’s result holds for finite time, it does not imply
‘transfer of stability’, only of instability. We extend this result to reaction-diffusion-ODE
systems. Hence, instability is invariant under quasi-steady state approximation if the equation
for the reduced component has a unique global attractor for any given value of the other
components. In [Hop66], Hoppenstaedt extends Tikhonov’s result to the time interval R+ if
the solution is close to an exponentially stable steady state. We give an alternative proof for
this, considering the spectrum directly. We consider the spectra of the linearised operators of
the reduced and the unreduced system and show that they converge towards each other under

1The paper is in Russian and is usually referred to within this context. The result can be found in [BL14].
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1 Introduction

Tikhonov reduction. Consequently, under suitable conditions, Turing-type instability of the
quasi-steady state approximation implies Turing-type instability of the unreduced system for
sufficiently fast reaction of the reduced component. We show invariance of stability of spatially
inhomogeneous steady states under quasi-steady state reduction under stricter conditions only.
In particular, we restrict it to one RDE coupled to two ODEs. The investigations are based
on stability investigations undertaken in order to construct the model with coexistence of DDI
and hysteresis. The next reduction, a shadow-system approximation, leads to consideration of
systems of type

∂

∂t
u(t, x) = f(u(t, x), v(t, x)), x ∈ Ω, t > 0, (1.4)

∂

∂t
ξ(t) =

∫
Ω

g(u(t, x), ξ(t))dx, t > 0, (1.5)

(u(0), ξ(0)) ∈ (C(Ω)× R), (1.6)

arising as limit system for arbitrarily large diffusion coefficient of v in model (1.3) (now
substituted by ξ). The limit, first proposed by Keener in [Kee78] for the stationary problem
of systems of reaction-diffusion equations, i.e. for du, dv > 0 in (1.3), has been in the focus of
research for several decades, see for example [NTY01] or, for a survey, [Ni11] and references
therein. However, the shadow systems, i.e. the dynamical problem, can exhibit very different
behaviour from the original system. In [LN09], the authors show for a particular system that,
under certain conditions, the original system has a global solution and the shadow system
has not. Whereas this limit is studied for diffusive u, we study the case of non-diffusive u.
We investigate, analogously to the quasi-steady state approximation, whether the properties
of these steady states are reflected by steady states of the shadow system. We generalise
findings in [MCHKS13] concerning Turing-type instability (in this context called ‘integro-driven
instability’) and show that coinciding conditions for Turing-type instability exist. Furthermore,
we investigate existence and stability of spatially inhomogeneous steady states and compare
them to the conditions for reaction-diffusion-ODE systems. The investigation is restricted
to few components and shows that common conditions for existence and stability of steady
states of reaction-diffusion-ODE systems and their shadow systems exist. The dynamical
behaviour under reduction is addressed in [MCHKS13], where almost uniform convergence on
any finite time interval is shown. The result has been generalised by Bobrowski in [Bob15].
Patterns of shadow-systems presented in this work are qualitatively different from patterns
of shadow systems of reaction-diffusion systems. Spatially non-monotone steady states of
shadow systems of reaction-diffusion systems are unstable, as shown in [NPY01]. In this
work, we show that steady states of shadow systems of reaction-diffusion-ODE systems with

8



1.1 Outline of the thesis

multiple jump-points can be stable. Hence, they are non-monotone and stable. This leads to
an additional result for reaction-diffusion-ODE systems: Combined with the result of [Bob15]
respectively [MCHKS13], breakdown of patterns in case of introduction of small diffusion to u
in (1.3) appears analytically plausible for large diffusion coefficient of the inhibitor.
Finally, we apply a quasi-steady state approximation to compartment ξ in system (1.4)-(1.5)
and show that Turing-type instability is preserved under reduction assuming suitable conditions.
Moreover, we show that the solution of the unreduced system converges almost uniformly on
any finite time interval towards the solution of the quasi-steady state approximation.
The quasi-steady state approximation is a scalar structured population model of type (1.2).
Hence, Turing-type instability and dynamical behaviour (on any finite time interval) of the
solution of the reduced model qualitatively reflects that of the solution of the unreduced model.
For parameters sufficiently large/small (i.e. ‘close to the limit’), Turing-type instability can
be deduced from the reduced system. Moreover, investigation of the dynamical behaviour
of a scalar integro-differential equation may be easier than investigation of the dynamical
behaviour of the solution of the reaction-diffusion-ODE model. Reaction-diffusion equations
may, under suitable conditions on different time-scales and strength of diffusion, behave similar
to structured population models.
We apply all reductions to the system proposed in order to investigate the first aspect of this
work. The model satisfies all conditions for the Tikhonov-type results with and without spatial
operators and for regularity of the shadow limit. We investigate the dynamical behaviour the
reduced system, showing that the solution cannot decay for suitable initial conditions, but
decays on parts of the spatial domain. This strengthens numerical investigations showing that
the Turing-type destabilisation and the stable steady states with jump-type discontinuity may
be connected in time by the dynamical behaviour.

1.1 Outline of the thesis

In chapter 2, we give a brief overview of the used notation. We recommend to read this
chapter consisting of two pages before reading the other chapters.

In chapter 3, we investigate reaction-diffusion-ODE systems and prove existence of steady
states with jump-type discontinuities on one-dimensional spatial domain in Lemma 3.6. In
Theorem 3.9, we give general conditions for stability of discontinuous steady states in so-
called (ε0, A)-topology as defined in Definition 3.8. More precise, ‘hands-on’, conditions are
given in Lemma 3.10. The (ε0, A)-topology has been introduced before by Weinberger in
[Wei83]. Moreover, we reintroduce the notion of diffusion-driven instability as generalised
by Marciniak-Czochra for reaction-diffusion-ODE systems in [MC03]. Finally, in Section
3.6 we present a system, (3.92)-(3.94), of one reaction-diffusion equation coupled to one

9



1 Introduction

ordinary differential equations exhibiting both local properties: diffusion-driven instability and
existence of stable steady states with jump-type discontinuities. The results about this system
are summarised in Theorem 3.21. Moreover, we show that the so-called ‘Epstein model’,
(3.166)-(3.169), exhibits coexistence of diffusion-driven instability (DDI) and hysteresis as
well. Since these analytical findings are valid only in the neighbourhoods of the destabilised
spatially homogeneous steady state and the stable spatially inhomogeneous steady states, the
dynamical behaviour remains unknown. Hence, we present numerical results in Subsection
3.6.3 showing that, indeed, the solution converges towards a spatially inhomogeneous steady
state with jump-type discontinuity and not towards the stable trivial steady state.
Both systems investigated in Section 3.6 arise as quasi-steady state approximations of systems
of two ordinary differential equations coupled to one reaction-diffusion equation. Several ideas
have been published in [HMCT15]. However, some of them are generalised in this thesis.

In chapter 4, we investigate whether diffusion-driven instability and stability of discontinu-
ous steady states is invariant under quasi-steady state approximation. We extend Tikhonov’s
result for ordinary differential equations, [Tik52], in Lemma 4.2 by showing that stability of
steady states is invariant as well. Hence, DDI is invariant. Moreover, in Lemma 4.5, we show
that a Tikhonov-type result holds true for reaction-diffusion-ODE systems on any finite time
interval. In Lemma 4.7, we show that under certain conditions, stability of steady states of
the unreduced reaction-diffusion-ODE system can be deduced from stability of steady states
of the quasi-steady state approximation. However, we investigate the case that a system
consisting of two ODEs coupled to one RDE is reduced to a system of one ODE and one RDE.
We limit investigation due to the vast technical effort rather than due to counterexamples. In
Subsection 4.5, we apply these findings to the examples investigated in Subsection 3.6. The
findings are illustrated by numerical results in Subsection 4.5.3.

In chapter 5, we investigate the so-called ‘shadow system’. In [MCHKS13], it was shown for
reaction-diffusion-ODE systems that the solution converges almost uniformly on any finite time
interval towards the solution of the shadow system as the diffusion coefficient tends towards
infinity. The result by Bobrowski is stated as Proposition 5.1. Shadow systems are systems of
type (1.4)-(1.6). Hence, we define integro-driven instability as analogy to DDI in Definition
5.2. Due to our result in [MCHKS13] and Bobrowski’s Theorem 5.1, instability of steady
states of the shadow-system implies instability of steady states of the reaction-diffusion-ODE
system. Hence, we give conditions for instability of spatially homogeneous steady states in
Lemma 5.3. Since the kinetic system of a reaction-diffusion-ODE system and its shadow
system coincide, integro-driven instability follows. In Section 5.4, we investigate existence
of steady states of shadow-systems and show in Corollary 5.4 that existence of a steady
state of the shadow system implies existence of steady states of the reaction-diffusion-ODE
system in a neighbourhood of the steady state. Moreover, stability conditions for steady
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1.1 Outline of the thesis

states of shadow-systems are given in Lemma 5.6 and Theorem 5.8. Since stability conditions
resemble those for reaction-diffusion-ODE systems, sufficiently regular right-hand side of
the kinetic system allows to deduce existence of stable discontinuous steady states of the
reaction-diffusion-ODE system. In Section 5.7, we apply the results to the example systems
and illustrate the findings with numerical approximations in Subsection 5.7.3.

In chapter 6, we investigate system (6.12) which results from a quasi-steady state approx-
imation of (1.4)-(1.6), where

∫
Ω g(u(x, t), ξ(t))dx = 0 is assumed. Again, a Tikhonov-type

results holds true for this class of systems, as shown in Lemma 6.2. Existence for the example
system is shown in Lemma 6.1. Moreover, systems of this type can exhibit integro-driven
instability, see Lemma 6.3. System (6.25)-(6.26) exhibits integro-driven instability as shown
in Corollary 6.4. For the scalar integro-differential equation, we show that the solution stays
strictly positive in L∞-topology and provide a lower limit in Theorem 6.7. Hence, this result
holds true on any finite time interval for the solution of the reaction-diffusion-ODE system
for sufficiently large diffusion and sufficiently fast reaction of certain compartments. This is
summarised in Theorem 6.9.
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2 Important preliminaries and notation

In this section, we give an overview over some of the used notation and important preliminaries.
Ω ⊂ Rn denotes a convex, bounded domain. I = (a, b) denotes a bounded interval.
In case of compartments of systems of equations, we use capital letters for compartments
if considering them to be vector-valued, i.e. U = (u1, ..., udim(U)) and analogously for
V,W,Ξ,U δ, V δ,W δ, Ξδ. Ui does not describe a component of U , but different, possibly
vector-valued Us. Lower case letters for compartments describe scalar compartments, i.e.
u, v, w, ξ, uδ, vδ, wδ, ξδ.
Steady states which are not necessarily spatially homogeneous, i.e. can be spatially inhomoge-
neous, are denoted ·̃, e.g. Ũ , ṽ. Spatially homogeneous steady states are denoted ·, e.g. U, v. If
proving a result for generic systems, we assume throughout this manuscript that all solutions
are uniformly bounded, i.e. ‖U‖L∞(0,T ;L∞(I)) <∞ respectively ‖U‖L∞(0,T ;L∞(Ω)) <∞, where
T = ∞ if not specified differently. We assume that all zero-order-terms f, g, h are twice
continuously differentiable on the closure of the set of values assumed by the solution. f, g, h
can be both, vector-valued and scalar. Whether they are vector-valued or not, can be seen
from whether vector valued compartments are used or not.
By classical initial conditions, we mean u(t = 0) ∈ C(I) or u(t = 0) ∈ C(Ω), if the dynamics
of u(t, x) is described by an ordinary differential equation in each x ∈ I respectively x ∈ Ω.
Moreover, we mean by classical initial conditions that u(t = 0) ∈ C2(I) or u(t = 0) ∈ C2(Ω)
if the dynamics of u(t) is described by a reaction-diffusion equation.
For functions f(U, V,W ), g(U, V,W ), h(U, V,W ), we define the matrix
∇Uf(A,B,C) := (∂fj(u1, ..un, v1, ..vm)/∂ui(A,B,C))ij , sometimes also denoted ∇Uf |(A,B,C).
∇V f(A,B,C), ∇W f(A,B,C),∇Ug(U, V,W ), ... are defined analogously. In case of scalar
u,v or w and f(u, v, w), the notation ∂1f(a, b, c) is equal to ∂f(u, v, w)/∂u(a, b, c). Symbols
∂2f(a, b, c) and ∂3f(a, b, c) are defined analogously. The Laplace operator is denoted ∆ or
∆x, while ∇xu(x) denotes the Jacobian matrix with respect to the spatial variable. D1, D, if
used as coefficients of ∆, denote non-negative constants if the corresponding compartment
is scalar and diagonal matrices with non-negative entries if the corresponding compartment
is vector-valued. If the compartment is vector-valued D1, D > 0 means that all entries of
the main diagonal are positive. A non-exhaustive list of symbols is given at the end of the
thesis. Throughout the thesis, we assume that the following assumption is satisfied by all
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2 Important preliminaries and notation

compartments. Under kinetic system of a system of type (1.3), we understand the ordinary
differential equation resulting when setting all diffusion coefficients equal to zero. We call the
right-hand side of the kinetic system zero-order term or kinetic term. Under jump-type steady
states or steady states with jump-discontinuity, we understand steady states constructed in
Lemma 3.17.

Assumption 2.1.

1. U = (ui)i, V = (vi)i, W = (wi)i, Ξ = (ξi),.. are uniformly bounded, i.e. there exist
constants Umin, Umax, Vmin, Vmax ∈ R, such that

−∞ < Umin ≤ min
1≤i≤dim(U)

inf
(t,x)∈R≥0×I

ui(t, x) ≤ max
1≤i≤dim(U)

sup
(t,x)∈R≥0×I

ui(t, x) ≤ Umax <∞,

−∞ < Vmin ≤ min
1≤i≤dim(V )

inf
(t,x)∈R≥0×I

vi(t, x) ≤ max
1≤i≤dim(V )

sup
(t,x)∈R≥0×I

vi(t, x) ≤ Vmax <∞.

and for W , Ξ, u, v, w, ξ, uδ, .. analogously.

2. f, g, h are twice continuously differentiable in all increments on the set of assumed values
of their increments.

3. Initial functions are classical initial conditions.
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3 Reaction-diffusion-ODE systems

In this chapter, we present results on systems of type

∂U

∂t
(x, t) = f(U(x, t), V (x, t)), x ∈ I, t > 0,

∂V

∂t
(x, t) = D∆V + g(U(x, t), V (x, t)), x ∈ I, t > 0,

(U(0), V (0)) ∈ (C(I)dim(U) × C2(I)dim(V )),

(3.1)

supplemented with homogeneous Neumann boundary conditions for V , i.e.

∂nvi(x, t) = 0, x ∈ ∂I, t > 0, (3.2)

for V = (v1, ...vdim(V )). In general, U and V can be vector-valued. When giving specific
conditions for stability of steady states, we restrict analysis to scalar V and U being either
scalar or (in chapter 4) of low dimension, i.e. U = (u1, u2). If U respectively V are scalar, we
denote them u respectively v. First, we are concerned with so called de-novo pattern formation.
It means that

1. there exists a stable steady state (U, V ) of the kinetic system (D = 0) of (3.1), which
becomes unstable if diffusion is introduced, i.e. for D > 0, and

2. there exists a stable spatially inhomogeneous steady state of (3.1)-(3.2) for D > 0, which
we call stable pattern.

For scalar u and v, Marciniak-Czochra et al give sufficient conditions on instability of both
spatially homogeneous and spatially inhomogeneous steady states of systems of type (3.1)-(3.2)
in [MCKS13]. In [KBHG12], the authors give sufficient conditions for a spatially homogeneous
steady state to be unstable for D > 0. The conditions are similar to the concept of ‘unstable
subsystems’ for diffusive U and V in [ASY12], meaning that the matrix (∂ujfi|(U,V ))ij has
an eigenvalue with positive real part. In case of systems of one ordinary differential equa-
tion coupled to one reaction-diffusion equation, it is well known that auto-catalysis of the
non-diffusive component, i.e. ∂uf |(u,v) > 0, is necessary since the system has to satisfy the
so called ‘compensation condition’, ∂uf |(u,v) + ∂vg|(u,v) < 0, due to stability with respect
to homogeneous perturbations. We recall these results and give conditions for stability of
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3 Reaction-diffusion-ODE systems

spatially inhomogeneous steady states of systems of type (3.1)-(3.2), assuming that U = u and
V = v are scalar (for U = (u1, u2), see chapter 4) and I is a bounded interval. Unfortunately,
the use of a Sobolev-type estimate yields a restriction of the proof to one-dimensional spatial
domain. It is unknown to us whether the restriction on dimension can be weakened or not,
but numerical investigations of an example system suggest that there exist stable steady in
higher dimension. Also, stability in L2-topology, which is weaker than the topology used for
one-dimensional spatial domain, can be deduced from the proof.

3.1 Existence of solutions to reaction-diffusion-ODE systems

For classical initial conditions (U(0), V (0)) ∈ (Cα(I)dim(U)×C2+α(I)dim(V )), local existence of
classical solutions of the same spatial regularity yields from Assumption 2.1 (2.), see [Rot84].
If, in addition, the local solution satisfies Assumption 2.1 (1.), it can be extended onto the time
interval R≥0. Even though Assumption 2.1(1.) is rather strong, a violation of this condition
can lead to nonexistence of classical solutions, such as blow-up in finite time, see e.g. [Bal77].
An example for grow-up (blow-up as time tends to infinity) has been given in [MCKS15],
where the authors show grow-up of solutions to the Grey-Scott model with trivial diffusion
coefficient of the compartment u. The Grey-Scott model has uniformly bounded solutions for
positive diffusion coefficient of the activator.

3.2 Diffusion-driven instability

In [Tur52], Turing introduced the notion of diffusion-driven instability for linear systems of
two reaction-diffusion equations,

∂u

∂t
= D1∆u+ f(u, v), x ∈ I, t > 0, (3.3)

∂v

∂t
= D∆v + g(u, v), x ∈ I, t > 0, (3.4)

(u(0), v(0)) ∈ C2(I)2, (3.5)

∂nu = ∂nv = 0, x ∈ ∂I, t > 0. (3.6)

Turing defines diffusion-driven instability as the property of a system of type (3.3)-(3.6) having
a homogeneous steady state which is

1. stable with respect to homogeneous perturbation, i.e. is a stable steady state for
D1 = D = 0,
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3.2 Diffusion-driven instability

2. unstable with respect to inhomogeneous perturbation, i.e. is an unstable steady state
for some D1, D > 0.

We follow the definition in [MC03], where Marciniak-Czochra adapts the notion of DDI for
some diffusion coefficients being trivial. She gives the following definition:

Definition 3.1. A system of type (3.3)-(3.6) exhibits diffusion-driven instability if there
exists a homogeneous steady state which is

• stable for D1 = D = 0,

• unstable for some (D1 > 0 and D ≥ 0) or (D1 ≥ 0 and D > 0).

This weakening of the notion of diffusion-driven instability facilitates modelling of immobile
or non-diffusive substances. The solution to the resulting system of ordinary differential
equations describes their concentration. Examples are cells, see [MRJ+12, Ham12] and
references therein, or chemically ‘immobilised‘ molecules. Such ‘pinned’ molecules were shown
to facilitate formation of a Turing type pattern in a gel reactor, [KCDB90]. However, the
result in [KCDB90] actually considers the case D1 small, but positive and 0 < D large.
Recently, this type of diffusion-driven instability has drawn further attention, [KGM+15,
KBHG12, Rei14]. In [KBHG12], the authors consider homogeneous steady states (U, V ) of
a system of type (3.1) with D1 = 0 and show that if the spectrum of ∇Uf = (∂ujfi|(U,V ))ij
contains an eigenvalue with positive real part, then this steady state is unstable for all D > 0.
We will recall the result that a system of one ordinary differential equation and one reaction-
diffusion equation exhibits diffusion-driven instability only if ∂uf |(u,v) > 0 is satisfied. This
is a direct consequence of Theorem 3.9 which shows that ∂uf |(u,v) < 0 implies stability for
∂vg|(u,v) < 0 and (∂uf∂vg − ∂vf∂ug)|(u,v) > 0.
First, we investigate destabilisation of spatially homogeneous steady states and state a
reformulation of a lemma in [KBHG12] for matrices,

Lemma 3.2 ([KBHG12]). Given a quadratic block matrix of type

Mk =
(
A B

C D − k2 idRm

)
, (3.7)

where k ∈ R, A ∈ Rn,n, B ∈ Rn,m, C ∈ Rm, D ∈ Rm,m and idRm is the identity on Rm. There
exists an injective mapping from the spectrum σ(A) of A into the spectrum σ(Mk) of Mk,

c : σ(A)→ σ(Mk),

λ 7→ c(λ)k,
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such that for all λ ∈ σ(A), it holds that c(λ)k → λ as k →∞. For all λk ∈ σ(Mk) \ c(σ(A)),
it holds Re(λk)→ −∞ as k →∞.

Proof. See [KBHG12], section 2.
We apply Lemma 3.2 to system (3.1)-(3.2):

Lemma 3.3. Consider system (3.1)-(3.2). Denote the linearisation of the kinetic system
around a constant steady state (U, V ) by

A =

∇Uf |(U,V ) ∇V f |(U,V )
∇Ug|(U,V ) ∇V g|(U,V )

 ,
where ∇Uf |(U,V ) = (∂ujfi|(u,v))ij and ∇Ug|(U,V ),∇V f |(U,V ),∇V g|(U,V ) analogously. Consider
the operator L, defined by

L :
(
ϕ

ψ

)
7→

 ∇Uf |(U,V )ϕ+∇V f |(U,V )ψ

∇Ug|(U,V )ϕ+∇V g|(U,V )ψ +D∆ψ

 ,
as operator in (Lp(I))dim(ϕ)+dim(ψ) with domain (Lp(I))dim(ϕ) × (W 2,p(I))dim(ψ). If ∇Uf has
an eigenvalue with positive real part and no eigenvalue with trivial real part, the steady state
(U, V ) is unstable.

Proof. Linear combinations of vectors multiplied by eigenfunctions of the weak Laplace operator
with homogeneous Neumann boundary conditions, denoted ∆w,N , form an orthonormal basis
of (Lp(I))dim(ϕ)+dim(ψ) which is Lp-dense in the domain.Therefore, it is possible to investigate
the eigenvalue problem∇Uf |(U,V ) ∇V f |(U,V )

∇Ug|(U,V ) ∇V g|(U,V ) −Dλk

(e1

e2

)
= λ

(
e1

e2

)
, (3.8)

for any eigenvalue-eigenfunction pair (λk, ψk) of ∆w,N in Lp(I). A solution (λ, c) yields the
following solution to the eigenvalue problem (3.8),

(
λ,

(
c1ψk

c2ψk

))
. (3.9)

Since ∇uf has an eigenvalue with positive real part and no eigenvalue with trivial real part,
application of Lemma 3.2 yields existence of a k∗, such that the matrix in (3.8) has at least one
eigenvalue with positive real part and no eigenvalue with trivial real part for all k > k∗. Con-
sequently, the Hartman-Grobman theorem can be applied for initial conditions (c1ψk, c2ψk),
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3.2 Diffusion-driven instability

leading to nonlinear instability.

Additionally, necessary conditions for DDI is stability under absence of diffusion. Under
absence of diffusion, the system is a nonlinear system of ordinary differential equations and the
Hartman-Grobman theorem can be applied if all eigenvalues have non-trivial real part. From
this, the following well known fact follows: A system of one ordinary differential equation
coupled to one reaction-diffusion equation exhibits diffusion-driven instability at a steady state
(u, v) if the Jacobian matrix of the kinetic system has only eigenvalues with negative real part
and the non-diffusive substance, described by the ODE, is auto-catalytic, i.e. ∂uf |(u,v) > 0
holds.

Lemma 3.4. Consider a system of type,

∂u

∂t
= f(u, v), x ∈ I, t > 0, (3.10)

∂v

∂t
= D∆v + g(u, v), x ∈ I, t > 0, (3.11)

(u(x, 0), v(x, 0)) ∈ (C(I)× C2(I)), (3.12)

∂nv = 0, x ∈ ∂I, t > 0. (3.13)

System (3.10)-(3.13) exhibits diffusion-driven instability at a constant steady state (u, v) if

∂f

∂u

∣∣∣∣
(u,v)

> 0 and
(
∂f

∂u

∂g

∂v
− ∂f

∂v

∂g

∂u

)∣∣∣∣
(u,v)

> 0 and
(
∂f

∂u
+ ∂g

∂v

)∣∣∣∣
(u,v)

< 0, (3.14)

hold, where the derivatives are evaluated at the steady state (u, v). If one of the two last
inequalities is reversed (i.e. excluding the case of assuming value zero), no DDI occurs.

Remark 3.5. In Theorem 3.9 and Lemma 3.10, we prove that any weak steady state (ũ, ṽ)
of class BV (I) × {ṽ ∈ C1(I) |ṽ′′ ∈ BV (I)} is stable if ∂f

∂u |(ũ,ṽ),
∂g
∂v |(ũ,ṽ) ≤ c < 0 and (∂f∂u

∂g
∂v −

∂f
∂v

∂g
∂u)|(ũ,ṽ) ≥ c > 0 hold for all x ∈ I, where the derivatives are evaluated at the steady state.

Proof. In case of homogeneous perturbations (ϕ,ψ), it holds ∆ψ = 0. Therefore, the spectrum
of the linearised operator considered on the subset of spatially constant functions coincides
with the spectrum of the kinetic system. Consequently, according to the Hartman-Grobman
theorem, the second and third condition are necessary and sufficient for stability with respect to
homogeneous perturbations, see e.g. [Tes12]. In case of spatially inhomogeneous perturbation,
application of Lemma 3.2 yields linear instability. Nonlinear instability can be conducted on a
Hartman-Grobman type result for systems of reaction-diffusion equations, see e.g. [Smo83],
which covers the case of trivial diffusion coefficients.
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3 Reaction-diffusion-ODE systems

In case of vector-valued U , DDI can also occur if the spectrum of ∇Uf |(U,V ) consists only of
eigenvalues with negative real part, as it was shown by examples in e.g. [KBHG12, MC03].
However, in this work, we restrict analysis to systems with DDI caused by ‘unstable systems’ in
the sense of [ASY12], i.e. we exclude the case that all elements of spectrum of ∇Uf |(U,V ) have
negative real part. Hence, we exclude the case in which only a finite number of eigenvalues
has positive real part, see Lemma 3.2.

3.3 Existence of irregular steady states

In this section we show existence of infinitely many weak steady states on a finite interval.
All constructed steady states have representatives in BV (I)× C1(I). It is important to note
that this method provides weak steady states which do not necessarily have representatives
in C(I)× C2(I). The construction method resembles the so called shooting method used to
approximate solutions to one-dimensional boundary value problems numerically. The result
states that it is sufficient to find two branches of solutions to the steady state equation of
the ODE subsystem for which the kinetics term of the steady state equation of the reaction-
diffusion subsystem has different a sign. Moreover, under these conditions, a system of ordinary
differential equations coupled to one reaction-diffusion equation exhibits infinitely many steady
states of this type. The proof is based on the multiple shooting method and the basic idea has
been applied to a specific system of one ordinary differential equation coupled to one specific
reaction-diffusion equation in [MTH80]. Another specific model has been investigated by
Köthe in [Köt13] based on potentials, resembling the theory of oscillators, but with nonlinear
kinetics. We generalise the idea in [MTH80] to cover a class of systems of ordinary differential
equations coupled to one reaction-diffusion equation with homogeneous Neumann boundary
conditions.

Lemma 3.6. Consider a system of type

0 = f(U(x), v(x)), x ∈ [0, 1],

Dv′′(x) = −g(U(x), v(x)), x ∈ (0, 1),

v′(0) = v′(1) = 0,

(3.15)

where v is scalar, U can be vector-valued and f is continuous. Assume that there exists v∗ ∈ R,
such that

f(U, v∗) = 0, (3.16)
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3.3 Existence of irregular steady states

has two solutions U−(v∗) and U+(v∗) satisfying

g(U−(v∗), v∗) < 0 < g(U+(v∗), v∗). (3.17)

Moreover, assume that there exists an ε > 0, such that

1. there exists an ‘implicit’ relation with continuous branches,

U−(v) and U+(v), (3.18)

satisfying f(U+(v), v) = 0 = f(U−(v), v) on [v∗ − ε, v∗ + ε],

2. g is continuous on[
min

v∈[v∗−ε,v∗+ε]
U+(v), max

v∈[v∗−ε,v∗+ε]
U+(v)

]
× [v∗ − ε, v∗ + ε],

and [
min

v∈[v∗−ε,v∗+ε]
U−(v), max

v∈[v∗−ε,v∗+ε]
U−(v)

]
× [v∗ − ε, v∗ + ε].

Then there exist infinitely many weak solutions of (3.15) which have representatives in
BV[0, 1]dim(U) × C1[0, 1].

Remark 3.7. If f, g ∈ C1 and det(∇Uf |(U−(v∗),v∗)) 6= 0 6= det(∇Uf |(U+(v∗),v∗)), then items
1. and 2. are satisfied.

Proof. The proof is illustrated in Figure 3.1. First, we assume D = 1 and prove that there
exists xm > 0, such that for all 0 < x∗ ≤ xm there exists a solution of (3.15) on a domain
I = (0, x∗). For arbitrary D > 0, rescaling the spatial variable yields existence of xm > 0
such that for all x∗ ≤ xm/

√
D there exists a solution of (3.15) for I = (0, x∗). By a mirroring

argument, this solution can be extended onto domain I = (0, 2x∗) satisfying periodic Dirichlet
boundary conditions and homogeneous Neumann boundary conditions. Choosing x∗ = 1/(2n)
for sufficiently large n, this can be extended periodically onto I = (0, 1/

√
D).

Since g(U+(v), v) and g(U−(v), v) are continuous on [v∗ − ε, v∗ + ε], there exist strictly
positive ε2 < ε and c, C <∞, such that

0 < c ≤ g
(
U+(v), v

)
,−g

(
U−(v), v

)
≤ C <∞, (3.19)
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xx1 η(x1)

v∗

v∗ − ε

v1
v2

xx1 η(x1)

v∗

v∗ − ε

v1
v2

Figure 3.1: Illustration of the proof of Lemma 3.6. The loosely dotted line represents the
bounds following from (3.19). Left: Construction of periodic steady states. Right:
Construction of non-periodic steady states.

holds for all v ∈ [v∗ − ε2, v
∗ + ε2]. Consider problem

v′′1(x) = −g(U+(v1(x)), v1(x)), x0 < x, (3.20)

with initial values (v1(x0), v′1(x0)) ∈ ((v∗ − ε2, v
∗ + ε2)× (−ε, ε)). For any solution of (3.20)

with sufficiently small 0 < x̃, the mapping x1 7→ (v(x1), v′(x1)) is continuous on [0, x̃]. For
sufficiently small x1, , inequality (3.19) implies that

v′1(x0)− C(x1 − x0) ≤ v′1(x1) ≤ v′1(x0)− c(x1 − x0),

v1(x0) + v′1(x0)(x1 − x0)− C

2 (x1 − x0)2 ≤ v1(x1),

≤ v1(x0) + v′1(x0)(x1 − x0)− c

2(x1 − x0)2,

(3.21)

hold. Hence, for x0 = 0 and v′1(0) = 0 and v1(0) ∈ (v∗, v∗ + ε2) and x2
1 < 2ε2/(C +C2/c), the

estimates

C

√
2ε2

C(1 + C
c )
≤ v′1(x1) ≤ −cx1 ≤ 0, (3.22)

v∗ − C

2
2ε2

C(1 + C
c )
≤ v1(x1) ≤ v∗ + ε2, (3.23)
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3.3 Existence of irregular steady states

hold. Consider problem

v′′2(x) = −g(U−(v2(x)), v2(x))), x1 < x, (3.24)

with initial values (v2(x1), v′2(x1)) = (v1(x1), v′1(x1)). Due to (3.19) and condition (2.) and an
analogous reasoning to (3.21), there exist solutions to (3.24) and a mapping

η : x1 7→ (v2(x1), v′2(x1)) 7→ min{x ∈ R|v′2(x) = 0 ∧ x ≥ x1}, (3.25)

which is continuous on the set of initial conditions defined by (3.21). It satisfies

c

C + c
x1 ≤ η(x1) ≤ x1

C + c

c
≤
√

2ε2

C(1 + C
c )
C + c

c
. (3.26)

It holds η(x1)↘ x1 as v′(x1)→ 0. Additionally, it holds v′(x1)→ 0 as x1 → 0. Consequently,
for all x2 > 0 sufficiently small, there exists a weak solution of (3.15) for D = 1 on I = (0, x2).
Now, there are different ways to proceed:

1. Periodic steady states: It is possible to extend this weak solution onto the set (0, 2x2)
by defining a solution v(x2 + x) = v(x2 − x). For arbitrary I = (0, x̃x), x̃x < 2x2, we
constructed a solution. This solution satisfies

a) homogeneous Neumann boundary conditions,

b) periodic Dirichlet boundary conditions,

on I = (0, 1/(
√
Dn)) for sufficiently large n. Consequently, it can be extended periodically

onto (0, 1/
√
D) satisfying homogeneous Neumann boundary conditions.

2. ‘Irregular’ steady states: Defining a problem for v3 and v4 analogously to v2 and v1

respectively (note the exchange in order), but with initial conditions (v3(0), v′3(0)) =
(v2(η(x1)), v′2(η(x1)) leads to a non-periodic solution satisfying homogeneous Neumann-
boundary conditions on some domain (0, x̃). If the solution assumes values not in
[v∗ − ε, v∗ + ε], the mirroring argument in item (1) can be used instead of irregular
extension. Analogously to item (1), a solution on I = (0, 1/

√
D) is constructed for

sufficiently large n.

By rescaling x̂ = x/
√
D, we obtain, for arbitrary D > 0, existence of weak solutions to problem

(3.15).
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3.4 (ε0, A)-stability for reaction-diffusion-ODE systems

In this section, we introduce (ε0, A)-stability according to [Wei83] and give conditions for
stability of steady states of systems of type (3.1)-(3.2) in this topology.
For I = (0, 1), the neighbourhood basis in BV (I) of a function of bounded variation, denoted
Ũ , with values in [Umin, Umax]dim(U) is defined as

Nε,Umin,Umax(Ũ) = {u ∈BV (I, [Umin, Umax]dim(U)) |

there exists R ⊂ I such that ‖U − Ũ‖2L∞(R) < ε2 and meas(I \R) < ε4}.

We are particularly interested in the situation where the initial function U(x, 0) is close to a
steady state Ũ with finitely many jump-type discontinuities, but U(x, 0) is continuous on I.
If we assume (U(x, 0), V (x, 0)) = (U0(x), V0(x)) ∈ (C(I)dim(U) × C2(I)dim(V )), then the
solution (U(x, t), V (x, t)) of the initial-boundary value problem is continuous for t > 0 due
to Assumption 2.1. If the steady state Ũ is ‘stable’, then U(x, t) is expected to converge
or at least stay close to a spatially discontinuous function. Therefore, the uniform norm
is not appropriate to measure the closeness, see Figure 2.1. On the other hand, in case of
stability in Lp(I) for p < ∞, very small ‘spike’-like perturbations are admissible and may
persist causing the solution to be unstable in L∞(I) and changing qualitative characteristics
of the solution. Using this topology, we want to exclude the case of uncontrolled emergence of
spikes within most parts of the domain. Note that the (ε0, A)-neighbourhood of a function
includes patterns with spikes arbitrarily close to the discontinuities. Even though a proof of
non-occurrence of such spikes is missing, numerical observations imply that no spikes occur
close to the jump-points. It turns out that Nε,Umin,Umax(Ũ) provides us with a reasonable
topology for our purposes.
Following [Wei83], (ε0, A)-stability in this topology is defined as

Definition 3.8 ((ε0, A)-stability). A stationary solution (Ũ , Ṽ ) of system (3.1)-(3.2) is said
to be (ε0, A)-stable for positive constants ε0 and A if the initial functions (U0, V0) satisfy

‖U0 − Ũ‖2L∞(R) + ‖V0 − Ṽ ‖2H1(I) < ε2, (3.27)

for some R ⊂ I with meas(I \R) < ε4, and ε ∈ (0, ε0), then

‖U(·, t)− Ũ‖2L∞(R) + ‖V (·, t)− Ṽ ‖2H1(I) < Aε2. (3.28)

for all t > 0.
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3.5 Conditions for (ε0, A)-stability

Illustration 3.2 shows that the idea of the topology is very close to measurement of concen-
trations by the human eye: The solution is L∞-close to the steady state on a subdomain R
of the domain which has almost the same measure as I, but it is not controlled around the
transition layers, i.e. on I \R. However, it must not blow-up or grow-up. We showed that it
is possible to construct infinitely many steady states which are not isolated in Lp(I)-topology
and have jump-type discontinuities. Hence, the topology can be applied.

Umin 0 1
R

Umax

u(t)
ũ

Figure 3.2: Illustration of the (ε0, A)-topology applied to problem (3.1) for scalar u. A
discontinuous steady state and global existence of classical solutions is assumed.
ũ represents the steady state while u(t) represents the solution for some t.

3.5 Conditions for (ε0, A)-stability

It is important to note that for systems of type (3.3)-(3.6) for vector-valued compartments
UD1 and V D1 , the limit D1 → 0 is not necessarily regular in the sense of stability of steady
states. In [NF87], the authors construct steady states (Ũ0, Ṽ 0) with jump type discontinuity
for D1 = 0, D > 0. Using a perturbation approach, they construct infinitely many steady
states (Ṽ D1 , Ṽ D1) of class C2 for D1 = ε, D > 0. These steady states are Lp(I)-close (p <∞)
to (Ũ0, Ṽ 0). In other words, for every steady state (Ũ0, Ṽ 0) with jump-type discontinuities,
there exists a sequence of steady states (ŨD1 , Ṽ D1) converging towards it in Lp(I) as D1 tends
to zero. However, in [NF87], for D1 > 0, stability of steady states with hysteresis depends
highly on the position of the transition layer and on the type of nonlinearities on the set of
values assumed on the transition layer. This is not the case for D1 = 0, since the transition
layer is of jump-type. Our conditions for stability are based on point-wise evaluation of the
Jacobian matrix on the subdomain on which the steady state is continuous. In section 3.3, we
constructed steady states with arbitrary position of the jump-type discontinuities for D1 = 0
and under rather weak conditions. The authors of [NF87] showed that stability depends on
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3 Reaction-diffusion-ODE systems

the position of the transition layer for D1 > 0. Consequently, there exist infinitely many
stable steady states (Ũ0, Ṽ 0), for which none of the elements of the approximating sequence
(ŨD1 , Ṽ D1) is stable. Therefore, we investigate conditions for stability of steady states with
or without jump-type discontinuity of system (3.1)-(3.2). We do not exclude the case that
kinetic terms f, g depend continuously differentiable on x.
Definition 3.8 allows us to give conditions for (ε0, A)-stability of possibly discontinuous steady
states. Since the proof follows the same lines, we first give general conditions for (ε0, A)-stability
of steady states of systems of ordinary differential equations coupled to reaction-diffusion
equations. We suspect that the conditions can be weakened, but for more technical conditions,
the possibility of a reasonable biological interpretation is unlikely. We first state the theorem
in the most general version. The proof is similar to [Wei83] for a particular system, but is a
generalisation.

Theorem 3.9 (Stability theorem).
Let I ⊂ R be bounded. Under Assumption 2.1, consider system

∂U

∂t
= f(U, V, x), x ∈ I, t > 0,

∂V

∂t
= D

∂2

∂x2V + g(U, V, x), x ∈ I, t > 0,

supplemented with homogeneous Neumann boundary conditions for V and classical initial
conditions (U(x, 0), V (x, 0)) ∈ (C(I)dim(U) × C2(I)dim(V )). Moreover, assume that f, g are
twice continuously differentiable in all variables.
Let (Ũ , Ṽ ) be a weak steady state with finitely many discontinuities of Ũ in x. Denote the
Jacobian matrix of the kinetic system at the steady state by

B(x) =
(
∇Uf(x) ∇V f(x)
∇Ug(x) ∇V g(x)

)
, (3.29)

where ∇Uf(x) = (∂ujfi|(Ũ ,Ṽ )(x))ij and ∇V f,∇Ug,∇V g are defined analogously. If

1. the spectrum of the operator

L :
(
ϕ

ψ

)
→ B(x)

(
ϕ

ψ

)
+D

(
0
∂2ψ
∂x2

)
, (3.30)

considered as operator in (L2(I))(dim(ϕ)+dim(ψ)) with domain (L2(I))dim(ϕ)×(W 2,2
N (I))dim(ψ),

is contained in {λ ∈ C|Reλ ≤ c < 0}. The space W 2,2
N (I) is the subspace of W 2,2(I)

whose elements satisfy homogeneous Neumann boundary conditions.
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3.5 Conditions for (ε0, A)-stability

2. for all x ∈ I, the spectrum of ∇Uf(x) is contained in the left complex half-plane,

⋃
x∈I

Re(σ(∇Uf(x)) ⊂ (−∞,−c), (3.31)

for some c > 0, and

3. for all x ∈ I, ∇V g(x) is negative definite,

then (Ũ , Ṽ ) is (ε0, A)-stable for a pair (ε0, A) with 0 < ε0, A <∞.

For scalar u and v, more precise conditions can be found:

Corrolary 3.10. Consider scalar u and v and let (ũ, ṽ) be a jump-type steady state. Assume
that for all x ∈ I,

∂f

∂u
|(ũ,ṽ)(x) ≤ c < 0, (3.32)

∂g

∂v
|(ũ,ṽ)(x) ≤ c < 0, (3.33)

(∂f
∂u

∂g

∂v
− ∂f

∂v

∂g

∂u
)|(ũ,ṽ)(x) ≥ c > 0, (3.34)

hold. Then the conditions of Theorem 3.9 are satisfied.

Remark 3.11. Stability conditions for vector-valued U = (u1, u2) are shown in chapter 4.
There, the case of different time scales for different components is investigated, similar to the
Tikhonov reduction for ordinary differential equations.

Proof of Theorem 3.9.
Define ϕ(t) := U(t) − Ũ , ψ(t) := V (t) − Ṽ , ϕ0 = ϕ(0), ψ0 = ψ(0). We write the differential
equations for the perturbation of the steady state as

∂

∂t

(
ϕ

ψ

)
= L

(
ϕ

ψ

)
+
(
%

σ

)
, (3.35)

where L denotes the operator resulting from a linearisation around (Ũ , Ṽ ),

L :
(
ϕ

ψ

)
→
(

∇Uf · ϕ+∇V f · ψ
D∆ψ +∇Ug · ϕ+∇V g · ψ

)
. (3.36)

A proof that L is a sectorial operator is deferred to Lemma 3.12 and was provided by Izumi
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Takagi1. Now, condition (1.) implies that there exists a k > 0 such that∥∥∥∥∥eL
(
ϕ

ψ

)∥∥∥∥∥
L2(I)2

≤ ce−kt
(
‖ϕ‖L2(I) + ‖ψ‖L2(I)

)
, (3.37)

holds.
Hence,

‖ϕ(t)‖22 + ‖ψ(t)‖22 ≤ c
(

(‖ϕ0‖22 + ‖ψ0‖22)e−kt

+
t∫

0

(‖%(s)‖22 + ‖σ(s)‖22)e−k(t−s)ds

)
,

(3.38)

holds. Furthermore, because of condition (2.), it holds:

|ϕ(x, t)| ≤ |ϕ0(x)|e−kt +
t∫

0

(|ψ(x, s)|+ |%(x, s)|)ek(t−s)ds, (3.39)

‖ϕ(t)‖22 ≤ c

‖ϕ0‖22e−2kt +
t∫

0

(‖ψ(s)‖22 + ‖%(s)‖22)ek(t−s)ds

 . (3.40)

Since for all x ∈ R, the real part of the spectrum of ∇Uf is contained in (−∞,−c), it holds
that on the subset R ⊂ I which does not contain discontinuities of ũ,

‖ϕ‖L∞(R) ≤ ‖ϕ0‖L∞(R)e
−kt + c

t∫
0

(‖ϕ‖2L∞(R) + ‖ψ‖2∞ + ‖ψ‖∞)e−k(t−s)ds,

‖ϕ‖2L∞(R) ≤ c

‖ϕ0‖2L∞(R)e
−2kt +

t∫
0

((‖ϕ‖2L∞(R) + ‖ψ‖2∞)2 + ‖ψ‖2∞)e−k(t−s)ds

 ,
≤ c

‖ϕ0‖2L∞(R)e
−2kt +

t∫
0

((‖ϕ‖2L∞(R) + ‖ψ‖2H1)2 + ‖ψ‖2H1)e−k(t−s)ds

 ,
≤ c

‖ϕ0‖2L∞(R)e
−2kt + sup

s∈(0,t)
(‖ϕ‖2L∞(R) + ‖ψ‖2H1)2 +

t∫
0

‖ψ‖2H1e−k(t−s)ds

 .
(3.41)

Further, we are interested in estimating ‖ψ‖2H1 . For this purpose, we rewrite the second
equation of (3.35) as

∂ψ

∂t
−D∂

2ψ

∂x2 = ∇Ugϕ+∇V gψ + σ(t). (3.42)

1Tohoku University, Japan
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3.5 Conditions for (ε0, A)-stability

Testing (3.42) with ψT eks yields

1
2

t∫
0

(
∂‖ψ‖22
∂t

+D‖∇ψ‖22

)
eksds

=
t∫

0

∫
I

(
ψT∇Ugϕ+ ψT∇V gψ + ψTσ(t)

)
dxeksds,

(3.43)

t∫
0

(
−k2‖ψ‖

2
2 +D‖∇ψ‖22

)
eksds+

[1
2‖ψ(s)‖22eks

]s=t
s=0

=
t∫

0

∫
I

(
ψT∇Ugϕ+ ψT∇V gψ + ψTσ(t)

)
dxeksds.

(3.44)

Testing (3.42) with ∂ψT /∂t eks, we obtain due to condition (3.) that

t∫
0

(∥∥∥∥∂ψ∂t
∥∥∥∥2

2
+ D

2
∂‖∇ψ‖22
∂t

)
eksds

=
t∫

0

∫
I

(
∂ψT

∂t
∇Ugϕ+ 1

2
∂(ψT∇V gψ)

∂t
+ ∂ψT

∂t
σ(t)

)
dxeksds,

t∫
0

(∥∥∥∥∂ψ∂t
∥∥∥∥2

2
− Dk

2 ‖∇ψ‖
2
2

)
eksds+

[
D

2 ‖∇ψ(s)‖22eks
]s=t
s=0

=
t∫

0

∫
I

(
∂ψ

∂t
∇Ugϕ+ k

2

∣∣∣ψT∇V gψ∣∣∣+ ∂ψ

∂t
σ(t)

)
dxeksds−

∫
I

1
2

∣∣∣ψT∇V gψ∣∣∣ eks
s=t
s=0

(3.45)

The terms involving ∂ψ/∂t are rather hard to handle. To obtain an estimate independent of
∂ψ/∂t, we consider the right-hand side of (3.45) with the following two estimates for arbitrary
c∗ > 0:

|∂ψ
T

∂t
∇Ugϕ| ≤

c∗

2

(
∂ψ

∂t

)2
+ 1

2c∗ (∇Ugϕ)2, (3.46)

and
|∂ψ

T

∂t
σ(t)| ≤

(
c∗

2 + c∗

8 + c∗

2 + c∗

8

)(
∂ψ

∂t

)2
+ 1

2c∗σ(t)2,

≤ 5
4c
∗
(
∂ψ

∂t

)2
+ c

2c∗ (ϕ4 + ψ4).
(3.47)
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Using (3.46), (3.47), estimating (3.45) further, leads to

t∫
0

(
−Dk2 ‖ψ‖

2
2e
ks
)
ds+

[
D

2 ‖∇ψ(s)‖22eks
]s=t
s=0
≤
(7

4c
∗ − 1

) t∫
0

∥∥∥∥∂ψ∂t
∥∥∥∥2

2
eksds

+ 1
2c∗

t∫
0

∫
I

(∇Ugϕ)2 + c(ϕ4 + ψ4)

 eksds
+

t∫
0

∫
I

k

2 |ψ
T∇V gψ|dxeksds−

k

2
[∣∣∣ψT∇V gψ∣∣∣ eks]s=t

s=0
.

(3.48)

For c∗ = 4/7, we obtain an estimate independent of ‖∂ψ/∂t‖2.
Multiplying (3.44) by k/2, adding it to (3.48), choosing c∗ = 4/7 and using the estimate

|σψ| ≤ c(|ϕ|2 + |ψ2|)|ψ| ≤ c(|ϕ|4 + |ψ|4 + |ψ|2), (3.49)

yield an estimate of the type

‖ψ(t)‖2H1 ≤ c
(

(‖ϕ0‖22 + ‖ψ0‖2H1)e−kt

+
t∫

0

(
(‖ϕ(s)‖44 + ‖ψ(s)‖44) + ‖ϕ(s)‖22 + ‖ψ(s)‖22

)
e−k(t−s)ds

)
.

(3.50)

The estimate on H1-norm allows to estimate (3.41). But first, taking Umin ≤ U ≤ Umax and
Vmin ≤ V ≤ Vmax and f, g ∈ C2 into account, the Taylor expansion yields (note boundedness
of solutions and regularity of f, g) that

|%(x)| ≤ c(|ϕ(x)|2 + |ψ(x)|2), (3.51)

|σ(x)| ≤ c(|ϕ(x)|2 + |ψ(x)|2), (3.52)

holds, hence
‖%(t)‖22, ‖σ(t)‖22 ≤ c

(
‖ϕ‖44 + ‖ψ‖44

)
,

‖%(t)‖1, ‖σ(t)‖1 ≤ c
(
‖ϕ‖22 + ‖ψ‖22

)
.

(3.53)

holds.
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Applying the first estimate of (3.53) to (3.38) yields

t∫
0

‖ψ‖22e−k(t−s)ds ≤ c
( t∫

0

(‖ϕ0‖22 + ‖ψ0‖22)e−ks

+
s∫

0

(‖σ(τ)‖22 + ‖%(τ)‖22)e−k(s−τ)dτe−k(t−s)ds

)
,

≤ c
( t∫

0

(‖ϕ0‖22 + ‖ψ0‖22)e−ks

+
s∫

0

(‖ϕ(τ)‖44 + ‖ψ(τ)‖44)e−k(s−τ)dτe−k(t−s)ds

)
,

≤ c
(

(‖ϕ0‖22 + ‖ψ0‖2H1)

+
t∫

0

s∫
0

(‖ϕ(τ)‖44 + ‖ψ(τ)‖44)e−k(s−τ)dτe−k(t−s)ds

)
.

Now, see that
‖ϕ‖pp ≤ ‖ϕ‖

p
L∞(R) + |Umax − Umin|pmax µ(I \R). (3.54)

Applying (3.54) and Sobolev inequalities to (3.50) yields

‖ψ(t)‖2H1 ≤ c
((
‖ϕ0‖2L∞(R) + ‖ψ0‖2H1

)
e−kt

+
t∫

0

(
‖ϕ(s)‖2L∞(R) + ‖ψ(s)‖2H1

)2
e−k(t−s)ds+ µ(I \R)

)
.

≤ c
((
‖ϕ0‖2L∞(R) + ‖ψ0‖2H1

)
e−kt

+
(

sup
s∈(0,t)

(
‖ϕ(s)‖2L∞(R) + ‖ψ(s)‖2H1

) )2
+ µ(I \R)

)
.

(3.55)

Using this estimate for ‖ψ‖2H1 , we obtain from (3.41) that

‖ϕ‖2L∞(R) ≤ c
(

(‖ϕ0‖2L∞(R) + ‖ψ0‖2H1) +
(

sup
s∈(0,t)

(‖ϕ‖2L∞(R) + ‖ψ‖2H1)
)2

+ µ(I \R)
)
, (3.56)

holds.
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Combining the estimates for ‖ϕ(t)‖2L∞(R) and ‖ψ(t)‖2H1 , we obtain

‖ϕ(t)‖2L∞(R) + ‖ψ(t)‖2H1 ≤ C
(

(‖ϕ0‖2L∞(R) + ‖ψ0‖2H1)

+
(

sup
s∈(0,t)

(
‖ϕ(s)‖2L∞(R) + ‖ψ(s)‖2H1

) )2
+ µ(I \R)

)
.

(3.57)

Choosing A > max(C, 1) and ε0 such that

1 +A2ε2
0 + ε2

0 <
A

C
, (3.58)

allows to estimate for all 0 < ε ≤ ε0, hence

‖ϕ(0)‖2L∞(R) + ‖ψ(0)‖2H1 < ε2 ⇒ ∀t>0‖ϕ(t)‖2L∞(R) + ‖ψ(t)‖2H1 < Aε2, (3.59)

holds. We proved (ε0, A)-stability.

Lemma 3.12. (Provided by Izumi Takagi)
Under the assumptions of Theorem 3.9, the operator L, defined in Theorem 3.9, is sectorial.

Proof. Define n = dim(ϕ) and m = dim(ψ) and N = n+m. It is clear that L2(I)n×W 2,2
N (I)m

lies dense in L2(I)N due to the Rellich embedding theorems. The numerical range is bounded:∣∣∣∣∣Re
(
L
(
ϕ

ψ

)
,

(
ϕ

ψ

))∣∣∣∣∣ ≤|(∇Ufϕ+∇V fψ, ϕ)L2(I)|+ |(∇Ugϕ+∇V gψ, ψ)L2(I)| (3.60)

+ |D(ψ′, ψ′)L2(I)|, (3.61)

Due to Assumption 2.1, all entries of ∇Uf,∇V f,∇Ug,∇V g, considered as x-dependent ma-
trices, are in L∞(I). Hence, there exists a constant C, such that we can estimate further
by

≤ C
(
‖ϕ‖2L2(I)n + ‖ψ‖2L2(I)m +

∥∥ψ′∥∥2
L2(I)m

)
(3.62)

The imaginary part of the numerical range can be estimated analogously. Hence, the numerical
range is contained in some set [−C,C] × i[−C,C] for some C < ∞. It is left to prove that
there exists a λ0 > 0 such that range of λ0 id−L is L2(I)N .
Due to Assumption 2.1, (∇Uf − λ id) is invertible for sufficiently large λ. Hence, problem

(L − λ id)
(
ϕ

ψ

)
=
(
f

g

)
, (3.63)
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can be reformulated as

ϕ = (∇Uf − λ id)−1(f −∇V fψ) (3.64)

∇Ug(∇Uf − λ id)−1(f −∇V fψ) + (D∆x +∇V g − λ id)ψ = g. (3.65)

The operator in the second summand of the left-hand side of (3.65) is invertible for λ sufficiently
large. Moreover, its inverse is compact on L2(I)m. Now, see that

‖∇Ug(∇Uf − λ id)‖∞ = |λ|−1
∥∥∥∇Ug(id−λ−1∇Uf)

∥∥∥
∞

= O(λ−1), (3.66)

as λ tends to ∞. Hence, for sufficiently large λ, the operator on the left-hand side of (3.65)
is invertible and the inverse is compact on L2(I)m. Now, since the inverse is a bounded
operator from L2(I)m into the domain of L, we can show that the range of L − λ id is closed
for sufficiently large λ. This shows that the range of L− λ id is L2(I)N . We obtained that the
operator L is sectorial.

Proof of Corollary 3.10. In the following proof, c denotes a strictly positive generic constant.
We investigate the spectrum of the operator resulting from linearisation around the steady
state (ũ, ṽ).
Define

L :
(
ϕ

ψ

)
7→
(
∂f
∂u |(ũ,ṽ)(x)ϕ+ ∂f

∂v |(ũ,ṽ)(x)ψ
∂g
∂u |(ũ,ṽ)(x)ϕ+ ∂g

∂v |(ũ,ṽ)(x)ψ

)
=:
(
b11(x)ϕ+ b12(x)ψ
b21(x)ϕ+ b22(x)ψ

)
(3.67)

We investigate the eigenvalue problem

(L − λ)
(
ϕ

ψ

)
+
(

0
D∆ψ

)
= 0. (3.68)

For λ /∈
⋃
x∈Ω(b11(x)) ⊂ (−∞,−c), we obtain

ϕ = − b12
b11 − λ

ψ. (3.69)

Inserting this into the equation for ψ, we obtain(
− b21b12
b11 − λ

+ b22 − λ
)
ψ +D∆ψ = 0. (3.70)

Testing this expression formally with ψ, yields∫
I

(
− b21b12
b11 − λ

+ b22 − λ
)
ψ2dx = D

∫
I

(∇xψ)2dx. (3.71)
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Defining λ = λ1 + iλ2, the imaginary part of the equation reads

− iλ2

∫
I

(
b12b21
|b11 − λ|2

+ 1
)
ψ2dx = 0. (3.72)

It follows that λ2 is uniformly bounded. Moreover, for b11b22 ≥ 0, it follows that λ2 = 0 or
ψ = 0. In case of λ2 = 0, (3.71) reads∫

I

(b11 − λ1)−1
(
λ2

1 − (b11 + b22)λ1 + (b11b22 − b12b21)
)

︸ ︷︷ ︸
A1(x,λ1)

ψ2dx =
∫
I

(∇xψ)2dx, (3.73)

where A1(x, λ1) is strictly negative for −c ≤ λ1. Consequently, ψ = 0.
In case of b11b22 < 0, consider the real part of (3.71), which reads

∫
I

(
−(b12b21)(b11 − λ1)

|b11 − λ|2
+ b22 − λ1

)
︸ ︷︷ ︸

A2(x,λ1,λ2)

ψ2dx = D

∫
I

(∇xψ)2dx. (3.74)

Again, A2(x, λ1, λ2) is strictly negative for −c ≤ λ1 for some 0 < c and ψ = 0 follows.
Summarising, there exist c1, c2 > 0 such that the resolvent set of the operator L contains the
set

{λ ∈ C|Re(λ) > −c1 or | Im(λ)| > c2}. (3.75)

3.6 Application to example models

3.6.1 A receptor-based model

Derivation of the model

In [MC03], Marciniak-Czochra considered a model of type

∂

∂t
u =− µ1u− buw + dv +m1u

2, (x, t) ∈ I × (0, T ), (3.76)

∂

∂t
v =− µ2v + buw − dv, (x, t) ∈ I × (0, T ), (3.77)

∂

∂t
w =D∆w − µ3w − buw + dv +m2u

2, (x, t) ∈ I × (0, T ), (3.78)

(u(x, 0), v(x, 0), w(x, 0)) ∈(C(I)2 × C2(I)), (3.79)

∂nw =0, (x, t) ∈ ∂I × (0, T ), (3.80)
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to model pattern formation in hydra.
Model (3.76)-(3.80) exhibits diffusion-driven instability. Numerical investigations performed
in [MC03] show blow-up in finite time. We modify the right-hand side of the model to obtain
uniformly bounded solutions,

∂

∂t
u =− µ1u− buw + dv +m1

u2

1 + ku2 , (x, t) ∈ I × (0, T ), (3.81)

∂

∂t
v =− µ2v + buw − dv, (x, t) ∈ I × (0, T ), (3.82)

∂

∂t
w =D∆w − µ3w − buw + dv +m2

u2

1 + ku2 , (x, t) ∈ I × (0, T ), (3.83)

∂nw =0, (x, t) ∈ ∂I × (0, T ), (3.84)

supplemented with classical initial conditions. We consider the so called ’quasi-steady state’
approximation, a differential-algebraic equation arising from setting δ = 0 in

∂

∂t
u =− µ1u− buw + dv +m1

u2

1 + ku2 , (x, t) ∈ I × (0, T ), (3.85)

δ
∂

∂t
v =− µ2v + buw − dv, (x, t) ∈ I × (0, T ), (3.86)

∂

∂t
w =D∆w − µ3w − buw + dv +m2

u2

1 + ku2 , (x, t) ∈ I × (0, T ), (3.87)

∂nw =0, (x, t) ∈ ∂I × (0, T ), (3.88)

supplemented with classical initial conditions. We consider the case δ = 0 to be an approxima-
tion for δ small, if (3.86) has a unique solution v(u,w) for δ = 0. Later, we show that δ = 0
can be considered to be a suitable approximation. For δ = 0, we obtain the following system:

∂

∂t
u =− µ1u−

(
1− d

µ2 + d

)
buw +m1

u2

1 + ku2 , (x, t) ∈ I × (0, T ), (3.89)

∂

∂t
w =D∆w − µ3w −

(
1− d

µ2 + d

)
buw +m2

u2

1 + ku2 , (x, t) ∈ I × (0, T ), (3.90)

(u(x,0), w(x, 0)) ∈ (C(I)× C2(I)), (3.91)

supplemented with homogeneous Neumann boundary conditions for w. Substituting û =
(1 − d

d+µ2
) b
µ1
u, ŵ = (1 − d

d+µ2
) b
µ1
w and t̂ = t

µ1
, we obtain the rescaled quasi-steady state

approximation,
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∂

∂t̂
û =− û− ûŵ + m̂1

û2

1 + k̂û2
, (x, t) ∈ I × (0, µ1T ), (3.92)

∂

∂t̂
ŵ =D∆ŵ − µ̂ŵ − ûŵ + m̂2

û2

1 + k̂û2
, (x, t) ∈ I × (0, µ1T ), (3.93)

∂nŵ =0, (x, t) ∈ ∂I × (0, µ1T ), (3.94)

(û(0, x), ŵ(0, x)) ∈(C(I)× C2(I)). (3.95)

For simplicity, we drop the notation ·̂ in the following and define

fr(u,w) = −u− uw +m1
u2

1 + ku2 , (3.96)

gr(u,w) = −µw − uw +m2
u2

1 + ku2 . (3.97)

In this chapter, we focus on investigation of (3.92)-(3.94) and show in chapter 4 that (in)stability
as well as existence of steady states of system (3.85)-(3.88) for small δ can be derived from
system (3.92)-(3.94).

Remark 3.13. Note that for µ1 = 0, µ1 can be replaced by µ2 for rescaling, resulting in a
system of type

∂

∂t̂
u =− ûŵ + m̂1

û2

1 + k̂û2
,

∂

∂t̂
w =D∆ŵ − ŵ − ûŵ + m̂2

û2

1 + k̂û2
.

(3.98)

In case of d = 0, (3.85) and (3.87) do not depend on v and a reduction is therefore not
necessary.

Existence and boundedness of solutions

In this section we show that model (3.92)-(3.94) satisfies Assumption 2.1, i.e. the solution is
uniformly bounded and the right-hand side is twice continuously differentiable. Regularity of
the right-hand side can be seen directly. It is left to prove uniform boundedness:

Lemma 3.14. System (3.92)-(3.94) has a unique solution of class C1(0, T ;C(I) × C2(I)).
Moreover, for all non-negative initial conditions and ε > 0, there exist 0 ≤ t∗ <∞ such that
for all t ≥ t∗ and all x ∈ I it holds that

0 ≤u(x, t) ≤ 1
2k

(
m1 +

√
m2

1 − 4k
)

+ ε, (3.99)

0 ≤w(x, t) ≤ m2
2k2m1µ

(
m1 +

√
m2

1 − 4k
)2

+ ε. (3.100)
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Proof. Existence of a unique local-in-time solution yields from regularity of the right-hand
side, see [Rot84]. For 0 ≤ u,w, it holds that

− (1 + w)u ≤ ∂

∂t
u ≤ (−1 +m1

u

1 + ku2︸ ︷︷ ︸
A(u)

)u, (3.101)

and A(u) < 0 for u > (m1 +
√
−4k +m2

1)/(2k).
Consequently, it holds for some t∗ ≥ 0 that

D∆w − (µ+ u)w ≤ ∂

∂t
w ≤ D∆w − wµ+

(
m1 +

√
−4k +m2

1

)2
m2

2k2m1
. (3.102)

Consequently, for all ε > 0, there exists a t∗ ≥ 0, such that it holds for all t ≥ t∗ that

0 ≤ u(x, t) ≤ 1
2k

(
m1 +

√
−4k +m2

1

)
+ ε, (3.103)

0 ≤ w(x, t) ≤ m2
2k2m1µ

(
m1 +

√
−4k +m2

1

)2
+ ε. (3.104)

Existence of steady states

First, note that all steady states satisfy the following equation

0 =− (1 + w)u+m1
u2

1 + ku2 , x ∈ I, (3.105)

0 =D∆w − (µ+ u)w +m2
u2

1 + ku2 , x ∈ I, (3.106)

∂nw =0, x ∈ ∂I. (3.107)

Equation (3.105) is equivalent to

(u = 0) or
(
−(1 + w)(1 + ku2) +m1u = 0

)
, (3.108)

hence (3.105) has the following solutions:

u0(w) :=0, (3.109)

u−(w) := 1
2k(1 + w)

(
m1 −

√
m2

1 − 4k(1 + w)2
)
, (3.110)
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u+(w) := 1
2k(1 + w)

(
m1 +

√
m2

1 − 4k(1 + w)2
)
. (3.111)

In Lemma 3.20, we show that stability of steady states depends highly on the branch. Therefore,
we define the different branches,

Definition 3.15 (branches of steady states).
We say that a piece-wise continuous steady state (ũ(x), w̃(x)) of system (3.92)-(3.95) is of
class u+ (resp. u− or u0) at x ∈ I if

ũ(x) = u+(w̃(x)), (resp. u−(w̃(x)) or u0(w̃(x))), (3.112)

holds.

We summarise and note that we can distinguish branches u− and u+ by a simpler criterion:

Lemma 3.16.
The solution u∗(w) of −(1 + w)u+m1u

2/(1 + ku2) = 0 has three branches,

u0(w) = 0, (3.113)

u±(w) = 1
k

 m1
2(1 + w) ±

√(
m1

2(1 + w)

)2
− k

 . (3.114)

For u 6= 0 and 0 ≤ w ≤ wr := m1/(2
√
k)− 1,

1. u∗(w) = u+(w) if and only if d
dwu

∗(w) ≤ 0,

2. u∗(w) = u−(w) if and only if d
dwu

∗(w) ≥ 0

hold.

Proof. Deriving,

u+(w) = 1
k

 m1
2(1 + w) +

√(
m1

2(1 + w)

)2
− k

 , (3.115)

locally with respect to w implies d
dwu+(w) < 0. Combining this with

u+(w)u−(w) = 1
k
, (3.116)

yields
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d

dw
u−(w) > 0. (3.117)

Using this characterisation, we can prove existence of spatially homogeneous steady states
and classify them:

Lemma 3.17 (Existence of steady states).

1. For arbitrary parameters,
(u,w) = (0, 0), (3.118)

is a spatially homogeneous steady state of model (3.92)-(3.95).

2. Let m1 < m2 and

µ >
1
m1

2m2 −m1
m1

+ 2

√(
m2
m1

)2
− m2
m1

 , (3.119)

hold. Then exists a strictly positive k∗, such that for all k < k∗ exist exactly two strictly
positive homogeneous steady states of model (3.92)-(3.95).
If k < min(k∗, ((m2−m1)(m1µ))2), then both strictly positive homogeneous steady states
are of class u−.

3. For 2
√
k < m1 < m2 there exist infinitely many weak steady states (ũ, w̃) ∈ (BV (I)×

C1(I)) of model (3.92)-(3.95) which are for all x ∈ I of class u+ or u0.

Proof. Proof of Items 1. and 2. Item 1. can be seen immediately by inserting (u,w) = (0, 0)
into (3.92)-(3.95). To obtain nontrivial spatially homogeneous steady states, see that a solution
(u,w) is a spatially homogeneous steady state only if

∂u

∂t
= fr(u,w) = −(1 + w)u+m1

u2

1 + ku2 = 0, (3.120)

holds. Solving fr(u,w) = 0 yields u = 0 or

u

1 + ku2 = 1
m1

(1 + w). (3.121)

Inserting (3.121) into

∂w

∂t
= gr(u,w) = −(µ+ u)w +m2

u2

1 + ku2 = 0, (3.122)
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and solving for w yields
wfr,gr(u) = m2

m1

u

µ+ (1− m2
m1

)u. (3.123)

Note that wfr,gr(u) is k-independent.
The nullclines of fr and gr for u 6= 0 are described by

u

w
wfr,gr

gr = 0

fr = 0

m1µ3
m2−m1

1√
k

Figure 3.3: Nullclines of fr and gr and wfr,gr for parameters m1 = 1.44,m2 = 2, µ2 =
4.2, k = 0.1.

wfr=0(u) := −1 +m1
u

1 + ku2 , (3.124)

wgr=0(u) := m2
µ+ u

u2

1 + ku2 . (3.125)

If there exists u > 0, such that wfr=0(u) = wfr,gr(u), then (u,wfr,gr(u)) is a homogeneous
steady state.
Note that wfr=0(u) has a unique positive maximum at u = 1/

√
k, is strictly concave on

[0,
√

3/
√
k), strictly convex on (

√
3/
√
k,∞) and satisfies

lim
u↘0

wfr=0(u) = lim
u↗∞

wfr=0(u) = −1. (3.126)

Recall m1 < m2. Defining l(u) := m2u
2/(µ+ u),

l(u)− wgr=0(u) = m2
µ+ u

(
1− 1

1 + ku2

)
u2, (3.127)

l(u)− wgr=0(u) > 0, (3.128)

lim
k→0
‖l − wgr=0‖L∞([0,c]) = 0, (3.129)
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holds on any finite interval (0, c]. Moreover wfr,gr(u) is strictly increasing and continuous on
R≥0 \ {(m1µ)/(m2 −m1)}, non-negative and convex on [0, (m1µ)/(m2 −m1)), negative on
((m1µ)/(m2 −m1),∞) and satisfies

lim
u↗ m1µ

m2−m1

wfr,gr(u) =∞, (3.130)

lim
u↘ m1µ

m2−m1

wfr,gr(u) = −∞. (3.131)

Furthermore, it holds that

wfr,gr(0) = wgr=0(0) = 0, (3.132)
dwgr=0
du

(0) = 0 < dwfr,gr
du

(0). (3.133)

It follows that wgr=0(ε) < wfr,gr(ε) holds for ε small.
Combining this fact with (3.130), the uniform boundedness of wgr=0 and the strict convexity
of wfr,gr on (0, (m1µ)/(m2 −m1)), it follows that if and only if (u, l(u)) and (u,wfr,gr(u))
intersect twice on (0, (m1µ)/(m2 −m1))× (0,∞), there exists k∗1 such that for all k < k∗1, it
holds that (u,wfr=0(u)) and (u,wfr,gr(u)) intersect twice.
We solve

l(u) = m2u
2

µ+ u
= m2
m1

u

µ+ (1− m2
m1

)u = wfr,gr(u), (3.134)

for u and obtain the following solutions for u 6= 0:

u± = m1µ− 1
2(m2 −m1) ±

√(
m1µ− 1

2(m2 −m1)

)2
− µ

(m2 −m1) . (3.135)

Inequality u± > 0 holds if and only if

µ >
1
m1

, (3.136)

and (
m1µ− 1

2(m2 −m1)

)2
>

µ

(m2 −m1) , (3.137)

hold. If (3.136) is satisfied, (3.137) is equivalent to

µ2 + 2(m1 − 2m2)
m2

1
µ+ 1

m2
1
> 0. (3.138)
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Recall m2 > m1. Inequality (3.138) is satisfied if and only if

µ <
1
m1

2m2 −m1
m1

− 2

√(
m2
m1

)2
− m2
m1

 , (3.139)

or

µ >
1
m1

2m2 −m1
m1

+ 2

√(
m2
m1

)2
− m2
m1

 , (3.140)

hold. Note that (
m2
m1

)2
− m2
m1

> 0,

holds. Inequality (3.139) is never satisfied, because

1
m1

2m2 −m1
m1

− 2

√(
m2
m1

)2
− m2
m1

 <
1
m1

, (3.141)

implies µ < 1/m1 if (3.139) holds. Hence, it contradicts (3.136).
Since m2 > m1,

2m2 −m1
m1

+ 2

√(
m2
m1

)2
− m2
m1

> 1, (3.142)

holds. It follows for

µ >
1
m1

2m2 −m1
m1

+ 2

√(
m2
m1

)2
− m2
m1

 , (3.143)

m2 > m1, (3.144)

that (u, l(u)) and (u,wf,g(u)) intersect twice on (0, (m1µ2)/(m2 −m1))× (0,∞). It follows
existence of two homogeneous steady states for sufficiently small k.
To prove that both steady states are of type u−, we use the fact that the steady state
component u is bounded by (m1µ)/(m2 −m1).
Since wfr=0(u) = −1 +m1u/(1 + ku2) is strictly increasing on (0, 1/

√
k),

dw(u)
du

(u∗) > 0, (3.145)

holds at any steady state u∗ for
√
k < (m2 −m1)/(m1µ).

By the characterisation Lemma 3.16, both spatially homogeneous steady states are of type
(u−(w), w) for k < ((m2 −m1)/(m1µ))2.
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w

g(u0(w), w)

g(u−(w), w)

g(u+(w), w)

wr

Figure 3.4: Illustration of the right-hand side of −∂2w/∂x2 = gr(u,w) for different branches
of the solution u∗(w) of ∂u/∂t = fr(u,w) = 0. The parameters for illustration
are D = 1,m1 = 1.44,m2 = 2, µ = 4.2. We can observe that all nontrivial
homogeneous steady states are of type u−.

Proof of Item 3.
Item (3.) is a direct consequence of Lemma 3.6 and the following Auxiliary Lemma.

Auxiliary Lemma 3.18.
Assume 2

√
k < m1 < m2 and w ∈ (0, wr), where wr is defined as in Lemma 3.16. Then,

gr(u0(w), w) < 0, (3.146)

holds, where gr is defined in (3.97). If there exist two positive spatially homogeneous steady
states of type u−, then

gr(u+(w), w) > 0, (3.147)

holds.

Proof of Auxiliary Lemma. For w = 0,

gr(u±(0), 0) = m2
u±(0)2

1 + ku±(0)2 > 0, (3.148)
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holds. Moreover, gr(u+(w), w) is strictly decreasing since derivation with respect to w yields

d

dw
gr(u+(w), w) = −(1 + w)m2

1 + 2k(1 + w)3m1µ3
2k(1 + w)3m1

− m3
1 + 4k(1 + w)3 (m2 −m1)

2k(1 + w)3m1

√
−4k(1+w)2+m2

1
(1+w)2

,

< 0,

(3.149)

for w ≥ 0.
If there exist two spatially homogeneous steady states of type u−, then g(u−(wr), wr) =
g(u+(wr), wr) > 0 holds due to the fact that g(u−(0), 0) > 0 holds, because g(u−(w), w) has
exactly two roots of order one. Then, inequality (3.149) and u+(wr) = u−(wr) yield (3.147).
Inequality (3.146) follows immediately from the fact that

gr(0, w) = −µw < 0, (3.150)

holds for w ∈ (0, wr).

Stability of steady states

To check if the conditions of Theorem 3.9 respectively Lemma 3.10 are satisfied, we need to
investigate the signs of the entries of the Jacobian matrix of the kinetic system and the sign
of its determinant.

Lemma 3.19. Consider a system of type

∂

∂t
u =f(u,w), x ∈ I, (3.151)

∂

∂t
w =D∆w + g(u,w), x ∈ I, (3.152)

∂nw =0, x ∈ ∂I, (3.153)

(u(0, x), w(0, x)) ∈(C(I)× C2(I)) (3.154)

Denote the Jacobian matrix of the kinetic system, evaluated at (u,w) as B(u,w) and let u∗(w)
be defined implicitly by f(u,w) = 0, where we assume that |∂uf |(u∗(w),w)| ≥ c > 0 holds. Then

det(B(u∗(w), w)) = −∂2f(u∗(w), w) d
dw

g(u∗(w), w)
(
d

dw
u∗(w)

)−1
, (3.155)

holds, where ∂2f(a, b) := ∂f(u,w)
∂w (a, b).
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Proof. Define ∂1f(a, b), ∂1g(a, b), ∂2g(a, b) analogously to ∂2f(a, b). First, note that

d

dw
g(u∗(w), w) = du∗(w)

dw
∂1g(u∗(w), w) + ∂2g(u∗(w), w),

d

dw
g(u∗(w), w)dw

∗(u)
du

− ∂2g(u∗(w), w)dw
∗(u)
du

= ∂1g(u∗(w), w),
(3.156)

holds, where w∗(u) is defined as the local inverse of u∗(w). Inserting this into the determinant,
we obtain

detB(u∗(w), w) = ∂1f(u∗(w), w)∂2g(u∗(w), w)− ∂2f(u∗(w), w)∂1g(u∗(w), w),

= ∂1f(u∗(w), w)∂2g(u∗(w), w) + ∂2f(u∗(w), w)∂2g(u∗(w), w)dw
∗(u)
du

− ∂2f(u∗(w), w) d
dw

g(u∗(w), w)dw
∗(u)
du

,

= ∂2g(u∗(w), w)
(
∂1f(u∗(w), w) + dw∗(u)

du
∂2f(u∗(w), w)

)
− ∂2f(u∗(w), w) d

dw
g(u∗(w), w)dw

∗(u)
du

,

= ∂2g(u∗(w), w) d

du
f(u,w∗(u))︸ ︷︷ ︸

=0

−∂2f(u∗(w), w) d
dw

g(u∗(w), w)dw
∗(u)
du

,

= −∂2f(u∗(w), w) d
dw

g(u∗(w), w)dw
∗(u)
du

.

Lemma 3.20. Let 2
√
k < m1 < m2 and denote the Jacobian matrix of the kinetic system of

(3.92)-(3.95), evaluated at (u(x), w(x)) by

B(x) := B(u(x), w(x)) =
(
∂ufr(u(x), w(x)) ∂wfr(u(x), w(x))
∂ugr(u(x), w(x)) ∂wgr(u(x), w(x))

)
=:
(
b11(x) b12(x)
b21(x) b22(x)

)
.

Then, for 0 ≤ w(x) < m1/(2
√
k)− 1 =: wr it holds that

b11(x)


> 0, u(x) = u−(w(x)),
< 0, u(x) = u+(w(x)),
< 0, u(x) = u0,

b12(x)


< 0, u(x) = u−(w(x)),
< 0, u(x) = u+(w(x)),
= 0, u(x) = u0,

(3.157)

b21(x)
{
> 0, u(x) = u−(w(x)),
< 0, u(x) = u0,

b22(x)


< 0, u(x) = u−(w(x)),
< 0, u(x) = u+(w(x)),
< 0, u(x) = u0,

(3.158)
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where u−, u+, u0 are defined in Definition 3.15. Moreover, it holds that

det(B(u+(w(x)), w(x)) > 0. (3.159)

Proof. First, we calculate the Jacobian matrix of the kinetic system for given arbitrary (u,w):

B(x) := B(u,w)(x) :=
(
b11 b12

b21 b22

)
:=

−(1 + w) +m1
2u

(1+ku2)2 −u
−w +m2

2u
(1+ku2)2 −(µ+ u)

 . (3.160)

The signs for u = u0 = 0 follow immediately from inserting u = 0. The signs of b12 and b22 for
arbitrary u can be derived directly, too.
For fr(u,w) = −(1 + w)u+m1u

2/(1 + ku2) = 0,

b11 = −(1 + w) + 2
1 + ku2m1

u

1 + ku2 ,

= −(1 + w) + 2
1 + ku2 (1 + w),

=
(
−1 + 2

1 + ku2

)
(1 + w),

(3.161)

holds. Combining (3.161) with Lemma 3.16, i.e. u−(w) ≤ 1/
√
k ≤ u+(w), yields the result

for b11.
We investigate b21: Now, fr(u,w) = 0 implies

b21 = −w +m2
2u

(1 + ku2)2 ,

= −w + m2
m1

(1 + w) + m2
m1

(
−1− w +m1

2u
(1 + ku2)2

)
,

= m2
m1

+
(
m2
m1
− 1

)
w + m2

m1
b11.

(3.162)

The continuity of b21 and b11(wr) = 0 implies the result for b21. Recall (3.149), i.e.

d

dv
gr(u+(w), w) < 0, (3.163)

and Lemma 3.16, i.e.
d

dv
u+(w) < 0. (3.164)

Now, application of Lemma 3.19 yields the sign of the determinant.
Combining the results, we obtain the following Theorem for model (3.92)-(3.94):
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Theorem 3.21 (Coexistence of DDI and hysteresis for model (3.92)-(3.94)).
Under conditions

m1,m2, k, µ > 0,

m1 < min(m2,
√
m2),

µ >
1
m1

2m2 −m1
m1

+ 2

√(
m2
m1

)2
− m2
m1

 ,

there exists
0 < k∗ ≤ min

((
m2 −m1
m1µ

)2
,
m2

1
4

)
, (3.165)

such that for all 0 < k < k∗, the following hold:

1. system (3.92)-(3.95) has exactly two strictly positive spatially homogeneous steady states,
(u−(w1), w1) and (u−(w2), w2) with w1 < w2,

2. (u−(w1), w1) is an unstable steady state of system (3.92)-(3.95) and its kinetic system,

3. (u−(w2), w2) is a stable steady state of the kinetic system of (3.92)-(3.95) and an unstable
steady state of (3.92)-(3.95),

4. (0, 0) is a stable steady state of system of (3.92)-(3.95) and its kinetic system,

5. system (3.92)-(3.95) has infinitely many (ε0, A)-stable, weak jump-type steady states
which are at all x ∈ I of class u+ or u0.

3.6.2 Lengyel-Epstein model

In [LE91], Lengyel and Epstein consider the model

∂

∂t
u = D1∆u+ a−

(
1 + 4 v

1 + u2

)
u, (x, t) ∈ I × (0, T ), (3.166)

∂

∂t
v = D∆v + b

(
1− v

1 + u2

)
u, (x, t) ∈ I × (0, T ), (3.167)

∂nu = ∂nv = 0, (x, t) ∈ ∂I × (0, T ), (3.168)

u(x, 0), v(x, 0) ∈ C2(I), (3.169)

where a, b ∈ R≥0, to describe pattern formation in the CIMA reaction, which was described
chemically in [KCDB90]. The authors of [KCDB90] conducted an experiment involving two
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reactive species. One of the species acts as inhibitor (v), the other one as activator (u). Since
both chemicals diffuse at similar rates, the experiment was performed in a gel reactor, binding
the activator and therefore reducing its ‘average’ diffusion rate. We investigate the behaviour
for trivial activator’s diffusion rate, i.e. it is ‘pinned’. We suggest performing an experiment of
this type to give further implication for validation or falsification of the model suggested in
[LE91].
By setting D1 = 0 in the system proposed in [LE91], we obtain system

∂

∂t
u = a−

(
1 + 4 v

1 + u2

)
u, (x, t) ∈ I × (0, T ), (3.170)

∂

∂t
v = D∆v + b

(
1− v

1 + u2

)
u, (x, t) ∈ I × (0, T ), (3.171)

∂nv = 0, (x, t) ∈ ∂I × (0, T ). (3.172)

(u(x, 0), v(x, 0) ∈ (C(I)× C2(I)) (3.173)

Uniform boundedness

Lemma 3.22. (Variant of [NT05], Proposition 2.2, for D1 = 0)
Let ε > 0 be arbitrary. For a solution (u, v) of system (3.170)-(3.173) with non-negative initial
conditions, there exists a t∗ ≥ 0, such that for all t ≥ t∗ it holds that

0 ≤u(x, t) ≤ a+ ε, (3.174)

0 ≤v(x, t) ≤ 1 + a2 + ε. (3.175)

Proof. First, note that
∂

∂t
v ≥ D∆v − b u

1 + u2 v, (3.176)

implies v ≥ 0. Hence,
∂

∂t
u ≤ a− u, (3.177)

holds and implies u ≤ a+ ε. Finally, due to u ≤ a+ ε,

∂

∂t
v ≤ ∆v + bu− u

1 + u2 v, (3.178)

implies v ≤ 1 + a2 + ε.

48



3.6 Application to example models

Existence and (In)stability of steady states

In [NT05], diffusion-driven instability in model (3.166)-(3.169) for D1 > 0 and sufficiently
large D > 0. Moreover, existence of Turing patterns for D1 > 0 is investigated. We recall the
result for DDI, extend it to D1 = 0 and prove existence and stability of jump-type steady
states for D1 = 0 and arbitrary D > 0.

Lemma 3.23. Consider system (3.170)-(3.173).

1. For sufficiently large a > 0, there exist three branches

u−(v) ≤ u0(v) ≤ u+(v), (3.179)

of f(u, v) := a−
(
1 + 4v/(1 + u2)

)
u = 0.

2. For sufficiently large a ≥ 125/3, there exist infinitely many weak, (ε0, A)-stable steady
states of type

u(x) =χ(x)u+(v(x)) + (1− χ(x))u−(v(x)),

v ∈C1(I),
(3.180)

where χ is the characteristic function of a fat subset of I.

3. For sufficiently large a ≥ 125/3 and a < b/2 +
√

(b/2)2 + 25, model (3.170)-(3.173)
exhibits diffusion-driven instability at the unique spatially homogeneous steady state

(u, v) =
(
a

5 , 1 +
(
a

5

)2
)
. (3.181)

Proof. First, note that (a/5, 1 + (a/5)) is the unique non-negative spatially homogeneous
steady state. We investigate stability of discontinuous steady states, i.e. steady states of type
(3.180). All steady states satisfy

a−
(
u+ 4vu

1 + u2

)
= 0. (3.182)

Identity (3.182) is equivalent to

− u3 + au2 + (4v − 1)u+ a = 0, (3.183)

and, for u 6= 0, to

v = (a− u)(1 + u2)
4u . (3.184)
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Identity (3.183) shows that f(u, v) = 0 has three branches and (3.184) implies that

lim
u↘0

v(u) =∞,

lim
u↗∞

v(u) = −∞,
(3.185)

holds. Both sequences are monotone for sufficiently small respectively sufficiently large u.
Consequently, we obtain either exactly one branch u(v) of f(u(v), v) = 0 or exactly three
branches u−(v) ≤ u0(v) ≤ u+(v). If we show d

duv(u)|u=a
5
> 0, existence of exactly three

positive branches follows.
Using the implicit function theorem and ∂2f(u, v) = −4u/(1 + u2), we obtain

d

du
f(u, v(u)) =dv(u)

du
∂2f(u, v(u)) + ∂1f(u, v(u)),

=0,
(3.186)

and consequently
dv(u)
du

= ∂1f(u, v(u))
|∂2f(u, v(u))| ,

sgn
(
dv(u)
du

)
= sgn(∂1f(u, v(u))).

(3.187)

For a ≥ 125/3, inequality

∂uf

(
a

5 , v
(
a

5

))
= 2

aa5 − (a5 )2

1 + (a5 )2 − 5 ≥ 0, (3.188)

holds. Consequently, there exist three branches

u−(v) ≤ u0(v) ≤ u+(v), (3.189)

of f(u, v) = 0 satisfying

∂1f(u−(v), v), ∂1f(u+(v), v) ≤ 0 ≤ ∂1f(u0(v), v). (3.190)

Inequality (3.190) shows that the unique positive spatially homogeneous steady state is
unstable for D > 0, see Lemma 3.2.
Define g(u, v) := b

(
1− v/(1 + u2)

)
u and denote the Jacobian matrix of the kinetic system at

(u, v) as B(u, v). Since

∂2g(u, v) = 1
4∂2f(u, v) = − u

1 + u2 < 0, (3.191)
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det(B(u, v)) = 5 u

1 + u2 > 0, (3.192)

holds, equations (3.190), (3.191), show that steady states of type (3.180) satisfy the conditions
of Lemma 3.10. Therefore, they are (ε0, A)-stable. To prove existence of discontinuous steady
states, recall that (u, v) = (a/5, v(a/5)) is the unique root of g(u, v) satisfying f(u, v) = 0.
Moreover, recall that

0 < u−(v) ≤ min
0≤v≤1+a2

u0(v) ≤ max
0≤v≤1+a2

u0(v) ≤ u+(v) ≤ a, (3.193)

holds. Consequently, it holds that

∆v > 0, u = u−(v), (3.194)

∆v < 0, u = u+(v), (3.195)

showing that the conditions of Lemma 3.6 are satisfied, hence steady states of type (3.180)
exist. It is left to prove stability of (u, v)=(a/5, 1 + (a/5)2) for D = 0. We already showed that
det(B)(u, v) > 0 holds, see (3.6.2). Therefore, it is left to prove that tr(B(a/5, 1 + (a/5)2)) < 0
holds: Derivation yields

tr(B(u, v)) = 4u
2 − 1
v
− 1− bu

v
, (3.196)

hence

tr
(
B
(
a

5 , 1 +
(
a

5

)2
))

= a2

5 − 5− ba5 < 0, (3.197)

is satisfied if and only if

a <
b

2 +

√(
b

2

)2
+ 25. (3.198)

holds. This concludes the proof.

3.6.3 Numerical results

In this section, we present numerical results. All simulations in this work are performed
using the finite element library deal.ii, [BHK07]. If not specified differently, cell-wise constant
finite elements are used to discretise the ODE and cell-wise linear, globally continuous finite
elements are used to discretise the PDE. Crank-Nicholson time-stepping scheme is used for
discretisation in time. If used, adaptivity in space is based on a dual estimator proposed in
[ELW00], where also an a priori error estimate is given. The scheme is also described in [Här11]
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and the order of convergence has been studied in [Här11, HMC14] for a reaction-diffusion-ODE
model in the case of emergence of spikes. Since sharp gradient patterns are, in the sence of
the H1 semi norm, similar, we refer to [HMC14] instead of repeating the results. However,
for completeness, we show the order of error reduction under mesh refinement for Figure 3.8
in the Appendix. During pattern selection, the solutions are more regular. Hence, stability
factors in the sense of [ELW00], which are linked to the constants of the dual error estimate,
remain relatively small during pattern selection (due to regularity). However, they increase
for large time. But in that case, the analytical results imply stability.
The numerical results motivate the following hypotheses:

1. For D large, the arising pattern depends highly on initial conditions,

2. For D small, the arising pattern depends on the size of the diffusion coefficient,

3. The ‘more irregular’ the initial conditions, i.e. ‘high-frequency’, the larger the threshold
on D in items 1. and 2.

The first hypothesis in particular is a natural consequence of the fact that, as D tends to
infinity, the solution of system (3.1) converges towards the solution of the so called ‘shadow
system’ on a finite-in-time interval, see e.g. [Bob15].

De-novo pattern formation

In the first part of the numerical investigations, we choose very smooth initial conditions
and decrease the diffusion coefficient. We observe that the number of ‘plateaus’ (respectively
number of jump-discontinuities) of the pattern rises as the diffusion coefficient tends towards
zero. As parameter set, we choose, for model (3.92)-(3.95),

Parameter set 3.24.
m1 = 1.44, m2 = 2, µ = 4.1, k = 0.01, (3.199)

u(0, x) = 6.36 + 0.1x6 cos(4πx2),

w(0, x) = 5.54.
(3.200)

Component u of (3.200) is shown in Figure 3.5.

In Figure 3.5, we observe, for large D, that the shape of the arising pattern resembles the
shape of the initial conditions. However, note that the ‘plateaus’ in Figure 3.5(right) do
neither intersect nor touch any steady state of the kinetics system. The largest steady state of
the kinetic system assumes value u ≈ 6.412. This implies that stability of the pattern does
not solely yield from a sufficiently strong stabilising effect of the kinetic system. Moreover, for
small D > 0, the arising pattern depends on both, initial conditions and diffusion coefficient,
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Figure 3.5: Left: Component u of (3.200). Right: Solution’s component u for
Parameter set 3.24, D = 10, t = 20. The shape of the pattern resembles
the shape of the initial conditions. Note, however that u = 6.41 is
the largest spatially homogeneous steady state. The phenomenon is
therefore not bi-stability as in [Köt13].

as we can observe in Figures 3.6-3.7, where solutions for parameter set 3.24 are shown for
different D. The following trend can be observed: As the diffusion coefficient becomes smaller,
the number of jump-type discontinuities of the pattern rises. In [HMC14], we already observe
a similar phenomenon in another reaction-diffusion-ODE model exhibiting dynamical spike
patterns, i.e. grow-up (blow-up in infinity). For models of type (3.1) exhibiting DDI, the first
nD modes are stable and the other modes are unstable. As D tends towards zero, nD tends
towards infinity. We suspect the following distinction of cases:

• In case of in Fourier-sense low-frequency initial conditions, the first unstable mode,

• In case of in Fourier-sense high-frequency initial conditions, the dominating unstable
mode of initial conditions,

induces a pre-pattern due to DDI. Once the solution is sufficiently far away from the steady
state with DDI, the hysteretic effect shown in this work stabilises the pattern. Note that this
effect is de-novo formation of irregular patterns. Moreover, note that the DDI observed is
different from classical models with finitely many unstable modes.
Another hypothesis is that there exists a maximal measure of the support of a ‘plateau’ which
is determined by D. This corresponds to the rescaling argument in the proof of Lemma
3.6. The second hypothesis is strengthened by the following observation: In the left part of
Figure 3.7, we observe breakdown of a too ‘large’ plateau. Moreover, we observe emergence of
patterns ‘piece by piece’ instead of amplification of modes.
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Figure 3.6: Component u of the solution of (3.92)-(3.95) for parameter set (3.24).
Left: D = 10. Right: D = 5
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Figure 3.7: Component u of the solution of (3.92)-(3.95) for parameter set (3.24).
Left: D = 2. Right: D = 0.2
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Hysteresis: Grafting experiment

As described within the introduction, it is well known that after transplanting head cells of
a hydra, an axially shaped fresh-water polyp, it grows an additional head at the position
where head cells were transplanted to. While classical systems of reaction-diffusion equations
have been shown to be suited for modelling of de-novo formation of regular patterns, see
[Tur52, GM72, HPT99, VE09], no results showing their capability for modelling the grafting
experiment is known to us. Some proposed reaction-diffusion-ODE models have been shown
to reflect the behaviour of the grafting experiment, but lack de-novo pattern formation,
[MCK06, Köt13]. In the previous section, we showed that construction of irregular patterns is
possible for models of type (3.1). In the previous subsection, we presented numerical results
indicating that de-novo formation of patterns can be observed. Based on the analytical
result given in this work, we conclude that irregular patterns are stable. Here, we will show
numerical results implying that model (3.92)-(3.95) might reflect the behaviour of the grafting
experiment.
We choose the following

Parameter set 3.25.

m1 = 1.44, m2 = 2, µ = 4.1, k = 0.01, D = 15, (3.201)

u(0, x) = 6.36− 0.1 cos(πx),

w(0, x) = 5.54,
(3.202)

and approximate the solution until t = 20. Component u of (3.200) is shown in Figure
3.5. Since the diffusion coefficient is large, the appearing pattern resembles the shape of the
initial conditions. Therefore, there exists a subdomain in which u assumes high values and a
subdomain in which u assumes low values. u is assumed to represent the concentration of
head cells. At t = 20, we ‘transplant’ head cells onto another position of hydra’s body. This is
modelled by approximating the solution to the boundary value problem taking u(20, x) + f(x)
as initial conditions, where

f(x) =

10 sin(5(x− 0.1)π) 0.1 ≤ x ≤ 0.3,

0 else.
(3.203)

In Figure 3.8(right), we observe that the concentration of head cell stabilises at the position onto
which cells were transplanted. However, the steady state becomes unstable in a neighbourhood
of x = 1 and u becomes locally trivial. A possible explanation is that the initial values of
problem (3.24) are changed at the point of discontinuity defined on the right-hand side of the
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left arising ‘plateau’ and therefore reducing the maximal feasible size of the second ‘plateau’ in
order to satisfy the homogeneous Neumann boundary conditions. The solution’s component
w is shown in Figure 3.9.

Remark 3.26. We will address the problem of strong dependence on initial conditions in
chapter 5 when investigating the shadow system.
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Figure 3.8: Component u of the solution of (3.92)- (3.95) for parameter set 3.25.
Grafting (with perturbation (3.203) to u) is performed at t = 20. Left:
0 ≤ t < 20. Right: 20 ≤ t ≤ 40.
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Figure 3.9: Component w of the solution of (3.92)- (3.95) for parameter set 3.25.
Grafting (with perturbation (3.203) to u) is performed at t = 20. Left:
0 ≤ t < 20. Right: 20 ≤ t ≤ 40.
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Introduction of weak diffusion of u: Breakdown

In this subsection, we perform the same simulation as above, but instead of performing the
grafting experiment, i.e. adding f(x) to u(15, x), we introduce diffusion of u at t = 15, i.e. we
approximate the solution to

∂

∂t
u =

−u− uw +m1
u2

1+ku2 , (x, t) ∈ I × (0, 15],

D̃∆u− u− uw +m1
u2

1+ku2 , (x, t) ∈ I × (15, T ),

∂

∂t
w =D∆w − µw − uw +m2

u2

1 + ku2 , (x, t) ∈ I × (0, T ),

∂nw =0,

∂nu =0, t > 15,

(3.204)

(note that compartment u satisfies homogeneous Neumann boundary conditions at t = 15 in
Figure 3.10) with

Parameter set 3.27.

m1 = 1.44, m2 = 2, µ = 4.1, k = 0.01, D = 1, D̃ = 0.01, (3.205)

u(0, x) = 6.36 + 0.1 cos(3πx)x2,

w(0, x) = 5.54.
(3.206)

The numerical scheme changes here. For t < 15, we use cell-wise constant elements for
the ordinary differential equation and cell-wise linear, globally continuous elements for the
reaction-diffusion equation. At t = 15, the solution for u is interpolated by cell-wise linear,
globally continuous elements. As values on the discontinuities of the cell-wise elements, the
mean value between neighbording elements is used. This interpolation is then used as initial
conditions for t > 15, where for both components cell-wise linear, globally continuous finite
elements are used for discretisation in space. As before, the Crank-Nicholson time-stepping
scheme is used. In Figures 3.10 and 3.11 the numerically approximated solution is shown.
We observe a breakdown, even if very small diffusion is introduced, and convergence to-
wards a regular pattern of class C2. This illustrates the fundamentally different character of
arising patterns as D̃ tends towards zero, i.e. the singular nature of the limit regarding stability.
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3 Reaction-diffusion-ODE systems
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Figure 3.10: Component u of the solution of (3.204) for parameter set (3.27).
Diffusion of u is introduced at t = 15. Left: 0 ≤ t < 15. Right:
15 ≤ t ≤ 30. We observe a breakdown and emergence of a classical
regular Turing type pattern.
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Figure 3.11: Component w of the solution of (3.204) for parameter set (3.27).
Diffusion of u is introduced at t = 15. Left: 0 ≤ t < 15. Right:
15 ≤ t ≤ 30. We observe a breakdown and emergence of a classical
regular Turing type pattern.
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4 Quasi steady state approximation for
reaction-diffusion-ODE systems

In this chapter, we investigate the behaviour of solutions of a certain class of reaction-diffusion-
ODE systems under so called ‘quasi-steady state reduction’. We are interested in the question
whether

• diffusion-driven instability,

• stability of steady states,

• dynamical behaviour on finite time intervals,

are invariant (respectively the dynamical behaviour is similar) under so called quasi-steady
state approximation. For U δ = (uδi )i, V δ = (vδi )i and W δ = (wδi )i, consider a system of type

∂U δ

∂t
=f(U δ, V δ,W δ), (x, t) ∈ I × (0, T ), (4.1)

δ
∂V δ

∂t
=g(U δ, V δ,W δ), (x, t) ∈ I × (0, T ), (4.2)

∂W δ

∂t
=D∆W δ + h(U δ, V δ,W δ), (x, t) ∈ I × (0, T ), (4.3)

∂nw
δ
i (x, t) =0, x ∈ ∂I, t > 0, (4.4)

supplemented classical initial conditions,

(U δ(x, 0), V δ(x, 0),W δ(x, 0)) ∈ (C(I)dim(Uδ)+dim(V δ) × C2(I)dim(W δ)). (4.5)

The variables U δ, V δ,W δ can be vector-valued and D is a diagonal matrix with positive
entries, i.e. D = diag(d1, ..., ddim(W δ(t,x))). If U, V ,W,U δ, V δ,W δ are scalar, we denote them
u, v, w, uδ, vδ, wδ. If they are vector-valued, we denote their components uδi , vδi , wδi . Under
‘quasi steady state’ approximation, we understand the differential-algebraic equation resulting
from setting δ = 0, i.e.
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4 Quasi steady state approximation for reaction-diffusion-ODE systems

∂U0

∂t
= f(U0, V 0,W 0), (x, t) ∈ I × (0, T ), (4.6)

0 = g(U0, V 0,W 0), (x, t) ∈ I × (0, T ), (4.7)
∂W 0

∂t
= D∆W 0 + h(U0, V 0,W 0), (x, t) ∈ I × (0, T ), (4.8)

also supplemented with homogeneous Neumann boundary conditions for W 0 and initial
conditions (U0(x, 0),W 0(x, 0)) ∈ (C(I)dim(U0) × C2(I)dim(W 0)).
By definition, system (4.1)-(4.5) and system (4.6)-(4.8) have exactly the same steady states if
they exist. Under

Assumption 4.1. Assume that (4.7) can be solved uniquely for V 0(U0,W 0) for all (U0,W 0)
and that V 0(U0,W 0) is continuous in both variables,

equations (4.6)-(4.8) can be rewritten as

∂U0

∂t
= f(U0, V 0(U0,W 0),W 0), (x, t) ∈ I × (0, T ), (4.9)

∂W 0

∂t
= D∆W 0 + h(U0, V 0(U0,W 0),W 0), (x, t) ∈ I × (0, T ), (4.10)

having exactly the same steady states as (4.6)-(4.8). In [Tik52]1, Tikhonov assumes for D = 0
that a solution V ∗(U δ,W δ) of g(U δ, V δ,W δ) = 0 is a globally stable stationary solution of
∂V δ/∂t = g(U δ, V δ,W δ) for any fixed (U δ,W δ). Then, the solution (U δ, V δ,W δ) converges
uniformly on any finite time interval towards the solution (U0, V 0,W 0) of the corresponding
system for δ = 0 as δ tends towards zero. Since Tikhonov’s result holds for finite time, it
does not imply ‘transfer of stability’ as δ → 0, only instability. In Lemma 4.5, we prove an
analogous result for D > 0, showing that the solution for δ → 0 converges uniformly on any
finite time interval towards the solution for δ = 0. This shows that instability is invariant
under quasi-steady state approximation for sufficiently small δ. Tikhonov’s result is extended
onto the time interval (0,∞) by Hoppenstaedt in [Hop66], showing that in the neighbourhood
of an exponentially stable steady state of the reduced system, stability is preserved. We
give an alternative proof for D = 0, based on investigation of the spectrum. We do not
restrict our analysis to the neighbourhood of asymptotically stable steady state of the reduced
system, since it is performed for linearisation around an arbitrary state. Consequently, we give
conditions under which diffusion-driven instability of the quasi-steady state approximation
(4.9)-(4.10) implies diffusion-driven instability of system (4.1)-(4.5) for δ sufficiently small.

1The paper is in Russian and referred to usually within this context. The result can be found in [BL14].
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4.1 Existence of solutions and steady states

More precisely, we can deduce the following implications under certain conditions:

1. From Lemma 4.2, it follows: Assume D = 0 and let (U, V ,W ) be a constant steady
state. Assume that no eigenvalue of the linearised operator for δ = 0, evaluated at
(U,W ), has real part equal to zero.

a) If (U, V ,W ) is stable for δ = 0, it is stable for all sufficiently small δ,

b) If (U, V ,W ) is unstable for δ = 0, it is unstable for all sufficiently small δ.

2. Assume D > 0 and let (Ũ , Ṽ , W̃ ) be a constant or jump-type steady state. From Lemma
4.5, it follows: instability of (Ũ , Ṽ , W̃ ) for δ = 0 implies instability for all sufficiently
small δ.

Item 2 shows that stability of a steady state for δ = 0 is a necessary condition for stability for
small δ > 0. Note that up to this point, analysis is not restricted to scalar U, V,W . We can
prove the reverse implication of item 2 under stricter conditions only. It is not proved based on
the technique used to prove the Tikhonov-type result for D > 0: the order of divergence from
an unstable steady state may depend on δ. Therefore, it is possible that for any fixed δ, the
solution ‘waits’ until time Tδ to cross the boundary on

∥∥∥(|U δ − U0|, |V δ − V 0|, |W δ −W 0|)
∥∥∥

(given in Theorem 4.5). The investigation of ‘invariance’ of stability of steady states for
D > 0 is therefore addressed based on (ε0, A)-stability, see Definition 3.8. It is performed in
Lemma 4.7 and is limited to the reduction of a system of two ODEs coupled to one RDE, i.e.
U = u, V = v,W = w. Note that if the conditions for the Tikhonov-type result and invariance
of (in)stability are satisfied, even pattern selection for sufficiently small δ > 0 can be deduced
from the reduced system, i.e. the case δ = 0.
In subsection 4.5, we show that models (4.82)-(4.84) and the Lengyel-Epstein model satisfy
these conditions. Consequently, the results in section 3.6 carry over to the unreduced models
for sufficiently small δ > 0.

4.1 Existence of solutions and steady states

Existence of local-in-time solutions yields from regularity of the right-hand-side, see chapter 3.
System (4.6)-(4.8) has exactly the same steady states as system (4.1)-(4.5) if they exist.
Existence of global-in-time solutions yields from Assumption 2.1.
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4 Quasi steady state approximation for reaction-diffusion-ODE systems

4.2 Invariance of (In)stability of steady states of the kinetic
system under Tikhonov reduction

Consider a system of ordinary differential equations of type

∂

∂t
uδi = fi(U δ, V δ), 1 ≤ i ≤ nu, (4.11)

δ
∂

∂t
vδi = gi(U δ, V δ), 1 ≤ i ≤ nv, (4.12)

with initial conditions in Rnu+nv and where U δ = (uδ1, .., uδnu) and V δ is defined analogously.
We prove that, under suitable conditions, the limit δ → 0 is regular regarding stability of
steady states. In order to see this, we investigate the spectrum of the linearised operator.
We show that any eigenvalue of the linearised operator for δ > 0 at a steady state converges
either towards an eigenvalue of the linearised operator for δ = 0 or its real-part converges
towards −∞ with at least the same order as the imaginary part can diverge.

Lemma 4.2. Consider system (4.11)-(4.12). Assume that g(U δ, V δ) = (gi(U δ, V δ))i = 0 has
an isolated solution V ∗(U δ) and that the subsystem describing V δ is a ‘stable subsystem’, i.e.

Re(σ(∇V δg|(Uδ,V ∗(Uδ)))) ⊂ (−∞,−c), (4.13)

for some c > 0, where ∇V δg|(Uδ,V ∗(Uδ)) = (∂vδj gi|(Uδ,V ∗(Uδ)))ij. For δ > 0, denote the Jacobian
matrix of (4.11)-(4.12) at (U δ, V ∗(U δ)) by Aδ(x) and denote the spectrum of Aδ by σ(Aδ).
For f = (fi)i, denote the Jacobian matrix of

∂

∂t
u0
i = fi(U0, V ∗(U0)), 1 ≤ i ≤ nu, (4.14)

evaluated at U0, by A0. Then there exists a function i : (0, ε) × σ(A0) → σ(Aδ) ⊂ C which
is continuous in the first and injective in the second variable, such that for all λδ ∈ σ(Aδ)
exactly one of the following items holds true:

• there exists a λ ∈ σ(A0), such that λδ = i(δ, λ)→ λ as δ → 0 or

• Re(λδ)→ −∞ and lim supδ→0 | Im(λδ)|/|Re(λδ)| <∞.

The statement of the Lemma is illustrated in Figure 4.1.
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4.2 Invariance of (In)stability of steady states of the kinetic system under Tikhonov reduction

iR

R

λ1

λ2

i(δ, λ1)

i(δ, λ2)

λ3 = λ4
i(δ, λ3)

i(δ, λ4)

λ̂2,δ

λ̂1,δ

δ ↘ 0
σ(A0) = {λj}
σ(Aδ) = {i(δ, λj)}∪̇{λ̂j,δ}

Figure 4.1: Illustration of the statement of Lemma 4.2.

Proof. We denote the Jacobian matrices of systems (4.11)-(4.12) and (4.14), evaluated at
(U0, V ∗(U0)) respectively U0 by

Aδ :=
(
∇Uδf ∇V δf
∇Uδg/δ ∇V δg/δ

)
and A0 := d

dU0 f(U0, V ∗(U0)), (4.15)

and note that df(U0, V ∗(U0))/(dU0) = df(U δ, V ∗(U δ))/(dU δ).
Reλ ≥ 0 implies that ∇V δg − δλ is regular for all δ ≥ 0, hence

det(Aδ − λ) = det
(∇V δg

δ
− λ

)
det

(
∇Uδf − λ−∇V δf

(∇V δg
δ
− λ

)−1 ∇Uδg
δ

)
, (4.16)

holds. The second factor can be rewritten as

det
(
∇Uδf − λ−∇V δf

(∇V δg
δ
− λ

)−1 ∇Uδg
δ

)
= det

(
∇Uδf − λ+∇V δf

d

dU δ
V ∗(U δ)−∇V δf

d

dU δ
V ∗(U δ)−∇V δf

(∇V δg
δ
− λ

)−1 ∇Uδg
δ

)
,

= det
(

d

dU δ
f − λ−∇V δf

(
d

dU δ
V ∗(U δ) +

(∇V δg
δ
− λ

)−1 ∇Uδg
δ

))
,

= det
(

d

dU δ
f − λ−∇V δf

(∇V δg
δ
− λ

)−1 ((∇V δg
δ
− λ

)
d

dU δ
V ∗(U δ) + ∇Uδg

δ

))
,

= det
(

d

dU0 f − λ−∇V δf
(∇V δg

δ
− λ

)−1 (
−λ d

dU0V
∗(U0) + 1

δ

d

dU0 g(U0, V ∗(U0))
))

,
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4 Quasi steady state approximation for reaction-diffusion-ODE systems

where d
dUδ

f := A0. Since

d

dU0 g(U0, V ∗(U0)) = d

dU δ
g(U δ, V ∗(U δ)) = 0, (4.17)

holds, this is equal to,

det
(

d

dU0 f − λ−∇V δfδλ (∇V δg − δλ)−1 d

dU0V
∗(U0)

)
. (4.18)

Consequently, if δλ 6∈ σ(∇V δg), then

det(Aδ − λ) = 1
δdim(∇

V δ
g) det

(
d
dU0 f − λ ∇V δf

δλ d
dU0V

∗(U0) ∇V δg − δλ

)
, (4.19)

holds. First, note that ∇Uδf,∇V δf,∇Uδg,∇V δf, df/(dU0) do not even implicitly depend on
δ since we fix the point around which we linearise. Note σ(∇V δg)

⋂
{λ ∈ C|Re(λ) ≥ 0} = ∅.

Since both sides of (4.19) are polynomials and the equality holds for all δλ 6∈ σ(∇V δg), where
σ(∇V δg) is discrete and finite, it holds on C. Considered as polynomials in λ, the coefficients
are polynomials in δ, hence they depend continuously on δ. Roots of polynomials depend
continuously on the coefficients. If the m leading coefficients vanish in the limit δ towards zero,
m roots converge towards infinity. Consequently, dim(V δ)-many eigenvalues of Aδ converge
towards infinity while the other eigenvalues of Aδ converge towards the eigenvalues of Aδ=0.
We need to exclude the case that the eigenvalues tending to infinity have positive real part.
To see this, consider (4.18). We show that for all sufficiently large |λ| with Re(λ) ≥ 0, this
matrix is strictly diagonally dominant. Then, it is regular due to Gerschgorin circles and the
determinant is nontrivial.
Indeed,

|∇V δfδλ(∇V δg − δλ)−1 d

dU0V
∗(U0)|∞ ≤ c|∇V δf |∞|

d

dU0V
∗(U0)|∞δ|λ||(∇V δg − δλ)−1|σ,

≤ c|∇V δf |∞|
d

dU0V
∗(U0)|∞

δ|λ|
|δλ− λ̃|

,

≤ c|∇V δf |∞|
d

dU0V
∗(U0)|∞,

(4.20)
where equivalence of the maximum-norm |.|∞ and the spectral norm |.|σ has been used and

λ̃ := {λ ∈ ∇Uδg | |λ̃− δλ| < |λ′ − δλ| for all λ′ ∈ ∇Uδg},

denotes the eigenvalue of ∇V δg which is ‘the closest’ (in Euclidean sense) to δλ. The last
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4.2 Invariance of (In)stability of steady states of the kinetic system under Tikhonov reduction

estimate holds due to the fact that Re(λ̃) < −c and Re(δλ) ≥ 0 hold. Consequently, it holds
for all large |λ| with Re(λ) ≥ 0 > c ≥ max(Re(λ̃)|λ̃ ∈ σ(∇V δg)) that, for sufficiently small
δ > 0, λ is not an eigenvalue of Aδ. This proves the statement of the lemma except the ratio of
the real and imaginary part of the diverging eigenvalues. To conclude this, apply the findings
of [BG09], Theorem 3.

Corrolary 4.3. Consider a system of type (4.1)-(4.5) satisfying the conditions of Lemma 4.5.
If, at a steady state (U, V ,W ), the system exhibits DDI for δ = 0, then it holds that there
exists δ∗ > 0, such that for all 0 ≤ δ ≤ δ∗, the system exhibits DDI.

Proof. Stability with respect to spatially homogeneous perturbation is shown in Lemma 4.2.
Instability with respect to spatially inhomogeneous perturbation is shown in Lemma 4.5.

Remark 4.4. The following examples show that δ∗ in Corollary 4.3 is not necessarily greater
or equal to 1.

• For the system

∂

∂t
u1 = 2u1 + u2 − 4v, x ∈ I, t > 0, (4.21)

∂

∂t
u2 = u1 − 0.5u2 − 2v, x ∈ I, t > 0, (4.22)

∂

∂t
v = D∆v + u1 + u2 − v, x ∈ I, t > 0, (4.23)

∂nv = 0, x ∈ ∂I, t > 0, (4.24)

supplemented with initial conditions in C(I)2×C2(I), the trivial steady state is unstable,
while it is stable as steady state of the quasi-steady state approximation with respect to
u2.

• The System

∂

∂t
u1 = 1.5u1 − u2 − 3v, x ∈ I, t > 0, (4.25)

∂

∂t
u2 = 2u1 − u2 − 1.5v, x ∈ I, t > 0, (4.26)

∂

∂t
v = D∆v + u1 + u2 − 3v, x ∈ I, t > 0, (4.27)

∂nv = 0, x ∈ ∂I, t > 0, (4.28)
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4 Quasi steady state approximation for reaction-diffusion-ODE systems

supplemented with initial conditions in C(I)2 × C2(I), exhibits diffusion-driven instabil-
ity. However, the trivial steady state is a stable steady state of the quasi-steady state
approximation with respect to u2 and its kinetic system.

4.3 Tikhonov-type result

In this subsection we prove a Tikhonov-type result for reaction-diffusion-ODE models. The
conditions on the component with accelerated reaction are the same as in Tikhonov’s theorem.
However, additionally to these conditions, we impose a condition on the kinetics of the
subsystem of diffusive components. This condition is satisfied if the spectrum of ∇Wh,
evaluated at the steady state, is, for all x ∈ I, not contained in the right complex half-plane,
but actually weaker.

Lemma 4.5. Consider a system of type

∂U δ

∂t
= f(U δ, V δ,W δ), (x, t) ∈ I × (0, T ), (4.29)

δ
∂V δ

∂t
= g(U δ, V δ,W δ), (x, t) ∈ I × (0, T ), (4.30)

∂W δ

∂t
= D∆W δ + h(W δ, V δ,W δ), (x, t) ∈ I × (0, T ) (4.31)

supplemented with homogeneous Neumann boundary conditions for W δ and

(U δ(x, 0), V δ(x, 0),W δ(x, 0)) ∈ (C(I)dim(Uδ)+dim(V δ) × C2(I)dim(W δ)). (4.32)

For δ = 0, no initial conditions for V δ are given. Assume that the solutions for 0 ≤ δ ≤ δ∗

are uniformly bounded. Denote the spectrum of ∇V g|(U,V,W ) as σ(∇V g|(U,V,W )). Assume that
there exists some c < 0, such that

1.
Reσ(∇V g|(U,V,W )) ≤ c < 0, (4.33)

holds for all (U, V,W ),

2. for all vectors ϕ ∈ Rdim(w(x,t))
≥0 ,

ϕT∇Whϕ ≤ 0, (4.34)

holds for all (U, V,W ).
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4.3 Tikhonov-type result

Then, for any given T <∞,

lim
δ→0

∥∥∥U0 − U δ
∥∥∥
L∞((0,T )×I)

= 0, (4.35)

lim
δ→0

∥∥∥W 0 −W δ
∥∥∥
L∞((0,T )×I)

= 0, (4.36)

lim
δ→0

∥∥∥V 0 − V δ
∥∥∥
L1(0,T ;L∞(I))

= 0, (4.37)

hold.

Proof. First, we rewrite the difference between the solution for δ > 0 and δ = 0, i.e.

α := U δ − U0, β := V δ − V 0, γ := W δ −W 0, (4.38)

as solution of system

∂α

∂t
= ∇Ufα+∇V fβ +∇W fγ, (x, t) ∈ I × (0, T ), (4.39)

∂β

∂t
= ∇Ugα+∇V gβ +∇W gγ + ∂V 0

∂t
, (x, t) ∈ I × (0, T ), (4.40)

∂γ

∂t
= ∇Uhα+∇V hβ +∇Whγ +D∆γ, (x, t) ∈ I × (0, T ), (4.41)

with homogeneous Neumann boundary conditions for γ and initial conditions (α0, β0, γ0) ∈
(C(I)2 × C2(I)). The derivatives are evaluated according to the Taylor-Lagrange residual
formula. We choose an equidistant partition {tn}n=0,...,N of the given interval (0, T ) and
conclude the result by induction over n. The base case is satisfied by assumption since

‖α0‖L∞(I) , ‖γ0‖L∞(I) = 0 ≤ δ,
0∫

0

‖β(τ)‖L∞(I) dτ = 0 ≤ δ.
(4.42)

First, we construct a barrier-functional Cγ : [0, T )→ R for γ, such that ‖γ‖L∞(0,t;L∞(I)) ≤ C(t).
Define (·)+ := max(·, 0) and (·)− = (−·)+.
We test equation (4.41) with ϕ = (Cγ+γ)−. Using the identity γ = −Cγ+(Cγ+γ)−+(Cγ+γ)+,
we obtain that

−
∫
I

(γ + Cγ)T−
d

dt
Cγ + 1

2
d

dt

∫
I

(γ + Cγ)2
− +

∫
I

|∇(γ + Cγ)T−D∇(γ + Cγ)−|

+
∫
I

(γ + Cγ)T−∇WhCγ +
∫
I

(γ + Cγ)T−∇Wh(γ + Cγ)− =
∫
I

(γ + Cγ)T−(∇Uhα+∇V hβ).
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4 Quasi steady state approximation for reaction-diffusion-ODE systems

Due to condition (4.34), it is sufficient to consider the ODE

− ∂

∂t
Cγ +∇WhCγ = ∇Uhα+∇V hβ. (4.43)

To conclude (γ + Cγ)− = 0, i.e. γ ≥ −Cγ , we need ∇Uhα + ∇V hβ ≤ 0. Define d =
dimα(x, t) + dim β(x, t) + dim γ(x, t).
Indeed, we obtain for

Cγ(tn) = Cγ,n, (4.44)
∂Cγ
∂t
− d ‖∇Wh‖∞Cγ = d ‖∇Uh‖∞ ‖α(t)‖L∞(I) + d ‖∇V h‖∞ ‖β(t)‖L∞(I) , (4.45)

that

Cγ(t) =
t∫

tn

ed‖∇W h‖∞(t−τ)d(‖∇Uh‖∞ ‖α(τ)‖L∞(I) + ‖∇V h‖∞ ‖β(τ)‖L∞(I))dτ

+ ed‖∇W h‖∞(t−tn)Cγ(tn),

(4.46)

and consequently

‖γ‖L∞(tn,t;L∞(Ω)) ≤d
(
‖∇Uh‖∞ ‖α‖L1(tn,t;L∞(Ω)) + ‖∇V h‖∞ ‖β‖L1(tn,t;L∞(Ω))

)
ed‖∇W h‖∞(t−tn)

+ ed‖∇W h‖∞(t−tn) ‖γ(t)‖L∞(I) ,

≤de2d‖∇W h‖∞(t−tn)
(
‖γ(tn)‖L∞(I) + (t− tn) ‖∇Uh‖∞ ‖α‖L∞(tn,t;L∞(Ω))

+ ‖∇V h‖∞ ‖β‖L1(tn,t;L∞(Ω))

)
.

(4.47)
Step 2: We estimate α,

‖α(t)‖L∞(I) ≤e
d‖∇Uf‖∞(t−tn) ‖α(tn)‖L∞(I) +

t∫
tn

ed‖∇Uf‖∞(t−τ) ‖∇V fβ +∇W fγ‖L∞(I) dτ,

≤e2d‖∇Uf‖L∞ (t−tn)(‖α(tn)‖L∞(I) +
t∫

tn

‖∇V fβ(τ)‖L∞(I) dτ + ‖∇W fγ‖L1(tn,t;L∞(Ω))),

≤e2d‖∇Uf‖L∞ (t−tn)(‖α(tn)‖L∞(I) + d ‖∇V f‖∞ ‖β‖L1(tn,t;L∞(Ω))

+ (t− tn)d ‖∇W f‖∞ ‖γ‖L∞(tn,t;L∞(Ω))).
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Using estimate (4.46) and (4.47), it follows that

‖α(t)‖L∞(I) ≤d
(
‖α(tn)‖L∞(I) + (t− tn) ‖∇W f‖∞ ‖γ(tn)‖L∞(I)

)
e2d(‖∇W h‖∞+‖∇Uf‖∞)(t−tn)

+ d (‖∇V f‖∞ + (t− tn) ‖∇W f‖∞ ‖∇V h‖∞) de2d(‖∇W h‖∞+‖∇Uf‖∞)(t−tn) ‖β‖L1(tn,t;L∞(Ω))

+ (t− tn)d ‖∇W f‖∞ ‖∇Uh‖∞

t∫
tn

‖α(s)‖L∞(I) e
d‖∇W h‖∞(s−tn)ds.

We can therefore apply Gronwall’s lemma to the entity ‖α‖L∞(tn,·;L∞(I)) : (tn, tn+1)→ R and
obtain,

‖α(t)‖L∞(I) ≤c
(
‖α(tn)‖L∞(I) + (t− tn) ‖∇W f‖∞ ‖γ(tn)‖L∞(I)

+ (‖∇V f‖∞ + (t− tn) ‖∇W f‖∞ ‖hv‖∞) ‖β‖L1(tn,t;L∞(Ω))

)
· ec‖∇W f‖∞‖∇Uh‖∞(t−tn)2ec‖∇Wh‖∞(t−tn)

ecmax(‖∇W h‖∞,‖∇Uf‖∞)(t−tn).

(4.48)
Step 3: Estimate on ‖β‖L1(tn,t;L∞(Ω)).
Note that

∥∥∥e−cτ/δ∥∥∥
Lq(0,t)

= Cδ1/q for 1 ≤ q ≤ ∞.
Now, write the solution as

|β(t, x)| ≤|e
∫ t
tn
∇V g(s,x)ds

β(tn, x)−
t∫

tn

e
∫ t
τ
∇V g(x,s)ds∂v

δ=0

∂t
(τ, x)dτ |

+ 1
δ

t∫
tn

e
λ(τ)
δ

(t−τ)|∇Ugα+∇W gγ|dτ,

where λ(τ) denotes the eigenvalue of ∇V g(τ) with largest real part. Recall Reλ ≤ c < 0.
Using Young’s inequality yields

‖β‖L1(tn,t;L∞(Ω)) ≤

‖β(tn)‖L∞(I) +
∥∥∥∥∥∂vδ=0

∂τ

∥∥∥∥∥
Lq(tn,t;L∞(I))


︸ ︷︷ ︸

=:C∗

δ (4.49)

+ C ‖∇Ug‖∞ ‖α‖L1(tn,t;L∞(Ω)) + C ‖∇W g‖∞ ‖γ‖L1(tn,t;L∞(Ω)) , (4.50)

≤C∗δ + (t− tn) ‖α‖L∞(tn,t;L∞(Ω)) + C(t− tn) ‖γ‖L∞(tn,t;L∞(Ω)) , (4.51)

≤C∗δ + (t− tn)C(‖α(tn)‖L∞(I) + C(t− tn) ‖γ(tn)‖L∞(I) (4.52)

+ (c+ c(t− tn)) ‖β‖L1(tn,t;L∞(Ω))) (4.53)

+ c(‖γ(tn)‖L∞(I) + ‖∇Uh‖∞ (t− tn) ‖α‖L∞(tn,t;L∞(Ω)) (4.54)
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+ ‖∇V h‖∞ ‖β‖L1(tn,t;L∞(Ω)))(t− tn), (4.55)

≤C∗δ + C(t− tn)(‖α(tn)‖L∞(I) + (t− tn) ‖γ(tn)‖L∞(I) + ‖γ(tn)‖L∞(I))
(4.56)

+ C(t− tn)(c+ c(t− tn) + ‖∇V h‖∞) ‖β‖L1(tn,t;L∞(Ω)) (4.57)

+ c ‖∇Uh‖∞ (t− tn)(‖α(tn)‖L∞(I) + (t− tn) ‖γ(tn)‖L∞(I)) (4.58)

+ c ‖∇Wh‖∞ (t− tn)(c+ c(t− tn)) ‖β‖L1(tn,t;L∞(Ω)) , (4.59)

≤C∗δ + C(t− tn)(‖α(tn)‖L∞(I) + (t− tn + 1) ‖γ(tn)‖L∞(I) (4.60)

+ C!(t− tn)(1 + (t− tn)) ‖β‖L1(tn,t;L∞(Ω)) , (4.61)

where C! does not depend on t. Consequently, we can choose (tn+1 − tn) equal for all n and
so small that C!(tn+1 − tn)(1 + (tn+1 − tn)) < 1/2. Then,

‖β‖L1(tn,tn+1;L∞(I)) ≤ C(δ + (tn+1 − tn) ‖α(tn)‖L∞(I) + (tn+1 − tn + 1) ‖γ(tn)‖L∞(I)) (4.62)

Combining (4.47),(4.48) and (4.62) yields the result by the principle of induction over n.

4.4 Stability of spatially inhomogeneous steady states

We gave conditions for stability of steady states with jump-type discontinuity in Theorem 3.9
and Corollary 3.10. Lemma 4.5 states that the solution (U δ, V δ) remains close to (U0, V 0)
in a suitable topology until a time Tδ. It does not imply lim supδ→0 Tδ <∞. Therefore, the
solution may have a qualitatively different dynamical behaviour for t > Tδ and consequently
different stability properties. However, in Lemma 3.10, we found conditions for stability of
steady states. If the quasi-steady state reduction satisfies these conditions and the reduction is
of certain type, we derive conditions under which stability of a steady state to the unreduced
system can be deduced from the reduced system. In order to prove this, we need the following

Lemma 4.6 (Algebraic dependencies: quasi-steady state reduction). Consider a system of
type (4.1)-(4.5) for scalar uδ, vδ, wδ. Denote the Jacobian matrix of this system, evaluated at
a steady state (ũ, ṽ, w̃), by

Aδ =


∂f
∂uδ

∂f
∂vδ

∂f
∂wδ

∂g
∂uδ

/δ ∂g
∂vδ

/δ ∂g
∂wδ

/δ
∂h
∂uδ

∂h
∂vδ

∂h
∂wδ

 :=


a11 a12 a13

a21/δ a22/δ a23/δ

a31 a32 a33

 . (4.63)
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Denote the Jacobian matrix of the quasi-steady-state system (4.6)-(4.8), evaluated at (ũ, ṽ) by

B =

∂f(u0,v∗(u0,w0),w0)
∂u0

∂f(u0,v∗(u0,w0),w0)
∂w0

∂h(u0,v∗(u0,w0),w0)
∂u0

∂h(u0,v∗(u0,w0),w0)
∂w0

 :=
(
b11 b12

b21 b22

)
. (4.64)

Denote the matrix resulting from Aδ by omitting the î − th row and the ĵ − th column as
Aδ
îĵ

= (aij)i 6=î,j 6=ĵ. The following algebraic dependencies hold:

b11 = a22 det(A1
33) = a22 det(Aδ33)δ, (4.65)

b22 = a22 det(A1
11) = a22 det(Aδ11)δ, (4.66)

det(B) = a22 det(A1) = a22 det(Aδ)δ. (4.67)

Proof. Recall Assumption 2.1. Since f(u0, v∗(u0, w0), w0) = 0, it holds that

a21 + a22
∂v∗(u0, w0)

∂u0 = 0 and a23 + a22
∂v∗(u0, w0)

∂w0 = 0. (4.68)

By differentiating f(u0, v∗(u0, w0), w0) and h(u0, v∗(u0, w0), w0), we obtain

b11 = a11 + a12
∂v∗(u0, w0)

∂u0 , b12 = a13 + a12
∂v∗(u0, w0)

∂w0 ,

b21 = a31 + a31
∂v∗(u0, w0)

∂u0 , b22 = a33 + a32
∂v∗(u0, w0)

∂w0 .

(4.69)

Using these identities, we obtain

det(A1
33) = a11a22 − a12a21 = a22

(
a11 + a12

∂v∗(u0, w0)
∂u0

)
= a22b11, (4.70)

det(A1
11) = a33a22 − a32a23 = a22

(
a33 + a32

∂v∗(u0, w0)
∂w0

)
= a22b22. (4.71)

Rewriting A1 as

det(A1) = det


b11 − ∂v∗(u0,w0)

∂u0 a12 a12 b12 − ∂v∗(u0,w0)
∂w0 a12

a21 a22 a33

b22 − ∂v∗(u0,w0)
∂u0 a32 a32 b22 − ∂v∗(u0,w0)

∂w0 a32

 , (4.72)

yields the result by calculation using identities (4.68) and (4.69).
Lemma 4.6 allows us to give conditions for stability of steady state of a system of type
(4.1)-(4.5) based on investigation of its quasi-steady state approximation.
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Lemma 4.7. Consider system (4.1)-(4.5) and its quasi-steady state approximation (4.9)-
(4.10). Let uδ, vδ, wδ be scalar. Given a weak jump-type steady state (ũ, w̃), assume that the
reduced system satisfies the conditions of Corollary 3.10 and Assumption 2.1. Denote the
Jacobian matrix analogously to (4.63). If

1. the unreduced system (4.1)-(4.5) satisfies Assumption 2.1, and

2. a22, a33 ≤ c < 0,

holds, then exists a positive δ∗ such that for all non-negative δ ≤ δ∗, it holds that (ũ, v∗(ũ, w̃), w̃)
is an (ε0, A)-stable steady state of system (4.1)-(4.5).

Remark 4.8. It is possible to generalise conditions for a 3-compartment system to general
δ as we did in joint research, see [HMCT15]. Then, the conditions read: There exists some
κ > 0, such that

tr (Aδ(x)) < 0, tr (Aδ(x))
3∑
j=1

det(Aδjj) < det(Aδ(x)) < 0, (4.73)

tr (Aδ33(x))
3∑
j=1

det(Aδjj(x)) ≤ det(Aδ(x)) + tr (Aδ(x)) det(Aδ33(x)), (4.74)

0 < 3 det(Aδ33(x)) ≤ tr (Aδ(x)) tr (Aδ33(x)) +
3∑
j=1

det(Aδjj(x)), (4.75)

a33(x) ≤ −3κ < 0 and det(Aδ33(x)) ≥ −3κtr (Aδ33(x)) ≥ 18κ2, (4.76)

hold at the steady state. The proof is analogous to the proof of Lemma 4.7.

Proof of Lemma 4.7. Denote the matrix resulting from omitting the î-th row and the ĵ-
th column of Aδ by Aδ

îĵ
= (aij)i 6=î,j 6=ĵ . The proof follows the same principle as Lemma

3.10. For sufficiently small δ, it holds that Aδ33 has only eigenvalues with negative real
part, see Lemma 4.2. Therefore, 0 < det(Aδ33) and tr(Aδ33) < 0 hold. Hence it holds that
Re(σ(Aδ33)) ⊂ (−c1,−c) and Im(σ(Aδ33)) ⊂ (cIm,1, cIm,2) due to regularity of u, v, f, g and for
c, c1, cIm,1, cIm,2 > 0. Assume λ 6∈ (−c1,−c)× i(cIm,1, cIm,2). Then, the equation

(Aδ − λ)


ϕ1

ϕ2

ψ

+D


0
0
∂2ψ
∂x2

 =


0
0
0

 , (4.77)
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can be rewritten as the scalar problem

−
(
a31 a32

)
(Aδ33 − λ)−1

(
a13

a23/δ

)
ψ + (a33 − λ)ψ +D

∂2ψ

∂x2 = 0, (4.78)

which then can be rewritten as

det(Aδ − λ)
det(Aδ33 − λ)

+D
∂2ψ

∂x2 = det(Aδ − λ)det(Aδ33 − λ)
|det(Aδ33 − λ)|2

+D
∂2ψ

∂x2 = 0. (4.79)

Analogous to the case of one ordinary differential equation coupled to one reaction-diffusion
equation, we test formally with ψ and consider the real part of the resulting equation. To do
so, we first calculate the real and imaginary parts of det(Aδ − λ) and det(Aδ33 − λ) and define
λ = λ1 + iλ2 with λ1, λ2 ∈ R.

Re(det(Aδ − λ)) = det(Aδ − λ1) + λ2
2(3λ1 − tr(Aδ)),

Im(det(Aδ − λ)) = λ2(λ2
2 + (2 tr(Aδ)− 3λ1)λ1 −

3∑
i=1

det(Aδii)),

Re(det(Aδ33 − λ)) = det(Aδ33 − λ1)− λ2
2,

Im(det(Aδ33 − λ)) = λ2(2λ1 − tr(A33)).

(4.80)

Now, we calculate Re(det(Aδ − λ) Re(det(Aδ33 − λ) + Im(det(Aδ − λ)) Im(det(Aδ33 − λ)):

(
− λ3

1 + tr(Aδ)λ2
1 −

3∑
i=1

det(Aδii)λ1 + det(Aδ) + 3λ1λ
2
2 − trAδλ2

2

)
·
(
λ2

1 − tr(Aδ33)λ1 + det(Aδ33)− λ2
2

)
+λ2

2

(
λ2

2 + 2 tr(Aδ)λ1 − 3λ2
1 −

3∑
i=1

det(Aδii)
)(

2λ1 − tr(Aδ33)
)
.

(4.81)

Now, we can interpret this as element of (R[λ2])[λ1] taking the form

5∑
i=0

qi(λ2)λi1,

where

q5(λ2) =− 1,

q4(λ2) = tr(Aδ33) + tr(Aδ),
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q3(λ2) =− (det(Aδ33)− λ2
2)− tr(Aδ) tr(Aδ33)−

3∑
i=1

det(Aδii) + 3λ2
2 − 6λ2

2,

= −
(

det(Aδ33) + tr(Aδ) tr(Aδ33) +
3∑
i=1

det(Aδii) + 2λ2
2

)
,

q2(λ2) = tr(Aδ) det(Aδ33)− tr(Aδ)λ2
2 +

3∑
i=1

det(Aδii) tr(Aδ33) + det(Aδ)− 3λ2
2 tr(Aδ33)

− tr(Aδ)λ2
2 + 4 tr(Aδ)λ2

2 + 3 tr(Aδ33)λ2
2,

= tr(Aδ) det(Aδ33) +
3∑
i=1

det(Aδii) tr(Aδ33) + det(Aδ) + 2 tr(Aδ)λ2
2,

q1(λ2) =−
3∑
i=1

det(Aδii) det(Aδ33) +
3∑
i=1

det(Aδii)λ2
2 − det(Aδ) tr(Aδ33) + 3 det(Aδ33)λ2

2 − 3λ4
2

+ tr(Aδ) tr(Aδ33)λ2
2 + 2λ4

2 − 2 tr(Aδ) tr(Aδ33)λ2
2 − 2

3∑
i=1

det(Aδii)λ2
2,

= −
( 3∑
i=1

det(Aδii) det(Aδ33) + det(Aδ) tr(Aδ33) +
3∑
i=1

det(Aδii)λ2
2 − 3 det(Aδ33)λ2

2

+ λ4
2 + tr(Aδ) tr(Aδ33)λ2

2

)
,

q0(λ2) = det(Aδ) det(Aδ33)− det(Aδ)λ2
2 − tr(Aδ) det(Aδ33)λ2

2 + tr(Aδ)λ4
2 − tr(Aδ33)λ4

2

+
3∑
i=1

det(Aδii) tr(Aδ33)λ2
2,

= det(Aδ) det(Aδ33)−
(

det(Aδ) + tr(Aδ) det(Aδ33)−
3∑
i=1

det(Aδii) tr(Aδ33)
)
λ2

2

+
(

tr(Aδ)− tr(Aδ33)
)
λ4

2.

Due to Lemma 4.6, it holds for sufficiently small δ that

1. q0 < −|c|/δ2, since a22, det(A1) < 0 and det(A1
33),det(A1

11) > 0 and tr(Aδ)− tr(Aδ33) =
a33 < 0. The only term which is not necessarily negative for arbitrary δ > 0 is the
coefficient of λ2

2. To see negativity for small δ > 0, note first, that the first term
−det(Aδ) = −det(A1)/δ is of order Θ(δ−1). The sum of the second and third summand
reads (note that it is multiplied by (−1) arising from the negative sign before the
bracket):

− det(A1
33)

δ
(a11 + a22

δ
+ a33) + det(A1

11) + det(A1
33)

δ
(a11 + a22

δ
)

− det(A1
22)(a11 + a22

δ
).
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Due to the different orders of δ, this term is, for sufficiently small δ > 0, dominated by

−det(A1
33) + det(A1

11) + det(A1
33)

δ2 a22 = det(A1
11)

δ2 a22 < 0.

2. q1 < −|c|/δ2, since a22,det(A1) < 0 and det(A1
33),det(A1

11) > 0.
The only term which is not necessarily negative for arbitrary δ > 0 is the coefficient of
λ2

2. To see this, note that for sufficiently small δ < 0, the term tr(Aδ) tr(Aδ33) is of type
Θ(δ−2), while the other summands are of type O(δ−1). An analogous reasoning as for
q0 shows that −(a22/δ)2 < 0 dominates for small δ > 0.

3. q2 < −|c|/δ2, since a22 < 0 and det(A1
33),det(A1

11) > 0,

4. q3 < −|c|/δ2, since a22 < 0,

5. q4 < −|c|/δ, since a22 < 0,

6. q5 = −1 < 0.

Consequently, for all sufficiently small δ and all λ2 ∈ R,

qi(λ2) ≤ c < 0,

holds.
Argumentation analogous to the scalar case (beginning from (3.73)) yields the result.

4.5 Application to example models

4.5.1 A receptor-based model

Consider system (3.85)-(3.87), i.e.

∂

∂t
u =− µ1u− buw + dv +m1

u2

1 + ku2 , (x, t) ∈ I × (0, T ), (4.82)

δ
∂

∂t
v =− µ2v + buw − dv, (x, t) ∈ I × (0, T ), (4.83)

∂

∂t
w =D∆w − µ3w − buw + dv +m2

u2

1 + ku2 , (x, t) ∈ I × (0, T ), (4.84)

∂nw =0, (x, t) ∈ ∂I × (0, T ), (4.85)

with classical initial conditions (u(0, x), v(0, x), w(0, x)) ∈ (C(I)2 × C2(I)).
D,µ1, µ2, µ3, d, b,m1,m2, k, δ are non-negative constants.
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In order to prove that the system has stable discontinuous steady states, we have to prove
boundedness of solutions first.

Lemma 4.9. Consider (4.82)-(4.85) and let all parameters be positive. For non-negative
initial conditions, system (4.82)-(4.85) has a global solution in C1(0,∞;C(I)2 × C2(I)). For
all ε > 0 there exists a t∗ > 0, s.t. for all t ≥ t∗ the solution satisfies

0 ≤ inf
x∈I

u(t, x) ≤ ‖u(t)‖sup ≤
m1

kmin(µ1, µ2) + ε, (4.86)

0 ≤ inf
x∈I

v(t, x) ≤ ‖v(t)‖sup ≤ c
m1m2

k2 min(µ1, µ2) min(µ2, µ3)(d+ µ2) + ε, (4.87)

0 ≤ inf
x∈I

w(t, x) ≤ ‖w(t)‖sup ≤ c
m2

kmin(µ2, µ3) + ε. (4.88)

Proof. For 0 ≤ u, v, w and 0 ≤ δ < 1, it holds(
−(µ1 + bw) +m1

u

1 + ku2

)
u ≤ ∂

∂t
u, (4.89)

−(µ2 + d)v
δ

≤ ∂

∂t
v, (4.90)

D∆w − (µ3 + bu)w ≤ ∂

∂t
w, (4.91)

∂

∂t
(u+ δv) ≤−min(µ1, µ2)(u+ δv) + m1

k
. (4.92)

Inequalities (4.89)-(4.91) imply that the solutions stay non-negative. Now, (4.92) implies that

lim sup
t→∞

‖u+ δv‖sup ≤
m1

kmin(µ1, µ2) + ε, (4.93)

leading to

lim sup
t→∞

‖u‖sup ≤
m1

kmin(µ1, µ2) + ε, (4.94)

due to non-negativity of u and v.
Now,

∂

∂t
(w + δv) ≤ D∆w − µ3w − µ2v + m2

k
, (4.95)

holds. We estimate only at x∗(t), such that w(x∗(t)) ≥ w(x) for all x ∈ I. This allows to
construct a subsolution to w (note: not for v). It holds ∆w(x∗) ≤ 0.

∂

∂t
(w(x∗) + δv(x∗)) ≤ −min(µ2, µ3)(w(x∗) + δv(x∗)) + m2

k
. (4.96)

Therefore, we found a boundary on w. Since u and w are uniformly bounded, equation (4.83)
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yields the result due to existence of a subsolution. This finishes the proof.

It holds

∂(−µ2v + buw − dv)
∂v

=− (µ2 + d) < 0, (4.97)

∂(−µ3w − buw + dv +m2
u2

1+ku2 )
∂w

=− (µ3 + bu) < 0, (4.98)

hence all conditions of Lemmas 4.6, 4.7 and 4.5 are satisfied. Consequently, for small δ, system
(4.82)-(4.84) exhibits DDI and hysteresis and has a dynamical behaviour similar to that of
system (4.9)-(4.10) (resp. (3.81)-(3.83)) on a finite time interval (0, Tδ), where Tδ → ∞ as
δ → 0.

4.5.2 Lengyel-Epstein model

In [LE92], the authors derive model (3.166)-(3.169) as quasi-steady state reduction of

∂

∂t
u = D1∆u+ f(u,w)− c1u+ c2v, (4.99)

∂

∂t
v = h(u, v) := c1u− c2v, (4.100)

∂

∂t
w = D∆w + g(u,w). (4.101)

supplemented with homogeneous Neumann boundary conditions for u and w and classical
initial conditions (u(x, 0), v(x, 0), w(x, 0)) ∈ (C(I)2 × C2(I)). For D1 = 0, the model is of the
type investigated in this work. Moreover,

1. h(u, v) = 0 is uniquely solvable for v, and

2. satisfies ∂h
∂v = −c2 < 0,

3. the kinetic terms for w coincide for the reduced and unreduced system, hence the
unreduced system satisfies ∂g

∂w (u, v, w) ≤ c < 0 for all (u, v, w).

Consequently,

∂

∂t
u = f(u,w)− c1u+ c2v, (4.102)

δ
∂

∂t
v = h(u, v) := c1u− c2v, (4.103)

∂

∂t
w = D∆w + g(u,w), (4.104)
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supplemented with homogeneous Neumann boundary conditions for w and classical initial
conditions, exhibits, for sufficiently small positive δ, diffusion-driven instability at the same
steady state as model (3.170)-(3.171), see Lemmas 4.2 and 4.5 . If we show uniform bounded-
ness, system (4.102)-(4.104) satisfies all conditions of Lemma 4.7. The uniform boundedness
follows from the following observation: f(u,w) < a− u holds, hence f is strictly negative for
u > a+ ε. Since the kinetics of the system of ordinary differential equations is of type

∂

∂t
u = f(u,w)− h(u, v), (4.105)

∂

∂t
v = h(u, v)/δ, (4.106)

∂u/∂t > 0 implies ∂v/∂t < 0 for u > a+ ε. Using the framework of invariant rectangles and
stable manifolds, we obtain uniform boundedness for u. Then, an argumentation analogous
to the proof of uniform boundedness for δ = 0 yields the result. Note, however, that this
argumentation is valid in this generality only for δ < 1.
Summarising, model (4.102)-(4.104) satisfies the conditions for regularity of the limit δ → 0,
i.e. the conditions of Lemmas 4.7, 4.2 and 4.5. Consequently, it exhibits coexistence of DDI
and hysteresis. Moreover, the solution converges uniformly on any finite time interval towards
the solution of the quasi-steady state approximation.

4.5.3 Numerical results

In the previous sections, we showed analytically that DDI and existence as well as stability
of spatially inhomogeneous steady states can be deduced from the reduced model. In this
section, we show numerical illustrations of this phenomenon.
However, the analytical results imply that the solution of model (4.1)-(4.5) converges towards
the solution of (4.9)-(4.10). Moreover, it implies that stability of certain steady states can be
deduced as well. A detailed look at the proofs may yield an upper boundary on δ to ensure
‘transfer’ of stability, but this boundary is not proved to be necessary. We therefore show
numerical approximations for the solution to model (4.1)-(4.5) for

Parameter set 4.10.

µ1 = µ2 = d = 1, µ3 = 4.1, b = 2,m1 = 1.44,m2 = 2, D = 1. (4.107)

Initial conditions for u,w are defined in Parameter set 3.27. v(x, 0) = 2.48.

for different δ > 0 in Figures 4.2-4.3. We observe that the solution converges towards the
solution for δ = 0 as δ tends towards zero. Moreover, the solution tends towards a pattern
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4.5 Application to example models

which is close in Lp-sense. This illustrates the results proved in Lemma 4.5 and 4.7. However,
we observe that even for relatively large δ, the solution converges to a similar pattern. This
illustrates that if g(u(x, 0), v(x, 0), w(x, 0)) ≈ 0 and v(x, 0) is regular, the transition phase
between destabilised steady state and discontinuous pattern may just be extended. Stability
appears to ‘transfer’ onto the unreduced model for larger δ. However, Figure 4.4 shows that
the Tikhonov-type result indeed needs small δ. It shows an example with very irregular v(x, 0)
in Figure 4.4. We observe that the solution converges towards a locally stable steady state
which is different from the one the solution converges to for δ = 0. On the other hand, for
sufficiently small δ, the Tikhonov type result ensures that the solution stays close to the
solution for δ = 0 up to a time Tδ. We see that in case of large δ, Tδ is so small that the
pattern selection takes place at a time t > Tδ. For small δ, it appears that the pattern selection
takes place at a time t < Tδ.

Remark 4.11. Note that the above parameters correspond to the parameter set 3.24 for model
(4.9)-(4.10), as can been seen from the rescaling conducted to obtain system (3.92)-(3.93).
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Figure 4.2: Numerically obtained solution to model (4.82)-(4.85) for parameter
set 4.10. We observe convergence towards the solution for δ = 0 (see
Figure 3.10 (left)) as δ → 0. Upper left: δ = 20. Upper right: δ = 10.
Lower left: δ = 8. Lower right: δ = 4.
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Figure 4.3: Numerically obtained solution to model (4.82)-(4.85) for parameter
set 4.10. We observe convergence towards the solution for δ = 0 (see
Figure 3.10 (left)) as δ → 0. Upper left: δ = 1. Upper right: δ = 0.25.
Lower left: δ = 0.125. Lower right: δ = 0.0625.
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Figure 4.4: Numerically obtained solution to model (4.82)-(4.85) for parameter
set 4.10, but v(x, 0) = 2.48 + 0.1x2 sin(10πx): Left: δ = 10. Right:
δ = 0.002. We observe that another pattern is selected for δ large. For
δ small, a pattern similar to δ = 0, (see Figure 3.10 (left)), is selected.
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5 The shadow system

Let Ω ⊂ R be a bounded domain. For reaction-diffusion equations of type (3.1)-(3.2), we call
the limit system for D → +∞ the shadow system. The idea of this approximation is that
existence and stability of steady states may be similar for the shadow system and for D large.
We investigate whether the properties of these steady states are reflected by steady states of
the shadow system, which reads

∂

∂t
U(t, x) = f(U(t, x), Ξ(t)), (t, x) ∈ (0, T )×Ω, (5.1)

∂

∂t
Ξ(t) =

∫
Ω

g(U(t, x), Ξ(t))dx, t ∈ (0, T ), (5.2)

(U(0, x), Ξ(0) ∈ (C(Ω)× R), (5.3)

If U respectively Ξ is scalar, we denote it u respectively ξ. Heuristically, as described in [Ni11],
this system arises from the assumption that component V (t, x) of system (3.1)-(3.2) tends
towards a spatially homogeneous solution as D →∞. To illustrate this approach, multiply by
D−1, and obtain

D−1 ∂

∂t
V = ∆V +D−1g(U, V ), (5.4)

which, heuristically, tends towards
0 = ∆V, (5.5)

as D tends towards infinity. Considering homogeneous Neumann boundary conditions, this
leads to the assumption that the limit solution’s component V is constant. Note that for
constant V , it holds that V (t, x) = 1

µ(Ω)
∫
Ω V (t, x)dx. If V (t) ∈ Rdim(V ) for all t ≥ 0 holds,

the second equation of (3.1) is over-determined due to spatial inhomogeneity of the right-
hand-side. Keener’s idea is to substitute the equation for V by the equation for the mass
Ξ(t) =

∫
Ω V (x, t)dx for µ(Ω) = 1, leading to system (5.1)-(5.3). Invariance of Turing-type

destabilisation is insofar intuitive as it is the limit D →∞ and introduction of the diffusion
operator changes stability. Following the proof in [MCHKS13], performed for a system of one
reaction-diffusion equation coupled to one ordinary differential equations, it is possible to
show that solutions behave similar for finite time, if D is sufficiently large. This result has
been generalised by Bobrowski in [Bob15], where the author proves, under suitable conditions,
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5 The shadow system

that the solution of system (3.1)-(3.2) converges uniformly on any finite time interval towards
the solution of system (5.1)-(5.3) as D tends towards infinity. We restate this result of
Bobrowski in Theorem 5.1 due to its broader generality. Together with coinciding conditions
for stability, it is likely that the solution approaches a steady state which is qualitatively
similar. Spatially inhomogeneous steady states of (5.1)-(5.3) are locally constant if the roots
Ξ(U) of f(U,Ξ) = 0 are isolated, hence the steady states cannot be equal if they are not
steady states of the kinetic system. However, for v scalar, Lemma 3.6 and section 5.4 imply
that for all D > 0 there exist infinitely many steady states of the reaction-diffusion-ODE
system in a neighbourhood of a steady state of the integro-differential equation, see Lemma
5.4. For D sufficiently large, numerical simulations suggest that the qualitative difference of
the steady states lies, as (ε0, A)-stability suggests, within a small subdomain surrounding the
‘jump points’ of the steady states.
Another - from the perspective of modelling ambivalent - finding is high dependence of arising
patterns on the choice of initial conditions. For scalar u, this follows immediately if the
solution to the equation for u(x) is unique and its right-hand-side does not explicitly depend
on x ∈ Ω since well-posedness implies a maximum principle. The numerical simulations in
section 3.6 showed that the pattern does not solely depend on the initial conditions if they
are sufficiently regular and D is small. Consequently, considered globally on Ω, the shadow
system is truly just an approximation with respect to pattern selection for D large. On
the other hand, the shadow system could be interpreted as an approximation of the local
behaviour of the solution. However, this interpretation is speculative and is not investigated
rigorously. Note that in the previous sections we already pointed out that the set of stable
steady states for non-diffusive u is not the Lp-closure of the set of stable steady states for
diffusive u as diffusion’s strength tends to zero. In other words, not all stable steady states
for non-diffusive u are approximations of stable steady states for weakly diffusing u. This
observation is carried over onto shadow-systems. Namely, we show that infinitely many,
non-monotone patterns with jump-type discontinuities are stable. However, consider a system
of type (1.1) and dv →∞ and one-dimensional spatial domain. Stable patterns of its shadow
systems satisfy a non-monotonicity implies instability principle, as shown in [NPY01]. This
implies that introduction of small diffusion with diffusion coefficient du = ε to u is no suitable
approximation for non-diffusive u with respect to stability: Even if there exist steady states
for weakly diffusing u, which are in Lp-sense close to a stable steady state for non-diffusive u,
they must be unstable due to their non-monotonicity. Combined with the result of [Bob15]
respectively [MCHKS13], the breakdown of pattern in subsection 3.6.3 appears analytically
plausible for large dv. Let u be diffusive with diffusion coefficient du. Denote the solution for
diffusion coefficients du, dv by (udu,dv , udu,dv) and the solution to the respective shadow-systems
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5.1 Existence of solutions

by (udu,∞, ξdu,∞). For large dv, the estimate

c(t) ≤
∥∥∥udu,∞ − udu,dv∥∥∥+

∥∥∥udu,dv − u0,dv
∥∥∥+

∥∥∥u0,dv − u0,∞
∥∥∥ , (5.6)

shows breakdown for large dv since there exists a t∗ such that c(t∗) > ε and dv can be chosen
large such that

∥∥∥u0,dv − u0,∞
∥∥∥+

∥∥∥udu,∞ − udu,dv∥∥∥ < ε/4 on (0, 2t∗).

5.1 Existence of solutions

Consider model (5.1)-(5.3) with twice continuously differentiable f, g. Then, local Lipschitz
continuity yields local existence of a solution (U,Ξ) ∈ C1(0, t; (C0(Ω)dim(U) ×Rdim(Ξ))) for
initial conditions in (C0(Ω)dim(U) ×Rdim(Ξ)). Since examples such as f(u, ξ) = u2 show that
global existence cannot be derived in general for f, g ∈ C1(R2), global existence of solutions
to nonlinear models has to be proved for every model separately, or uniform boundedness of
solutions has to be assumed, see Assumption 2.1.

5.2 Shadow limit

Denote the solution of a system of type (3.1)-(3.2) for scalar compartments and diffusion-
coefficient D by (uD, vD) and the solution of the corresponding shadow system (5.1)-(5.3)
by (u, ξ). Then, in [MCHKS13], it was shown that, under suitable conditions, (uD, vD)
converges almost uniformly on (0, T ) towards (u, ξ) as D tends to infinity. This result has
been generalised by Bobrowski in [Bob15] onto a broader class of spatial operators and for
vector-values U and V :

Theorem 5.1 ([Bob15]). Let S be a compact metric space, N0 ≤ N natural numbers. Let
Ai, i ∈ N := {1, .., N} be generators of conservative Feller-semigroups in C(S). Assume
that there are ε > 0,M > 0 and rank-one projections Pi, i ∈ N0 := {1, ...N0} such that∥∥∥etAi − Pi∥∥∥ ≤Me−εt for t > 0, i ∈ N0. Let Ai = 0 for i ∈ N \ N0. Consider the system

∂

∂t
uDn (t) = F (UD, V D), (5.7)

∂

∂t
vDn (t) = DAV D +G(UD, V D), (5.8)

where UD = (uDi )i and V D = (vDi )i are vector-valued with dimension N0 resp. N −N0 and A
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5 The shadow system

generates the product semigroup

etA


vD1 (0)
..

vDN0

 =


etA1vD1 (0)

..

etAN0vDN0

 . (5.9)

Let F,G be locally Lipschitz continuous maps from C(S)N to C(S)N0 and C(S)N−N0 . Moreover,
let (UD, V D) be uniformly bounded.
If D tends to infinity, then (UD, V D) converge to the solution of

∂

∂t
U = G(U(t), U(t)), (5.10)

∂

∂t
V = PF (U(t), V (t), (5.11)

with initial conditions (U(0), V (0)) = (UD(0), PV D(0)) almost uniformly in t ∈ (0, T ) for any
finite T , where P (vDi ) = Pi(vDi ).

Proof. See [Bob15], Theorem 4.1.
The Laplace operator with Neumann-boundary conditions generates a Feller-semigroup on
C2(Ω) converging towards a rank-one projection for Ω ⊂ Rn convex (otherwise, the limit
might not have rank one) and bounded. If Assumption 2.1 is satisfied, F and G are sufficiently
regular and solutions are uniformly bounded. However, in order to generalise the result onto a
far wider class of operators, the result of Bobrowski lacks order of convergence. The order for
systems of type (3.1)-(3.2) for scalar u, v has been investigated in [MCHKS13], yielding, for
each α ∈ (0,dim(Ω)/2), that

lim
D→∞

sup
0≤t≤T

tα
(∥∥∥uD − u∥∥∥

∞
+
∥∥∥vD − v∥∥∥

∞

)
= 0. (5.12)

5.3 Integro-driven instability

Similar to the concept of diffusion-driven instability, we introduce the concept of integro-driven
instability of the corresponding shadow system. To simplify calculation, we assume without
loss of generality that

∫
Ω 1dx = 1.
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5.3 Integro-driven instability

Definition 5.2 (Integro-driven instability). Assume that a system of ordinary differential
equations

∂

∂t
U(t) = f(U(t), Ξ(t)), t ∈ (0, T ), (5.13)

∂

∂t
Ξ(t) = g(U(t), Ξ(t)), t ∈ (0, T ), (5.14)

(U(0), Ξ(0)) ∈ Rdim(U)+dim(Ξ), (5.15)

has a stable stationary solution (U,Ξ).
We say that system (5.13)-(5.15) exhibits integro-driven instability if (U(x), Ξ) = (U,Ξ) is an
unstable stationary solution of system (5.1)-(5.3).

In [KBHG12], the authors investigate the idea of unstable subsystems for systems of type
(3.1)-(3.2) for D > 0, in [ASY12] for small diffusion coefficient for U . It turns out that the
idea of unstable subsystems can be extended onto systems of type (5.1)-(5.3). The following
lemma is a generalisation of Theorem 2.1 in [MCHKS13].

Lemma 5.3. Consider a system of type (5.1)-(5.3) for vector-valued U and vector-valued Ξ
and let f, g be twice continuously differentiable. Let (Ũ , Ξ̃) denote a stationary solution of (5.1)-
(5.1) which is constant on a subdomain Ω1 ⊂ Ω and denote the value assumed on Ω1 by (U,Ξ).
Moreover, assume that the Jacobian matrix of the ODE subsystem, ∇Uf |(U,Ξ) = (∂ujfi|(U,Ξ))ij,
has an eigenvalue λ0 with

Reλ0 ≥ c > 0, (5.16)

and that all other eigenvalues of ∇Uf |(Ũ ,Ξ̃)(x) satisfy |Reλ(x)| ≥ c > 0 on Ω. Then (Ũ , Ξ̃)
is unstable.

Re(λ)

Im(λ)

rg(∇Uf) σ(∇Uf |Ω1) ⊂ σp(L)

Figure 5.1: Illustration of the spectrum of the operator L in Lemma 5.3.
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Proof. We consider an initial value problem for the perturbation ϕ(x, t) = U(x, t)− Ũ(x) and
ψ(t) = Ξ(t)− Ξ̃. The pair z = (ϕ,ψ) is a solution of the following initial value problem,

∂

∂t
z = Lz +N (z), (5.17)

z(0) = z0 = (U0 − Ũ , Ξ0 − Ξ̃), (5.18)

where

Lz = L
(
ϕ(x)
ψ

)
=

 ∇Uf |(Ũ ,Ξ̃)ϕ(x) +∇Ξf |(Ũ ,Ξ̃)ψ∫
Ω∇Ug|(Ũ ,Ξ̃)ϕ(x)dx+

∫
Ω∇Ξg|(Ũ ,Ξ̃)ψdx

 , (5.19)

and N is a nonlinear term obtained via Taylor expansion, since f and g are twice continuously
differentiable. Define (X, ‖.‖X) := ((L∞(Ω))n × Rm, ‖ϕ‖L∞(Ω) + |ψ|) and consider L an
operator in X with domain X. L is a bounded operator and therefore generates a strongly
continuous semi-group.
By assumption, ∇Uf |(U,Ξ) has an eigenvalue λ0 with Reλ0 > 0. We show that λ0 is an
eigenvalue of the operator L. Let (λ0, eλ0) be the eigenvalue-eigenvector pair of ∇Uf |(U,Ξ).
It is easy to see that (eλ0ϕ0, 0) is the corresponding eigenvector of L for every non-trivial
ϕ0 ∈ {ϕ ∈ C0(Ω)|

∫
Ω1
ϕ = 0 and ϕ = 0 on Ω \Ω1}:

∇Uf |(U,Ξ)eλ0ϕ0 = λ0eλ0ϕ0, (5.20)

and ∫
Ω

n∑
i=1

( ∂gi
∂uj
|(Ũ ,Ξ̃))ijeλ0,iϕ0(x)dx =

n∑
i=1

( ∂gi
∂uj
|(U,Ξ))ijeλ0,i

∫
Ω1

ϕ0(x)dx = 0. (5.21)

Consequently, we find L(eλ0ϕ0(x), 0) = λ0(eλ0ϕ0(x), 0). f and g are twice continuously differ-
entiable by assumption. Therefore, since N results from a Taylor expansion and meas(Ω) <∞
holds,

‖N (z)‖X ≤ c ‖z‖
2
X , (5.22)

holds. It follows nonlinear instability of the steady state, see e.g. Theorem 1, [SS00].

5.4 Existence of spatially inhomogeneous steady states

Consider scalar ξ. By definition, a steady state (Ũ(x), ξ̃) satisfies the following equation for
all x ∈ Ω,

0 = f(Ũ(x), ξ̃). (5.23)
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Assume that this equation has n isolated roots for given ξ̃ and denote these roots Ui(ξ̃), 1 ≤
i ≤ n. Consider a partition of Ω by disjoint sets Ωi, 1 ≤ i ≤ n, where U(x) = Ui(ξ) on Ωi.
Then, we can write ∂ξ/∂t = 0 as

0 =
∫
Ω

g(Ũ(x), ξ̃),

=
n∑
i=1

∫
Ωi

g(Ui(ξ̃), ξ̃),

=
n∑
i=1

µ(Ωi)g(Ui(ξ̃), ξ̃),

(5.24)

since Ui(ξ̃) is constant on Ωi. This equation can be solved for coefficients 0 ≤ µ(Ωi) ≤ µ(Ω)
satisfying

∑n
i=1 µ(Ωi) = µ(Ω) if and only if one of the following conditions are satisfied:

1. there exist at least two roots U1(ξ̃), U2(ξ̃) of f(U, ξ̃) = 0 satisfying

g(U1(ξ̃), ξ̃) < 0 < g(U2(ξ̃), ξ̃). (5.25)

This condition allows construction of discontinuous steady states. It is similar to the
condition for existence of spatially inhomogeneous steady states for the corresponding
reaction-diffusion equation, see Lemma 3.6. For reaction-diffusion equations, this con-
dition is implied by homogeneous Neumann boundary conditions for inhomogeneous
steady states.

2. there exists Ui(ξ̃), such that g(Ui(ξ̃), ξ̃) = 0. This allows construction of steady states
assuming the values of steady states of the kinetic system.

Assume that (
∑n
i=1 χ(Ωi)Ui(ξ̃), ξ̃) is a steady state of (5.1)-(5.3). It is possible to construct

steady states of system (3.1)-(3.2) assuming only values in a neighbourhood of some values
(Ui(ξ̃), ξ̃):

Corrolary 5.4. Assume that (
∑n
i=1 χΩi(x)Ui(ξ̃), ξ̃) is a steady state of system (5.1)-(5.3).

Moreover, assume that |det(∇Uf)| ≥ c > 0, evaluated at the steady state, holds point-wise.
Then, for all ε > 0, there exists a jump-type steady state of system (5.1)-(5.3) which assumes
only values in ⋃iBε(Ui(ξ̃))×Bε(ξ̃).
Proof. If g(Ui(ξ̃), ξ̃) = 0, the steady state is a steady state of the kinetic system, hence the
result is clear.
If w.l.o.g. g(Ui(ξ̃), ξ̃) > 0, then it holds for some j 6= i that g(Uj(ξ̃), ξ̃) < 0. Since f, g ∈ C1

and det(∇Uf) 6= 0, all conditions of Lemma 3.6 are satisfied. By choosing a sequence (εn)n∈N
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with εn ↘ 0 in the proof of Lemma 3.6, the proof yields existence of steady states assuming
values only in a neighbourhood of

⋃
i(Ui(ξ̃), ξ̃). For εn sufficiently small, the Jacobian matrix

of the kinetic system, evaluated at the steady state is in a neighbourhood of the Jacobian
matrix of the kinetic system of the integro-ODE system. Due to continuity of f, g, results on
the signs of entries are valid for the steady state of the reaction-diffusion system for sufficiently
small εn. Due to continuous dependency of the determinant and trace on the entries, results
about the signs of them are valid for the steady state of the reaction-diffusion-system for
sufficiently small εn.
Note that the constructed steady states do not necessarily have discontinuities a the same
spatial positions. More general, for m integro-differential equations and n roots Ui(ξ̃) of
f(Ũ , ξ̃) = 0, the equation


g1(U1(ξ̃), ξ̃) · · · g1(Un(ξ̃), ξ̃)

... . . . ...
gm(U1(ξ̃), ξ̃) · · · gm(Un(ξ̃), ξ̃)

1 · · · 1



µ(Ω1)

...
µ(Ωn)

 =


0
...
0

µ(Ω)

 , (5.26)

must admit a solution satisfying 0 ≤ µ(Ωi) for all i. Note that the last row of the matrix is
dispensable. In case of

∑n
i=1 µ(Ωi) 6= µ(Ω), the constructed solution on (0,

∑n
i=1 µ(Ωi)) can

be rescaled by x̂ = xµ(Ω)/
∑n
i=1 µ(Ωi). If not specified differently, we consider scalar Ξ = ξ

and U = u.

5.5 (ε0, A)-stability for integro-ODE systems

We define (ε0, A)-stability for integro-ODE systems analogously to the definition of (ε0, A)-
stability for reaction-diffusion-ODE systems in Definition 3.8. However, for shadow systems of
reaction-diffusion-ODE systems, the ‘diffusing’ component is constant in space. The subspace
of constant functions is complete if equipped with Sobolev norms, hence the Sobolev norms
are equivalent to the euclidean norm. Therefore, the neighbourhood basis can be defined
equivalently by

Nε(ũ, ξ̃) := {(u, ξ) ∈ Lp(Ω)×R| ∃R⊂Ω : ‖u− ũ‖L∞(R)+|ξ− ξ̃| ≤ ε andµ(Ω\R) ≤ ε2}. (5.27)

We define (ε0, A)-stability analogously to Definition 3.8:

Definition 5.5. A stationary solution (ũ, ξ̃) of regularity as in Corollary 5.4 of system (5.1)-
(5.3) is said to be (ε0, A)-stable for positive constants ε0 and A if initial functions (u(x, 0), ξ(0))
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satisfy
‖u(x, 0)− ũ‖L∞(R) + |ξ(x, 0)− ξ̃| < ε, (5.28)

for some R ⊂ I with meas(I \R) < ε4, and ε ∈ (0, ε0), then

‖u(t)− ũ‖L∞(R) + |ξ(t)− ξ̃| < Aε, (5.29)

for all t > 0.

5.6 Conditions for stability of spatially inhomogeneous steady
states of the ‘shadow system’

In section 3.5, we investigated conditions for stability of steady states with jump-type dis-
continuity of reaction-diffusion-ODE systems. The conditions for (ε0, A)-stability for shadow
systems turn out to be similar. However, the similarity of conditions for stability can be
misleading, since in general steady states are only steady states of both systems if they are
piece-wise constant.
On the other hand, Corollary 5.4 implies that existence of steady states and the signs of
entries of Jacobian matrix evaluated at them can be derived from the shadow-system. Conse-
quently, existence of stable steady states of reaction-diffusion-ODE systems can be derived
from existence of certain steady states of the shadow systems. The concept of the proofs of
stability is analogous to the proofs in section 3.5.
First, we linearise the right-hand-side of (5.1)-(5.3) around a jump-type steady state (ũ, ξ̃)
and identify the linearised operator L as bounded operator from X = Lp×R to X. Therefore,
the spectrum of the operator determines the stability in Lp ×R since the nonlinearities are
sufficiently smooth. Then, we use the (ε0, A)-topology. A striking difference between the
proof for shadow-systems and reaction-diffusion-ODE systems is that it is not restricted to
one-dimension spatial domain for shadow systems. For reaction-diffusion-ODE systems, the
presented proof requires a one-dimensional spatial domain, I ⊂ R respectively Ω ⊂ R, even
though numerical investigations, which are not shown within this thesis, imply existence of
stable discontinuous patterns for two- and three-dimensional spatial domain.

Lemma 5.6. Let Ω ⊂ Rn be bounded.
Consider a spatially inhomogeneous steady state (ũ, ξ̃) ∈ (L∞(Ω)×R) of a system of type

∂

∂t
u(x, t) = f(u(x, t), ξ(t)), (x, t) ∈ Ω × R+, (5.30)

∂

∂t
ξ(t) =

∫
Ω

g(u(x, t), ξ(t))dx, t ∈ R+. (5.31)
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(u(x, 0), ξ(0) ∈ (C(Ω)× R). (5.32)

Consider the operator

L
(
ϕ

ψ

)
:=

 ∂uf |(ũ,ξ̃)ϕ+ ∂ξf |(ũ,ξ̃)ψ∫
Ω ∂ug|(ũ,ξ̃)ϕdx+

∫
Ω ∂ξg|(ũ,ξ̃)ψdx

 , (5.33)

an operator in Lp(Ω)×R with domain Lp(Ω)×R. If

1.
∂uf |(ũ,ξ̃), ∂ξf |(ũ,ξ̃), ∂ug|(ũ,ξ̃), ∂ξg|(ũ,ξ̃) ∈ L

∞(Ω), (5.34)

2.
∂uf |(ũ,ξ̃), ∂ξg|(ũ,ξ̃) ≤ c < 0 and (∂uf∂ξg − ∂ξf∂ug)|(ũ,ξ̃) ≥ c > 0, (5.35)

then there exist cRe, cIm > 0, such that

{λ ∈ C|Reλ > −cRe ∨ | Imλ| > cIm} ⊂ %(L), (5.36)

holds for the resolvent set %(L) of L.

Re(λ)

Im(λ)

σ(L) ⊂

⊂ %(L)

0

cIm

−cIm

−cRe

rg(∂uf)

Figure 5.2: Illustration of the spectrum of the operator L in Lemma 5.6.

Remark 5.7. Note that for f, g ∈ C2(R2) and steady states L∞(Ω)× R with finitely many
jumps, Assumption (5.34) is satisfied. Even more, we can choose p = ∞ and obtain local
exponential stability in L∞(Ω)×R if supt≥0(‖u(t)‖L∞ + |ξ(t)|) <∞.

Proof. Throughout the proof ∂uf, ∂ξf, ∂ug, ∂ξg are always evaluated at (ũ, ξ̃). By application
of Hölder inequality, we see that L is a bounded operator if considered an operator in
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5.6 Conditions for stability of spatially inhomogeneous steady states of the ‘shadow system’

X = (Lp(Ω)×R) to X. First, we investigate the resolvent set of L: Let (ϕ1, ψ1) ∈ Lp(Ω)×R
be given and consider the following equation for λ ∈ C:

(∂uf − λ)ϕ+ ∂ξfψ = ϕ1, (5.37)∫
Ω

∂ugϕ+ (∂ξg − λ)ψdx = ψ1. (5.38)

For λ 6∈ rg(∂uf), it is possible to solve (5.37) for ϕ,

ϕ = ϕ1 − ∂ξfψ
∂uf − λ

. (5.39)

Substituting ϕ in (5.38) yields∫
Ω

∂ug

(
ϕ1 − ∂ξfψ
∂uf − λ

)
+ (∂ξg − λ)ψdx = ψ1,

∫
Ω

(
− ∂ug∂ξf
∂uf − λ

+ ∂ξg − λ
)

︸ ︷︷ ︸
:=A(λ)

ψdx = ψ1 −
∫
Ω

∂ugϕ1
∂uf − λ

.

Analogously to Corollary 3.10, we note that there exist cRe, cIm > 0, such that

1. for −cRe ≤ Re(λ), it holds ReA(λ) < 0,

2. for cIm ≤ Im(λ), it holds ImA(λ) > 0.

Consequently, we can write the formal solution as

ψ =
ψ1 −

∫
Ω

∂ugϕ1
∂uf−λdx∫

Ω(−∂ug∂ξf
∂uf−λ + ∂ξg − λ)dx

. (5.40)

It is left to show sufficiently high regularity of the solutions ϕ and ψ. For ϕ1 ∈ Lp(Ω), we
obtain

|ψ| ≤ c(|ψ1|+
∫
Ω

|∂ug||ϕ1|dx) ≤ c(|ψ1|+ ‖∂ug‖Lp′ ‖ϕ1‖Lp), (5.41)

and, due to (5.39),

‖ϕ‖Lp ≤ C(‖ϕ1‖Lp + ‖∂ξf‖Lp |(|ψ1|+ ‖∂ug‖Lp′ ‖ϕ1‖Lp)). (5.42)
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5 The shadow system

Theorem 5.8. Consider a system of type (5.1)-(5.3) for scalar compartments (u, ξ). Assume
that there exists a spatially inhomogeneous steady state (ũ, ξ̃) with finitely many jump-type
discontinuities. If the model satisfies the conditions of Lemma 5.6 at the steady state, then
there exist A, ε0 > 0, such that (ũ, ξ̃) is (ε0, A)-stable.

Remark 5.9. Note that, unlike in Theorem 3.9, no Sobolev type estimate ‖.‖L∞ ≤ C ‖.‖H1

is used. Consequently, stability of steady states of the shadow system can be obtained for
arbitrary, finite, finite dimensional spatial dimension.

Remark 5.10. Note that the stability result can be extended onto systems with vector-valued
U = (u1, u2) analogous to Theorem 3.9 and 4.7.

Proof. The proof follows the lines of the proof of stability of steady states for the reaction-
diffusion-ODE system.
Again, we write equation (5.1)-(5.3) as

∂

∂t

(
ϕ(x, t)
ψ(t)

)
= L

(
ϕ(x, t)
ψ(t)

)
+
(
%(x, t)
σ(x, t)

)
, (5.43)

where

L
(
ϕ(x, t)
ψ(t)

)
:=

 ∂uf |(ũ(x),ξ̃)ϕ(x, t) + ∂ξf |(ũ(x),ξ̃)ψ(t)∫
Ω ∂uf(ũ(x),ξ̃)ϕ(x, t)dx+ ψ(t)

∫
Ω ∂ξf |(ũ(x),ξ̃)dx

 , (5.44)

and

%(x, t) :=1
2
(
∂uuf |(α,β)ϕ

2 + 2∂ξ∂uf |(α,β)ϕψ + ∂ξξf |(α,β)ψ
2
)
, (5.45)

σ(x, t) :=1
2

∫
Ω

∂2
ug|(α′,β′)ϕ2dx+ 2

∫
Ω

∂ξ∂ug|(α′,β′)ϕdxψ +
∫
Ω

∂2
ξ g|(α′,β′)dxψ2

 , (5.46)

where (α(x), β), (α′(x), β′) ∈ ((u(x), ũ(x))× (ξ, ξ̃)) according to the Taylor-Lagrange residual
formula. Recall, that Assumption 2.1 holds, hence the solution is uniformly bounded and f, g
are twice continuously differentiable. Lemma 5.6 allows us to use the following estimate:

‖ϕ(t)‖1 + |ψ(t)| ≤ c

(‖ϕ0‖1 + |ψ0|)e−kt +
t∫

0

(‖%(s)‖1 + |σ(s)|)e−k(t−s)ds

 . (5.47)

By integration, we obtain:

|ϕ(x, t)| ≤ |ϕ0(x)|e−kt +
t∫

0

(|%(s, x)|+ |∂ξf(x)ψ(s)|) e−k(t−s)ds, (5.48)
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5.6 Conditions for stability of spatially inhomogeneous steady states of the ‘shadow system’

|ψ(t)| ≤ c

|ψ0|e−kt +
t∫

0

|σ(s)|+
∫
Ω

|∂ug(x)ϕ(s)|dx

 e−k(t−s)ds

 , (5.49)

≤ c

|ψ0|e−kt +
t∫

0

(|σ(s)|+ ‖ϕ(s)‖1) e−k(t−s)ds

 , (5.50)

≤ c

(‖ϕ0‖1 + |ψ0|)e−kt +
t∫

0

(|σ(s)|+ ‖%(s)‖1) e−k(t−s)ds

 . (5.51)

Note that due to the regularity of f and g,

|%(x, t)| ≤ C(|ϕ(x, t)|2 + |ψ(t)|2), (5.52)

|σ(t)| ≤ C(‖ϕ(t)‖22 + |ψ(t)|2), (5.53)

hold. Hence,

|ψ(t)| ≤ c

(‖ϕ0‖1 + |ψ0|)e−kt +
t∫

0

(
‖ϕ(s)‖22 + |ψ(s)|2)e−k(t−s)ds

) ,
≤ c

(‖ϕ0‖1 + |ψ0|)e−kt +
t∫

0

(
‖ϕ(s)‖2L∞(R) + µ(I \R) + |ψ(s)|2)e−k(t−s)ds

) ,
≤ c

(‖ϕ0‖L∞(R) + µ(I \R) + |ψ0|)e−kt +
(

sup
s∈(0,t)

(‖ϕ(s)‖L∞(R) + |ψ(s)|)
)2

+ µ(I \R)

 ,
(5.54)

and

‖ϕ(t)‖L∞(R) ≤ ‖ϕ0‖L∞(R) e
−kt +

t∫
0

((
‖ϕ(s)‖L∞(R) + |ψ(s)|

)2
+ |ψ(s)|

)
e−k(t−s)ds,

≤ c

‖ϕ0‖L∞(R) e
−kt +

(
sup
s∈(0,t)

(‖ϕ(s)‖L∞(R) + |ψ(s)|)
)2

+
t∫

0

|ψ(s)|e−k(t−s)ds

 ,
(5.55)

follow. Applying (5.54) to (5.55), we obtain

|ϕ(t)|L∞(R) ≤ c

(‖ϕ0‖L∞(R) + |ψ0|) +
(

sup
s∈(0,t)

(‖ϕ(s)‖L∞(R) + |ψ(s)|)
)2

+ µ(I \R)

 ,
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and therefore with (5.54)

|ϕ(t)|L∞(R)+|ψ(t)| ≤ C

(‖ϕ0‖L∞(R) + |ψ0|) +
(

sup
s∈(0,t)

(‖ϕ(s)‖L∞(R) + |ψ(s)|)
)2

+ µ(I \R)

 .
Choosing A > max(C, 1), and ε0 so small that

1 +Aε0 + ε0 <
A

C
, (5.56)

it follows for all 0 < δ ≤ ε0 that

‖ϕ0‖L∞(R) + |ψ0| < δ ⇒ ∀t>0 : ‖ϕ(t)‖L∞(R) + |ψ(t)| < Aδ. (5.57)

We showed that under suitable conditions, a steady state of an integro-ODE system is (ε0, A)-
stable.
A natural question arising is whether it is useful to investigate the behaviour of the shadow
system if it leads to the same conditions for stability and existence of steady states. A striking
difference between reaction-diffusion-ODE systems and their shadow-systems is that we can
algebraically reduce a shadow system using a quasi-steady state approximation for a component
with integro-right-hand side. If the right-hand side is uniquely solvable for ξ, the resulting
reduced system can be investigated easier than a quasi-steady state reduction of a reaction-
diffusion-ODE system involving the inverse of ∆ or even a shift of type (∆ + (µ+u(x, t)) id)−1,
where ∆ is considered with homogeneous Neumann boundary conditions. This reduction will
be addressed in chapter 6.

5.7 Application to example models

5.7.1 A receptor-based model

In this section, we apply the shadow-reduction to system (3.92)-(3.94),

∂

∂t
u =− (1 + w)u+m1

u2

1 + ku2 , x ∈ Ω, t ∈ (0, T ), (5.58)

∂

∂t
w =D∆w − (µ+ u)w +m2

u2

1 + ku2 , x ∈ Ω, t ∈ (0, T ), (5.59)

∂nw =0, x ∈ ∂Ω, t ∈ (0, T ), (5.60)

(u(0), w(0)) ∈(C(Ω)× C2(Ω)). (5.61)
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This system satisfies the conditions of Theorem 5.1 respectively of Theorem A.2 in [MCHKS13].
Therefore, for large D and finite T , component u of the solution of system (5.58)-(5.60) exhibits
a similar behaviour like the solution of

∂

∂t
u =− (1 + ξ)u+m1

u2

1 + ku2 , (x, t) ∈ Ω × (0, T ), (5.62)

∂

∂t
ξ =− (µ3 +

∫
Ω

udx)ξ +m2

∫
Ω

u2

1 + ku2dx, t ∈ (0, T ), (5.63)

with initial conditions (u(x, 0),
∫
Ω w(x, 0)dx) defined by the initial conditions of (5.58)-(5.61).

However, Theorem 5.1 is limited to finite T , hence it does not imply stability of steady states.
We investigate stability based on Theorem 5.8.

Lemma 5.11. Consider system (5.58)-(5.61) and let the parameters satisfy the conditions of
Theorem 3.21. Then system (5.58)-(5.61)

• has a positive, unique, uniformly bounded solution u ∈ C1(0,∞;C(Ω)× R) for positive
initial conditions,

• exhibits integro-driven instability at a spatially homogeneous steady state (u, ξ),

• has infinitely many spatially inhomogeneous, (ε0, A)-stable steady states.

Proof. Existence of a local-in-time solution yields from regularity of f, g. Boundedness and pos-
itivity of u can be obtained analogously to (3.101). Due to

∫
Ωm2u

2/(1 + ku2)dx < µ(Ω)m2/k

and
∫
Ω udx ≤ µ(Ω)m1/k, ξ, positivity and boundedness can be obtained analogously to

(3.102).
By setting

0 =− (1 + ξ) +m1
u2

1 + ku2 , x ∈ Ω, (5.64)

0 =− (µ+
∫
Ω

udx)ξ +m2

∫
Ω

u2

1 + ku2dx, (5.65)

and solving the first equation for different branches of u, as in Lemma 3.17, we obtain, similar
to Lemma 3.20 that there exist three branches, u0, u−, u+ satisfying the following:
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For 0 ≤ ξ < m1/(2
√
k)− 1 =: ξr it holds that

∂uf |u,ξ(x)


> 0, u(x) = u−(ξ)
< 0, u(x) = u+(ξ)
< 0, u(x) = u0

∂ξfu,ξ(x)


< 0, u(x) = u−(ξ)
< 0, u(x) = u+(ξ)
= 0, u(x) = u0

∂ugu,ξ(x)
{
> 0, u(x) = u−(ξ)
< 0, u(x) = u0

∂ξgu,ξ(x)


< 0, u(x) = u−(ξ)
< 0, u(x) = u+(ξ)
< 0, u(x) = u0

(5.66)

and,
(∂uf∂ξg − ∂ug∂ξf)|(u+(ξ),ξ) (x) > 0. (5.67)

Consequently, for Ω+
o = Ω+ ⊂ Ω with meas(Ω+) 6= 0, steady states of type

ũ = χΩ+(x)u+(ξ), (5.68)

satisfy condition (5.35). Condition (5.34) can be verified easily, since the right-hand side is twice
continuously differentiable and ũ is uniformly bounded on Ω. Therefore, ∂uf, ∂ξf, ∂ug, ∂ξg ∈
L∞(Ω) holds at (ũ, ξ̃).
ξ̃ ∈ R+ implies ∇xu = 0, except on the points of discontinuity. We are particularly inter-
ested in steady states connecting one strictly positive branch u+ with the trivial branch u0.
Consequently, equations (5.64)-(5.65) can be written as

0 =− (1 + ξ) +m1
u2

1 + ku2 , x ∈ Ω, (5.69)

0 =− (µ3 + meas(Ω+)u)ξ +m2 meas(Ω+) u2

1 + ku2 . (5.70)

Multiplying the second equation by 1/meas(Ω+), we obtain the system

0 =− (1 + ξ) +m1
u2

1 + ku2 , x ∈ Ω, (5.71)

0 =−
(

µ3
meas(Ω+) + u

)
ξ +m2

u2

1 + ku2 . (5.72)

Consequently, existence of spatially inhomogeneous steady states of type (5.68) follows imme-
diately from Lemma 3.17 (2.).
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5.7.2 Lengyel-Epstein model

The shadow system of model (3.170)-(3.171) exhibits integro-driven instability and has infinitely
many spatially inhomogeneous, (ε0, A)-stable steady states. Existence follows analogously
to model (5.64)-(5.65) from (3.193). Integro-driven instability and stability of steady states
follows from (3.190), (3.191) and (3.198) and Lemmas 5.3 and 5.6.

5.7.3 Numerical result

In this subsection, we illustrate the finding that there exist spatially inhomogeneous, stable
steady states. Similar to the reaction-diffusion system, the solution converges towards such
steady state. Moreover, the behaviour of solutions is similar on a finite time interval if
D is sufficiently large. In Figure 5.3, the solutions to the reaction-diffusion-ODE system
(5.58)-(5.61) (for large diffusion coefficient) and its shadow system (5.62)-(5.63) are plotted
for the parameter set 3.27. We use cell-wise constant finite elements for u. The spatial integral
is interpolated using the rectangle method on the same mesh (since it is exact then and of the
same order). Temporal discretisation is performed using the explicit Euler method. Note, that
the right-hand side of the differential equation is Lipschitz-continuous. We observe that the
dynamical behaviour as well as the pattern is similar. In Figure 5.4, the solution’s component
u at time t = 20 of both systems is plotted. However, in Figure 5.5, we observe that for less
regular initial conditions, larger D is necessary for selection of the same pattern. While the
solution of the reaction-diffusion-ODE system has a jump-type discontinuity close to x = 0,
the solution of the shadow system does not. However, the pattern close to the maximum of
the initial conditions is similar.

0

20
t

0

1
x

0

16

0

20
t

0

1
x

0

16

Figure 5.3: Solution u for parameter set 3.27. Left: Reaction-diffusion-ODE system
(5.58)-(5.61) for D = 100. Right: Shadow system (5.62)-(5.63).
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6.24

6.4

0 1

u

x

0

16

0 1

u

x

Figure 5.4: Solution u for parameter set 3.27. Left: t = 0. Right: t = 20.
Discontinuous plot: Reaction-diffusion-ODE system (5.58)-(5.60) for
D = 100. Continuous plot: Shadow system (5.62)-(5.63). Mesh size:
h = 2−8.
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Figure 5.5: Solution u at t = 20 for parameter set 3.27, but initial conditions
u(x, 0) = 6.36 − (0.04 + 0.06x2) sin(2πx2). Left: Reaction-diffusion
system-ODE (5.58)-(5.60) for D = 100. Right: Shadow system (5.62)-
(5.63).
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6 A scalar integro-differential equation
exhibiting a qualitatively similar pattern

This chapter is devoted to investigation of a steady state approximation of a particular system
of type

∂uδ

∂t
(t, x) = f(uδ(t, x), ξδ(t)), (t, x) ∈ (0, T )×Ω, (6.1)

δ
∂ξδ

∂t
(t) =

∫
Ω

g(uδ(t, x), ξδ(t))dx, t ∈ (0, T ). (6.2)

(uδ(0, x), ξδ(0)) ∈ (C(Ω)× R). (6.3)

In case of the kinetic system, stability of steady states is invariant under the limit if ∇ξg,
evaluated at the steady state, has only eigenvalues with negative real-part. In the first section,
we show that under this condition, the solution for δ > 0 converges towards the solution for
δ = 0 as δ → 0 on a finite time interval. The system is an approximation of a system of type
(3.1)-(3.2) with U = (u1, u2) and scalar v. If the right-hand side of the compartment which
is assumed to be in the quasi-steady state has exactly one root, there exists a one-to-one
mapping between the set of spatially homogeneous steady states of system (6.1)-(6.2) for δ = 0
and the set of spatially homogeneous steady states of the system of one reaction-diffusion
equation and multiple ordinary differential equations. Consequently, we want to know if basic
properties like Turing-type destabilisation are preserved. For the kinetic system or equivalently
spatially homogeneous perturbations, Lemma 4.2 confirms equivalence. Throughout this
chapter, we give conditions under which a Tikhonov-type reduction is regular for systems of
type (6.1)-(6.3). The system itself results from a Tikhonov-type reduction of a system of type
(3.1) followed by a shadow-reduction, which have been proved to be regular for finite time.
Consequently, we conduct that integro-driven instability of (6.1)-(6.3) implies diffusion-driven
instability of a system of type

∂uδ

∂t
(x, t) = f(uδ, vδ, wδ), x ∈ Ω, (6.4)

α(δ)∂v
δ

∂t
(x, t) = h(uδ, vδ, wδ), x ∈ Ω, (6.5)
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γ(δ)∂w
δ

∂t
(x, t) = β(δ)−1D∆wδ + g(uδ, vδ, wδ), x ∈ Ω, (6.6)

∂nw
δ(t, x) = 0, x ∈ ∂Ω, (6.7)

(uδ(x, 0), vδ(x, 0), wδ(x, 0)) ∈ (C(Ω)2 × C2(Ω)), (6.8)

under suitable conditions on the nonlinearities and α(δ), β(δ), γ(δ) are scalar and converge
towards zero as δ → 0 in suitable orders. Since we are interested in what ‘key property’ of the
system remains after reduction it is natural to investigate the counterpart of diffusion-driven
instability in the same sense as for the previously investigated shadow system.
We consider the quasi-steady state approximation of

∂uδ

∂t
= −uδ − uδξδ +m1

(uδ)2

1 + k(uδ)2 , (x, t) ∈ Ω × (0,∞), (6.9)

δ
∂ξδ

∂t
= −(µ+

∫
Ω

uδdx)ξδ +m2

∫
Ω

(uδ)2

1 + k(uδ)2dx, t > 0, (6.10)

(uδ(x, 0), ξδ(0)) ∈ (C(Ω)× R). (6.11)

Setting δ = 0, then solving (6.10) for ξ0 and inserting this into (6.9), we obtain the following
problem

∂u0

∂t
=−

1 +m2

µ+
∫
Ω

u0dx

−1 ∫
Ω

(u0)2

1 + k(u0)2dx

u
+m1

(u0)2

1 + k(u0)2 , (x, t) ∈ Ω × (0,∞),

u0(x, 0) ∈C(Ω).

(6.12)

If investigating (6.12), we drop the ·0-notation for convenience.

6.1 Existence of solutions

Theorem 6.1. Problem (6.12), supplemented with positive initial conditions, has a unique,
positive, uniformly bounded solution u ∈ C1(0,∞;C(Ω)).

Proof. We show existence based on the classical argument of Lipschitz-continuity. Define

F(u) := −

1 +m2

µ+
∫
Ω

udx

−1 ∫
Ω

(u)2

1 + k(u)2dx

u+m1
(u)2

1 + k(u)2 . (6.13)
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6.1 Existence of solutions

First, see that

|F(u)−F(v)| ≤ |u− v|+m1

∣∣∣∣∣ u2

1 + ku2 −
v2

1 + kv2

∣∣∣∣∣+m2

∣∣∣∣∣∣
∫
Ω

u2

1+ku2dx

µ+
∫
Ω udx

u−
∫
Ω

v2

1+kv2dx

µ+
∫
Ω vdx

v

∣∣∣∣∣∣ ,
≤
(

1 +m1
3
√

3
8
√
k

)
|u− v|+m2

∣∣∣∣∣∣
∫
Ω

u2

1+ku2dx

µ+
∫
Ω udx

u−
∫
Ω

v2

1+kv2dx

µ+
∫
Ω vdx

v

∣∣∣∣∣∣ .
We continue by estimating the second term (dropping dx in the first line for convenience):∣∣∣∣∣∣
∫
Ω

u2

1+ku2

µ+
∫
Ω u

u−
∫
Ω

v2

1+kv2dx

µ+
∫
Ω v

v

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

u2

1+ku2

µ+
∫
Ω u

u−
∫
Ω

v2

1+kv2

µ+
∫
Ω u

u+
∫
Ω

v2

1+kv2

µ+
∫
Ω u

u−
∫
Ω

v2

1+kv2

µ+
∫
Ω v

v

∣∣∣∣∣∣ , (6.14)

≤ |u|
µ+

∫
Ω udx

∣∣∣∣∣∣
∫
Ω

u2

1 + ku2dx−
∫
Ω

v2

1 + kv2dx

∣∣∣∣∣∣ (6.15)

+

∣∣∣∣∣∣
∫
Ω

v2

1 + kv2dx

∣∣∣∣∣∣
∣∣∣∣∣ u

µ+
∫
Ω udx

− v

µ+
∫
Ω vdx

∣∣∣∣∣ ,
≤ |u|
|µ+

∫
Ω udx|

3
√

3
8
√
k
|u− v| (6.16)

+

∣∣∣∣∣∣
∫
Ω

v2

1 + kv2dx

∣∣∣∣∣∣
∣∣∣∣∣ u

µ+
∫
Ω udx

− v

µ+
∫
Ω vdx

∣∣∣∣∣ .
Estimating the last term (again dropping dx in the first line for convenience)∣∣∣∣∣∣
∫
Ω

v2

1 + kv2dx

∣∣∣∣∣∣
∣∣∣∣∣ u

µ+
∫
Ω u
− v

µ+
∫
Ω v

∣∣∣∣∣ ≤ 1
k

∣∣∣∣∣ u

µ+
∫
Ω u
− v

µ+
∫
Ω u

+ v

µ+
∫
Ω u
− v

µ+
∫
Ω v

∣∣∣∣∣ ,
≤ 1
kµ
|u− v|+ 1

kµ2 |
∫
Ω

(u− v)dx|,

≤ 1
kµ
|u− v|+ 1

kµ2 ‖u− v‖∞ .

Consequently,

|f(u)− f(v)| ≤
(

1 + 3
√

3
8
√
k

(m1 + |u|
|µ+

∫
Ω udx|

) + 1
kµ

)
|u− v|+ 1

kµ2 ‖u− v‖∞ , (6.17)

holds. Hence, we obtain local existence for
∫
Ω udx > 0. To obtain global existence, it is left to

prove that for positive initial conditions, the solution remains positive and uniformly bounded.
Then,

∫
Ω udx > 0 follows and the Lipschitz constant remains bounded. We prove positivity of
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the mass
∫
Ω udx for positive initial mass. To see this, integrate (6.12) over Ω and

∂

∂t

∫
Ω

udx = −
∫
Ω

udx−m2

∫
Ω

u2

1 + ku2dx

∫
Ω udx

µ+
∫
Ω udx

+m1

∫
Ω

u2

1 + ku2dx,

≥ −
∫
Ω

u− m2
k

∫
Ω udx

µ+
∫
Ω udx

,

≥ −(1 + m2
k

)
∫
Ω

udx,

follows. From positivity of mass, it follows that u stays positive for positive initial conditions
since

∂

∂t
u = −u−m2

∫
Ω

u2

1+ku2dx

µ+
∫
Ω udx

u+m1
u2

1 + ku2 ,

≥ −
(

1 + m2
k

)
u+m1

u2

1 + ku2 .

For positive initial conditions, we obtained local existence of a strictly positive solution. To
obtain global existence, we show that u is bounded,

∂

∂t
u = −u−m2

∫
Ω

u2

1+ku2dx

µ+
∫
Ω udx

u+m1
u2

1 + ku2 ,

≤ −u+ m1
k
.

Therefore, the Lipschitz constant is uniformly bounded and we obtain existence of a unique
global, positive, uniformly bounded solution.

6.2 Tikhonov type result

Throughout this subsection, we assume existence of solutions to problem (6.1)-(6.2) for all
sufficiently small δ ≥ 0.

Lemma 6.2. Consider a system of type (6.1)-(6.2), but with vector-valued compartments
U,Ξ. Assume that system (6.1)-(6.2) has for all δ ∈ [0, δ∗) a unique classical solution (U δ, Ξδ)
and the set of solutions (U δ, Ξδ) is uniformly bounded in time and [0, δ∗). If the spectrum σ

of ∇Ξg|(U,Ξ) is contained strictly in the left complex half-plane for all (U,Ξ), i.e.

Re(σ(∇Ξg|(U,Ξ))) ≤ c < 0, (6.18)
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6.2 Tikhonov type result

then (U δ, Ξδ) converges towards (U0, Ξ0) as δ → 0:∥∥∥U δ − U0
∥∥∥
L∞(0,T ;L∞(Ω)

→ 0 as δ → 0, (6.19)∥∥∥Ξδ −Ξ0
∥∥∥
L1(0,T )

→ 0 as δ → 0. (6.20)

Proof. Note that α := U δ − U0 and β := Ξδ −Ξ0 satisfy the following equation

∂α

∂t
= ∇Ufα+∇Ξfβ, (6.21)

∂β

∂t
= 1
δ

∫
Ω

∇Ugαdx+
∫
Ω

∇Ξgdxβ

− ∂Ξ0

∂t
, (6.22)

with α(x, 0) = U δ(x, 0)− U0(x, 0) and β(0) = Ξδ(0)− U0(0), and where the derivatives are
evaluated according to the Taylor-Lagrange residual formula. Now, the proof essentially
follows the lines of the proof of Lemma 4.5. First, we estimate α,

‖α(t)‖L∞(Ω) ≤ e
‖∇Uf‖∞(t−tn) ‖α(tn)‖L∞(Ω) +

t∫
tn

e‖∇Uf‖∞(t−τ) ‖∇Ξf‖∞ |β(τ)|dτ,

≤ e‖∇Uf‖∞(t−tn)
(
‖α(tn)‖L∞(Ω) + ‖∇Ξf‖∞ ‖β‖L1(tn,t)

)
.

The solution β can be written in the form

|β(t)| =

∣∣∣∣∣∣e
1
δ

∫ t
tn

∫
Ω
∇Ξgdxdτβ(tn)−

t∫
tn

e
1
δ

∫ t
τ

∫
Ω
∇Ξgdxds∂Ξ

0

∂t
(τ)dτ + 1

δ

t∫
0

e
1
δ

∫ t
τ

∫
Ω
gΞdxds

∫
Ω

∇Ugαdxdτ

∣∣∣∣∣∣ .
and consequently, it holds due to Young’s inequality and ∇Ξg being stable that

‖β‖L1(tn,t) ≤

|β(tn)|+
∥∥∥∥∥∂Ξ0

∂τ

∥∥∥∥∥
L∞(tn,t)

(t− tn)

Cδ +
t∫

tn

∥∥∥∥∥∥
∫
Ω

∇Ugαdx

∥∥∥∥∥∥
L∞(tn,τ)

dτ,

≤

|β(tn)|+
∥∥∥∥∥∂Ξ0

∂τ

∥∥∥∥∥
L∞(tn,t)

(t− tn)

Cδ + ‖∇Ug‖L∞(tn,t;L1(Ω)) (t− tn) ‖α‖L∞(tn,t;L∞(Ω)) ,

≤ Cδ + (t− tn)Cδ + C(t− tn)e‖∇Uf‖∞(t−tn)
(
‖α(tn)‖L∞(Ω) + ‖∇Uf‖∞ ‖β‖L1(tn,t)

)
,

Choosing (tn+1 − tn) so small that

C(tn+1 − tn) < C(tn+1 − tn)e‖∇Uf‖∞(t−tn) <
1
2 , (6.23)
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yields the result by induction over n analogously to the proof of Lemma 4.5.

6.3 Integro-driven instability

The approach for investigating integro-driven instability for system (6.12) is similar to the
approach used to investigate integro-driven instability for the shadow system. We showed
that, under certain conditions, system (5.1)-(5.3) has a spatially homogeneous steady state
(u, ξ) which is stable under spatially homogeneous perturbation. If we perturb system (6.1)-
(6.2) only with spatially homogeneous perturbations (ϕ,ψ), then f and g are constant in x.
Consequently, the kinetic system reads in all x ∈ Ω,

∂uδ

∂t
(t) = f(uδ(t), ξδ(t)),

δ

meas(Ω)
∂ξδ

∂t
= g(uδ(t), ξδ(t)),

(uδ(0), ξδ(0)) = (u+ ϕ, ξ + ψ).

(6.24)

Consequently, if ∂ξg|(uδ,ξ(uδ)) ≤ c < 0 holds for all uδ, where ξ(uδ) is defined implicitly by
g(uδ, ξδ) = 0, then regularity Lemma 4.2 can be applied to the limit δ → 0 and we obtain that
a steady state is stable for δ = 0 if and only if it is stable for all sufficiently small δ > 0. To
investigate instability under spatially inhomogeneous perturbation for δ = 0, we first consider
the linearised operator and investigate linear stability. Then, we conclude nonlinear instability
based on Theorem 1 in [SS00]. To investigate (in)stability of steady states with respect to
inhomogeneous perturbations, we investigate the linearised operator.

Lemma 6.3. Consider a system of type

∂u

∂t
(t, x) = f(u(t, x), ξ(t)), (x, t) ∈ (0, T )×Ω, (6.25)

0 =
∫
Ω

g(u(t, x), ξ(t))dx, t ∈ (0, T ), (6.26)

u(0, x) ∈ C(Ω). (6.27)

Assume that there exists a spatially homogeneous steady state (u, ξ) and assume that ∂ξg|(u,ξ)
is either strictly positive (≥ c > 0) or strictly negative (≤ c < 0). Moreover, assume that the
solution ξ = ξ(u) of (6.26) is isolated.

1. The spectrum of the linearised operator L considered as operator in C(Ω) consists only
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of the eigenvalues of the linearised kinetic system and ∂1f(u, ξ(u)):

σ(L) =
{
df(u, ξ(u))

du
(u, ξ)

}⋃{
∂f(u, ξ)
∂u

|(u,ξ(u))

}
. (6.28)

2. If ∂uf |(u,ξ) > 0 and the eigenvalue of the kinetic system linearised at (u, ξ) have nontrivial
real part, then (u, ξ) is non-linearly unstable for initial conditions u(0, x) ∈ C(Ω).

Proof. First, note that g is twice continuously differentiable, hence

G : (C(Ω), ‖.‖∞)× (R, |.|)→(R, |.|), (6.29)

(u, ξ)→
∫
Ω

g(u(x), ξ)dx, (6.30)

is Frechét-differentiable in a neighbourhood of the root (u, ξ) with

DG(u, ξ)(ϕ,ψ) =
∫
Ω

∂1g(u, ξ)ϕ+ ∂2g(u, ξ)ψdx, (6.31)

where ∂1g(a, b) := ∂g(u,ξ)
∂u (a, b) and ∂2g(a, b) := ∂g(u,ξ)

∂ξ (a, b). We keep this notation. Note
DG ∈ C(C(Ω) × R;L(C(Ω) × R)). Moreover,

∫
Ω ∂2g(u, ξ)dx 6= 0, thus D(u, ξ)(0, ψ) =∫

Ω ∂2g(u, ξ)ψdx is a Banach space isomorphism from R to R, thus we can apply the implicit
function theorem. Therefore, there exists a continuously differentiable implicit function,

ξ : C(Ω)→ R, (6.32)

u→ ξ(u), (6.33)

satisfying G(u, ξ(u)) = 0 in BC(u) for some positive C.
It holds

0 = d

dτ

∫
Ω

g(u+ τϕ, ξ(u+ τϕ))|τ=0dx,

=
∫
Ω

∂1g(u, ξ(u))ϕdx+
∫
Ω

∂2g(u, ξ(u)) d
dτ
ξ(u+ τϕ)|τ=0dx.

(6.34)

Therefore, the Frechét derivative (due to regularity coinciding with the Gâteaux derivative)
reads,

Dξ(u)(ϕ) = d

dτ
ξ(u+ τϕ)|τ=0 = −

∫
Ω ∂1g(u, ξ(u))ϕdx∫
Ω ∂2g(u, ξ(u))dx , (6.35)
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and consequently

d

dτ
f(u+ τϕ, ξ(u+ τϕ)) = ∂1f(u, ξ(u))ϕ+ ∂2f(u, ξ(u)) d

dτ
ξ(u+ τϕ)|τ=0,

= ∂1f(u, ξ(u))ϕ− ∂2f(u, ξ(u))
∫
Ω ∂1g(u, ξ(u))ϕdx∫
Ω ∂2g(u, ξ(u))dx .

(6.36)

Now, consider the operator

L : (C(Ω), ‖·‖sup)→ (C(Ω), ‖·‖sup),

ϕ→ ∂1f(u, ξ(u))ϕ− ∂2f(u, ξ(u))
∫
Ω ∂1g(u, ξ(u))ϕdx∫
Ω ∂2g(u, ξ(u))dx .

(6.37)

Since f, g are twice continuously differentiable, this operator is bounded in (C(Ω), ‖·‖sup) and
consequently generates a uniformly continuous semigroup on (C(Ω), ‖·‖sup).
Note that the operator

T : ϕ→ ∂2f(u, ξ(u))
∫
Ω ∂1g(u, ξ(u))ϕdx∫
Ω ∂2g(u, ξ(u))dx , (6.38)

is compact and that u and ∂2f(u, ξ(u)), ∂1g(u, ξ(u)), ∂2g(u, ξ(u)) are constant. If λ = 0, then

(λ− T )ϕ = λϕ− ∂2f(u, ξ(u))
∫
Ω ∂1g(u, ξ(u))ϕdx∫
Ω ∂2g(u, ξ(u))dx = 0, (6.39)

implies
∫
Ω ϕdx = 0, hence

ker(L − ∂1f(u, ξ(u))) = {ϕ ∈ C(Ω)|
∫
Ω

ϕdx = 0}. (6.40)

If λ 6= 0, it implies that ϕ is constant, thus ϕ = 0 or ∂1f(u, ξ(u)) is element of the spectrum
of the linearisation of the kinetic system, i.e.

λ− ∂1f(u, ξ(u)) ∈
{
df(u, ξ(u))

du
(u, ξ)

}
. (6.41)

Consequently, due to Fredholm’s alternative, applied onto T , the spectrum of L is

σ(L) =
{
df(u, ξ(u))

du
(u, ξ)

}⋃̇
{∂1f(u, ξ(u))}. (6.42)

This concludes the statement concerning the spectrum.
For nonlinear instability, apply item 1) to obtain a spectral gap.
It is left to prove that the residual, when approximating using the uniformly continuous

108



6.3 Integro-driven instability

semigroup constructed in the proof of item 1, is at least of order ‖ϕ‖1+α
∞ . Then, Theorem 1 in

[SS00] can be applied.
Due to Taylor expansion, identity

0 =
∫
Ω

g(u+ ϕ, ξ(u+ ϕ))dx, (6.43)

=
∫
Ω

g(u, ξ)dx+
∫
Ω

∂1g(α, ξ(u+ ϕ))ϕdx+
∫
Ω

∂2g(u, β)(ξ(u+ ϕ)− ξ(u))dx, (6.44)

holds for some α(x) ∈ (u(x), (u+ ϕ)(x)) and β ∈ (ξ(u), ξ(u+ ϕ)). Due to continuity of ξ(u)
and g being twice continuously differentiable, it holds for sufficiently small ϕ that

|ξ(u+ ϕ)− ξ(u)| =
∣∣∣∣∣−
∫
Ω ∂1g(α, ξ(u+ ϕ))ϕdx∫

Ω ∂2g(u, β)dx

∣∣∣∣∣ ≤ C

c/2 ‖ϕ‖∞ , (6.45)

where ∂2g(u, β) ≤ c < 0 holds by assumption. Inserting this into a Taylor expansion of
f(u+ ϕ, ξ(u+ ϕ)) around (u, ξ(u)) yields that

f(u+ ϕ, ξ(u+ ϕ)) =Df(u, ξ(u))
(

ϕ

ξ(u+ ϕ)− ξ(u)

)
(6.46)

+
(

ϕ

ξ(u+ ϕ)− ξ(u)

)T
∇2f |α,β

(
ϕ

ξ(u+ ϕ)− ξ(u)

)
, (6.47)

=L(u)ϕ+N (ϕ), (6.48)

where α, β are determined by the Taylor-Lagrange residual formula. Moreover,

‖N (ϕ)‖∞ ≤ C
(
‖ϕ‖2∞ + ‖ϕ‖∞ |ξ(u+ ϕ)− ξ(u)|+ |ξ(u+ ϕ)− ξ(u)|2

)
, (6.49)

holds. Component ξ is continuous, f is twice continuously differentiable and (6.45) holds, thus
C does not depend on ϕ (if it is sufficiently small), thus

‖N (ϕ)‖∞ ≤ C ‖ϕ‖
2
∞ . (6.50)

This concludes nonlinear instability due to the spectral properties of L(u) as shown in (6.42),
see [SS00], Theorem 1.

Corrolary 6.4. Under the conditions on parameters in Theorem 3.21, system (6.12) exhibits
integro-driven instability at u(x) = u−(w2), where u−(w2) is defined in Theorem 3.21.

Proof. System (6.12) is a quasi-steady state approximation of system (6.9)-(6.10). Therefore,
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u−(w2) is a spatially homogeneous steady state since it is a spatially homogeneous steady
state of system (6.9)-(6.10).
In Theorem 3.21, it has been shown that system (6.9)-(6.10) exhibits integro-driven instability.
Therefore, the determinant of the Jacobian matrix of system (6.9)-(6.10) is positive at this
steady state. Since

∂ξ

(
−(1 + u)ξ +m2

u2

1 + ku2

)
= −(1 + u) < 0,

we can apply Lemma 4.6 and obtain

∂u

−
1 +m2

u2

1+ku2

µ+ u

+m1
u2

1 + ku2

 |u−(w2) < 0, (6.51)

implying stability with respect to spatially homogeneous perturbation. Moreover,
∂uf |(u−(w2),w2) > 0 holds, see Lemma 3.20. Hence, instability with respect to spatially
inhomogeneous perturbations follows from Lemma 6.3.

6.4 Remarks on dynamical behaviour

Even though numerical investigations imply that the solutions of system (6.12) converge
towards spatially inhomogeneous steady states, an analytical proof remains an open question.
However, we present some results on the dynamical behaviour

Lemma 6.5. Consider problem (6.12). Define u−(w2) as in Theorem 3.21. Let all parameters
satisfy the conditions in Theorem 3.21. Then holds u−(w1) < 1/

√
3k < w−(w2). Moreover,

if u−(w1) <
∫
Ω u(x, t∗)dx < 1/

√
3k and ∂/∂t

∫
Ω u(t∗)dx < 0 for some t∗, then exists a

k∗ > 0 such that for all 0 < k < k∗, there exists a non-zero measure subset Ω+, such that
u(x, t∗) > u−(w1) for all x ∈ Ω+.

Proof. Write the equation for ∂
∫
Ω udx/∂t as

∂

∂t

∫
Ω

u = −

1 +m2

∫
Ω

u2

1 + ku2dx

µ+
∫
Ω

udx

−1
∫
Ω

udx+m1

∫
Ω

u2

1 + ku2dx. (6.52)

Defining, f(M(t)) =M(t)2/(1 + kM(t)2) andM(t) =
∫
Ω u(x, t)dx, we obtain,

∂

∂t
M(t) =−

1 +m2

M(t)2

1+kM(t)2

µ+M(t)

M(t) +m1
M(t)2

1 + kM(t)2
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− m2
2

M(t)
µ+M(t)

∫
Ω

2− 6kη(x)
(1 + kη(x)2)3 (u(x)−M(t))dx

+ m1
2

∫
Ω

2− 6kη(x)
(1 + kη(x)2)3 (u(x)−M(t))2dx,

=−

1 +m2

M(t)2

1+kM(t)2

µ+M(t)

M(t) +m1
M(t)2

1 + kM(t)2

+ 1
2

(
m1 −m2

M(t)
µ+M(t)

)∫
Ω

2− 6kη(x)
(1 + kξ2)3 (u(x)−M(t))2dx,

where∫
Ω

f(u(x)) = f(M(t)) + f ′(M(t))
∫
Ω

(u(x)−M(t))dx

︸ ︷︷ ︸
=0

+
∫
Ω

1
2

2− 6kη(x)
(1 + kη(x)2)3 (u(x)−M(t))2dx,

and µ(Ω) = 1 have been used and η(x) is defined by the Taylor-Lagrange residual formula,
hence η(x) ∈ (

∫
Ω udx, u(x)) respectively η(x) ∈ (u(x),

∫
Ω udx).

u

f

1/
√

3k u−(w2)u−(w1) 1/
√
k

Figure 6.1: Shape of the right-hand side of the kinetic system of (6.12) for parameters
satisfying the conditions of Lemma 6.5.

System (6.12) is a Tikhonov type approximation of system (4.9)-(4.10). The steady state
equation of (4.10) can be solved uniquely for ξ(u), hence both kinetic systems have the same
steady states. Moreover, stability respectively instability of steady states is preserved due
to Lemma 4.6 since instability of steady states of (4.9)-(4.10) arises due a strictly negative
determinant of the Jacobian matrix, see Lemmas 3.20 and 3.17. Consequently, the right-hand
side r(u) = −(1 + m2u

2/(1 + ku2)(1/(µ + u)))u + m1u
2/(1 + ku2) of the kinetic system of
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(6.12) satisfies

r(0) = r(u−(w1)) = r(u−(w2)) = 0, (6.53)

r(u) < 0, for 0 < u < u−(w1), (6.54)

r(u) > 0, for u−(w1) < u < u−(w2), (6.55)

r(u) < 0, for u−(w2), (6.56)

as illustrated in Figure 6.1.
Note that

f ′′(η)

> 0 if 0 ≤ η < 1/
√

3k,

< 0 if 1/
√

3k < η,
(6.57)

and
r

( 1√
3k

)
> 0, (6.58)

holds for sufficiently small k. We can rewrite the equation for the kinetic system as

r(M(t)) =
(
−1 +

(
m1 −m2

M(t)
µ+M(t)

) M(t)
1 + kM(t)2

)
M(t), (6.59)

hence r(M(t)) > 0 is equivalent to(
m1 −m2

M(t)
µ+M(t)

)
>

1 + kM(t)
M(t) .

Therefore,M(t) ∈ (u−(w1), u−(w2)) implies(
m1 −m2

M(t)
µ+M(t)

)
> 0.

r(1/
√

3k) > 0 implies 1/
√

3k ∈ (u−(w1) + ε, u−(w2)− ε). Consequently,

M(t) ∈ (u−(w1), 1/
√

3k)

implies either ∂/∂tM(t) > 0 or u(x) > 1/
√

3k on a subset of strictly positive measure.

Lemma 6.6. Consider model (6.12). Assume that the parameters satisfy the conditions of
Theorem 3.21.
If 0 < u(0, x) <

(
m1 −

√
m2

1 − 4k
)
/(2k), then 0 < u(x, t) < u(0, x)e−ct for some positive

constant c.
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Proof. It holds

∂

∂t
u = −

1 +m2

∫
Ω

u2

1+ku2dx

µ+
∫
Ω udx

u+m1
u2

1 + ku2 , (6.60)

≤ −
(

1−m1
u

1 + ku2

)
u. (6.61)

The roots of (6.61) are

u0 = 0, (6.62)

u± =
m1 ±

√
m2

1 − 4k
2k . (6.63)

Moreover, ∂u/∂t < 0 for u ∈ (0, ε) due to the order in u of the summands and their sign. The
term in (6.61) is concave on (0, u−), hence ∂u/∂t < −cu for u ∈ (0, u− − ε). This concludes
the statement.

Lemma 6.7. Consider model (6.12). Assume that the parameters satisfy the conditions of
Theorem 3.21.
If additionally µ > 4m2/m

2
1 and k < (µ2m2

1− 4m2)/(4µ), then the following implication holds:
If ‖u(t = 0)‖∞ > û−, then exists a t∗ ≥ 0 such that for all t > t∗, it holds that

‖u(t)‖∞ ≥ û+, (6.64)

where

û± =
µm1 ±

√
µ2m2

1 − 4(kµ+m2)
2(m2 + kµ) , (6.65)

satisfies û− ≤ 1/
√

3k < u−(w1) and u−(w1) is defined as in Lemma 3.21.

Proof. The proof uses the principle of super-solutions. It holds

∂

∂t
‖u(t)‖∞ = −

1 +m2

∫
Ω

u2

1+ku2dx

µ+
∫
Ω udx

 ‖u(t)‖∞ +m1
‖u(t)‖2∞

1 + k ‖u(t)‖2∞
, (6.66)

≥ −

1 +m2

‖u(t)‖2
∞

1+k‖u(t)‖2
∞

µ+
∫
Ω udx

 ‖u(t)‖∞ +m1
‖u(t)‖2∞

1 + k ‖u(t)‖2∞
, (6.67)

≥ −
(

1 + m2
µ

‖u(t)‖2∞
1 + k ‖u(t)‖2∞

)
‖u(t)‖∞ +m1

‖u(t)‖2∞
1 + k ‖u(t)‖2∞

, (6.68)
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=: rs(‖u(t)‖∞), (6.69)

where monotonicity of f(u) = u2/(1 + ku2) and µ(Ω) = 1 have been used.
The roots of rs(u) read

û0 = 0, (6.70)

û± =
µm1 ±

√
µ2m2

1 − 4(kµ+m2)
2(m2 + kµ) , (6.71)

and (∂rs(u))/(∂u)(0) < 0 holds, hence the assertion follows, if the roots are real-valued:

µ2m2
1 − 4(kµ+m2) > 0, (6.72)
µ2m2

1 − 4m2
4µ > k, (6.73)

yields the condition on k.

µ2m2
1 − 4m2 > 0, (6.74)

µ > 2
√
m2
m1

, (6.75)

yields the condition on µ.
Moreover, it holds that

û− <
µm1

2(m2 + kµ) <
µm1
2m2

, (6.76)

hence, for sufficiently small k > 0, it follows

û− <
1√
3k

< u−(w1). (6.77)

It follows the assertion:

‖u(0)‖∞ > û− ⇒ ∀ε>0∃∞>t∗≥0∀t>t∗ ‖u(t)‖∞ ≥ û+ − ε. (6.78)

Proposition 6.8. Consider model (6.12). Assume that the parameters satisfy the conditions
of Theorem 3.21 and Lemma 6.7. Moreover, assume that the initial conditions satisfy for
some small, but positive ε2

u(0, x) ≤ (m1 −
√
m2

1 − 4k)/(2k)− ε2 =: ε, (6.79)
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on a subset Ωε ⊂ Ω, and ‖u(0)‖∞ > û−, where û− is defined as in Lemma 6.7. Then

lim inf
t→∞

‖u(t)‖∞ ≥
µm1 +

√
µ2m2

1 − 4(kµ+m2(1− µ(Ωε)))

2(m2(1−µ(Ωε))
µ ) + kµ

. (6.80)

Proof. It holds ∫
Ω

u2

1 + ku2 =
∫
Ω1

u2

1 + ku2 +
∫

Ω\Ωa

u2

1 + ku2 . (6.81)

where Ωa ⊂ Ωε. Define µ(Ωε) = aε and µ(Ωa) = a. Then, it holds for all a ∈ [0, a1) that

∫
Ω

u2

1 + ku2 ≤ aε
ε2

1 + kε2 + (1− aε)
‖u(t)‖2∞

1 + k ‖u(t)‖2∞
, (6.82)

< a
ε2

1 + kε2 + (1− a) ‖u(t)‖2∞
1 + k ‖u(t)‖2∞

. (6.83)

Therefore, it holds, analogously to (6.68), that

∂

∂t
‖u(t)‖∞ > −

(
1 + m2a

µ

ε2

1 + kε2 + m2(1− a)
µ

‖u(t)‖2∞
1 + k ‖u(t)‖2∞

)
‖u(t)‖∞+m1

‖u(t)‖2∞
1 + k ‖u(t)‖2∞

.

Hence, by rescaling time, we can apply the result of Lemma 6.7 with (abusing notation),

m2 →
m2(1− a)

µ+ ε2

1+kε2m2a
, (6.84)

m1 →
m1

1 + m2
µ

ε2

1+kε2a
. (6.85)

Hence, it holds

û±(a, ε) =
µ m1

1+m2
µ

ε2
1+kε2 a

±

√√√√µ2

(
m1

1+m2
µ

ε2
1+kε2 a

)2

− 4
(
kµ+ m2(1−a)

µ+ ε2
1+kε2m2a

)

2
(

m2(1−a)
µ+ ε2

1+kε2m2a
+ kµ

) . (6.86)

Since û+(a, ε) is continuous in a on [0, 1] and continuous in ε on [0, c] for sufficiently small
c and due to Lemma 6.6 (u(0, x) < ε⇒ u(x, t) < εe−ct), there exists a function c(ε, t), such
that û+(a, ε) ∈ Bc(ε,t)(û+(a, 0)) with c(ε, t)→ 0 uniformly on any finite (0, T ) as ε→∞ and
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c(ε, t)→ 0 uniformly as t→ 0. Therefore, we approximate

ũ±(a) := û±(a, 0) =
µm1 ±

√
µ2m2

1 − 4(kµ+m2(1− a))

2(m2(1−a)
µ ) + kµ

, (6.87)

and notice d/da(ũ+(a)) > 0. Hence, for all t∗ ∈ (0,∞),

û+(aε, 0)− c(ε, t∗) ≤ lim inf
t→∞

‖u(t)‖∞ , (6.88)

where lim(c(ε, t)) = 0 as t→∞ due to Lemma 6.6, since the super-solution depend continuously
on the parameters and

ũ+ − ũ− =

√
µ2m2

1 − 4(kµ+m2(1− a))
m2(1−a)

µ + kµ
≥ c > 0, (6.89)

for a < 1.
We summarise our results about the scalar equation (6.12).

Proposition 6.9. Consider system (6.12) and let the parameters satisfy the conditions of
Theorem 3.21 and Lemma 6.7.

1. There exist three spatially homogeneous steady state u1 = 0 and u−,2 < 1/
√

3k < u−,1.
u−,1 is stable with respect to spatially homogeneous perturbations and unstable with
respect to spatially inhomogeneous perturbations.

2. If ‖u(t = 0)‖∞ > 1/
√

3k, then ‖u(t)‖∞ > 1/
√

3k for all t ≥ 0.

3. If u(t = 0) < 1/m1 on a subset Ω− and ‖u(t = 0)‖ > 1/
√

3k, then it holds that

u(t)→ 0 on Ω− as t→∞,

lim inf
t→∞

‖u(t)‖∞ ≥
µm1 +

√
µ2m2

1 − 4(kµ+m2(1− µ(Ω−)))

2(m2(1−µ(Ω−))
µ ) + kµ

.
(6.90)
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4. For parameters chosen to comply with the rescaling (3.92)-(3.95), the solution of system

∂

∂t
u =− µ1u− buw + dv +m1

u2

1 + ku2 , (x, t) ∈ Ω × (0, T ),

α(δ) ∂
∂t
v =− µ2v + buw − dv, (x, t) ∈ Ω × (0, T ),

γ(δ) ∂
∂t
w =β(δ)−1D∆w − µ3w − buw + dv +m2

u2

1 + ku2 , (x, t) ∈ Ω × (0, T ),

∂nw =0, (x, t) ∈ ∂Ω × (0, T ).

with initial conditions

(u(x, 0), v(x, 0), w(x, 0)) ∈ (C(Ω)2 × (C2(Ω))), (6.91)

converges almost uniformly on any finite time-interval towards the solution of (6.12)
with the same initial conditions for u as δ tends towards zero under suitable conditions
on the convergence rates of α(δ), β(δ), γ(δ)→ 0 as δ → 0.
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7 Conclusion and Outlook

In this dissertation, we showed that reaction-diffusion-ODE models exhibit, under rather
general conditions, infinitely many weak stationary solutions with irregularly distributed
jump-type discontinuities. Moreover, we gave conditions for stability of such stationary
solution in a suitable topology, for general twice continuously differentiable zero-order term.
We proposed a prototype model exhibiting both properties, DDI and hysteresis. Numerical
investigations of the prototype model suggest that the arising pattern resembles the shape of
the initial conditions if the diffusion coefficient is large. However, simulations also suggest
that the pattern does not resemble the shape of the initial conditions for small diffusion
coefficient. We suppose that the pattern selection mechanism is similar to the spike-pattern
selection mechanism in [HMC14], where we observed dynamical spike patterns numerically.
For large diffusion coefficient, the strong dependence on initial conditions is plausible since
the dynamical behaviour is proved to be similar to the dynamical behaviour of the shadow
system. The jump-type pattern does not assume values of the non-trivial stationary solutions
of the kinetic system, unlike for bi-stable models. The proposed prototype model allows for
manipulation of the pattern, similar to hydra’s grafting experiment. However, sufficiently
regular initial perturbation is necessary in order to avoid very irregular patterns. Moreover,
we showed that the Lengyel-Epstein model exhibits both properties as well.

Numerical simulations show that stability of steady states changes if diffusion is introduced
in the ODE-subsystem. But then representation of hydra’s grafting experiment would not be
possible for large time. This fact points out clear difference between reaction-diffusion models
and reaction-diffusion-ODE models.
On the one hand, natural systems at molecular level exhibit very weak diffusion. On the
other hand, reaction-diffusion-ODE models may arise due to application of homogenisation
techniques, see e.g [MCP08]. Then, exclusion of diffusion can be reasonable, for example for
cells. Certain cells would not spread in space since their movement is limited by neighbouring
cells. The measure of this small region may vanish with the same order as the measure of the
single cell (relative to the measure of the domain since more cells are considered within the
domain). Hence, classical diffusion, with an infinitely fast transport of information to any point
of the domain, may not be appropriate. Moreover, even if very weak diffusion is considered,
the result of Reichelt [Rei14] implies that the dynamical behaviour of the solution of the
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reaction-diffusion-ODE model is similar for finite time. Hence, stability of steady states of the
reaction-diffusion-ODE system implies that the solution for weak diffusion stays close to the
steady state on a finite time interval. The finite time interval is determined by the size of the
diffusion coefficient, what explains the almost immediate breakdown of patterns in simulations.
This observation and the results proved within this work might give rise to a possible field
for future research: Reaction-diffusion model in which one diffusion coefficient vanishes in
time. Growing domains might be feasible for this type of model: one species diffuses until
the size of the spatial domain reaches a certain threshold, while the other continues diffusing.
Examples might be cell clusters [vdBBJB+14] which, after achieving a certain number of cells,
may form a matrix and the cells become immobile. Another example might be certain types
of morphogens: One the one hand, some morphogens, such as Swim [MFC+12], diffuse in cells
and in the aquaneous extracellular matrix. On the other hand, certain morphogens, such as
Wnt [MFC+12], are hydrophobic. The transport mechanism of Wnt through the extracellular
matrix is unknown. Indeed, sharp gradient patterns of morphogen concentrations are observed
in [MSHS07] in fruit flies at a certain stage in development.
Additional to de-novo formation of irregular patterns with jump-discontinuities, we inves-

tigated reductions of ordinary differential equations coupled to reaction-diffusion equations.
We gave conditions under which ‘stable subsystems’ can be reduced. We gave a proof for
invariance of stability under reduction for systems with few ordinary differential equations,
and for one-dimensional spatial domain. We suppose that the idea can be extended to larger
systems and to two- or three-dimensional spatial domain. Numerical investigations for two-
and three-dimensional domains suggest stability preservation under reduction of ‘stable subsys-
tems’. Such investigations are not included in this work. A proof might be addressed in future
research. Within the proof of stability, a Sobolev-type estimate is used, but this estimate does
not hold for two-dimensional domains. Hence, any generalisation might need a fundamentally
different strategy of proof.
The Tikhonov-type result allows to consider a subsystem as a single species from the view-
point of modelling. This hypothesis is common in biology, and widely applied for systems of
ordinary differential equations. The result shows that this biological hypothesis is reflected
in reaction-diffusion-ODE models as well. Even more, it allows to identify such ‘reducible’
subsystems, leading to an easier analytical investigation of models after reduction. On the one
hand, limitation to ‘stable subsystem’ is a drawback. On the other hand, arbitrarily strong
acceleration of an unstable sub-reaction is unlikely to stabilise a steady state. Hence, the
drawback is physically plausible.
Regularity of the shadow system approximation has been shown. Moreover, conditions for

existence and stability of qualitatively similar patterns were given. We derived conditions under
which patterns of reaction-diffusion-ODE models can be investigated based on the shadow
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system approximation. On finite time intervals, qualitatively similar dynamical behaviour of
reaction-diffusion-ODE models and their shadow system has been shown in [Bob15] before.
If well-posed, the arising pattern in a shadow system of a system of one ODE and one RDE
depends highly on the initial conditions. For biological application, the dependence might be
too strong. However, qualitative modelling, such as the question whether the original exhibits
certain qualitative properties, can be addressed using this approximation. This investigation
of mechanisms of pattern formation is the strong aspect of this reduction.
In the last part of the thesis, we reduced the shadow system of our prototype model to a

scalar integro-differential equation. We showed that the dynamical behaviour of the shadow
system is reflected by the scalar equation on finite time intervals. The main finding of the
investigation of the scalar equation is that Turing’s’ activator-inhibitor pattern formation
hypothesis can be extended to non-local operators. It may even be a common pattern forming
mechanism of scalar integro-differential equations and reaction-diffusion-ODE models. A
question for future research might be the following: Can reaction diffusion models be reduced
to scalar integro-differential equations with diffusion? Or systems with a transport term?
However, instability of non-monotone stationary solutions of shadow systems of reaction-
diffusion systems poses a problem. Unlike for the original model or the shadow system, we
were able to prove existence of a lower boundary of the L∞-norm. Moreover, we showed,
for suitable initial conditions, that the solution decays on parts of the spatial domain. The
corresponding theorem states that the lower bound increases if the solution decays on a larger
part of the spatial domain. The numerical investigation undertaken in this work suggest a
similar trend for the original reaction-diffusion-ODE system.
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Symbols
We give a non-exclusive list of commonly used symbols.
u, v, w If lower case letters are used, described compartments are scalar
U, V,W If upper case letters are used, described compartments vector-valued
ui, vi, wi Components of vector-valued compartments U ,V ,W
u,U, v, ... Refers to a spatially homogeneous steady state respectively stationary solution
ũ, Ũ , ṽ, ... Refers to spatially inhomogeneous steady state respectively stationary solution
∇Uf Defines the Jacobian matrix (∂ujfi) for a vector-valued function f = (fi(U))i

and a vector U = (uj)j .
J = (bij)ij Jacobian matrix
Aδ(aij)ij Jacobian matrix
I Spatial one-dimensional finite, connected domain, i.e. a finite interval
Ω Spatial multidimensional domain, connected
BV (I) Space of functions with bounded variation
Cn(Ω) Space of n-times continuously differentiable functions on Ω
C(Ω) C0(Ω), i.e. space of continuous functions
W p,q(Ω) Sobolev space
Lp(Ω) Lebesgue space
W 2,2
N Space of elements of W 2,2 satisfying homogeneous Neumann boundary

conditions
∆w,N Weak Laplace operator with homogeneous Neumann boundary conditions
∇u ∇xu
∇xu Jacobian matrix with respect to the spatial variable x, see also ∇Uf
‖u‖i ‖u‖Lp(I) or ‖u‖Lp(I), depending on the context.
|A|∞ If A is a matrix, it defines the supremum norm for matrices, i.e. supn,m |anm|

If A is a function, it is equal to the L∞-norm.
|A|σ Spectral norm of a matrix A
id Identity-operator; The space depends on the context
∂if(u, v, w) Partial derivative with respect to the i-th increment of f , evaluated at (u, v, w).
∂wf(a, b, c) Partial derivative with respect to the increment w, evaluated at (a, b, c).

The function is the previously defined as function in w.
f, g, h If not specified otherwise, f, g, h are twice continuously differentiable functions.
µ(Ω)

∫
Ω 1dx

meas(Ω) µ(Ω)
χA(x) Characteristic function of a set A.
∂nu, x ∈ ∂I n denotes the outer unit vector, orthogonal to the boundary ∂I of I.
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We deferred figures illustrating the order of error reduction under mesh refinement for the
approximation in Figure 3.8 to the Appendix. As reference solution (uref, wref), we consider
an approximation with spatial mesh size h = 2−15 and temporal mesh size k = 10−3. We
refine the spatial mesh. Until t = 3, the order of convergence is as expected in [ELW00]. The
solution for t = 3 is shown in Figure .1. For t > 3, the order of convergence differs from the
expected order. However, for t > 3, the analytically proved (A, ε0)-stability holds. We assume
that the different order of convergence originates from the following: While the solutions uh
are already very close to the projection of the steady state onto the subspace of finite elements
associated with their mesh, the reference solution can still approximate a continuous solution
on the transition layer. When the transition layer of uref continues sharpening, values of uref

on cells in the transition layer converge either towards the upper or the lower branch. Then,
the error depends on the position of the jump-discontinuity of the solutions uh.

0
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6
8
10
12
14

0 0.2 0.4 0.6 0.8 1

u
(t

)

x

Figure .1: Reference solution at t = 3. The approximated solution is mirrored at x = 0.5, i.e.
initial conditions for u are u(x, 0) = 6.36+0.1 cos(πx). Due to the point-symmetric
mesh and the point symmetric initial conditions, the result is not different.
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Figure .2: Order of the L2(I)-error reduction for component u. Temporal mesh
size = 0.001. Spatial mesh size of the reference solution is h = 2−15.
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Figure .3: Absolute value of the L2(I)-error for component u. Temporal mesh size
= 0.001. Spatial mesh size of the reference solution is h = 2−15.
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Figure .4: Order of the H1(I)-error reduction for component w. Temporal mesh
size = 0.001. Spatial mesh size of the reference solution is h = 2−15.
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Figure .5: Absolute value of the H1(I)-error for component w. Temporal mesh
size = 0.001. Spatial mesh size of the reference solution is h = 2−15.
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ũ represents the steady state while u(t) represents the solution for some t. . . 25

3.3 Nullclines of fr and gr and wfr,gr for parameters m1 = 1.44,m2 = 2, µ2 =
4.2, k = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Illustration of the right-hand side of −∂2w/∂x2 = gr(u,w) for different branches
of the solution u∗(w) of ∂u/∂t = fr(u,w) = 0. The parameters for illustration
are D = 1,m1 = 1.44,m2 = 2, µ = 4.2. We can observe that all nontrivial
homogeneous steady states are of type u−. . . . . . . . . . . . . . . . . . . . . 43

3.5 Left: Component u of (3.200). Right: Solution’s component u for Parameter
set 3.24, D = 10, t = 20. The shape of the pattern resembles the shape of
the initial conditions. Note, however that u = 6.41 is the largest spatially
homogeneous steady state. The phenomenon is therefore not bi-stability as in
[Köt13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Component u of the solution of (3.92)-(3.95) for parameter set (3.24). Left:
D = 10. Right: D = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Component u of the solution of (3.92)-(3.95) for parameter set (3.24). Left:
D = 2. Right: D = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.8 Component u of the solution of (3.92)- (3.95) for parameter set 3.25. Grafting
(with perturbation (3.203) to u) is performed at t = 20. Left: 0 ≤ t < 20.
Right: 20 ≤ t ≤ 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.9 Component w of the solution of (3.92)- (3.95) for parameter set 3.25. Grafting
(with perturbation (3.203) to u) is performed at t = 20. Left: 0 ≤ t < 20.
Right: 20 ≤ t ≤ 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.10 Component u of the solution of (3.204) for parameter set (3.27). Diffusion of u
is introduced at t = 15. Left: 0 ≤ t < 15. Right: 15 ≤ t ≤ 30. We observe a
breakdown and emergence of a classical regular Turing type pattern. . . . . . 58

3.11 Component w of the solution of (3.204) for parameter set (3.27). Diffusion of
u is introduced at t = 15. Left: 0 ≤ t < 15. Right: 15 ≤ t ≤ 30. We observe a
breakdown and emergence of a classical regular Turing type pattern. . . . . . 58

4.1 Illustration of the statement of Lemma 4.2. . . . . . . . . . . . . . . . . . . . 63

131



List of Figures

4.2 Numerically obtained solution to model (4.82)-(4.85) for parameter set 4.10.
We observe convergence towards the solution for δ = 0 (see Figure 3.10 (left))
as δ → 0. Upper left: δ = 20. Upper right: δ = 10. Lower left: δ = 8. Lower
right: δ = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Numerically obtained solution to model (4.82)-(4.85) for parameter set 4.10.
We observe convergence towards the solution for δ = 0 (see Figure 3.10 (left))
as δ → 0. Upper left: δ = 1. Upper right: δ = 0.25. Lower left: δ = 0.125.
Lower right: δ = 0.0625. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Numerically obtained solution to model (4.82)-(4.85) for parameter set 4.10,
but v(x, 0) = 2.48 + 0.1x2 sin(10πx): Left: δ = 10. Right: δ = 0.002. We
observe that another pattern is selected for δ large. For δ small, a pattern
similar to δ = 0, (see Figure 3.10 (left)), is selected. . . . . . . . . . . . . . . . 82

5.1 Illustration of the spectrum of the operator L in Lemma 5.3. . . . . . . . . . 87
5.2 Illustration of the spectrum of the operator L in Lemma 5.6. . . . . . . . . . 92
5.3 Solution u for parameter set 3.27. Left: Reaction-diffusion-ODE system (5.58)-

(5.61) for D = 100. Right: Shadow system (5.62)-(5.63). . . . . . . . . . . . . 99
5.4 Solution u for parameter set 3.27. Left: t = 0. Right: t = 20. Discontinuous

plot: Reaction-diffusion-ODE system (5.58)-(5.60) for D = 100. Continuous
plot: Shadow system (5.62)-(5.63). Mesh size: h = 2−8. . . . . . . . . . . . . 100

5.5 Solution u at t = 20 for parameter set 3.27, but initial conditions u(x, 0) =
6.36− (0.04 + 0.06x2) sin(2πx2). Left: Reaction-diffusion system-ODE (5.58)-
(5.60) for D = 100. Right: Shadow system (5.62)-(5.63). . . . . . . . . . . . . 100

6.1 Shape of the right-hand side of the kinetic system of (6.12) for parameters
satisfying the conditions of Lemma 6.5. . . . . . . . . . . . . . . . . . . . . . 111

.1 Reference solution at t = 3. The approximated solution is mirrored at x = 0.5,
i.e. initial conditions for u are u(x, 0) = 6.36 + 0.1 cos(πx). Due to the point-
symmetric mesh and the point symmetric initial conditions, the result is not
different. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

.2 Order of the L2(I)-error reduction for component u. Temporal mesh size
= 0.001. Spatial mesh size of the reference solution is h = 2−15. . . . . . . . . 128

.3 Absolute value of the L2(I)-error for component u. Temporal mesh size = 0.001.
Spatial mesh size of the reference solution is h = 2−15. . . . . . . . . . . . . . 128

.4 Order of the H1(I)-error reduction for component w. Temporal mesh size
= 0.001. Spatial mesh size of the reference solution is h = 2−15. . . . . . . . . 128

.5 Absolute value of the H1(I)-error for component w. Temporal mesh size
= 0.001. Spatial mesh size of the reference solution is h = 2−15. . . . . . . . . 129
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