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Abstract

Let F' be a number field, S a finite set of places of F' and Galp s the Galois group of the
maximal unramified outside S extension of F'. Let k be a finite field. Deformation theory of Galois
representations is a technique introduced by Mazur [Maz89] in the 1980’s in order to study lifts
of a given residual Galois representation p : Galp s — GL, (k). Mazur posed the question under
which conditions the functor parametrizing the deformations of p to complete local Noetherian
W (k)-algebras is unobstructed, i.e. when H?(Galp g, adp) vanishes. This unobstructedness implies
the formal smoothness of the corresponding universal deformation ring. In this thesis we present
a general framework to deduce unobstructedness from a list of standard assumptions (including a
suitable R=T theorem). This framework is developed more generally in terms of a smooth linear
algebraic group G over W (k), replacing GL,, as the target of p. We apply the framework to deduce
that almost all entries in the compatible system of Galois representations associated to a Hilbert
modular form admit an unobstructed deformation functor, reproving a result of Gamzon [Gam13].
We also apply this framework to a RACSDC automorphic representation of GL,(Ar), deducing
from standard conjectures that a subset of Dirichlet density 1 of the entries of the associated G,,-
valued family of Galois representations admits unobstructed deformation functors, where G,, is the
group scheme from Clozel, Harris and Taylor [CHTOS].

Zusammenfassung

Sei F' ein Zahlkoérper, S eine endliche Menge von Stellen von F' und Galp g die Galoisgruppe der
maximalen, aufferhalb von S unverzweigten Erweiterung von F. Sei k ein endlicher Koérper. Die De-
formationstheorie von Galoisdarstellungen wurde in den 1980er Jahren von Mazur [Maz89| entwickelt
um die Lifts einer gegebenen residuellen Galoisdarstellung p : Galp g — GL, (k) zu untersuchen.
Mazur stellte die Frage unter welchen Bedingungen der Funktor, der die Deformationen von p zu voll-
stéindigen Noetherschen W (k)-Algebren beschreibt, unobstruiert ist, d.h. wann H?(Galp g,adp) =0
gilt. Diese Unobstruiertheit impliziert die formale Glattheit des zugehdrigen universellen Deforma-
tionsringes. In der vorliegenden Arbeit wird eine Methode vorgestellt um Unobstruiertheit aus einer
Liste von Standardvermutungen abzuleiten, unter anderem von einem entsprechenden R=T-Satz.
Diese Methode wird allgemeiner fiir eine glatte algebraische Gruppe G iiber W (k) anstelle von GL,,
als Wertebereich von p entwickelt. Mithilfe der Methode zeigen wir, dass fast alle Eintrige in dem
kompatiblen System von Galoisdarstellung zu einer Hilbertschen Modulform einen unobstruierten
Deformationsfunktor besitzen und erhalten damit ein Resultat von Gamzon [Gaml3|. Des Weit-
eren wenden wir die Methode auf eine RACSDC automorphe Darstellung von GL,,(Ap) an und
erhalten, unter Ausnutzung von Standardvermutungen, dass eine Teilmenge von Dirichlet-Dichte
1 der Eintrége der assoziierten G,-wertigen Familie von Galoisdarstellungen einen unobstruierten
Deformationsfunktor besitzt, wobei G,, das Gruppenschema von Clozel, Harris und Taylor [CHTOS]|
bezeichnet.
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1 INTRODUCTION

1 Introduction

Let I’ be a number field, S a finite set of places of F' and Galgrg the Galois group of the maximal
unramified outside S extension of F. Let k be a finite field of characteristic £ > 0. The deformation
theory of Galois representations is a technique introduced by Mazur in the article [Maz89| in order to
study the lifts of a representation

p: Galpg — GL, (k).

More precisely, let C;V(k) be the category of Artinian local W (k)-algebras with residue field k& and
consider the functor

D(p) : Cﬁv(k) — Ens Ar— {p : Galp s — GLy(A) ’ p reduces mod my4 to ﬁ}/ ~

where two lifts are equivalent if they are conjugate by an element of ker(GL,,(A4) — GL,(k)). Under
suitable conditions, this functor is pro-representable by a complete Noetherian local W (k)-algebra
R(p), i.e. the conjugacy classes of lifts (which are called the deformations) to A are parametrized by
morphisms ¢ : R(p) — A.

Assume for the moment that F' = Q,n = 2,/ > 2 and let us fix a cuspidal eigenform f € S;(I'0(N))
of some weight k and level N (which we assume to be relatively prime to ¢ and square-free). By the
work of Deligne [Del71| (for £ > 2), Eichler and Shimura [Shi71] (for £ = 2) and Deligne and Serre
[DS74] (for k = 1) we can attach to f an f-adic representation py, of Galg and we will take for 7 its
reduction modulo £. Then p is absolutely irreducible and crystalline at ¢ (so, in particular, p is odd and
det op equals a tensor power of the mod-¢ cyclotomic character) for all but finitely many choices for
¢, cf. [Rib95| IGK1I] and the references therein. Moreover, there exists a quotient R(p) of R(p) which
parametrizes lifts whose determinant equals the cyclotomic character, which are unramified outside IV,
ordinary at N and crystalline of fixed weight at £.

At the heart of the celebrated proof of Wiles and Taylor-Wiles [Wil95], TW95| of Fermat’s Last Theorem
lies the fact that the canonical surjection

R(p) » T (1.1)

is an isomorphism, where T denotes a certain localization of a Hecke algebra and parametrizes those
lifts which come from modular forms. In particular, the R=T-theorem implies the Taniyama-
Shimura conjecture for semistable elliptic curves, stating that any such curve is modular, i.e. comes
from a modular form. This leads to the formulation of more general modularity lifting statements, an
area which is being extensively studied by contemporary number theory.

Inspired by the observation that universal deformation rings in the classical setting (n = 2) are often
isomorphic to a power series ring over W (k) in three variables, one says that D(p) is unobstructed if

H?*(Galpg,adp) = 0. (1.2)

It is easily seen that this implies that R(p) is formally smooth over W (k), hence isomorphic to a power
series ring over W (k). We also remark that this implies a partial solution to a conjecture of Jannsen for
p = pr with f as above: The Frobenius eigenvalues of p are Weil-numbers of some fixed weight w, i.e.
p is pure of weight w. Hence, ad p = p® p is pure of weight w —w = 0. A conjecture of Jannsen [Jan89,
Conjecture 1] (see also [Bel09, Conjecture 5.1]) predicts that H?(Galgs,ad p) vanishes. This implies
that Hz(GalF,g,A) is finite and torsion, where A C ad p denotes an integral Galg s-stable lattice. On



1 INTRODUCTION

the other hand, our residual H2-vanishing ([1.2) implies the vanishing of H?(Galg g, A) by Nakayama’s
Lemma. This, in turn, implies the vanishing of Hz(GalF,s, ad p), as predicted by Jannsen’s conjecture.

Now /¢-adic and ¢-modular Galois representation often come in compatible systems, i.e. as families

R = (ﬁ)\ : Galp — GL"(FE(/\)))/\GPI%“ ,
where \ runs through the set P18 of finite places of another number field E, and the p, share certain
properties, e.g. a common ramification set .S, see Section below for a precise definition. (Here and
in the following, () denotes the rational prime lying below \.) In this setting, write Sy C Plg for the
set of all places which are in S or lie above £ or co. Then we say that the deformation functor D(p))
of a member 5, of R is unobstructed if D(p,| Galrg,) is unobstructed, i.e. if

H?*(Galpgs,,adpy) = 0.

The following question was then posed by Mazur in [Maz89]:

Question 1.1. When is D(p,) unobstructed for almost all X\. (Alternatively: When is D(p,) unob-
structed for all A in a subset of P18 of Dirichlet density 1.)

This question was answered affirmatively (under different technical assumptions) in the following cases:

o Mazur [Maz97a]: R = Rg, the compatible system attached to an elliptic curve E over F' = Q;

o Weston [Wes04| (see also [Yam04, Hat15]): R = Ry, the compatible system attached to a newform
f of weight k > 3 over F' = Q;

e Gamzon [Gaml3| (following the approach of Weston): R = Ry, the compatible system attached
to a Hilbert eigenform f over a totally real field F.

Weston uses Poitou-Tate duality and results on Selmer groups to deduce the H2-vanishing of (|1.2)) for
almost all p, from the following two statements:

1) For fixed p, H°(Q,,ad py(1)) vanishes for almost all \;

2) For almost all A, H%(Qq(»),ad py(1)) vanishes.

Statement 1) is proved by using the local Langlands correspondence if the local part m, of the auto-
morphic representation m = (f) attached to f is supercuspidal or Steinberg and by a global argument
(suggested by Ribet) if 7, is special, see [Wes04 Sections 3 and 5.2]. Concerning Statement 2), Weston
performs a local calculation at the level of Fontaine-Laffaille modules, see [Wes04, Sections 4].

This thesis provides a framework for proving unobstructedness and for answering Question more
generally. Section [2]is devoted to the deformation theory for G-valued representations, i.e. for mor-
phisms

p: Galp — G(k),

where G is a smooth linear algebraic group over W (k), generalizing the classical approach where G =
GL,,. We start by collecting several preliminary results on the occurring coeflicient rings and continue
in Section with an adapted version of Kisin’s framed deformation functor (or: lifting functor) and
a study of its relatively representable subfunctors. We continue with deformations and deformation
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conditions and give a G-valued version of Schur’s Lemma (Lemma and of the presentability
of multiply framed global deformations rings over local ones following Balaji [Ball2|, see Corollary
. Like [CDT99, Appendix A], to easily derive results on the change of the base ring for universal
deformation rings, cf. e.g. Lemma .2., we also consider deformations valued in the category *Cyy ()
of complete Noetherian local W (k)-algebras A where we do not assume k4 = k.

In Section [3| we start by giving a suitable definition of unobstructedness for global deformation con-
ditions which are composed from local ones. The reason why we have to generalize the H?2-vanishing
of is that such a vanishing is connected to the unobstructedness of the full (i.e. unconditioned)
deformation ring R(p). As our framework uses crucially an R = T-theorem similar to (and as
such results are currently only within reach in a minimally ramified situation), we can a priori not hope
for unobstructedness of R(p) but rather of a quotient

R(p) — R¥™(p), (1.3)

parametrizing all deformations which fulfill a local condition min at all places inside a fixed set of
places S and whose determinant equals a fixed lift x of the determinant of p (where S is usually the
ramification set of the system R and min denotes usually the condition of being minimally ramified). If
£X = (L), denotes the system of local conditions associated to this choice (cf. Definition 2.69), then
we call RX™2(p) globally unobstructed (Definition if

Rl\/:hxuvmin (7

e the local framed deformation rings p) are formally smooth over W (k) (of predictable

dimension) for all v € S;
e the dual Selmer group vanishes:
Hpv (F,g%™Y) =0, (1.4)

where g¢* = Lie(G9T) with the adjoint representation of Galp via p.

If RX™1(p5) is globally unobstructed, it follows that it is isomorphic to a power series ring over W (k),
see Remark [3.8

Our main result (Theorem [3.12)) is the crucial step to deduce the vanishing of the dual Selmer group in
(1.4). It depends on seven standard assertions, as listed at the beginning of Section 3.1} In the situation
described abovd'] the main assertions to be mentioned are items 3., 4. and 7.:

3. For each place v of F' above ¢ = £()), there is a local deformation condition crys such that the
associated framed deformation functor DUX:°¥%(p ) is relatively smooth over DPX(p,,) and such
that the representing object is formally smooth of relative dimension

dim(g®™) + (dim(g?*) — dim(b%))[F), : Q).

(Here, we fix a Borel subgroup B C G and we denote by g2¢* (resp. b%T) the Lie algebra of the
derived subgroup G of G (resp. the Lie algebra of B N G%°T).)

4. For each place v € S, the local deformation ring RPX™®(p ) is formally smooth of dimension
der
geer.

!For simplicity, we take the condition sm of Section to be the unconditioned deformation condition during this
introduction.
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7. The multiply framed global deformation ring R?ZSZ ’X’min’crys, parametrizing deformations of p

which

fulfill condition min at all v € S,

fulfill condition crys at all v above /£,

are of fixed determinant y and

— are unramified outside Sy

is formally smooth of relative dimension dim(g).# Sy —dim(g®®). Here, Sy denotes the set of places
which are contained in S or lie above .00 and g2 denotes the Lie algebra of G2®.

Although this is not a critical assumption, let us presume for the ease of exposition during this intro-
duction that p is absolutely irreducible. Under these conditions, we obtain

Theorem A (Theorem .1). Rgémin is formally smooth.

If we additionally suppose that each local framed deformation ring R™X(p,) is formally smooth of
dimension dim(g®*)([F, : Q¢] + 1) for v above £, we even get

Theorem B (Theorem .2). Rg;min is formally smooth of dimension [F : Q). dim(b%%).

This can be used to deduce

Theorem C (Corollary [3.16). Assume (in addition to the requirements of Theorem@ the following:

e (>0, so that g = g%°* @ g2°;
o H(Galp, g%™V) = 0 (this holds automatically for G = GL,, and £ > 0);
e Forve S, dim(L,) = h°(Galg,, g%%);

Then Dg;min(ﬁ) has vanishing dual Selmer group.

Theorems [A] [B] and [C] are proved by calculations using Galois cohomology and basic facts from com-
mutative algebra, introduced in Section

We can now state our strategy to answer analogues of Question We check that for a density-1 set
of places X in our system R the representation p, fulfills the requirements of Theorem [C|and the local
conditions in the “globally unobstructed”-notion.

In practice, we will often not succeed in establishing the requirements of Theorem [C] for the represen-
tations py themselves but only for restrictions py | Galp(y), where each F (M) is a suitable finite extension
of F', chosen in dependence of A\. To this end, we develop in Section a potential version of the
above. More precisely, let us consider a finite extension F” of F' and a deformation condition D’ for
pl Galpr (with the associated system of local conditions £'* = (L!X),). Let us assume that D’ fulfills
resh; (Lh) € L for all pairs (v/,v) € PIEE x PIP with /|v, where

res; : H'(F,,g*"") — H'(F),,g*™")

is the usual restriction map. (We call such a D’ a dual-pre-(x,min)-condition, cf. Definition ) Let
S; denote the places of F’ above Sy. We obtain
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Theorem D (Lemma [3.21)). Assume that the functor D?,/ (p| Galpr) fulfills the conditions of Theorem
4

and hence has vanishing dual Selmer group. Then also Dgémin(
for 0> 0.

p) has vanishing dual Selmer group

Section [4]is devoted to a study of several local deformation conditions for G = GL,,. We first recall
the basic notions of Fontaine-Laffaille theory as normalized in [CHTO08|. The main result here is the
following generalization of condition 2) of Weston:

Theorem E (Corollary . Let K, L be finite extensions of Qg and let
p: Galg — GL,(L)

be a crystalline representation in the Fontaine-Laffaille range. Assume that the Hodge-Tate numbers
of p are non-consecutive: if T is an embedding K — Q, and two numbers a,b occur in HT.(p), then
either a =b or |a — b| > 2. Then

H*(K,adp) = 0.

By this corollary, we deduce
RY() = Allar, .., 2] (L5)

with m = n2.([K : Qg]+1), if p meets the “no consecutive weights™assumption of Theorem cf. Lemma
. In Sectionwe compile results about the crystalline deformation condition from [CHT08|, Section
2.4.1], including a smoothness property similar to and a compatibility with the corestriction map,
see Lemmal[f.14)and Lemma [4.15] In Section 4.4 we study the minimally ramified deformation condition
from [CHTOS8| Section 2.4.4]. After recalling a smoothness property similar to (Lemma [£.23)) from
[CHTO8|] we restrict to the case of unipotent ramification, i.e. we consider a local Galois representatio

p: Galg — GL,(L)

where p is trivial on the kernel of one (hence, any) surjection Iy — Zy. The two main results for
the minimal ramification condition are Theorem where we identify the corresponding deformation
ring with a certain “fixed-type” deformation ring of Shotton [Shol5], and Corollary f.47, where we show
that under sufficient assumptions on the system R an arbitrary deformation is locally almost always
automatically minimally ramified. The latter result can be expressed as a local equality

R — Rmin,

so that the restriction to the minimal ramification in (1.3)) is a posteriori waived.
In Section [5| we apply the developed framework to Hilbert modular forms. We prove
Theorem F (Corollary. Let F be a totally real number field and f a Hilbert modular newform such

that each weight is > 3 and such that all weights have the same parity. Let Ky denote the coefficient
field of f and let

R :( . Galp — GLo(K )
f PfA alp 2( f,A) /\eplﬁ,;

be the compatible system of Galois representations attached to f with ramification set S.

?In the minimal case we have £ # p, i.e. K (resp. L) is a p-adic (resp. f-adic) field with £ # p.
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Let K denote the composite of all coefficient fields of Hilbert newforms of the same weight and level as
f. Assume that for almost all places \ we can choose a place 6 of K above \ such that

R?Z(roﬁé (Pr) = Ts, (1.6)
where

° Ré{%ﬁé (Pf) is the universal deformation ring which parametrizes deformations of ps \ to O,

which are crystalline above ¢ = ((\) and unramified outside Sy;

o T; denotes the Of,-subalgebra of ngX(f,A) Of,; which is generated by all (a,(g))gex(f,x), where
v runs through the places outside S and where X (f, \) denotes the set of all Hilbert newforms of
the same weight and level as f.

Then, for almost all primes \, R>S<e (ﬁﬂ)\) 15 globally unobstructed.

The proof of this theorem proceeds by checking the preconditions of Theorem [C] with min being the
unconditioned deformation condition. The crucial R =T assertion is used to check precondition
7. of Theorem [A] This assertion is widely believed to hold true and is available in the literature in
several cases, cf. Remark This gives a new proof of Theorem 1.1 of [Gam13| (assuming the R = T-
assumption (1.6])).

In Section [6] we apply the framework to the following situation: Let F be a CM-field and II be
a RACSDC (regular algebraic conjugate self-dual cuspidal) automorphic representation of GL,,(Ap).
Then there exists a number field £ and an £-rational strictly compatible and pure of weight n — 1
system of semisimple ¢-adic Galois representations attached to 11,

= : Gal L, ,
R (p)\ Ga Fr— G (5)\)>/\€P12n

with finite ramification set S := {v € Plp | II, is ramified }. As introduced in [CHT0S], let G,, be the
group scheme over Z given by
(GL,, x GL1) x {1, 5}

where j acts as j(g,p)j = (p'g~', ). Let A} be the set of those A € P1" for which each 7, (as well
as any other py with £(X') = £()\)) is absolutely irreducible. Then each p, with A € A} extends to a
representation

Tx: GalthE — gn(k)\),

where F'* denotes the maximal totally real subfield of F' and where S denotes the set of places of F'F
below S, cf. Lemma . Assume that every place of S is split in the extension F|F+. Our main result
is

Theorem G (Theorem [6.56). Assume the following (Assumption [6.55):

1. (Irreducibility): The set AL of those \ € Pl{g" for which each py (as well as any other py, with
O(N') = £(N)) is absolutely irreducible has Dirichlet density 1 in Plg;

2. (Awvailability of a minimal R=T-theorem): (Cf. Conjecture For each A € AL there
exists o finite extension Ky of €y and an isomorphism

in, _\~ %
REmms2(ry) & JOTT (U),,

where
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° R'g;’crys(?,\) s the universal deformation ring parametrizing those deformations of Ty to
A

Oxc, -algebras which are crystalline above £ = £(X), minimally ramified above S, unramified
outside Sy and of fized determinant;

@

° QKA"]I“ZZA(U)u denotes the Hecke algebra with respect to all automorphic forms of the same
level U and weight wy as 1T and of “minimal type” o (as explained in Section , localized
at a mazimal ideal n.

3. (No consecutive weights): Let \ € A} and v € Plp with {(\) = {(v). Let moreover T :
F, — Q, be an embedding and denote by HT . the corresponding multiset of Hodge-Tate weights
of px| Galg,. Then, if two numbers a,b occur in HT;, we must have a = b or |a — b| > 2;

4. (Disjoint q-orbits): Forv € S, let (r,, N,) be the Weil-Deligne representation associated to 11,
via the local Langlands correspondence. Write

i (0f) o

Hi, (o) agy
r,(Frob,) ~ LA

1, (0f) agy"™!

Then for all v € S and for all 0 < i # j < kY, the q-orbits
g of ={q0.of |a €Z} and q%a? ={qy.aj | a € Z}
are disjoint.

Then, the deformation ring R™® (7)) that parametrizes all minimally ramified, fived-determinant defor-
mations of T is globally unobstructed for all X in a subset of Pljgn of Dirichlet density 1.

The proof of Theorem [G]is the content of Section [6.5.2] and consists again of checking the preconditions
of Theorem [C] but here with min being the minimally ramified deformation condition. The main
difficulty here is that we cannot apply Theorem [C] directly, but that we have to introduce for each
A a finite, solvable extension L) such that we can show that D™®(7y| Gal, () has vanishing dual
Selmer group. This can be used in conjunction with the potential unobstructedness result Theorem [D]
to deduce that the original functor has vanishing dual Selmer groups. The following issues arise in this
approach:

e In order to apply Theorem [D] we need that the minimally ramified deformation condition for 7y
is a dual-pre-condition for the the minimally ramified deformation condition for 75| Gal; (). This
amounts to a certain calculation involving the tangent spaces for the minimally ramified condition
(similar to Lemma [£.15]2 in the crystalline case), which we do not perform in this thesis. This
local calculation is circumvented by the aforementioned local R = R®™® result.

e Theorem @fails at a finite set of primes of &€, depending on the extension L(*) |L. This is harmless
in a static setting, but as we choose for each X\ an extension L™, the approach could a priori
break down if each A happens to be contained in the respective failure set. This will be handled
as follows: We specify a certain tower of extensions

F:LOCL1CL2C...
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with [Li+1 : L;] = 2 and such that L;|F' is Galois for all i. Then we show that the set

W; == {\ | L™ can be chosen such that L™ c L;}

has Dirichlet density 1 — % This allows us to use (for a given i) Theorem @ in the harmless

static setting and deduce the desired result by a limit process.
Let us also comment on the assumptions of Theorem [G}

1. Condition (Irreducibility) becomes necessary at an early part in our arguments, as the transition
Py ~ T is only possible for those A for which p, is absolutely irreducible. This condition
is conjectured to hold true in general, while a proof is only available in the literature if II is
extremely regular [BLGGT14] or if n < 5 [CG13].

2. The availability of a minimal R=T-theorem takes a similar crucial role as the assumption in
Theorem [F] and is necessary to check precondition 7. of Theorem [A] While we treat this condition
as a conjecture during this thesis, we believe that it should be possible to give a proof using
standard patching techniques and [CHTOS].

3. The assumption that there are no consecutive weights is used to prove that a certain set of
homomorphisms between two Fontaine-Laffaille modules vanishes (Corollary , which in turn
is needed to verify precondition 3. of Theorem[A] As stated, the assumption presents a technically
simple sufficient condition for this vanishing and it is certain that there are finer criteria. We
expect that this precondition of Theorem [G] can be replaced by a condition on Hecke polynomials
after a more careful study of the morphisms in the Fontaine-Laffaille category.

4. The assumption on the disjointness of g-orbits is needed for the local R = R™?® result Corollary
[4.47] and thus it is needed to apply the potential unobstructedness of Theorem [D] Improvements
should be possible in two directions: On one hand, the R = R™?® result is believed true (almost
everywhere) without this technical assumption, presuming a natural condition of genericness
(cf. [AIlT4]). On the other hand, the R = R™™ result is used to circumvent the usage of the
respective pre-dual property for the minimal deformation condition, similar to Lemma [.15]2 for
the crystalline deformation condition. We expect that such an analogue derives from a careful
study of the minimal deformation condition, superseding the necessity of an R = R™? result
altogether.

The last three items suggest promising questions for future research. It seems also promising to use the
described approach to establish certain missing cases in the treatment of Gamzon [Gaml3|, where his
assumptions on the weights and on a base-change property are not met. Another worthwhile project
would be to apply the presented framework to the conjectural association of (compatible systems
of) Galois representations to automorphic representations on more general groups, as predicted by
Langlands functoriality and described e.g. in [BG1I].
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1 INTRODUCTION

Notation

e The category of sets is denoted by Ens.

e [f Cis a category, we will use “c € C” as a shortcut notation for “c is an object of C”, acknowledging
but notationally suppressing the intricacies if C is not small.

e For each rational prime ¢, we fix an isomorphism 1, : C — Q.

e For a local ring R, we denote by mp the maximal ideal and by kg the residue field of R. If R is
an integral domain, we denote by Quot(R) the quotient field of R.

e For a number field F, we denote by F the Galois closure of F over Q.

e Let I be a number field and L a finite extension of Q. Then we say that L is F-big enough if L
contains the image of any field embedding F' — L, i.e. if L contains the Galois closure of F' over

Q.

e For a number field F, we denote by O the ring of integers of F and by Plg (resp. PIi') the set
of places (resp. finite places) of F. We denote by Ap the ring of adeles of F' and by A (resp.
by Ar ) the finite (resp. infinite) adeles. If v is a finite place of F', the (unique) rational prime
lying below v is denoted by £(v).

e For a number field F, we will write QL C Plg for the set of archimedean places of F. If £ is a
rational prime, we will write Q" C Plg for the set of all places v fulfilling /(v) = £. (We will also
use the notation Qu, and € if there is no risk of confusion.) If S C Plg is some set of places of
F and ¢ a rational prime, we write Sy for S U Qs U .

e If k is a field, we denote by k[e] = k[X]/X? the ring of dual numbers of k (cf. [Har77, Ex. 9.13.1]).
e If G is a group (or a group scheme), we will denote by Zg the center of G.
e When referring to the dimension of cohomology groups, we will abbreviate h'(-,-) for dim H*(-, -).

e Let I' = Galp be the absolute Galois group of a number field F, k a finite field of characteristic
¢ and M a continuous kI'-module. We denote by M* the Pontryagin dual of M, by M (m) (for
m € N) the twist €)' @ M (where € denotes the mod-¢ cyclotomic character) and by MY = M*(1)
the Tate (or Cartier) dual of M.

o We will often use parentheses to simplify the notation for simultaneous statements, in particular
for deformation rings (cf. the “Notational convention” at the beginning of Section 3 of [B6c07]).
If necessary, we will iterate this with squared brackets. For example, the (nonsense) statement
dim ROV (5) = 3 + (4) — [1] is to be read as

(dim R(p) = 3) A (dim R7(p) = 7) A (dim RX(p) = 2) A (dim R™X(p) = 6).
o If A— A’isa (previously fixed) ring extension, we will write Lz/l 4 for the associated morphism
GL,(A) — GL, (4.

e For a ring R, we denote by M,,«,,(R) the ring of n X n matrices with entries in R.

12



2 LIFTINGS AND DEFORMATIONS

2 Liftings and Deformations

Throughout this section, let us fix a finite field k of characteristic £ > 0. We will denote the ring of
Witt vectors over k by W (k). Let us moreover consider a profinite group I" which fulfills the following
{-finiteness condition:

Assumption 2.1 (Condition ®, from |[Maz89|). For any open subgroup H C I, the maximal pro-¢
quotient of H is topologically finitely generated.

As remarked e.g. in [Bocl3al, Ex. 1.2.2], absolute Galois groups of local fields and the Galois groups of
extensions Fg|F (with F' being a number field and Fg being the maximal extension of F' unramified
outside a finite set of places S) fulfill this assumption for all primes ¢.

Let G be a smooth linear algebraic group over W (k) and let
p: I — G(k)

be a continuous group homomorphism, where G(k) carries the discrete topology. We will commonly
refer to p as a residual representation. The purpose of this introductory section is to describe the
deformation theory of p to complete Noetherian local W (k)-algebras, building up on the expositions
of Tilouine [Til96], Mauger [Mau00|, Levin [Lev13|, Balaji [Ball2] and Bleher and Chinburg [BC03].
Historically, deformation theory was first studied by Mazur [Maz89l [Maz97b| and others in the case
G = GL,.

We remark that the material of this section could be analogously developed for a linear algebraic group
over a discrete valuation ring which is finite over W (k), but we don’t need this.

2.1 Coefficient rings

Let A be the valuation ring of a finite extension of Q, with residue field k = kj.

Definition 2.2. Denote by

*Cp: the category of complete Noetherian local A-algebras A such that [k4 : k] is finite;
e *C3: the (fully faithful) subcategory of *Cy consisting of those A which are Artinian;
e Cp: the (fully faithful) subcategory of *Cy consisting of those A which fulfill k4 = k;

e Ci: The intersection of *C{ and Cy.

As morphisms we consider local maps which induce the identity on residue fields. To be more precise
(cf. footnote 3 in [GouOll Lecture 2|), we take as objects of *Cy pairs (A, t4), where A is a complete
Noetherian local A-algebra and where ¢4 is an embedding A/m4 < k. Then we consider as morphisms
f:(A,1a) = (B,tp) those local maps f : A — B whose induced map f : A/ms — B/mp on residue
fields makes the following diagram commute:

Afma—L~ B/mp
LA LB

k——k
id

13



2 LIFTINGS AND DEFORMATIONS

Observe that, for Cp, this is just the usual notion of “local maps which induce the identity on residue
fields”.

Remark 2.3. Our main interest is in the categories Cy and *Cp. The main problem is that pullbacks do
not exist in these categories, but they do exist in C{ and *Cg, cf. [Gou0Ol| Lecture 2].

Let us recall the definition of the completed tensor product (see e.g. [Maz97bl, §12]): For objects A, B,C
of Cp and maps A — B, A — C, we define

B&4C = lim (B/miB) ®a (C’/mjc) € Cy.
1,J

This construction realizes the pushout of B and C along A (cf. Section 0.3 of Gabriel’s Exposé VIIg
in [DGT0]). Using the co-continuity of Hom-functors, we immediately get the following proposition on
representing objects:

Proposition 2.4. Let
A——=B

C
be a diagram in Cn. Then Home, (B&a C,_) is the pullback of the diagram of functors

Home, (B, _)

|

Homg, (C, ) —— Homg, (A, _) .

Corollary 2.5. Let Fy,..., F,, be finitely many representable functors from Cp to Ens. Let R; denote
the representing object of F;. Then
H F;:Cn — Ens

1=1,....m

is representable by R1® ... O Ry,.

As a preparation for the next proposition, let us consider a pushout diagram in Ca

f

HB

A
1
C g>P,

such that f is surjective. This implies that g is surjective, so by taking I := ker(f) and J := ker(g) we
can extend 7 to a map of short exact sequences (of A-modules):

0 I A B 0 (2.1)
A4
0 J C P 0




2 LIFTINGS AND DEFORMATIONS

This diagram can be extended to

0 I A B 0

b

Copl —= CROpA —— C®4B ——0

i

0 J C P 0

Definition 2.6. For a finitely generated ideal J of A we define
gen(J) = dimg J/m47J.
Then gen(J) is the cardinality of a minimal set of generators for J.

Then we have:

Proposition 2.7. In diagram ,
gen(J) < gen(I).

Proof. This follows from the above extended diagram, using that both the map I — C®4I induced
by base change from A to C and the surjective module homomorphism C®4I — J send systems of
generators to systems of generators. O

Recall the following elementary facts about regular systems of parameters:

Proposition 2.8 ([Ser00, Proposition 22| and the subsequent corollary).

a) Let x1,...,x; be l elements of the mazimal ideal m 4 of a reqular local ring A. Then the following
18 equivalent:

1. x1,...,x; 15 a subset of a reqular system of parameters of A;
1. The images of x1,...,x7 in mA/m?4 are linearly independent over k;
i11. The local ring A/ (x1, ..., x;) is reqular and has dimension dim A—I. (In particular, (z1,...,x;)

is a prime ideal.)
b) If 3 is an ideal of a regular local ring A, the following properties are equivalent:

i. AT is a regular local ring;

1. J is generated by a subset of a regular system of parameters of A.

Proposition 2.9. Let A = Al[z1,...,z4]], B = Al[y1,...,us]|] be objects of Cn and assume that there
exists a surjective morphism f: A — B whose kernel we denote by I. Then gen(I) =a —b > 0.

Proof. 1t is clear that there cannot be a negative number of generators of 1. By Proposition b), the
ideal I can be generated by a subset (of, say, cardinality r) of a regular system of parameters of A. By

part a) of said proposition, the quotient A/I has dimension dimA —r=a+1—17. We get r = a — b,

15



2 LIFTINGS AND DEFORMATIONS

which is thus an upper bound on gen(I).
In order to derive a lower bound, consider the canonical surjection

7 Ajmyd - A/m?.

The image of I/ma.I under 7 is (I +m%)/m% = I/(I Nm?). This implies gen() = dimy I /myl >
dimy I/I Nm?% = r, where the last equality is taken from the proof of [Ser(0, Proposition 22]. O

Lemma 2.10. Let A = Al[x1,...,x4]], B = Al[y1, ..., yp]] be objects of Co and let J C A be an ideal
of the form J = (p1,...,¢u) with p; € A and u < a. Suppose moreover, that there exists a surjective
morphism f : A/J — B and denote its kernel by I.

Then AJJ = Al[x1, ..., 2q—v]] if and only if gen(I) = a —u — b.

Proof. The “only if” direction follows from the above proposition. For the other direction, assume
gen(I) =1:=a—u—band write I = (¢1 + J,...,¢; + J) for suitable ¢; € A. Write

K= (p1,...,pu,01,...,1) C A.

It follows from the third isomorphism theorem for rings [Bou89) 1.§8.9 Corollary| that
AJK = (A/D)/(K/[J) = (A]])/1= B,

Because K C m4, we can apply the implication iii. = . of Proposition .a), which tells us that there
exists a regular system of of parameters of A which extends the system @1, ..., @y, ¥1,...,1%;. But then
this system also extends ¢1, ..., ¢y, hence (by Proposition [2.8|a), implication i. = 4ii.) A/J is regular
of dimension a — u + 1. Thus, we can apply Cohen’s structure theorem (see [SerQ0], p. 108) to finish
the proof as soon as we can show that A/J is unramified, i.e. that ¢ ¢ mi/J. But this is clear: f is a

surjection onto the unramified regular ring B, so my/; = f~(mp) and £ ¢ m%. O

Remark 2.11. Retain the notation from Lemma Then it follows from the above proof together
with Proposition [2.9 that gen(I) cannot be smaller than a —u—b. Thus, if we want to apply the lemma
in order to prove that A/J is isomorphic to a ring of power series, it suffices to show that there exists
a generating set for I of cardinality not exceeding a — u — b. This implies that the number of variables
is precisely a — u.

Proposition 2.12. Let m € N. Then an object A of Cp is regular if and only if Al[z1,..., x| s
reqular.

Proof. 1t is clearly sufficient to consider the case m = 1. The “only if” part is [Mat80, Proposition
24D|. For the other direction, assume that A[[z]] is regular. It is clear that x is not contained in
mi\[[f]l = (ma, z)?, so implication 7. = iii. of Proposition a) yields regularity of A[[z]]/(z) =2 A. O

Recall the following definition from [Gro64, §19| (see also [Ser(6, Appendix C|):

Definition 2.13. A morphism f : A — B of rings is called formally smooth if the following lifting
property is fulfilled for any commutative A-algebra D and any nilpotent ideal I C D: Any A-algebra

16



2 LIFTINGS AND DEFORMATIONS

morphism h : B — D/I factors through the projection D — D/I. Written as a diagram: For any h
there exists an h such that
f

— s B
h

A
—D/I

O<—>x

commutes.

One of the reasons why we are interested in this notion is the following result:

Proposition 2.14. Let f : A — B be a morphism in Cn. Then f is formally smooth if and only if B
18 isomorphic to a formal power series ring over A.

Proof. This is the equivalence (i) < (ii) of [Ser06, Proposition C.6|. O

Lemma 2.15. Consider morphisms f : A — B and g : B — C in Cx. If g and g o f are formally
smooth, then f is formally smooth.

Proof. Using the formal smoothness of g and Proposition we can consider the following diagram:

At B =B,z
D= D/I

Here, we start with a morphism h : B — D/I and want to show the existence of a suitable h. For this,

take r as the unique map satisfying rog = h and r(x;) = 0 for all 4 € {1,...,m}. Using the assumption
that g o f is formally smooth, we see that r lifts to a map 7. But then h := ¥ o g yields the desired lift
of h. .

We next prove a rather general lemma: Consider a ring of the form

R=Alfwr, ozl /(fir- o ) (2.2)

where this is a minimal presentation, i.e. a € Ny is minimal among all possibilities to write R as a
quotient of a power series ring over A and b = gen(fi,..., fp). Also consider

R =A@z R=Allz1,...,2]/(f1,-- -, fo) (2.3)

for some A € *Cp such that the structure morphism A — A is flat.

Remark 2.16. We will mainly be interested in the case where A is a discrete valuation ring extending
A, where we suppose [Quot(A) : Quot(A)] < co. In this case, the flatness condition is fulfilled.

Lemma 2.17. The presentation in is minimal. In particular, R is formally smooth over A of
dimension a if and only if R' is formally smooth over A of dimension a.

17



2 LIFTINGS AND DEFORMATIONS

Proof. Minimality of (2.2) amounts to the inclusion I := (f1,..., fy) C (m?,¢), where m denotes the

maximal ideal of Al[z1,...,2,]] and b = dim I/m.I. By the flatness of A, we can compare the exact
sequences
0—1I— Al[z1,...,24]] — R—0
and
0— A®@p T — Al[x1,...,24)] — R — 0.

It remains to show that the latter gives a minimal presentation. We easily see that A @5 I C (m'2, /),
where m’ is the maximal ideal of A[[z1,...,z,]]: Exactness of

0— 1 — (m%0)

implies exactness of
0= Ayl = A®y (M2 0) = (m?,0).

It remains to check that b equals b := dimp /y A ®4 I/m’.A @ I. But this follows directly from the
isomorphism

ApT/m A@p T =T/mI®)/mA/m

and the fact that A/m — A/m’ is a monomorphism of fields:

b= dimy jp I/m.I = dimp oy A @p I/m' . A@p T =V O

We conclude this section with two general lemmas which will be useful for comparing two deformation
rings:

Lemma 2.18. Let R, R’ € Cp and let
¢p:R—- R

be a surjective morphism. Assume moreover that R is formally smooth over A of relative dimension d.
Then ¢ is an isomorphism if dim(R') = d + 1.

Proof. Assume that ¢ is not injective, i.e. ker ¢ # 0. Then it follows that dim(R/ker ¢) < dim R. The
claim now follows from the additivity of the dimension. O

Lemma 2.19. Let R € Cp such that
Al[z1,. .., 2m]] =2 R Al[2]]

for some m € N. Then
R= A[[ﬂ?l, ceey {Em_l]].

Proof. Let w be a uniformizing element of A. Clearly, the indeterminant
z € (R/w.R)[[z]] = k[[z1, ..., 2m]]
is contained in a regular system of parameters, so

R/w.R%“k[[xl,...,xm_l]]. (2.4)

18



2 LIFTINGS AND DEFORMATIONS

Now consider the diagram

A —— A[[fL‘l., e ,ﬂ?m_l]]
"
P R
R 7> R/@.R
where h and g are the projection maps modulo @w. As Af[z1,...,2p,-1]] is formally smooth over
A, there exists a dotted map h. Because of the isomorphism 1} R modulo the maximal ideal of
A[[z1,. .., 2m—1]] is k and hence, by Nakayama’s Lemma, the map h is surjective.

Now we see that h must be an isomorphism: Assume, this is not the case. Then dim R < m, which is
in conflict with the isomorphism A[[z1,. .., 7m]] = ROAA[[z]] & R[[x]]. O

2.2 Liftings of G-valued representations

For an object A of *Cp with residue field k4 we consider the following maps induced by reduction
modulo the maximal ideal and by the structure map A — A, respectively:

modm, : G(A) — G(A/ma) = G(ka),  theny : G(k) — Glka). (2.5)

Definition 2.20. Let
p:I' — G(k)

be a residual representation and A be an object of *Cy. Then a lifting of p to A is a continuous group
homomorphism

p: T — G(A)
which fulfills

modw 4 0p = ik, © P-
Definition 2.21 (Lifting functor). Retaining the notation from the above definition, let
*Dg(ﬁ) : *CA — Ens

be the functor which assigns to an object A of *Cy the set of all liftings of p to A. The restriction of
*DR(p) to Cy is denoted by DP(p).

Theorem 2.22. 1. Both *DY(p) and DY (p) are representable by the same object RS (p) which lies
in Cy.

2. Let N be the ring of integers of a finite extension of Quot(A) with residue field k' = ky/ and
abbreviate p' for tpci o p. Then

RY(7') = N @4 RY(p).

We will call RY(p) the universal lifting ring (or universal framed deformation ring, cf. Proposition
below) of p. The afforded morphism
o. O
p- T = G(R{(p))

is called the universal lifting of p.
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Proof. Representability of DF(p) is the content of Theorem 1.2.2 of Balaji’s thesis [Ball2], where a
representing object is explicitly constructed. Moreover, it is easily seen that the proof is applicable
to the functor *DE (p) without any changes (so in particular with the same constructed representing
object). An alternative proof using an embedding of G into GLy is given in [Lev13, Proposition 7.2.1].

Also, the second claim can be deduced by comparing the construction of the representing object of DE (p)
and the representing object of DF,(p) in Balaji’s proof: Using his notation, RY(p) is constructed as
the I-adic completion of a quotient Rs of a power series ring over A (for an explicitly described ideal
I C Ry). Similarly, RY,(p') can be constructed as the I’-adic completion of a quotient R} of a power
series ring over A’. The rings Re and R), depend only on I" and G (resp. on I' and the extension of
scalars of G to A’), which immediately implies

R’Q >~ A Rp Ro.

The ideal I (resp. I') is defined using the residual representation, and it follows directly from the
identity p" = ) 0 p that I’ = A" ®, I, from which we conclude the claim. O
Remark 2.23. 1t is easy to check that the Noetherian objects of the completion (*)CX lie in *Cy (i.e.
that any object R of )¢y fulfills
R Lgn R/mp
(2
with R/m%, € (4)C3 ), see [GouO1, Problem 2.3]. Moreover, the functors *) DY () are continuous in the
following sense: For any object A of *C, with maximal ideal m4 we have
®DF(P)(A) = lim DY (p)(A/my).

2

Thus, ®)DY(p) is already determined by its restriction *) DY () to *)C]. The first part of Theo-
rem may therefore be rephrased as follows: The functors *D3™(p) and D™ (p) are both pro-
representable by the same object RY(p).

Remark 2.24. The things said so far imply two exztension principles:

1. A pro-representable functor on (*)CX can be extended to a continuous functor on ®Cy in a unique
way. This extension is representable by the same object.

2. A pro-representable functor F' = Homcx (R,_) on C§ can be extended to a pro-representable func-
tor *F' = Hom«cg (R, _) on *C}. Moreover, this extension is unique up to natural isomorphism:
Assume *F/ = Hom«cq (R',_) is another pro-representable extension of F', then the unicity of the
pro-representing object implies a unique isomorphism R = R’. Using the first part of this remark,
this can equivalently be stated as follows: A representable functor on Cy can be extended to a
representable functor on *Cp in a way which is unique up to natural isomorphism.

We will later generalize the extension principles of Remark [2.2412, cf. Observation [2.34]

Relatively representable subfunctors and lifting conditions For this paragraph, let C be either
*C3 or C3 and consider a functor
F :C — Ens,
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which fulfills
#F(k’) =1 (2.6)

for any finite field " in C.

Theorem 2.25 (Grothendieck’s criterion [Gro95al). The functor F' is pro-representable if and only if
the following conditions are met:

1. Mayer-Vietoris property: F respects fiber products, i.e. for any two morphisms f : A— FE,g: B— FE
in C, the canonical map

hf,: F(AxgB) — F(A) Xp(g) F(B)
is an isomorphism of sets;

2. Finitude of tangent spaces: For any finite field k' which is contained in C, the set F(k'[e]) is finite.

Definition 2.26 ([Maz97bl §19]). A subfunctor H of F is called relatively representable, if

2. For any two morphisms f: A — FE,g: B — FE in C, the following is a pullback diagram in Ens:

H(A xg B) " H(A) Xy H(B) (2.7)

| |

F(A x5 B) F(A) x () F(B)

F
hf,g

Let f: A— B,g:C — B be maps of sets. Then the pullback in Ens is explicitly given by
Axpp,C={(ac) € AxC| f(a) = glo)}.
Similarly, if F,G, H : C — Ens are functors together with natural transformations
T:F—=>G,¢v:H—=G,

we can characterize (or define — as done e.g. in [Maz97b| — if we don’t want to refer to the general limit
construction in functor categories) the pullback functor

FXT7gy¢HZC—>m
by sending C € C to the set F'(C) X, q(c)we H(C)-
Lemma 2.27. Consider a diagram of functors and natural transformations

I
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and assume that v is injective (i.e. all components 14 are monic), so that we can view H as a subfunctor
of G. Assume that H is relatively representable in G wia . Then the induced natural transformation
to the first factor,

TF . F XT,G,QJ,H — F,

allows us to view F' X g H as a subfunctor of F' and, as such, F' X g H is relatively representable
n F.

Proof. Consider the commutative diagram

N € =
N o H(AxpB) B G(A xp B)
_ N 7 g ‘ f N 4
< F Xr,Gap H(A XE B)( ¢/ F(A XE B) g4
2
fa
fa . H(A) x gy H(B)" o G(A) xg) G(B),
- = ~P7
Fxrcy H(A) Xpx, o 1Em) F Xrew H(B)<—>f3 (A) X pp) F(B)

where X € C is arbitrary and will be used as a test object. In order to prove the claim, we have to
show that the square in the foreground (f; — fo — f3 — fa) is a pullback diagram, given that the square
in the background (g1 — g2 — g3 — g4) is one. So for any two maps (3, (o fulfilling fy 0 (1 = f30 (2, we
have to show that there exists a unique ¢ fulfilling

Clzfl ogand CQIfQ Of. (28)

By assumption on the relative representability of H in G, we know that there exists a unique map
n:X — H(A xg B), such that g on = py o0y and g3 o = pg 0 (3. Thus we can define

f:X — F Xr,G H(A XEB) gF(A XE B) Xgl,G(AXEB),;IM H(A XEB)

by sending x to ((1 (x), n(x)) Checking the requirements 1} is obvious for (1, and for (o we can use
the following observation: An element of

F XT:va H(A) XFX.RG’U)H(E) F XT,G7’¢) H(B)

is uniquely determined by its image under ps and f3. Thus, in order to show (o = fy 0 &, it is sufficient
to show

p2oC=p2o faofand f3o(y = f30 fa0&.

The first identity follows from the definition of £ and commutativity of the square pi-go-fo-p2, and the
second identity follows from fy 0 (1 = f30 (2, (1 = f1 0 & and commutativity of the foreground square

fi—fe— fs— fa
It remains to check uniqueness of &: Let £ be another map fulfilling the requirements (2.8)). We use

the observation that an element of F' X, g H(A X g B) is uniquely determined by its image under p;
and f;. Hence, it suffices to show

fiof=fiof andprof =piof.
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The first identity is fulfilled by the requirements made on £ and &', and the second identity follows
from commutativity of the square p1-ga- fo-p2 together with the assumption that the background square
g1 — g2 — g3 — g4 is a pullback diagram: This implies that the map 1 as above is unique with respect to
the requirements g1 o = pgo (4 and g o = py o (2. By commutativity of the above diagram, p; o £
and pp o & fulfill these requirements and we get

pof=n=pof
and the lemma follows. O

Lemma 2.28. Let H be a relatively representable subfunctor of F' and assume that F' is pro-representable
by a suitable object R € Cx. Then there exists an ideal I C R such that H is pro-representable by R/I.

Proof. We first check that H fulfills the Grothendieck criterion, provided that F' does. Finitude of
tangent spaces is obvious, and the Mayer-Vietoris property can be read off from diagram , using
that hig is an isomorphism and using the formal property Y xy Z = Z of the fiber product. That the
pro-representing object of H is a quotient of the pro-representing object of F follows from [Maz97b
§19, Lemmal. (We remark that Lemma is a standard fact, often proved via Schlessinger’s criterion
instead of Grothendieck’s criterion, see [Gou01, Problem 3.5] or, for more details, [Har07, Proposition
1.3].) O

Remark 2.29. Although we will not make extensive use of this in the sequel, let us remark that the
following strengthening of Lemma holds: If F'is pro-representable, then a subfunctor H of F is
pro-representable if and only if it is relatively representable: One implication was proved in Lemma
[2.28] so assume that H is pro-representable. This implies that both F' and H fulfill the Mayer-Vietoris
property (part 1. of Theorem . Using again the formal property Y Xy Z = Z, it is clear that
the diagram is a pullback diagram. That condition 1. of Definition is fulfilled follows from
assumption together with the pro-representability of H. Thus, H is relatively representable. (We
also remark that this strengthening appeared in [Gro95b| as Proposition 3.7, albeit for contravariant
functors.)

We make this explicit for the choice C = *C3 and F = *D}"(p):

Definition 2.30. A lifting condition is a family *D = (S(A))ae+cg, where each S(A) is a set of
A-valued liftings of p such that

1. pe S(k);
2. Let f: A— A’ be a morphism in *C{ and p € S(A). Then p' == G(f) o pisin S(A4');

3. Let f1: Ay — A, fo: Ao = A be morphisms in *C} and let p3 be a lifting of p to Az := A x4 As.
For i € {1,2} denote by m; : A3 — A; the canonical projection and by p; the lifting G(m;) o ps of
p to A;. Then, ps € S(As) if and only if p; € S(A1) and ps € S(Asg).

D,*'D(—

By condition 2. of this definition, the assignment A — S(A) defines a subfunctor *Dy p) of

*DR7(p).

Proposition 2.31. *DX’D’*D(E) is a relatively representable subfunctor of *DZ’D(E).
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Proof. Observe that condition 3. of Definition is just the Mayer-Vietoris property spelled out. As
condition 1. of Definition is the same as condition 1. of Definition we can use Remark
(or check condition 2. of Definition by hand) to verify the claim. O

There exists a converse to this proposition:

Proposition 2.32. Let H be a relatively representable subfunctor of *DZ’D(E). Then (H(A))

a lifting condition.

Aexcg ¥

Proof. Let I C RY(p) be the ideal corresponding to H via Lemma , 8o that we have
H(A) = {90 o p- ( o € Homy (RY(p), A), o(I) = o} for A € *C3. (2.9)

It is clear that p € H(k). For condition 2. of Definition 2.30} let p € H(A) for some A € *C3. Then
p = o pt for a suitable ¢ as in . If f: A— A'isa morphism in *Cg,, we have to check
fope H(A'). But this is obvious from the characterization (2.9).

Recall the notation from condition 3. of 2.30] That p3 € H(A3) implies p1 € H(A1), p2 € H(As) follows
from the same argument we used for condition 2. For the reverse implication, assume that p; € H(A;)
and py € H(A2) and let ¢1, 2 be the respective maps as in . Let Ay = A1 X As and pg = p1 X p2
and observe that A3 embeds into A4. We see that py : I' — G(Ay) factors as

pa=(p10p") x (p20p7) = a0 p"
for w4 = (p1,¥2) which fulfills p4(I) = 0 (but observe that ¢4 is not a lifting of p, since Ay is not
local). On the other hand, we have a commutative diagram

Az
>
PP O/—
r N
T
Ay
for a suitable map ¢3. It follows that ¢3(/) = 0 and hence p3 € H(As). O

This justifies that we will not distinguish between the terms “relatively representable subfunctor of
*D3P(p)” and “lifting condition”.
Proposition 2.33. Let *D = (S(A))ac~c3 and *D' = (5'(A))ac+cy be two deformation conditions.

Then the assignment

*CR - Ens A~ S(A)NS'(A)
defines a lifting condition denoted *D N*D’ or *D,*D’.

Proof. Conditions 1.-3. of Definition are easily checked for *D A*D’. Alternatively, we can observe
that the pullback of the diagram

o,[0,*D /—
*DAD (P)

|

0,00,*D’ /— 0,0 /—
D5 (5) ——*D5(7)
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corresponds precisely to the condition *D A*D’, so the claim follows from Lemma m ]

We come now to our second extension principle:
Observation 2.34. Let D be a family (S(A))aecg fulfilling the conditions of Definition m then the
afforded subfunctor DX’D’D(ﬁ) of DYP(p) is relatively representable, hence gives rise to a quotient

R%D(ﬁ) of RY(p) as pro-representing object. Let us assume that RE’D(p) is reduce. Then we can
extend the family D to a lifting condition *D (in the sense of Definition [2.30)) by setting

S(A) = {cp omp o p” ‘ Y E HomA(RE’D(ﬁ),A)},

where 7p : R{(p) — R%’D(ﬁ) is the canonical quotient map and A € *C3. Moreover, by the unicity
of the pro-representing object, this is the unique lifting condition which extends D. This sets up a
bijection between lifting conditions (denoted *D) and C}-truncated lifting conditions (denoted D) and
justifies the omittance of the star in the notation of lifting conditions from now on.

Let us fix some consequences:

Corollary 2.35. Let D = (S(A))aecg be a lifting condition. Then:

1. There is an ideal Ip C RY(p) such that both DZ’D’D(ﬁ) and *DX’D’D(E) are pro-representable by
RY"(p) = RY(p)/Ip;

2. DZ’D’D(E) and *DZ’D’D(E) extend to continuous subfunctors D%’D(ﬁ) of DY(p) and *DE’D(ﬁ) of
*DY(p). Both DE’D(ﬁ) and *Df’p(ﬁ) are representable by RY(p)/Ip;

3. Let N’ be an object of *Cp with residue field k' == kp,, and observe that, via the structure map
A — A, we can understand (*)C/[\o,] as a subcategory of (*)Cl[f]. Abbreviate p' for tpcpop and D' for
the truncation of D to those S(A) for which A is in *C3,. Then, both D%}D/(ﬁ’) and *Df,’p, ()
are representable by

RGP (p) = N @y RYP (7).

(We remark that a special case of part 3. can also be found in [BLGGT14, Lemma 1.2.1]. We also remark
at this point that an unframed version of these assertions hold true, i.e. anticipating the language of
Section 2.3 below we have

RY (7)) = N @a RY (p).

if D is a deformation condition and if RY(p) is representable.)

Proof. Only the last part requires an explanation: Let Ip denote the ideal associated to D. Then S(A)
consists precisely of those f € Homp (R (p), A) which vanish on Ip. If A is an object of *C3,, S(A) is
in canonical bijection with the set of those f € Homy (A’ ®x RY (), A) which vanish on A’ @4 Ip. It

follows that DE/D/ (') and *DE/D/ (p') are representable by

(A @a RY(p))/(N @4 Ip) = A @x (RY()/Ip) = A" @a R ().
(Note that this also gives an alternative proof for the second part of Theorem M) n

In the remainder of this section, we introduce several examples for lifting conditions.

3The reducedness is a sufficient condition for the extension *D to define a deformation condition, cf. the corrections
to [CHT08] in [BLGHT11), Lemma 3.2].
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Liftings with a constraint on the kernel Let us fix another profinite group A together with an
inclusion ¢ : A < I'. Consider the family D<™24 = (S(A))aecg with

S(A) = {pe D" ()(A) | plA =14},

where 14 : A — G(A) denotes the trivial map (sending everything to the neutral element of G(A)) and
where we abbreviate p|A for po ..

Proposition 2.36. Assume that p|A is trivial, so that p € S(k). Then D2 defines a lifting
condition.

erDA

Proof. We easily observe that DZ’D’Dk (p) is the pullback of the diagram

D" (p)

lﬁ

T T> D?\ym(ﬁ|A) 3

where T : C} — Ens is the functor sending any coefficient ring A to the one point set {*} and where
w4 sends {x} to the set {triv4} containing only the trivial lift

triva : A — G(A) § = 1ga
of p|A. Thus, the claim follows once again from Lemma [2.27] O

We will be mainly interested in the case where I' is the absolute Galois group of a local field and where
A is the inertia subgroup. We will then denote the afforded subfunctor by DY™™(p) and refer to the
parametrized liftings as unramified liftings.

Liftings of fixed factorization type In order to give another example of a deformation condition,
let G’ be a smooth linear algebraic group over W (k) together with a morphism d : G — G’ of algebraic
groups. Let y : ' = G’(A) be a fixed representation such that the following diagram commutes:

G'(A)
/ G'(modm , )
r G'(k)
\ /
G (k)

Consider the family DX = (S(A)) aecg with

S(4) = {p e DY (p)(A) | daop=raox},

where 14 : G'(A) — G'(A) is the homomorphism induced by the canonical structure morphism
UA : A— A
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Proposition 2.37. DX is a lifting condition.

Proof. Let us first treat the special case G' = G, d = id (and, hence, p = X): As S(A) = {va o x},
both conditions of Definition are trivially fulfilled. Thus, DX’D’Dd_X (%) is a relatively representable
subfunctor of DZ’D(X) and DX is a lifting condition. The general case now follows immediately from

Lemma as DR’D’Dd:X (p) is the pullback of the diagram

D (p)

|

0,00,D4=X ,__ o _
DYPP T () DY (%)

)

where the horizontal map is the canonical inclusion and the (A-component of the) vertical map sends
a lift p of p to the lift d4 o p of X. O

We will be mainly interested in the case where G’ = G2 and d : G — G2® is the projection modulo
the derived subgroup G9*, where we abbreviate DE{D)’D’X(E) for the subfunctor of DX))’D(E) afforded by
D4=X. We call D/(\O)’Dx(ﬁ) the universal fired determinant lifting ring.

Ramakrishna lifting functor We will continue with a categorical description of certain lifting
conditions in the case G = GLy, first considered in [Ram93|: Let Rep§ (') be the category of finite
length A-modules together with a continuous action of I'.

Definition 2.38. A full subcategory R of Repj’\(l“) which is stable under taking subobjects, quotients
and finite direct sums is called a Ramakrishna subcategory.

The choice of a Ramakrishna subcategory R gives rise to a functor
*DYPR(B) : *C] — Ens

characterized by
o, ,R — O, Y
*DYP R ()(A) = {p € *Di"(p)(A) | p € R},

where p is considered as an object of Repj’\(F) via the structure morphism A — A.

Proposition 2.39. Suppose that p is in R (and that G = GL,). Then (*D?\’D’R(ﬁ)(fl))A6 o 5@
A
lifting condition in the sense of Definition [2.530.

Proof. Let f: A — A’ be a morphism in *C§ and consider a diagram

r L . GL,(A)
\ lGLn(f)
P
GL, (4",

where we suppose that M = A" (considered as a A-module via p) is in R. In order to verify part 2. of
Definition [2.30, we have to check that M’ := M ®4 A’ is in R. In order to do this, we may assume that
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A’ is of the form A[Xq,..., X,,]/I for some m € N and for a suitable ideal I C A[X},...,X,,] which
contains (X1, ..., X,,)! for some ¢t € N. The passage

M~ M" =M @4 AX1, ..., Xn]/ (X1, ..., X))
replaces M by a finite direct sum of copies of M, which is in R. The passage
M// ~s M/ — M// ®A[X1,---7Xm]/(X17---7X’m)t A[X17 P 7Xm]/I

replaces M" by a quotient of M” which is in R.

Let f1 : Ay = A, fa : Ay — A be a morphisms in *C3 and let p be a lifting of p3 to A3 = A; x4 As.
Recall the notation p1, p2, p3 from part 3. of Definition and assume that ps is in R. If M; is the
underlying module of p;, it is clear that My = M3 ®4, A1 and My = M3 ® 4, Ag are quotients of Ms,
thus it follows that M; and My are in R. For the opposite direction, assume that My, My are in R.
Then M3 can be realized as a submodule of M; x Ms, hence the claim follows.

(This proof is based on unpublished lecture notes of M. Harris [Har07].) O

Global conditions composed by local conditions For this final paragraph, fix profinite groups

A, together with inclusions
(Lg Ay — F)JGE’

for a finite index set ¥. (The example we have in mind is where T' is the absolute Galois group of a
global field F' and the A, are decomposition groups at places of F'.) We continue to denote by p a fixed
G-valued residual representation of I', so we get natural transformations

fr: DXPN(B) = DO (3,),

characterized by sending a lift p of p to the lift p, := po i, of o, = po,. (Here, x, denotes the lift
X © Lo of the determinant of p,.)

In addition to the given data, let us fix for each o € X a lifting condition Dy = (S5(4)) , . for 7,
A
We define a family D = (5(A)) , ) by
A

S(A) = {p € DYN(B)(A) | po € S5(A) for all o € B}

Lemma 2.40. D is a lifting condition for p.

Proof. We argue as in the proof of Proposition [2.37} First observe that the f, glue to a natural
transformation

£ 037N (@) = I D70 (3,). (2.10)
ocEN

7(X0')7D0' O7D7(XU)
— Dy )

If we denote by g, the inclusion transformation DR’D we get another natural

transformation
o,0,(Xo 7DU 0,0,(Xo ) (=
Q:HQU:HDA O) (_>HDA (X)(pa)'
cEY gEX oEY
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It is easy to check that this inclusion is relatively representable, using our assumption that each inclusion
go 1s relatively representable (use Corollary together with Remark [2.29). Thus we get a diagram of

nal ural ‘ I'anSf( )rma‘ ons

lf

Dy (3,

p)
07‘:\7 o 7D<7( N
HUGE DA (o) g HO’EE

and the subfunctor DZ’D’(X)’D(ﬁ) of DZ’D’(X) (p) corresponding to D is its pullback. Thus, the claim
follows immediately from Lemma [2.27] and Proposition [2.32] O

(We remark that there is a similar statement in [B6c99, Lemma 2.3].)

2.3 Deformations and deformation conditions

For A € Cj, recall the reduction map mody, : G(A) — G(k) from (2.5) and consider the following
subsets of G(A):

G(A) = ker(mody, ,) and Zas = {9 € G(A)| mody,(g).p. modw ,(g) " =75}

Definition 2.41. Two liftings p1,p2 € DY (p)(A) are called equivalent (in symbols: p; ~ po) if they

are conjugate by an element of Z4 5. They are called strictly equivalent (in symbols: p; 2 p2) if they
are conjugate by an element of G(A).

We will usually impose the following two conditions:

(Centr),, : Za i, contains the centralizer Cg(p(I')) as schemes over k;
(SmCtr) : Zq is formally smooth over A.

(Here, Zg 1, denotes the base change of Zg to k.)

Proposition 2.42. If (Centr), and (SmCtr) are fulfilled, then p1 and py are equivalent if and only
if they are strictly equivalent.

Proof. See [Til196], Section 3.2]. O
Definition 2.43 (Deformation functor). Let

Dy(p) : Cn — Ens
denote the functor which assigns to A the set of strict equivalence classes of lifts of p to A:

Da(p)(A) = D (p)(A)/G(A).

For ease of notation, we will refer to elements of Dy (p)(A) by representatives, i.e. we will write p instead
of [p]s-
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Remark 2.44. Tt is possible to develop a theory of deformations of p to rings in *Cy entirely analogous
to Section However, we do not need this and refer the reader to Appendix A of [CDT99| where
this is carried out in detail. Another reference for (partial) results in that direction is [Maz97bl, §12].

A~

Let us denote by g = G(k[e]) (resp. by 3) the Lie algebra of the special fiber of G (resp. of the center
Za of G). With reference to our fixed residual representation p, we will regard g as a I'module via the
adjoint representation, i.e.

~v.X = Ad(p(y)).X (vel, X e€g).

This operation restricts to the subalgebra g¢*. In the case G = GL,,, we will also use the more familiar
notation adp (resp. adp°) instead of g (resp. gd°%).

Now, consider the condition
(Centr) : H(T,g) = 3.

Remark 2.45. 1. It is shown in [Mau00, Lemma 2.4(i)] that (Centr) is equivalent to the following
condition: For any A € Cy and any deformation p of p to A, we have an inclusion

(ZAJ) N G(A)) C Z(;(A),

where
Zap,={9€G(A)|gpg " =p}

2. Assume (SmCtr) and assume that we have an equality
Ze = Cq(p(I'))° (as varieties).
Then an equality
Ze = Ca(p(I"))° (as group schemes) (2.11)

follows if we suppose that the closed subgroup p(I') C G is separable in G (in the sense of [BMR05,
Definition 3.27]).

3. Assume (SmCtr). Then the equality (2.11) is equivalent to (Centr), cf. [Til96], Comment 2
following Theorem 3.3.

Definition 2.46 ([BMRT10]). Fix a maximal torus 7' C G and a Borel subgroup B C G containing
T. Let ¥ = U(G,T) denote the set of roots of G with respect to T, let ¥ = (G, T') denote the set
of simple roots of ¥ defined by B and and let ¥+ = (B, T) denote the set of positive roots of G. If

B € UT, we write
B=2_capo
acx

for suitable c, 3 € Ng. A prime £ is then called good for G if it does not divide any non-zero c, g.
A prime £ is called very good for G if £ is good for G and if ¢ does not divide n + 1 for any simple
component of G of type A,.

Lemma 2.47 ([BMRT10, Theorem 1.2 and Corollary 2.13]).

1. If ¢ = char k is very good for G, then any closed subgroup H C G 1is separable in G;
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2. If there exists an embedding G — GL(V') such that (GL(V), Q) is a reductive pair, then any closed
subgroup H C G is separable in G.

Moreover, we have the following result:

Theorem 2.48 (|Til96, Theorem 3.3]). Assume that (SmCtr) and (Centr) are fulfilled. Then Dy (p)
is representable by some ring Rx(p) in Cp.

We call Rp(p) the universal deformation ring of p and the afforded deformation p : I' — G(Rx(p)) the
corresponding universal deformation.

Observe that in the case G = GL,, (Centr) corresponds to the usual centralizer condition

Homyry(p,p) = k.

In practice, this condition is often deduced from absolute irreducibility of p by Schur’s Lemma. In order
to generalize this implication for more general groups, we first make a definition following [Ser98|:

Definition 2.49 (Irreducibility); We say that p is absolutely irreducible if there does not exist a proper
parabolic subgroup P C G over k such that p(I') C P.

Lemma 2.50 (Schur’s Lemma). Assume (SmCtr) and assume that ¢ is very good for G or that there
exists an embedding G — GL(V') such that (GL(V), G) is a reductive pair. Then (Centr) is fulfilled if
p s absolutely irreducible.

Proof. As the image p(I") is finite, it follows from [BMROS, Proposition 2.13] that Zg = Ca(p(I"))° (as
varieties) if p is absolutely irreducible. The claim now follows from Remark and Lemma 2.47. [

In the sequel, we will say that p is Schur if the conditions of Lemma are fulfilled. (Observe that
Clozel, Harris and Taylor give a different definition of “Schur” in [CHT08), Definition 2.1.6].)
Tangent spaces

Definition 2.51. The tangent spaces of DY (p) and D (p) are the finite-dimensional k-vector space
tpom =DR(P)(kl)  and  tp, ) = Da(p)(kle).
Proposition 2.52. 1. There are canonical isomorphisms
tDE(ﬁ) ~ 74T, g) and tDA(P) ~ HY(T,qg);
2. The natural transformation

n: DX(p) = Da(p)
defined by na(p) = [p] € Da(p)(A) for A € Cp and p € DY (p)(A) is formally smoot.

“For an explanation how DY (5)(k[e]) and Da(p)(k[¢]) are regarded as k-vector spaces, see e.g. [Gou(1il Lecture 2].
®For the definition of the term “formally smooth” in this context see [B6c13al, Definition 1.4.5].
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3. If (Centr) and (SmCtr) hold, then there is an isomorphism
RY(p) = RA()[[X1, - -, Xon]]

with m = dimg — h°(T', g) = dim g — dim 3.

Proof. For the first part, consider the diagram

N

0 —> g = G(k[e]) == G(k) —=0.

If p € DY (p)(kle]), we set
6: T —g=ker(n), v~ p()p(n) "
We easily check that this defines a 1-cocycle:
Sp(my2) = p(r72)p(1y2) " = p(1)P(n) () p(2)P(v2) T B(1) T = 6 (1) Bp(72) ™

On the other hand, let § € Z!(T', g). We define a map

ps I = G(kle]), v d(v)p(7),

and we easily check that this defines a representation (which obviously lifts p):

ps(11y2) = 6(71)6(72) " B(v17y2) = 6(71)p(11)8(v2)p(1) " B(11)P(V2) = ps(71)ps(72)

Therefore, the assignments p — &, and & — p; provide the desired identification between Z!(T', g) and
DB (k[e]).
P

For the claim in the unframed situation (which is also treated in Chapter 3 of [Til96]), we easily check
that conjugating a lift p with elements of G/(k[e]) amounts to multiplying 6, with coboundaries. (Further
references are: [Mau00, Theorem 2.6] and [B6c07, Theorem 2.2 (c)].)

Formal smoothness is proved in [Lev13, Proposition 7.2.5] (using smoothness of G) for the corresponding
natural transformation between deformation groupoidd]

7: D7) - D(p).
It remains to check that for a surjection A — A’ in Cy, the map
D (p)(A") xp)any D(P)(A) — D(p)(A") X p@)ary D(P)(A)
is surjective, which is straightforward.
In [Lev13| it is also explained that the fiber f := ﬁ,;[i] (p) of 7jk|q is a principal homogeneous space for
G(kle]) = g. If | - | denotes the canonical map from DP(p) to DE(p), it is clear that the kernel K in
0O—-K—=F —=|F|—0

can be identified with {g € G(k[e]) | gpg~" = p} = HO(T, g). Therefore, the fiber nk_[i] (p) is a principal
homogeneous space for g/ H(T, g) and the claims follow. (This can also be found in the proof of [Ball2]
Proposition 4.1.5].) O

6Cf. [BScl3al Section 1.6].
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From now on, let us assume conditions (Centr) and (SmCtr).
Theorem 2.53. There exists a presentation

0—J— A[[Xy,...,Xs]] = Ra(p) = 0

with h = h*(T', g) and where the number of generators of J is bounded from above by h?(T, g).

Proof. See [B&c07, Theorem 2.2 (d)]. O

Deformation conditions

Definition 2.54. Let D = (S(A))aecg be a lifting condition in the sense of Definition (and
Observation [2.34). Then D is called a deformation condition if the following additional condition is
fulfilled:

4. Let p € S(A) and g € G(A) for some A € C3. Then gpg~" € S(A).

A deformation condition D defines a subfunctor DY (p) of D (p) which is relatively representable:

Lemma 2.55. DY (p) is representable by a quotient RY (p) of Ra(p).
Proof. Using condition 4., this can be deduced as in the framed case (Proposition [2.31). O
It is straightforward to check that the conditions from the end of Section

e Liftings with a constraint on the kernel,
e Liftings of fixed factorization type,
e Ramakrishna liftings,

e Global conditions composed by local conditions,

fulfill the additional property 4. Moreover, it is clear that an assertion analogous to Proposition [2.33|
holds, i.e. that if D and D’ are deformation conditions, then so is D A D’. We introduce another
condition:

Example 2.56 (Deformations unramified outside X). Let " be the absolute Galois group of a global
field F' and let ¥ be a finite subset of Plp such that 7 is unramified outside ¥. We denote by D*~"" the
condition on deformations of being unramified outside X, i.e. parametrizing those deformations p of p for
which p, is unramified if v ¢ 3. It is easily checked by hand that this defines a deformation condition,
but this can also be achieved by the following characterization: A lift p of p which is unramified outside
Y can be regarded as a (unconditioned) lift of p| Gal(Fx|F') and vice versa, where Fy denotes the
maximal extension of F' unramified outside 3. In this way, we get a natural isomorphism of functors

'sznr

Dy (p) = Da(p| Gal(Fx|F)).

In the sequel, we will not distinguish between these two and refer to them as Dj »(p).
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Let gd¢* denote the Lie algebra of G9°*, g2 the Lie algebra of G2® and let H!(T', g%°%)" denote the image
of the map
H(,g%") — H'(T, g).

(We remark that for £>> 0, we have H'(T', g%%) = H'(T, g%%).)
Then we have the following variation of Proposition [2.52]1 for the fixed determinant condition:

Proposition 2.57. There are canonical isomorphisms of k-vector spaces

t = Zl(F,gder) and tDX(ﬁ) = Hl(F,gder)’.

DX (p)
Proof. The first part is shown as in the proof of Proposition [2.52] except that we have to check that

ps = 0p is of type DI=X precisely if the values of § lie in the subspace g™ C g. Assume first that §
fulfills this condition, then it follows from the fact that 6(y) € G (kle]) (for any v € T') that

dije © (0p)(7) = dij © (V) = Xi[qs

where d : G — G2 is the projection map modulo G and where Xkl is the concatenation of x with the
canonical map A* — k[e]*. On the other hand, suppose that p is of type DX then the corresponding
§ =8, is given by v — p(v)p(7) 1. Thus, we have that dfg © 0 =1, i.e. that § has values in gder.

The second claim is proved in [Til96, Proposition 3.2]. We also refer to [Ball2|, where this isomorphism
is explicitly stated (following the proof of Proposition 4.2.4). O

Proposition 2.58. There is an exact sequence

0—0/g" —t 000, —t — 0.
A

() D (p)

Proof. The fibers of t .. — t, (v, are isomorphic to G(k[e])/G(k[e])T, so the claim follows by
DA (P) DA (»)

applying the exponential map. (See also [Ball2] proof of Proposition 4.1.5], and the remarks following
Proposition 4.2.4 in the fixed determinant case.) O

We remark that for £ > 0, we have a decomposition g = g3¢T @ g2®. Thus g'' = (g%7)' @ g*° and we
get the following alternative version:

0 —s gder/(gder)F N tDE’(X) st

) Dﬁ\X)(p) — 0. (2.12)

2.4 Multiply framed deformations

Let F' be a number field and fix for each place v of F' an embedding ¢, : Gal(F,) — Gal(F'). For this
section, we take I' = Gal(F) or I' = Gal(Fs), the absolute Galois group of the maximal extension of F
which is unramified outside a finite set S of places of F'. With respect to a residual representation

p: T — G(k)

fulfilling (Centr) and (SmCtr) we consider the local representations p,, == po,. Likewise, we will
denote the deformation and lifting functors with respect to p by Dy(p) if I' = Gal(F), by Dg,(p) if
I' = Gal(Fy), and with respect to p, by Di(p,).
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Definition 2.59. For a finite set X of places of F define the functor Dgi(ﬁ) by the assignment

pEDE,A(ﬁ)(A)7 pv€DT(5,)(A), BLeG(A)
A — {(p7 (le ﬁI/)VEZ) s.t. p‘ Gal(Fu):ﬁypyﬂy_l }/N )

where (p, (pv, Bu)ves) and (0, (p,, B))ves) are equivalent if p, = p/, for all v and if there is a v € G(A)
such that p' = ypy~! and 8, =y, for all v.

Remark 2.60. Note that specifying the p, is not strictly necessary, as they can be obtained from p and
Bu.

We will consider three types of subfunctors of Dgi(ﬁ), all of which are familiar from the previous
subsections (and which define deformation conditions, cf. the remark preceding Example [2.56):

e Fixed determinant liftings: Fix a lift y : I' — G®(A) of the determinant map
x:T -2 G(k) — G™(k),

then we define the subfunctor DEﬁ\ (p) via
DGRX(P)(A) = {lp, (pv, Bu)ves] € DX (D) | p € DIX(P)(A)}-

e Liftings constraint by local conditions: Fix a family D = (D,)yex of local deformation
conditions for p,. Define the subfunctor DDE D( ) of DS A (p) by

DEE\’D(@(A) ={lp, (pv, Bv)vex] € Dgﬁ(ﬁ) ’ py € DY’ D (p,)(A) for all v € B}

e A combination of the two: Let x,D be as above, then we define the subfunctor Dgi’x’p(ﬁ)
of D§ () by

DFZXP(P)(A) = {[p, (pv: Bu)vex] € DGR (D) | p € DSZT(P)(A) N DIZX(P)(A)}-
Note that we have an equality
DSX7(p) = DI ()

where DX = (D}),ex is the family where each D;f parametrizes those lifts of p, which are of type
D, and of determinant y,,.

Proposition 2.61. 1. Dgi’(X)’D(ﬁ) 1s representable;
2. If #3 =1, then the functors D?i’(X)’D(ﬁ) and D?}gX)’D(ﬁ) are naturally isomorphic;
3. If X #0, then DDE (0, D( ) is formally smooth over DE’/(XX)’D(E).

Zv(X):D E:(X)vD‘

(p) and the universal deformation by pg
D&(X)( ) Dzy( )

We denote the afforded deformation ring as R?

If D is the unconditioned deformation condition, we abbreviate this as R and Ps.
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Proof. For part 1, let us first assume that ¥ = (. Then DDE7( )’D( ) = Dg)\ (p), and it follows
from Proposition and the material below Remark [2.60] that D (resp. x A D) defines a global
deformation condltlon (i-e. a deformation condition in the sense of Definition [2.54]for the global residual
representation p). Thus the claim follows from Lemma [2.55]

For the remaining claims, fix a place 1y € ¥ and consider the natural transformation

n: DYV () — Dg e« I ¢
veEX,v#1g

where the components 14 are given by sending (p, (pv, v )ves)/~ to (BuopBits (Bos-Bu)ves v )- Re-
mark that the target of 1 is representable (by Proposition and Corollary . We readily check
that 1 is a bijection, with inverse given by sending (p, (8y)ves,v#1,) to the equivalence class of
(p, (B, 1pBy| Galg,, By )es) with B, = 1. So 7 provides a natural isomorphism and the claims fol-
low. O

We remark that condition 1. of the proposition is not true if ¥ = () and 7 is not Schur.

Proposition 2.62. Assume X # (). Then

R§ () = Rsa(p)l[z1,- ., 2] and Rg}(p) = RS\ (p)[[21, -, 4]

and
5 D\ ~ X),D — s D, s D
R3NP () = RO (D)ller, .., xa]] and RGP (0) = RGP (D)l .. 2]

with
o ¢ = dim(g).(#5 — 1),
e u=dim(g) — dim(3) = dim(g%").

(Note that the first set of formulae follows from the second one if we leave x out and take for D the
unconditioned deformation condition.)

(We remark that the two isomorphisms on the right hold even if the (unframed) deformation functors
are not representable. We will not use this in the sequel, however.)

Proof. The first (upper left) isomorphism is Proposition 3. Tts proof can be easily generalized to
a non-trivial deformation condition D: Recall that deformation conditions are in correspondence with
(certain) ideals of Rs A (p) and denote by 00 the ideal corresponding to D, (x). Then

RO () = Rsa(p) /1Y

and
RSP (5) 2 RS\ (5)/RGA(P)IN) = Rsa(p)l[z1s - 2]/ IV [z, ... ]

= (R (p)/19)[[1, . 2] = REYT (@) [, - 2]

This gives the lower left isomorphism. Now we can finish the proof if we can provide an isomorphism

RGP () = RGP D)l ... 2],
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This can be done in an entirely analogous way, citing from Proposition that the natural transfor-
mation

DEE\@) — D3, (p)
is formally smooth and observing that consequently the fibers of DF% (p)(k[e]) — DS, (p)(k[e]) are
H?j_l g -torsors (cf. also [KWO09l Proposition 4.1], where this is carried out for G = GLg). O

Presentations over local deformation rings For this section, we will suppose
Assumption 2.63.
H°(Galp,g,g"%™) = 0.

Definition 2.64. Let X C S be finite sets of places of F' containing 2 LI €2y, then we define

—

R}XOCD(X) (ﬁ) — ®U€Z R/‘?v(XV)(ﬁV)

There is an obvious map Rlsf’z:’(X) (p) — R%’(X) (p) induced from f in (2.10) and we have

Theorem 2.65.
) =\ o~ 1002» =
RGN (0) = R @), wall g

for a suitable a € Ny and

- (#X —1).dim g%* (determinant fized);
| (#2 —1).dimg (determinant not fized).

(The set S does not show up in the definition of the object on the right side of the isomorphism.

However, we remark that this does not imply that Rg’f\X) (p) = Rg,’(f\‘) (p) for S # S, as the number a
of variables and the elements f; can differ in either case.)

Proof. For the fixed determinant, this is (a special case of) [Ball2l, Proposition 4.2.5]. The case where
the determinant is not fixed can be proved analogously. O

Corollary 2.66. Assume that the unframed deformation functor DX (p) is representable. Then
s —\ ~ plocg, —
RGN ®) = REFY @) o, zarslljarg)
for a suitable a € Ny and

- (#X —1).dimg*®® (determinant fized);
o (determinant not fized).

Proof. By Proposition we have
RS ) = REY (p)[[1, . .., z.]] (2.13)

with ¢ = (#X —1).dim g. The claim follows immediately from the identity dim g = dim g + dim g2°.
0
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Now, for each v € ¥ fix a local deformation condition D,. This gives rise to a global condition D in

the sense that a global lift p of p is of type D if and only if each local component p, is of type D, for

v € ¥. This gives rise to a global functor Dgi’(X)’D(ﬁ) with representing object Rgi’b‘)’p(ﬁ) and we

ocCg, ,D , v ;Dl,
R/‘ (X) (p) ®I/e§ RA (X ) (py)'

Corollary 2.67.
,(x),D /—\ ~ plocz,(x),D,— , _
RGP (0) = RY NP (5) @ pro o ) RS (7).

Proof. We only give a proof for the fixed determinant case (the other case being analogous): Write
D}XOCZ’X’(D) (p) for the functor
O,xv,(Dv) (—
[T o™,

vey

with representing object R}\OCZ’X’(D) (p). The claim then follows from Proposition as

’ ’D A k) A
Dg*"(p) > D3 (p)

v l

DY=XP () —= DY X(p)

is a pull-back diagram of functors. O

Thus by tensoring the claim of Corollary with R}\“E’X’D (p) we get

Corollary 2.68.
D/ A ocs,(x),D /—
RGP () = REFOP Gy, zarsll )
for a suitable a € Ny and

b (#X —1).dim g®® (determinant fized);
o (determinant not fized).

We will conclude this subsection with another characterization of a composed global deformation con-
dition:
Definition 2.69 (System of local conditions). Let p,x be as above, then a system of local conditions

£ = (LZ(,X))VeplF consists of a choice of subspaces L, C H'(F,,g) (resp. LY C H(F,,g%%)) such
that
L, = HY(Gal(F,)/Ir,,5)  (esp. L} = H'(Gal(F,)/Ir, %) ) (2.14)

holds for almost all v.

Now let T be a finite set of finite places of F' containing the ramification set of 7. Let D) be a global
deformation condition composed of local conditions D£X) for v € T. Then, for each v, we have an
inclusion of tangent spaces

; ot ~ HY(F,,q) determinant not fixed;
DVD'(JX) ) DY (p,) H'(F,,g%)  determinant fixed.
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I(/X):t

Thus we can define a system £X) attached to D and T by decreeing L oY) for v € T and as

DY (p,)
in (2.14) for v ¢ T. This gives rise to a map from the set of composed global deformation conditions

to the set of systems of local conditions.

2.5 Liftings at infinity

Proposition 2.70. Consider a representation
p:2)27 ={1,c} — G(F)
and assume that ¢ = char(F) # 2. Then
RY(P) = Al[z1, ..., 2] with m = dim(g= ).

If x denotes a lift of the determinant, then the same result holds for R/D\’X(ﬁ) after replacing g by g2e*.

Proof. Let k € N. We use the general formula H?(Z/kZ, M) = M%/*2 /im(p) for a Z/kZ-module M
and with

k—1
p: MM,  mw— im.
=0

Now, if 2 € gt1¢}, we see that (c +1)(32) = = € im(c + 1), hence H?({1,c},g) = 0 and the lifting ring
is unobstructed. To get the number of variables we have to evaluate

ZH({1,ch0) = {f : {l.c} = g flay) = f(=) + “f(y)}-
Looking at x = y = ¢, we see that f is uniquely determined by the vector v = f(c). Looking at
=1,y = c, we see that f(1) = v+ “ = 0, i.e. that v € g1, On the other hand, any such v defines

an f € Z' via 1+ 0,c .
The modifications of this argument for the fixed-determinant case are straight-forward. O

2.6 A criterion for vanishing of cohomology groups
Recall that if " is the absolute Galois group of a non-archimedean local field, then by Tate local duality
INSWO08|, Theorem 7.2.6] we have

H*(T,g)" = H(L,g") = (8")" (2.15)

where * denotes the Pontryagin dual and V denotes the Tate dual. We now give a simple (and presum-
ably well-known) criterion to determine if H?(T, g{?°*)) vanishes in the case G = GL,,.

Lemma 2.71 (Local case). Let I" be the absolute Galois group of a non-archimedean local field, k be a
finite field of characteristic £ and
p:I'— GL, (k)

a representation. Then
1. Homr(p, p(1)) wanishes if and only if H*(I',ad p) vanishes;
2. Assume that £ fn. Then, if Homr(p, p(1)) vanishes, also H*(T',ad p") vanishes.

Proof. By (2.13)), we need to show that H(T', (adp®)Y) vanishes. As explaine in [B6c07, Example

"Remark that there is a mistake in [B6c07]: In Example 4.1 is should say ad(ﬁo) = (ad(ﬁo))* instead of ad%o) = (ad%o))v.
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4.1], the trace pairing allows us to identify (ad5(?))" and (ad5(?))(1), where we have to assume £ n
for the ad p%-case so that we have adp = adp” © k . We thus see that

HO(T, (adp°)(1)) € HO(T, (ad p)(1)) = Homr (p, (1))
and the claim follows. O

In the global case, there is no duality theorem and we record the following:

Lemma 2.72 (Global case). Let I' = Galpg for a number field F' and a finite set S of places of F'.
Let k,p be as in Lemma abowve.

1. Homr(p,p(1)) = HO(T, (ad p)V);

2. Assume that £ fn. Then H(T,(adp®)V) is a direct summand of Homr(p, p(1)).
Proof. The proof is identical to the proof of Lemma [2.71] O

We deduce the following result, which also implies the vanishing of the error term ¢ in [Béc13a, Remark
5.2.3.(d)] for large ¢:

Corollary 2.73. There exists a constant C, depending only on n and F, such that Assumption |2.6
holds if char(k) > C, G = GL,, and p is irreducible.

In preparation for a proof, let us first consider the following:

Lemma 2.74. Let I be a number field and denote by ¢ € Q a primitive (-th root of unity. Assume
that ¢ does not ramify in F. Then [F(¢): F]=1(—1.

Proof. Write F(¢) for the composite field of F and Q(¢). If we can show that F' and Q(() are linearly
disjoint, then

[F(Q): F]=[Q(¢): Q] =¢ -1
by [Bou89, A.V.14, §2, Prop. 5.a]. For this, by [Coh91), Proposition 5.4 (on p. 188)], it suffices to check

that F NQ(¢) = Q. Assume that this does not hold. Then ¢ ramifies in F' N Q((¢), hence in F. This
was excluded in the claim of the lemma. O

Corollary 2.75. Let F be a number field and consider the mod-£ cyclotomic character €, : Galpg — F.
Then, for £ > 0, € is surjective.

Proof. By definition, im(€;) = Gal(F'(¢)|F'). Thus, if we take ¢ large enough (so that ¢ does not ramify
in F'), the result follows from Lemma [2.74] O

Proof of Corollary[2.73. Let us first exclude all ¢ which divide n. Because p is irreducible, by Lemma
we have to check in what situations we can have an isomorphism p = p(1). Assume that £ is big
enough such that the cyclotomic character € is surjective, according to Corollary Let o € F be
a non-zero eigenvalue of p(x), where « € I is some element which maps to a generator 3 of F; under
€. Then, p = p(1) = p(2) = ... implies that there are £ — 1 distinct eigenvalues o, Ba, 3%, ... of p(x).
This can only happen if n > £ — 1. Thus, C' can be taken to be the maximum of n + 2 and the bound
from Corollary O
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Remark 2.76. We expect Corollary to hold more generally for any linear group scheme G over Z and
any absolutely irreducible representation p (in the sense of Definition 2.49)) by embedding G < GLy
over Z[%] for a suitable N € N, but we did not check the details.
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3 Unobstructedness of universal deformation rings

As in Section let A be the valuation ring of a finite extension of Q, with residue field k. We consider
a residual representation p : I' = G(k) together with a fixed lift x of the determinant.

Definition 3.1. The functors Df’(X) (p) and D/(XX) (p) are called unobstructed if h*(T, g{4e)) = 0.

We will apply this mainly for I' = Galp g and I' = Galp,, where F' is a number field and S, {v} are sets
of places of F.

Proposition 3.2. Assume that D[E’(X) (p) is unobstructed and, in the fized-determinant case, assume
that £ > 0. Let b= h*(T,g) (resp. h*(T, g% if the determinant is fized) and a = b+ dim(g(e?)) —
hO(F, g(der))'
Then

RYM () 2 Al[w, ..., 2],

If in addition the conditions (SmCtr) and (Centr) are fulfilled, then

R{Y(p) 2 Ally,..., )],

Proof. Assume first the conditions (SmCtr) and (Centr) (so that D/(\X) (p) is representable), then

the isomorphism REXX) (p) = Al[z1, ..., xp)] follows from Theorem 2.2 (resp. Theorem 2.4 in the fixed-
determinant case) of [B6c07]. (Observe that we already cited Theorem 2.2 of ibid. as Theorem [2.53)).
Using the decomposition following Proposition [2.58| we see that

dim(g) — dim(3) = dim(g?e*) determinant not fixed,
a —b =< dim(g®¥) 4 dim(g2®) — hO(T", g¢*) — dim(g2®)
= dim(g) — dim(3) = dim(g?®¥) determinant fixed.

Thus, the isomorphism Rf’(X) (p) = Al[x1,...,z4]] follows from Proposition . This isomorphism
can be proved without representability by an analogous argument as in [B&c07]: We get a presentation

fiA[z1,. .. xz]] » RPN (p)

with ¢ = dim DP™ (5)(k[e]) and such that Hom(ker(f)/maq,. . o ker(f), k) < H2(T', @), Thus,
the claim follows from Proposition and Proposition [2.58] O

Remark 3.3. If, for example, Rx(p)/(¢) is known to have Krull dimension h!(T,g) — h?(T,g), then it
follows that R (p) is of relative dimension h'(T', g) — h?(T', g) over A. Thus, in this situation, a converse
to the above proposition holds: An isomorphism

Ra(p) = Al[z1, .. s zpi(rg)l]

implies the vanishing of h?(T,g). However, the assumption on Rx(p)/(¢) holds (conjecturally) only
in certain circumstances, cf. [Boc07, Remark 2.3]. Positive results exist in the local Galois case for
G = GL,, [Shol5l Theorem 2.4] (cf. also [B6c07, Remark 6.2 for n = 2). (An analogous remark holds
for R} (p).)
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Let us resume the assumptions and notations from the beginning of Section 2.4} i.e. that I' = Galgs
and that we have fixed embeddings ¢, : Galp, — Galp s (now, for all places v € Plp). If p denotes our
fixed global residual representation, we denote the afforded restriction to Galg, by p,,.

Definition 3.4. A relatively representable subfunctor of D%’(X) (p,) or DE\X) (p,,) is called smooth (of
dimension m) if its representing object is isomorphic to A[[z1, ..., zy]].

Now, let L&) = (LZ(/X)>V6P1F be a system of local conditions in the sense of Definition and denote
the corresponding global deformation condition by DX = (Dl(,X)),,epl .

Definition 3.5 (Dual Selmer group). Denote by g4V the Tate dual of g{4®®) and by L9 the
annihilator of LI(,X) under the Tate pairing

HU(F,, g% V) x H>'(F,, ¢"%")) — H?(F,, k(1)) = Q/Z

for i = 1, cf. [NSWO0S, (7.2.6) Theorem]. Then we denote by H

oo (F,91%V) the kernel of the map

@ res, : Hl(nger @ Hl F, gder )/L(X
VEP]F I/EP]F

(x)

For the next definitions we assume that S contains all places at which p ramifies and that Dy
parametrizes unramified deformations for v ¢ S.

Definition 3.6. We say that DD(X)( ) (or DE’AD<X) (p), 0 Dgf\’pm( )) has vanishing dual Selmer group

if Hy, .\ (F,gl%Y) =0.

Definition 3.7. Let m = (m,),cs € N5. We say that DQXO (p) (resp. DE’ADM (p), resp. D?i’D(X) (P))
(x)
is globally unobstructed (of local dimension m) if its dual Selmer group vanishes and if each DE’D”X (P,),

for v € S, is smooth (of dimension m,,).

To simplify the exposition, the following remark is stated in the unframed setting. Analogous statements
hold in the framed setting as well.

Remark 3.8. If l~?(¢) (p) = DD(X) (p) is globally unobstructed, it follows that the ideals Jo" from [Boc07],

equation (6), vanish. Hence [BOCO7 Theorem 5.2] implies that R ( ) is isomorphic to a power series
ring in h L(F g(der)) (/) variables. For general profinite groups T, the converse direction is known not

to hold, i.e. the formal smoothness of RW’)( ) does not imply that the deformation problem is globally
unobstructed, see [Spri3|.

For the next proposition, we consider the system of local conditions £X) parametrizing all deformations
which are unramified outside S with corresponding deformation condition (DX A)DS—mr,

Proposition 3.9. Assume that
1. DXX) (p,) is unobstructed (in the sense of Deﬁmtion forallv e S;

2. Dng)\(ﬁ) is globally unobstructed (and we don’t make an assumption on the dimension).

)
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Then D(Sﬁ)\(ﬁ) is unobstructed (in the sense of Definition .

Proof. As I.H%(g(der)) = H};L(F,g(der)’v)* Vanishe by Assumption 2., we can deduce this directly
from the following exact sequence (see p. 7 of [BocO7]):

0 — MI%(g")) — H(F,g'%") — @ H*(F,, g'*") — HO(F, g"*")* — 0. O (3.1)
ves

If we are in a situation where Remark applies locally (so e.g. when G = GL,), we can replace
Assumptions 1. and 2. by

L. Dg) (p) is globally unobstructed of local dimension mg = (h!(F,, g4™)) (")), g.

On the other hand, assume that Dxxg(ﬁ) is unobstructed. Then the sequence 1} implies that
(der )

I112%(g{@*)) vanishes. We see that the vanishing of the local dimensions h?(F,,g is equivalent
to the vanishing of HO(F,g(4e):V)* or alternatively, to the vanishing of HO(F,g(9e*)(1)). If we suppose

this vanishing (which was proved for almost all ¢ given that G = GL,, see Section , the condi-

tion that Dgxg(ﬁ) is unobstructed therefore implies that D/(\X?g (p) is globally unobstructed of dimension

my and that each D/(\X)”(ﬁz,) (for v € S) is unobstructed (and, hence, locally smooth of dimension
h'(Fy,gle®) (1)),

3.1 A general framework for unobstructedness

We will retain the notations and conventions from the previous sections. In particular, we fix a repre-
sentation

7 Galps — G(k),

together with a lift x : Galpg — G®®(A) of the determinant, where F is a totally real number field,
S C PI¥ is a finite set of finite places and k is a finite field of characteristic ¢ := char(k). We suppose
that ¢ ¢ S U{2}. At this point, we will consider only liftings and deformations with values in Cy for
A =W = W(k), so we will suppress the specification of A in the index of the deformation functors
and rings. As we will not vary the residual representation p, we will also suppress “(p)”
of the deformation rings.

in the notion

Let us fix a Borel subgroup B C G and denote by g®* (resp. b9T) the Lie algebra of the derived
subgroup G of G (resp. the Lie algebra of B N G9%). Consider the following assumptions:

1. (Representability): The Sy-framed deformation functor

D 7X —"
DsflZ (»)

is representable (by an object RSZS"X).

8We remark that the vanishing of the “Tate-Shafarevich group” I11%(g{®*)) implies that all obstructions for D/(\X>(ﬁu)
come from local obstructions, see [B6c07, Theorem 3.1].
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. (sm/k): For each v € Qy, there exists a relatively representable subfunctor

DIX(5,) — DIX(7,)

7X7sm

such that the representing object Ry’
by d5"*™).

is formally smooth (and we denote the relative dimension

. (crys): For each v € Qy, there exists a subfunctor
DD7X7CIYS (ﬁy) s DD,X,sm(py)

which is relatively representable over DYX(5,) and such that the representing object REOSTYS g
formally smooth over W of relative dimension

dPE7® = dim(g®*F) + (dim (%) — dim(6%7)) [F, : Q).

In other words,

RE,x,cryS [ W[[;ljb . ,ﬂj‘dD,crySH-
17

. (min): For each v € S, there exists a relatively representable subfunctor

DX (p,) = D=X(p, )

RyD,x,min

such that the representing ring is formally smooth over W of relative dimension

dE’min — dim(gder).

. (00): For each v € 4, the local deformation ring R;"X is formally smooth of relative dimension
dY = dim(b%*%). (As £ > 2 > # Galp,, the strict -cohomological dimension scd,(Galg,) is zero,
i.e. R;™X is automatically unobstructed.)

. (Presentability): Consider the ring

REX™M2 it e S

R Q) R, with By = ROV ifye 0y (32)
vesSy RE’X ifrve Q.

Then there exists a presentation

Os,»xmin,sm

RSz >~ Rl°°[[$1, ceey l'a“/(f17,__7fb)
for suitable a,b € N with a — b = (#Sy — 1). dim(g2®).
. (R=T): The ring R?jg’x’min’crys is formally smooth of relative dimension

ro = dim(g).#S; — dim(g®®).
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Remark 3.10. Assume G = GL,,. For crys we will mainly consider the crystalline deformation condition
which will be introduced in Section and for sm the unconditioned deformation condition. However,
the presented general framework is also applicable to sm = ord, with ord parametrizing ordinary
deformations (cf. [Hid89al, [Hid89bl ICM 14l |Ger10al [Til96]). For n = 2, this corresponds to twisted Hida
families and there exists a criterion for smoothness of ord, cf. [Snoll]. (Remark that what we call
ordinary is called nearly ordinary by Tilouine [Til96].) For n > 2 there exists no such criterionﬂ It
seems worthwhile to investigate whether a sufficient condition for the smoothness of ord can be derived
from properties of the mod-£ reduction of the Hecke polynomial in the fixed weight case.

Remark 3.11 (Taylor-Wiles condition). From condition (c0), scdg(Galg,) = 0 for £ > 2 and Proposition
it follows that, for v € Q, we have

dim(b%%) = dimw (R}) = h'(Galp,, g")’ + dim(g?**) — h°(Galp,, g*")

= dim(g®") — 1°(Galp,, g%").

This implies
Y h(Galg,, %) = [F : Q].(dim(g%") — dim(6%)). (3.3)

VEQ o

Our main result is now as follows:

Theorem 3.12. 1. If assumptions 1-7 are met, then RS[SZ’X’min’Sm is formally smooth (i.e. isomor-

phic to a ring of power series over W ). If the unframed deformation functor Dfé;min’sm 1S repre-

sentable, then the representing object Ré;min’sm is also formally smooth.

2. For v € Qp, write dosm — dim(g*)([F, : Q¢ + 1) — &, for suitable numbers 6, € Ny. Then
RSZSZ7X7m1n,Sm 1s formally smooth of dimension

#S,. dim(g) — dim(g®®) + [F : Q). dim(6%%) — > 4.
vES))

If the unframed deformation functor Dg;min’sm is representable, then R’é;min’sm is formally smooth
of dimension [F : Q]. dim(b%%) — 3 o 0.

Remark 3.13. As the deformation conditions in (min) and (sm/k) were chosen as relatively repre-
sentable, Dgémm’sm is representable if Dg@ is representable. For example, this is the case if p is Schur
(i.e. fulfills conditions (SmCtr) and (Centr) of Section [2.3).

Remark 3.14. If DJ"X is unobstructed for v € Qy, the condition in part 2. (with 6, = 0) amounts to sm
being the unrestricted deformation condition.

Proof of Theorem[3.14 First remark that the second claim of part 1. follows directly from Lemma
2.15, as we know that RSZSZ’X’mm’sm is a power series ring over R§™ " by Proposition [2.621 The same

reasoning (together with the formula dimg = dim g% + dim g®) also shows the second claim of part
2.

“But cf. [Gerl0al.
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For the first sentences (of 1. and 2.), we use the shorthand notation d}, = 3 . dy, if T' denotes a subset

of Plp. Moreover we write d5, for dgoo and dj for d, . Consider the diagram

0 I Rloc,sm f Rloc,crys 0

T

I:Isz,x,min,sm Dsl,x,min,crys
0——=J—> Ry —— Ry, —0,

where

e the right square is a pushout diagram;
o R%CTVS g defined as in (3.2)) with crys in place of sm;

e f and g are the canonical projections;

T = ®ues, Ty is induced by the natural transformations

I:Ise,x,min,sm ~

DSZ — D,

where D, is the deformation functor corresponding to (i.e. being represented by) the ring R, in

(-2

Analogously, 7" = ®y,eg, 7, is induced by the natural transformations

DSZ,X,min,crys ~
D, — D,

where D!, = D, for v coprime to £ and D!, being the crystalline deformation functor for v|/.

Using the assumptions, we can rewrite this as

f
0 I I E—— W[[xl, . ,xdélj,sm+dgo+dgﬁmin]] —— W[[$1, e ,xdzﬂ,crys_’_dgo_"_dgl,min” —_—> O

” ) i

0——>J ——=W(z1,- s 2mll/(fi, - fnr) Wiz, ... @) ——0

g

with v = (#S; — 1). dim(g%®) +d7*™ + d5, + d§™". Using Lemma [2.10] we are good as soon as we can
show that gen(J) < m— (m —~) —r9 =y —r9. By Proposition and Proposition we can replace
this inequality by

AP — d" ™ <y — g = (#8¢ — 1). dim(g®) + d*" + dT, + dg™" — dim(g).#S, + dim(g*°)

= #S[(dlm(gab) — dlm(g)) —+ dE,sm + dEo + d?,min‘

Using assumptions (min), (oo) and the identity dim(g®*) + dim(g®®) = dim(g), this amounts to the
inequality
dy Y > dim(g%7).(#Q + [F : Q]) — dim (%) [F : Q).
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Now assumption (crys) amounts precisely to the fact that this inequality is fulfilled (with equality),
which completes part 1.

Concerning (the remaining first sentence of) part 2., we use Remark which tells us that the relative

DSZ X,min,sm

dimension of Rg is given by

Y= (#SZ - 1) dlm( ) d\:‘ ,SI + d[l + dD ;min

= #8,. dim(g?®) — dim(g®®) + dim(g®*)([F : Q] + #Q¢) — Z 6, + [F : Q). dim(b%T) + #S. dim(g?*)
veQly
= #8;. dim(g) + [F : Q]. dim(6%) — dim(g*®) — ) _ 4. O
12597)

Corollary 3.15. Assume that { > 0, so that g = g?°* @ g®®. Assume that the requirements of Theorem
[3.14 2 are met (with 6, = 0) for the trivial choice in (min) and (sm/k), i.e. DZX="(p,) = DPX(p,)

(DS[) X,min,sm

(for v € Q) and DPX™2(p,)) = DUX(p,) (for v € S). Then the deformation functor D =

Dgsé) X is unobstructed.

Proof. Recall (e.g. from [NSWO08| (8.7.4)]) the global Euler-Poincaré formula

x(Galps,g%") = h'(Galpg, g°) — h°(Galp,s, %) — h*(Galp,s, g%%)

= [F : Q. dim(g%) — > h°(Galp,, g%").
vEQoo

Using the Taylor-Wiles condition (3.3)), this implies
h'(Galp,s, g°) — h°(Galg,s, g°) — h*(Galg,s, 0°%) = [F : Q]. dim(b%).

By Theorem W.Q we know that Dy = W([z1,...,z,]] with == [ : Q]. dim(b%*). But this implies
hY(Grs,g%%) = r. As both h%(Grs, g%%) and h?(Grs, g?%) are non-negative, they must vanish and
the claim follows. (This argument is easily seen to be adaptable to the framed situation, so the case
where Dg‘[ is not representable is handled in the same way.) O

Corollary 3.16. Let £ := £X = (L3), be the system of local conditions corresponding to the deformation
functor DX™nsn(5) (see Definition [2.69). Assume (in addition to the requirements of Theorem .2
with §, = 0) the following:

o (>0, so that g = g%°* @ g2°;
o H%(Galp, g%™V) = 0 (this holds automatically for G = GL,, and £ > 0, see Lemma ;
e Forve S, dim(L,) = h°(Galg,, g3*).

Then (DS[)Xmln sm( )

-) Moreover

has vanishing dual Selmer group (i.e. H L (Galpg,g%*Y) = 0, ¢f. Definition

hO(GalF,S, gder) =0.
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Let us first mention that the last condition (dim(L,) = h%(Galg,, g%%)) holds automatically for v ¢ S,
if £ > 0 (so that g = g%* @ g®). We also remind the reader that the deformation condition sm is
assumed to fulfill do*" = dim(g®®%)([F, : Q] + 1) for v € Q, as demanded by Theorem 2 with
o, =0.

Proof. Using (a sm-conditioned version of) the exact sequence (2.12)), we see for v € Qy:
dim(L,) = dimtprss(z,) 22 B0(Galg,, g%F) + [F, : Q). dim(g®").

Recall the Wiles-Formula (e.g. from [NSWO08| Theorem 8.7.9)):
dim H/(Galp,s, g%") — dim Hy, (Galp,s, g%"")

= 1%(Galps, g%) — h°(Galps, g%Y) + Y (dim(L,) — h°(Galp,, g°))
VES)

By [B6c07, Section 5], we know that H}(Galgg,g%%) can be identified with the tangent space of
Dgémin’sm. Thus, it follows from Theorem .2 that dim H}(Galpg,g%**) = [F : Q].dim(b%%). On
the other hand, hO(GalF,g, g™V was assumed to vanish. Concerning the places in 4, we know that
L, C H(Galgg, g%*) = 0. Thus, using the Taylor-Wiles formula , the sum on the right evaluates
to

> (dim(Ly) — h%(Galg,, %)) = [F : Q]. dim(g®) — [F : Q].(dim(g*") — dim(b6%7)).
vES)

Therefore we get
_ dim H}:J. (GaIES’gder,\/) — hO(Gales,gder).

As neither quantity can be negative, they must both vanish and the result follows. O

Corollary 3.17. Retain the assumptions of Corollary . Then IH%Z (g%¢*) = 0. In particular, the

unrestricted deformation functor Dé?se)’x(ﬁ) 1s globally unobstructed precisely if the local deformation

functors D(D)ﬁx(ﬁy) (for v € Sy) are relatively smooth. (This is automatic for Qs so it has only to be
checked for S'1U€Qy.)

Proof. This follows from the exact sequence
dim H, (Galp,s, g%"")* — 1113, (g°) — 0

(see e.g. equation (9) on p. 10 of [B6c07]). O

3.2 Potential unobstructedness

In this short subsection, we will investigate how unobstructedness of a deformation functor for p can
be deduced from unobstructedness of the restricted functor to the base change of p to a finite extension
F’ of F. Let us first start with the easy case of unconditioned deformations:

Lemma 3.18. Let
p:Galps — G(k)

be a global Galois representation as considered previously and let F' be a finite extension of F such that
[F': F] is coprime to {.
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(Bg)ix
1. Assume that DSQ % (p| Galpr g) is unobstructed, where S’ denotes the set of places of F' lying

over S. Then Dgsé)’x(ﬁ) is unobstructed.

2. Let v be a place of F and assume that there exists a place v' of F' which lies above v such
that the local deformation functor D(®)Xv (g, | Galpr ) is unobstructed. Then also D®)xv () is
unobstructed. Y

Proof. For the first part, we have to show that the vanishing of H?(Galp, sy g%°%) implies the vanishing

of H?(Galpg,,g%"). This is seen using [NSW08|, Corollary (1.5.7)] and our assumption that
(Galpr g @ Galps,) = [F': F)
is invertible in k, therefore the restriction map
H?(Galp,s,, 0%") = H*(Galp g7, g°)

is injective and the claim follows.

For the second part, we can argue analogously by considering the local restriction map
HZ(Fy?gder) N H2(F;/7gder)
and using that [F), : F}] is a divisor of [F” : F], hence is also invertible in k. O

We continue to denote by F” a finite extension of F'. For any Gp-module M and any pair of primes
v,V with v € Plgp, v/ € Pl such that v/ divides v, the diagram

HY(F,M) —— H'(F,, M)

| |

HYF',M)——= H\(F'

v

M)

is commutative, where all maps are the respective restriction maps. If now .S is some finite set of primes
of F, the diagram

HY(F, M) —— P, s HY(F,,M)

| |

Hl(F/7M> H@U’GS’ HI(F/

v

M)
is commutative as well.

Definition 3.19 (Dual-pre system). Let £ = (L) cp1,,) be a system of local conditions for F’
(i.e. L,/ is a subgroup of H(F,, g%%), cf. Definition . We say that a system £ = (Ly){,epi,y of
conditions for F is dual-pre-L’ if res (L) C L’ for all pairs v,v/ with v € Plp,v/ € Plp/, such that
V' divides v, where

res,f, :Hl(Fu’gder,\/) N Hl(Fél’gder,\/)

is the usual restriction map.

Remark 3.20. We now give two criteria for Definition
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1. Let
res, Hl(F,,,gder) — HI(FL,,gdeI)

denote the restriction map and let £ be a system of conditions of F. If res,(L,) contains L/,
for all pairs v,/ with v € Plg,v/ € Plg/, such that v/ divides v, then £ is dual-pre-£’. This can
be seen by using the fact that Tate duality is given by the cup product: We have to check that
res; (1) Ul' = 0 for any | € L;- and any I’ € L!,. By our assumption, we can write I’ = res, (1) for
some [ € L,. But then the claim follows from the formula

(resx) U (resy) = res(z U y).
2. Let
cor, : HY(F!,, g%%) — H'(F,, g%%)

denote the corestriction map and let £ be a system of conditions of F. If L, contains cor,/(L},)
for all pairs v, with v € Plg, v’ € Plg/, such that ¢/ divides v, then £ is dual-pre-£’. As above,
we argue with the cup product and check the equivalent condition resj(l) Ul' =0 for any | € L;:
and any I’ € L!,. As the corestriction map on the H?-level

cor, : H*(F!, k(1)) — H*(F,, k(1))
is an isomorphism, this is equivalent to

cory (resh (1) Ul') =1Ucor, (') =0
for any | € L and any I’ € L!,. The claim follows.

For the next theorem, we again assume ¢ > 0.

Lemma 3.21. Let
p: GalF,S — G(k‘)

be a global residual representation together with a finite extension F' of F of degree coprime to (.

(Og7)sx
Furthermore, let min, crys, sm be suitable deformation conditions for the functor D, % (p| Galpr gr)
14

(DS/)7x,inin7sm

as demanded by the framework of Theorem|3.19 and Corollary|3.16, such that DSQ ¢ (p| Galpr 1)

has vanishing dual Selmer group. Let L be a dual-pre-(x,min,sm) system for F (with corresponding

)D —" . .
deformation condition Dr), then Dgs"*) “(p) has vanishing dual Selmer group.

Proof. Analogous to the proof of Lemma because [F' : F] is invertible in k, the map
Hl (GaIESZ R gder,(V)) — Hl(Ga1F17sé, gder,(\/))
is injective. We consider the following diagram

HEJ- (GalF,Sg) gder,\/)(—> Hl(Gavaswgder,\/) - @VESg Hl(Fl,, gder,\/)/Ll%

g | |

L (GalF’,Séu gder,\/)(_> Hl(Ga’lF’,Sé7 gder,V) - @1/652 H' (F;/ ) gder,\/)/L(min)J_

[Z88]

1
Hﬁ(min)

where £(min) = (L(min),/),s is the local system of conditions associated to the deformation condition
X,min, sm. The vertical map on the right is defined because £ is dual-pre-L(min), and this implies the
well-definedness of p. A simple diagram chase implies injectivity of ¢, from which the claim follows. [
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3.3 Compatible systems of Galois representations

In the sequel, we will apply the framework of Theorem not for a fixed residue field k£, but we
will rather consider systems of Galois representations valued in various residue fields of characteristic
running through all rational primes £. For this, let us first recall the relevant notions from p-adic Hodge
theory, where we follow [Guelll Section 0.3] and [Béc13bl Section 5.2]:

Definition 3.22. Let L, K be finite extensions of Q, (with maximal unramified subfield Ly of L and

where K is L-big enough) and let
p: Galp — GL,(K)

be a continuous representation. Recall the p-adic period rings Byr, Bar and Berys of Fontaine [Fon94].
We say that p is

e Hodge-Tate, if (p ®q, Bur) L is free over L ®g, K of rank dim p;
e de Rham, if (p ®q, Bar) G is free over L ®q, K of rank dim p;

e crystalline, if (p ®q, Bcrys)Galb is free over Lo ®q, K of rank dim p.

We remark that there is a chain of implications
crystalline = de Rham = Hodge-Tate.

If p is Hodge-Tate, it follows that also (p ®1, Byr)®¥” is free over L ®q, K of rank dimp for any
embedding 7 : L — K. This space inherits a grading from Byr, and we define the Hodge-Tate weights
of p as the multiset HT-(p) consisting of those m € Z for which

gr " (p ®p,r Bar)“M" # 0.

The multiplicity of such an m is then taken as dim gr="(p ®r,, Bar)“:.

With this convention, the p-adic cyclotomic character €, has Hodge-Tate weight —1.

Recall from [Tat79| the notions of the Weil group Wr of F, of Weil-Deligne representations and their
link to Galois representations.

Definition 3.23 (Compatible system of Galois representations for G = GL,,, [BLGGT14], [B6c13b]).
A weakly (E-rational) compatible system (with ramification set S and defect set T') is a tuple

R = (F,E,ST,(pa)rer: (Qu)veriy —s, (HT ) rep)
with A := Plg —T, where
e I E are number fields;

e S is a finite subset of Plp and T is a subset of Plg;

e cach
P - GalF — GLn(E)\>

is a continuous, semisimple representation;
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e cach Q) € E[X] is a monic polynomial of degree n;

e [ denotes the set of embeddings F' — FE and each HT is a multiset of n integers.
We impose the following list of compatibilities:

e For A € A and v € Plp —(S U Qyy)), the representation py is unramified at v. Moreover, the
characteristic polynomial of py(Frob,) equals @, for all v ¢ S U Qy\y;

e For A € Plg and v € Qyy), px is de Rham; if and v ¢ S, then p) is even crystalline;

e The set of Hodge-Tate weights HT,,o,(py) coincides with HT, for any place A € A and any
embedding 7 € I.

Additionally, we say that R is

e regular, if every element of H, (for any 7) has multiplicity one;

o strict, if, for any v € Plp, there exists a Weil-Deligne representation WD,, of the Weil group
Wg, of F, over E such that the following holds: For any choice of places v € Plp, A € Plg
with £(v) # £(\), the Frobenius-semi-simplification of the Weil-Deligne representation attached
to pa| Galg, is isomorphic to WD,;

e pure of weight w € R: We define pureness only for strictly compatible systems, and here we
additionally suppose

— for any v ¢ S, any root « of the characteristic polynomial of py| Galg, (which is independent
of the place A\ coprime to v) and any embedding ¢ : £ — C, we have

() = g¢y; (3.4)
— for any 7 : F — F and any complex conjugation ¢ € Galg, we have
HTTC = {'LU — h’h € HTT}

Definition 3.24. Let ¢ : GL; — (GL1)" be a cocharacter and let (eq,...,e,) be the standard basis of
E". Then we define the multiset weights(1)) consisting of all integers j which fulfill

P(z)e; = 2le; (3.5)
for all 2 € E and for a suitable i € {1,...,n}. The multiplicity of j is

#{i" € {1,...,n}|(B3) holds for i ='}.

We will also use the notation weights(v) for a GL,,-valued cocharacter. Any such cocharacter factorizes
as in the following diagram where one chooses a maximal split torus that contains the image of ¢:

¥

~N 7

(GLy)™

GL, GL,

Now we want to stretch the notion of a compatible system to cover families of Galois representations
with values in a more general (connected and reductive) group G:
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Definition 3.25 (Compatible system of Galois representations, cf. [BGI11l Patl4]). A weakly (E-
rational) compatible system (with ramification set S and defect set T') is a tuple

R = (Fv E, S? T, (p)\))\EAa ([QOV])VEPIF -S> (/‘I’T)TGI) (36>

with A := Plg —T and I := {7 € Homgeqs(F, F) | T injective }, where

F, E are number fields;
S is a finite subset of Plg and T is a subset of Plg;

each
px : Galp — G(E,\)

is a continuous, semisimple representation;
each [p,] is a semisimple G-conjugacy class in G(E);

each u, : GL; /E — G/E is a Hodge-Tate cocharacter.

We impose the following list of compatibilities:

For A € A and v € Plp —(S U Qyy)), the representation py is unramified at v. Moreover, the
semi-simplification py(Frob,)® is contained in [p,] for all v & S U Qyy);

For A € A,v € Q) and any faithful representation n : G — GL,, of algebraic groups, ng, o p, is
de Rham; if v ¢ S, then ng, o py is even crystalline;

For any choice of

a place A € A,
— a place v € Qyy),

a faithful representation n : G — GL,, of algebraic groups,
— an embedding 7: F — E

we have
HT(ng, o pr) = weights(n o 7).

In the sequel, we will often use the abbreviatory notation

R = (pr)ren

and suppress the remaining data of the compatible system if there is no risk of confusion.
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4 Local deformation conditions

In the course of this section, we will consider certain deformation conditions in the local case for
G = GL,. To this end, let us denote by

p: Galg — GLy (k)

a residual representation, where K is a finite extension of Q,, (for some prime number p) and k is a finite
field of characteristic £. In our presentation of the various deformation conditions we will distinguish
between the cases £ = p and £ # p. Before we start, we will need to generalize a key computation of
Weston [Wes04], Proposition 4.4] using Fontaine-Laffaille theory.

4.1 Fontaine-Laffaille theory

In this subsection, we will recall the main results of Fontaine-Laffaille theory [FL82] as normalized in
[CHTOS, Section 2.4.1] and draw conclusions about the vanishing of a certain H2-group. Our main
reference for this material is [BLGGT14), Section 1.4].

Let K, k,0,p be as before and assume ¢ = p. Let moreover L be a finite extension of Q; with ring
of integers Or, such that the residue field of L is isomorphic to k. We assume furthermore that the
extension K|Qy is unramified. The ring of integers of K is denoted by Of-.

As in [CHTOS8|, Section 2.4.1], we also make the following bigness assumption (which will be revoked
later on):

Assumption 4.1. L contains the images of all embeddings K < Qy, i.e. L D K since K is unramified
over Q.

We denote by o : O — Of the arithmetic Frobenius morphism.

Definition 4.2. We define the category MF, o, as follows: An object M = (M, (Fil' M)iez, (par.)icz)
of MF, o, consists of

e an Ok ®z, Or-module M of finite type;

e A decreasing filtration (Fili M)icz, of M by Ok ®z, Or-submodules which are Og-direct sum-
mands and fulfill Fil® M = M and Fil*~! M = 0;

o A family of o ® 1-linear maps @y, : Fil* M — M, such that

Fil‘+! pmc Fil' M
W]W,i+ll J{‘PMJ
M M

multiplication with £

commutes for all ¢ € Z and such that

Z oni(Fill M) = M.
i€Z
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A morphism ‘
f: M — N = (N, (Fil' N)iez, (¢n,)icz)

is an O ®z, Or-linear map M — N satisfying f(Fil' M) C Fil' N and making

. i1t .
Fit a7 — M gy (4.1)
‘PILI,Z"L l‘PN,i
M : N

commutative.

We remark that M can be understood as a strongly admissible lattice in the filtered p-module M ®o, L,
cf. [Bécl3al Section 4.6.3].

We also consider the following categories:
° M‘ggoL: The full subcategory of MFy, o, consisting of projective objects;
° m(()?K,OL: The full subcategory of MFy, o, consisting of objects of finite length;

o MFy, The full subcategory of M%K@L consisting of objects annihilated by the maximal ideal
w L.O L of O L

° RepOL (Galg): The category of Or-modules of finite type together with a continuous Galg-action;
° Rep%L(GalK): The full subcategory of Repg, (Galy) consisting of objects of finite length;

e Rep; (Galg): The full subcategory of Repp, (Gal) consisting of finite k-modules together with
a continuous Galg-action;

Let Ex denote the set of all embeddings K < Q,. For 7 € Eg and V € @OL(GalK) being Hodge-

Tate we will denote by HT- (V) the multiset of Hodge-Tate numbers with respect to 7, counted with
multiplicity. For M € MF, _, we denote by FL,(M) the multiset of integers i such that

gr'(M7) = Fil' M ®0y,,0,,r01 Or/ Fil'™ M ©@0e,, 0,701 OL
does not vanish, where i is counted with multiplicity dimy gr!(M7).
Theorem 4.3 (Fontaine-Laffaille).
1. There is an exact, fully faithful, covariant and Or-linear functor
6k :MFo, 0, — @OL(GaIK).

The essential image of G is closed under taking subobjects and quotients. Moreover, the functor
G maps MEG o, to Rep%L(GalK).

2. Let
p: Galg — GLL(V)

be a crystalline representation with Hodge-Tate weights in the range [0,¢ — 2]. Then any Galg-
stable Op-lattice A C V is in the image of G, and so is its reduction A/wp . A.
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3. Let M€ MFo,, o, , then
lengthoL_mG.\/_[) = [K : Q[] ]engthoL_m(GK(M))

4. Gx restricts to o functor
MFo,  — RGPZ(GalK)-

For M € m‘ggoL we have
HT;(6xk (M) ®z, Q) = FL,(M ®0, k)

for all T € Ek.

A representation p as in part 2. will be called crystalline in the Fontaine- Laffaille range or FL-crystalline.

Proof. See [FL82|, [CHTO08| Section 2.4.1] or [BLGGT14] Section 1.4]. O

Remark 4.4. The functor Gg is compatible with the tensor product in the following sense [DEG04, p.
670]: If M, NN are as in Definition , we can define a filtered module M ®o, N by taking the m-th
filtration step as

Fil™(M @0, N) = im( @D Fil' M @0, FIV N — M @0, N).
i+j=m
Then, it M®p, N € MFy, o, , we have
GK(M Ko, N) = GK(M) Ko, GK(N)

Remark that the requirement M ®o, N € MFy, » boils down to the following condition on the
vanishing of the filtration steps: Fil™(M ®p, N) = 0 holds for all m > ¢ — 1. Thus, by parts 2. and
4. of Theorem we can state this compatibility in the following, equivalent form: Assume that
V,W € @%L(Gah{) are FL-crystalline and assume that V ®o, W has Hodge-Tate weights in the

Fontaine-Laffaille range [0,¢ — 2]. Then V ®p, W is FL-crystalline. In other words, the property of
being FL-crystalline is stable with respect to taking tensor products, as long as the Hodge-Tate weights
stay in the Fontaine-Laffaille range.

Proposition 4.5. Morphisms in ME, . are strict with filtrations: Let M,N € MFy . and lel
fe HommOK’k(M,N), then | |

fFiI'M) = f(M)NFil' N
for alli € Z.

Proof. In general, a morphism f in an additive category with filtered objects is strict if and only if the
canonical morphism

coim(f) — im(f)
is an isomorphism [CZGT14] Section 3.2.1.3|. Therefore the claim follows from the abelianness of

MFo, k, cf. e.g. [AIu09, Proof of Theorem 1.12 on p. 573]. (Abelianness follows from [FL82, 1.10].
Alternatively we can use the embedding

full
o
MFop, » € MFo, 0,

and refer to [GL14] Section 2.2| for the abelianness of M%K,OL and conclude that also MF, , must
be abelian using [Rot79, Proposition 5.92|.) O
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For M € MOKJC and 7 € Ex, we get a decreasing filtration
.DM] DM/ D... (teZ) (4.2)

of M7, where ‘
M = Fil' M ®0K®ZZ0L77®1 Opand M™ =M ®0K®ZeOL:T®1 Or,

arise from the homomorphism 7 ® 1 : O ®z, Or, — O, (which uses K C L). As explained before, the
jumps in this filtration correspond to the entries of the multiset FL,(M). Moreover (cf. [CHT08, proof
of Corollary 2.4.3|),

M= M and M; = P M

’TEEK TEEK

and morphisms respect this decomposition: Let f: M — N, then

f=€P f with 7= f|[M":M" = N".

T€EEK
Then each f7 respects the filtration and it follows from Proposition that it does so strictly:
JT(M) = fT(M7) N N (4.3)
Thus we get:
Proposition 4.6. Let M,N € MF, ;. such that for all T € Ex we have
FL,(M)NFL,(N) = 0. (4.4)
Then HomMOK’k(M, N)=0.
Proof. Let f € HommoKyk (M,N). By , we are clearly done if we can show
JTMT) = [T (M) (4.5)
for all i € Z, T € Ei: If this is the case, then
JTMT) = fT(Mg) = fT(M{_,) = f7(0) =0,

hence f = ®;cg, 0=0.

For 4,7 with M] = M], |, equation (4.5 holds trivially. For i, 7 with M] 2 M7, our assumption (4.4)
on the filtration jumps implies N] = NJ, ;. Thus we can use (4.3)) to conclude

STMT) = fT(MT)ONT = fT(MT) NNy = 1M ). 0

Corollary 4.7. Let K and L be finite field extensions of Qp and assume that K is unramified (but we
do not impose Assumption . Let

p: Galg — GL, (L)

be a crystalline representation and assume that

1. There exists an o € Z such that all Hodge- Tate weights of p lie in the range [, + € — 3];
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2. The Hodge-Tate weights of p are non-consecutive: if 7 € Ex and two numbers a,b occur in
HT.(p), then either a =0 or |a — b| > 2.

Then
H*(K,adp) = 0.

Proof. Because the assertion is invariant under any change of the finite coefficient field k ~» £/, we may
apply coefficient change to L (by replacing p by p ®1 L') and then assume that L satisfies Assumption
and the “sufficiently ramified”-hypothesis of Lemma below.

Making use of Lemma [2.71] we are good if we can show that

HomGalK (ﬁ? ﬁ( 1))

vanishes. Because
Homgal, (7, (1)) = Homgal, (p(1 — @), 5(2 — «))

we can assume without loss of generality that o = 1.

Let A be a Galg-stable Op-lattice in p and recall that p is defined as the semi-simplification of the
reduction A/wp.A of A. By Lemma [4.10] (postponed to the end of this section), we can choose A in a
way such that A/wy.A is already semisimple. By our first assumption that all weights of p lie in the
range [1,¢ — 2] it thus follows from Theorem [4.3] parts 1. and 2., that p is of the form Gx (M) for a
suitable M € MF, ;. By the same argument, p(1) = Gk (N) for a suitable N € MF¢,,_ .

Using Theorem part 4, and the fact that twisting by the cyclotomic character shifts the Hodge-Tate
numbers by —1, we see that our second condition on the weights of p translates precisely to condition
([d.4) of Proposition [4.6] Thus, using fully faithfulness of G, we get

0= HOIIlmOKJC (M, N) = HomGalK (ﬁ, ﬁ(l)) ]

Example 4.8. Let f = ), a;q" be a newform of some weight k& > 2 and level N as considered in
[Wes04, Example 4.3]. Let E|Q be a finite extension which contains all Hecke eigenvalues of f and fix
a place A of E. Assume moreover that ¢(\) does not divide N and ¢(\) > k + 1. Then the associated
representation

PFX - Gal@e — GLQ(E)\)

is crystalline with Hodge-Tate weights 0,k — 1 and Corollary yields an alternative proof of [Wes04l,
Proposition 4.4]:

H?*(Qq,ad py,,) = 0.

Remark 4.9. Let A € Co, and M € @OA(GalK). Via the canonical map Op — A we can understand
M as an Op-module. In this way, we can talk about M being “FL-crystalline” or “in the image of the
functor Gx” even if A is not the ring of integers of a finite extension of Q. On the other hand, we can
consider a subcategory MFy, 4 C MEy, o, consisting of O ®z, A-modules of finite type together
with additional data analogous to Definition The embedding of categories is again via the canon-
ical map Op, — A. The essential image of the restriction of Gk to MF, 4 consists then precisely of
the FL-crystalline objects of Rep’ (Galgk). An analogue of Theorem holds for this restricted functor.

59



4 LOCAL DEFORMATION CONDITIONS

On the existence of a suitable lattice TLet (L,O,k) denote an ¢-modular system, ie. O is a
discrete valuation ring with uniformizing element w, maximal ideal m = (w), field of fractions L and
residue field k = O/m of characteristic ¢. Let

p:T = GLn(L)

be a representation of a compact group I'. Tt is well-known (and we already used this several times)
that there exists a I-invariant O-lattice A C L™ and that the semi-simplification of the reduction

I A/w A=E"

does not depend on the choice of A (as a corollary of the Brauer-Nesbitt Theorem). In our notation,
p = p3°. If m; denotes the length of the I-module p, we say that L is sufficiently ramified for p if there
exists a subfield L* C L, such that

La.l) there exists a representation
p*: T — GL, (L"),

such that L2*|L o p* = p;

La.2) the extension L|L* is totally ramified of degree mj (so we can fix a uniformizer @w* of Op« for
which we can assume w* = @w"™?);

La.3) mp = mz.

Lemma 4.10. Assume that L is sufficiently ramified for p, then we can chose a lattice A such that py

18 semisimple.

This fact is essentially well known (cf. the closely related result [Fei82) Lemma 18.2], and the usage at
the end of Section 2.6 in [Bocl3al). However, in lack of a citeable reference, we include a proof which is
based on [Dat05], proof of Lemma 6.11]. We also remark that condition La.3 was added to technically
simplify the proof and can certainly be weakened (but this would offer no additional benefits for our
purposes).

Proof. Let us first write
P =&,

where each @; is a d;-dimensional irreducible representation of I'. Let A* C (K*)™ be a I'-stable Op«-
lattice. By the Brauer-Nesbitt theorem (and La.3), we can assume (up to rearranging the components
o) that there is a basis B* = (e7,...,e}) of A*, such that p* factors through the standard parahoric
subgroup associated to the partition (di,...,dm,) of n (see e.g. [Guil3, Section 2.2]). We make this
explicit: For 0 < j < mj denote (j) = Zgzl d; (with (0) := 0). Then our choice of B* is such that for
i with (r — 1) <i < (r) we have

(r) n
p(e) € POLe; & @ O for all y € T.
j=1 j=(r)+1

Now consider the Op-lattice A C L™ spanned by

1 1 1

B:(el,...,en) = (W.ei(,..., _1.e<1>,




4 LOCAL DEFORMATION CONDITIONS

It is a straight-forward computation (using crucially property La.2) to check the following: For i with
(r—1) <i < (r) we have

(r)
p(v)(ei) € @ Or.ej & @ Op.w.e; forall y €T
J=(r=1)+1 FE{r=1)+1,...(r)}

This implies the claim. O

Observe that for given p and L, the preconditions of this lemma can always be achieved after a totally
ramified, finite coefficient base change, i.e. after (if necessary, repeatedly until La.3 is fulfilled) adjoining
a suitable root of a uniformizer to L.

4.2 (= p: Unconditioned deformations

Let A be the ring of integers of a finite extension of Quot(W (k)) such that ky = k.

Lemma 4.11. Assume that p : Galg — GLy(L) fulfills the conditions of Corollary[{.7 Then
RY(p) = Alfz1, - .., 2]

with m = n?.([K : Qg + 1).

Proof. As H?(K,ad p) vanishes (Corollary, this follows from Propositionm (part 2) and Theorem
with
m = hY(K,adp) + dimg — dimj = h(K,ad p) + (n? — 1).

After replacing h'(K,adp) by h%(K,adp) + h?(K,adp) — x(K,adp), the claim becomes a simple
consequence of the local Euler-Poincaré formula [Bocl3al, Chapter 5.3| and condition (Centr):

m = hY(K,adp)+h?(K,adp) — x(K,adp)+ (2 —1) = 140402 [K : Q]+ (n2—1) = n?([K : Q] +1).

O

There is a variation for the fixed determinant deformation ring, which we will only formulate in the
case A =W = W (k):

Corollary 4.12. Retain aoll notation from above and fix a lift x of the determinant. Then
ROX(p) = Wiar, .., ]

with m' = n.[K : Q.

Proof. By [B6c98, Proposition 2.1], we have an isomorphism
R (p) = RZX(p)ow W [[z]].

Thus, by Lemma [4.11] we have

REX(p)[[)] = RPX(p)ow W ([=]] = Wiz, ..., zm]]. (4.6)
But this implies ROX(p) & W([z1,. .., Tm_1]] by Lemma [2.19] O
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4.3 (= p: Crystalline deformations

Consider again a representation p : Galg — GL,(L) which fulfills the conditions of Corollary
We will also make the additional regularity assumption that all occurring Hodge-Tate weights of p
have multiplicity one. We will consider the deformation problem crys of p counsisting of those lifts
p: Galg — GL,(A) of p for which p®4 A’ lies in the essential image of G for all Artinian quotients
A" of A (cf. [CHTOS], Section 2.4.1). We refer to those lifts as (FL)-crystalline lifts of p.

That crys defines a lifting condition in the sense of Definition follows from the Ramakrishna
frameworlm: We already remarked that the essential image of Gg is closed under subobjects and
quotients (Theorem . That the essential image is closed under direct sums follows immediately
from the exactness of Gg, since then Gx preserves direct sums (see [Fre64, Theorem 3.12¢)]). Thus

Proposition [2.39] and Corollary yield the following lemma:

Lemma 4.13. Let A be the ring of integers of a finite extension E of Quot(W (k)), such that kx = k.
Let A’ be the ring of integers of a finite extension of E. Denote the residue field of A’ by k' and set
P =t op. Then:

1. The functor DE’Crys(ﬁ) is representable by a quotient Rf’crys(ﬁ) of R (p).

2. The functor DE,’Crys(ﬁ’) is representable by

Ry“(pl) = A @x RY ™ (p).

Lemma 4.14. Under the above hypotheses,

R/[:\Lcrys(ﬁ) = A[[l'lv s ’xm“
with m = n? + [K : Qg]n'(n;l).
Proof. This is a part of the statement of [CHTO08, Corollary 2.4.3]. O

Let us also note the following useful compatibility with base change:

Lemma 4.15. Let K' be a finite unramified extension of K with associated inclusion map LKIK
Galgr — Galg. Setp' =po L i+ Let p be a crystalline lift of p. Then the following holds:

1. p' = pougk 1s a crystalline lift of p'.

In particular, the restriction map res : H'(K,adp) — H'(K’,adp’) maps the tangent subspace
associated to the crystalline deformation condition for p into the tangent subspace associated to
the crystalline deformation condition for p.

2. The corestriction map cor : H'(K',adp’) — H'(K,adp) maps the tangent subspace associated to
the crystalline deformation condition for p' into the tangent subspace associated to the crystalline
deformation condition for p.

10T his was already noticed in [CHTOS| (see the remark preceding Lemma 2.4.1), albeit without explanation.

62



4 LOCAL DEFORMATION CONDITIONS

Proof. The first part is a direct consequence of the following compatibility of the Fontaine-Laffaille
functor with base change: Let M € MFEy, 0, then O’ ®p, M defines an object of MOK/,OL' It
follows from the definition of the functors G, Gx and a calculation analogous to the one in Section 3.11
of [FL82] that Gx (M) and Gx/(Or’ ®o, M) are isomorphic as Or-modules and that this isomorphism
commutes with the action of Galg/. In other words,

ri (Gr(M)) 2 G (O @0, M),

where rflg, denotes the restriction to Galgr.

For the second part, we need the following assertions:

e (The induction functor respects the property of being FL-crystalline.) Let pg : Galg: — GL, (L)
be an FL-crystalline representation. Then pg is in the essential image of Gg+. Then we claim that

ind%, 5, : Galg — GLy, (k. (K)

is in the essential image of Gx. There are several ways to see this. By definition, (po®q, Bcrys)GalK !

is free over K{®q, L of rank n and has Hodge-Tate weights in the Fontaine-Laffaille range [0, ¢—2].
We see that

(inds po g, Berys) ' = (po ®q, Berys) '’
as free K} ®g, L-modules. As [K’ : K| = [K} : Ko, it follows that ind¥, pg is crystalline.
A similar observation for the Byr-filtration shows that the Hodge-Tate weights of indg, po are
again in the Fontaine-Laffaille range, thus the claim follows from Theorem and the fact
that the reduction functor and the induction functor commute with each other. Alternatively

we can explicitly describe the Fontaine-Laffaille module Mg = G;(l (indg po) in terms of M =
(M, (Fﬂl M)iGZa (SOM,Z')ZEZ) = G;(}(po): We take Mg = (M/, (Fﬂl M/)iez, (SOM’,i)iEZ) with

— M’ := M (understood as an Ok ®z, Or-module);
— Fil’ M’ := Fil' M (understood as O ®z, Or-submodules of M');
— PM'i = PMy-

For N € MF(, _ ,, we can check the Frobenius-like reciprocity

HOmmOK’OL (Mg,N) = HOmmOK“ L(M,OK/ ROk N),

O

showing that the functor M ~ M is left-adjoint to N ~ O ®0, N. Using that the functor Gg
(resp. Gg) establishes an equivalence between MF o, », and a full subcategory of @OL (Galg)
(resp. between MF , », and a full subcategory of @OL (Galg)) and the adjointness relation
between the induction- and restriction-functors on representations, the claim follows from the first
part of this lemma.

o (Explicit characterization of the corestriction map.) We use the identifications
H'(K',adp) = Ethlf[GalK/}(p/7ﬁ/) and H' (K, ad p) 2 Extyg,;, (7, 9)
and the corresponding characterization of the corestriction map as the concatenation
1 — = = 1 — . 9K — 1 — =
Extyigar,,) (7 7) — Extyga, (7 indg ') — Extyga, (7. 9), (4.7)
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where the first map is the isomorphism from the Eckman-Shapiro Lemma [Ben98| Cor. 2.8.4] and
the second map is induced from

can : indllg, 7 = k[Galg] Qk[Gal /] P — P, oRUi— ov.

Now, as explained following the proof of Corollary 2.8.4 in [Ben9§| (in the dual situation), the
Eckman-Shapiro isomorphism can be explicitly characterized by sending an extension

0—p —M-—p —0

to the extension
0 — ind%, 7 — X —75—0,

where X is the pullback as in the following diagram:

0 —ind¥,  —=indf, M ——ind&, 7 ——0 (4.8)
T Tcan’
0 —indf, 7 X 7 0

Here, the vertical map on the right is defined as
can’ : p — indf p’ = k[Galg] @p(cal, 1 P, v 1@0.

The map on the right hand of (4.7) now maps the extension X to the the pushout Y in the
following diagram:

0 — ind%, 7/ X 7 0
0 P Y D 0

We can now complete the proof: Start with an M € Exti[GalK}(ﬁ, p) which is FL-crystalline. By the

first bullet point applied to pg = p, it follows that ind%, 7’ is FL-crystalline. Moreover, we know that
the universal lifting ring of M is formally smooth over A (Lemma [4.14]), so there exists a lift

M: Galg — GLZ.dimﬁ(A)

of M. Applying the first bullet point to pg = M ®o, L, we see that indllg, M is FL-crystalline. Thus,
all objects in (except for possibly X) are FL-crystalline. But the category MEy, o, is abelian,
hence it is closed under taking finite limits and colimits. It follows that also X must be FL-crystalline.
The same argument applied to shows that Y = cor(X) is FL-crystalline. O

4.4 ( # p: Minimally ramified deformations

We continue to denote by A be the ring of integers of a finite extension of Quot(W (k)) such that kp = k,
but this time we consider an (absolutely irreducible) residual representation

p: Galg — GLy(k),
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where K is a finite extension of Q, with p # ¢ = char k. Denote by
p: Galg — GL,(A) ( with A€ Cy)

a lift of p. Let us shortly recall from [CHTO0S|, Section 2.4.4], what it means for p to be minimally
ramified: Let Pg denote the kernel of one (hence, any) surjection Iy — Zy and set Tx = Galg /Pk.
For an integer ¢ coprime to ¢, define the group

Tq = Zg X Z,

where we denote by o, a generator of the factor Z,, by ¢, a generator of the factor 7., and where the
semi-direct product is defined by cpqaquq_l = od. Then the sequence

0— Px — Galgy — Tk — 0 (4.9)
splits (so that Galg = P x Tx) and T = Tyy.
Now let 7 be an irreducible Pg-representation over k£ and set d := dim 7. Set
Gr={o€Galg|r° ~7}, T;=G,;/Pxk.

We have an isomorphism &, : T = Ty, (with ¢(7) = (#k)[Gal:Gr-Ix]) and the splitting from 1}
restricts to a splitting T; < G,. It is shown in [CHT08, Lemma 2.4.11] that 7 admits a unique lift
T : Pg — GL,(A). For M a finite A-module with a continuous action of Galg, we set

M, = Homp, (7, M)

and regard M; as a (continuous) Tr-module. Finally, let Wi (or Vg, if k is understood) denote the
set of equivalence classes of irreducible Px-representations over k.

Proposition 4.16. For A € Cy, the association

p = (pr)irew

provides a bijection between the deformations of p (as a Galg-representation) to A and the tuples of
deformations of p,. (as Tr-representations) to A.

Proof. For a proof, we refer to [CHTO08| Corollary 2.4.13]. We remark however that the representation
p can be can be reconstructed from the tuple (pr)irew, as

p= P indg"<(F®p,), (4.10)
[T]E\I/K
cf. [CHT08, Lemma 2.4.12]. O

Definition 4.17. 1. Let 7 be in W and let 7 be a lift of 7 to A € Cp. Then 7 is minimally ramified
if the natural map A ,
ker(m(¢r) —1)' @4 k — ker(7(¢;) — 1)°

(with ¢ = & (0g(r))) is an isomorphism for all i € N.
2. Let p be a lift of p to A € Cp. Then p is minimally ramified if p; is a minimally ramified lift of
p, for each 7 € .
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Remark 4.18. If p is unramified, then a lift p is minimally ramified if and only if it is unramified (see
the remark in [CHTOS8| after Definition 2.4.14).

Remark 4.19. Let A € C}, then a lift m of 7 to A is minimally ramified in the sense of Definition 1
if and only if each ker(m(¢;) — 1) is free over A and

rk im(7(¢;) — 1)" = length(A). rky im(7(¢) — 1) (4.11)

Moreover, we always have an inequality in the direction <, i.e. (4.11) can only fail via a loss of rank
upon reduction (in the non-minimally ramified case). (This all follows from [CHTO08, Lemma 2.4.15]).

For convenience, we will denote the set of all 7 € Vi with p, # 0 by Az Consider the following
assumption:

Assumption 4.20. Any 7 € Ap is absolutely irreducible.

(In Lemma we will give a simple criterion from which we can deduce Assumption in many
situations.)

Now, let A’ be the ring of integers of a finite extension of Quot(A) with residue field &” and denote the
induced embedding by ¢, , : GL,, (k) — GLy,(K’). This gives rise to a residual representation

ﬁ/ == LZ{lk Oﬁ . GalK — GLn(k/)

Similarly, if A € Cp, A" € Cp» and A < A’ is an inclusion which induces the inclusion of k into k" as
above, we get an embedding /%y, , : GL,(A) < GL,(4’). Thus, if p is an A-valued lift of 5 as above,
we can define

o= Uaacp: Galg — GL, (4"

which then is a lift of p’. Thanks to Assumption _ the sets A; and Az are in correspondence via
[7] + [7'] with 7/ = Lg}ﬁT o 7. Moreover, as is easily extractable from Section 2.4.4 of [CHTO(S], the

tuples (pr)[rjea, and (P/T/)[r/]eAﬁ/ correspond to each other via p/, = Lii,ﬂpf) o pr.

We have

Proposition 4.21. Under Assumption p 15 a minimally ramified lift of p if and only if p' is a
minimally ramified lift of 7.

Proof. By Assumption we have W, = Wk i, i.e. no difficulties arise in terms of irreducible 7
becoming reducible as we go from k to k’. We write this bijection as 7 <+ 7/, i.e. we write 7/ instead of
7 when we consider 7 € Wy j as an element of Wg ;. Moreover, for dimension reasons (cf. ), we
then also have an equality Az = Ay .

We will check the claim by checking the first part of Definition for any 7 € Ag. For this, write
X; = (pr(¢r) — 1) which we consider as an element of Mim p, dim p, (4) and X = (ol (¢) — 1) for X+
if considered as an element of Mgim p, dim p, (A"). Write X, (resp. X ) for the reduction of X, (resp. of
X/), which we consider as an element of Maim . dim p, (k) (resp. Mdim p, dim p, (K')). The claim becomes

obvious when we write down the commuting diagram of k’-vector spaces

ker(X!,) @ k' ker(Yi/)

~ ~

(ker(X1) @4 k) @p k! — ker(Yi) Qi K.
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The vertical arrows are isomorphisms by construction of p from p’. Now we use the following simple
fact: Let V, W be k-vector spaces together with a k-linear map f: V — W. Then f is an isomorphism
if and only if f @ik :V @k — W ®j k' is an isomorphism. O

We have the following consequence of Proposition

Lemma 4.22. Let p fulfill Assumption[{.20, Then the condition of being minimally ramified defines a
lifting condition, denoted min. Moreover, we have

RDmln( ) A/® RI:Imln(> (412>

Proof. 1t suffices to prove that min defines a lifting condition in the sense of Definition [2.30] as the
isomorphism is then a direct consequence of Corollary[2.35] That min defines a lifting condition on
Ca follows from [CHTO8, Corollary 2.4.18], and by Observation [2.34) this extends to a lifting condition,
say *D, on *Cp. It remains to show that *D indeed parametrized minimally ramified lifts of p to *Cy.
For this, let A’ € *Cj with residue field &’ and consider a lift p’ of p to A’ which is in the image of *D,
i.e. such that the corresponding map

 : R{(p) — A

factors through RY™"(5). We have to show that o' is a minimally ramified lift of p (i.e. of o’ = T op).

If there exists an A € Cy, an embedding ¢ : A — A’ which is a morphism of *Cj and a lift p of ¢’ to
A such that p/ = L’ZHA o p, then this is clear: The map corresponding to p,

Ppt RA( ) = A,

fits in the equation 1 o ¢, = ¢, s0 ¢, also factors through RY™"(5). Hence, by definition, p is a
minimally ramified lift of p and the claim follows from Prop051t10n M.2I] We now claim that there
always exist such an A and a lift p: First, it is sufficient to consider the case where A is Artinian, cf.
Remark . Now define A := p~1(k), where p : A’ — k’ is the projection map. As A is the pullback
of the diagram

A/
|»
k——s k'
and as *Cj is closed with respect to pullbacks (Remark , we see that A is an object of Cp. Moreover
p = p' clearly has values in A and fulfills p' = V44 © p- The claim follows. O
Lemma 4.23.
RY™(p) = A[[X1, ..., X,z]].
Proof. This is part of the statement of [CHTO08, Corollary 2.4.21]. O

We will now give a criterion for Assumption [4.20] to hold. For this, as the image of p is finite, we can
understand resGalK (p) as a representation of a ﬁmte quotient & of Pg. Let us write the exponent of &
in the form exp(@) = (*.m with (¢/,m) = 1.

Lemma 4.24. Assume that k contains all m-th roots of unity. Then Assumption [{.20 is fulfilled.
Proof. Under the above assumptions, a theorem of Brauer (see [DH92|, Corollary (5.21) and the pre-

ceding remarks) guarantees that k is a splitting field for &, i.e. that a k-valued representation of & is
irreducible if and only if it is absolutely irreducible. O

67



4 LOCAL DEFORMATION CONDITIONS

4.4.1 Unipotent ramification and fixed-type lifting rings
During this paragraph, we will study the case where p fulfills the following condition:
Definition 4.25. We say that p has unipotent ramification if p(Pg) is trivial.

Remark 4.26. This notion is explained by the following observation: p has unipotent ramification if
and only if p|Ix has values in a conjugate of the standard unipotent subgroup

Un(k) = C GL, (k).

Clearly, if p is unipotently ramified we have Az = {triv} and Assumption is automatically fulfilled.
Moreover, in the unipotent case we have a strong connection between minimally ramified liftings and
liftings of prescribed type as considered in [Shol5]. In order to make this precise, let E denote the
quotient field of A and E its algebraic closure (considered with the f-adic topology).

Definition 4.27 (Def. 2.10 of [Shold]). Let 7 : Ix — GL,(E) be a representation which extends to
a continuous representation of the Weil group Wx of K. Then the isomorphism class of 7 is called an
inertial type. (Warning: 1. This differs from the usual definition of an inertial type as e.g. in [GK14].
2. There is no connection with the elements of ¥, but the usage of the letter 7 seems to be so common
in both cases that we are reluctant to use a differing notation.)

Let p be a lift of p which has values in E, then we say that p “is of type 77 if p|If is isomorphic to 7.

For the following we consider a 7 which is defined over E. Then we say that a morphism
z : Spec E — Spec RY(p)

is of type 7 if the associated E-valued representation p, is of type 7. This notion depends only on the
image of z (because 7 is defined over E).

Definition 4.28 (Fixed type deformation ring, [Shol5, Def. 2.14]). Let RY'" () be the reduced quotient
of R% (p) which is characterized by the requirement that Spec R/‘:\"T(ﬁ) is the Zariski closure of the E-
points of type 7 in Spec RY (p).

A general classification of inertial types is given in Section 2.2.1 of |[Shol5|. Under the unipotent
ramification assumption, this becomes particularly simple: The set 7" of those inertial types is in
bijection with the set ), of Young diagrams of size n. The partition (ly,...,l) corresponds (using the
notation of [Shol5|) to the type given by the restriction of the Weil-Deligne representation

k
@ sp(1,1:)

i=1
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to Ix. We can express this differently: Each member of Z%* is uniquely characterized by (the conjugacy
class of) its value on the generator ¢ := (yiv, and a bijection V with ), is given by

0
B,

1
0 1
v B,
(L. k) «— (1+ , ) with By, = € Myxm(E).  (4.13)
' 0 1

B, 0

On the other hand, we can associate to a 7 € 7" a partition of n by considering the kernel sequence,
i.e. we have a map

O:7" 5y, T (81,5 8)

with
s; = dimker(7(¢) — 1)" — dimker(7(¢) — 1)"!

and
r == min{i|dim ker(7(¢) — 1)" = dimker(7(¢) — 1)""} = min{i|ker(7(¢) — 1) =V}.

(We use the convention that f° is the identity map for any f.) It follows easily from the characterization
of 7% in (4.13) that s; > s;41, i.e. that © has values in V.

It is an easy combinatorial calculation to check that 7 is uniquely characterized by its value under ©
and that each Young diagram occurs as a kernel sequence (i.e. that © is a bijection). More precisely,
we have

Lemma 4.29. The map © o V~!: Y, — Y, is given by the conjugation operation on Young diagrams
(cf. [FHIL, §4.1] or [HHMOS, Section 2.8]). In particular, for a given T € I"™, the block matriz
structure of T(C) (up to reordering blocks) as in determines its kernel sequence and vice versa.

Proof. Retaining the notation used in (4.13)), we first remark that for i € Ny we have
dim ker B!, = min(i, m).

Thus, setting B = diag(B;,, ..., By, ), we get
‘ k
dim ker B = Zmin(i, l).
j=1
Consequently, the kernel sequence (s1,...,s,) associated to (I1,...,l;) is given by
k
si =Y _min(,l;) —min(i — 1,1;) = #{j|l; > i} = max{j|l; > i}
j=1

and
r=max{ljlj=1,...,k} =1.
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Hence, the transition (I1,...,lx) ~ (s1,...,S,) is precisely the conjugation operation of reflecting a
Young diagram at the main diagonal (cf. [HHMOS, Section 2.8]), e

O

In order to state the desired comparison result, let us recap that we consider a residual representation
p: Galg — GL,, (k) with unipotent ramification. Let A = (I1,...,l;) € Y, such that

p(Q) ~1+ diag(Blu ches Blk)
Let 7 = V(A) € T4,

Theorem 4.30. Assume p is unipotently ramified and let T be as above. Then there is an isomorphism
of the quotients
RD mln( ) R ( )

of RE(E), t.e. a lifting of p is minimally ramified if and only if it is of type T

Proof. The diagram
R\] m1n

Ry (p) / \
\ /

DT
RA

allows us to consider the E-points of Spec RD mln( ) and SpecR "(p) as subsets of the E-points of
Spec R A( ). We claim that they are equal: Translated into terms of E-valued representations, we have
to compare the sets

—min __ . - p lifts p and has values in O,
- - {P » Galg — GL”(E) ’ dimker(p(C)—l)i’l—dimker(p(()—?)i:li Vi}

and

=7 = { p: Galg — GL,(E) ‘ e pand fos yalues tn Oﬁ’}.

Lemma [4.29| implies that E™* = =7.
Now by definition of the ring RE’T (p) (as the schematic closure of the points in Z7) we have
ker(RY(p) — Ry (P) ﬂ ker(p,),
pEET
where

©p R%(ﬁ) —F
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is the map corresponding to the lift p. Moreover, we clearly have

ker (RY(p) — RY™R( ﬂ ker(pp).

PE =min

Hence, by =7 = =" we get a factorization

RY () —» RY™ () > Ry (p),

where the middle and the right ring have the same spectrum as topological spaces. Now we know by
Lemma that RY™(p) is formally smooth over A of relative dimension n? and that dim R (p)
equals n —|— (comblne Theorem 2.4 with Proposition 2.15 of [Shol5|). Thus, ¢ is an isomorphism by
Lemma 218 and the claim follows. O

Minimal ramification and base change For this paragraph, consider two finite extensions K’, K
of Q, with K C K’. Moreover let (r,N) be a Weil-Deligne representation of Wy. Let £ # p be a
rational prime and recall that we fixed an isomorphism C 22 Q,, so let us denote by

p: Galg — GL,(Qy)

the ¢-adic Galois representation associated to (r, N) and by V the underlying vector space. After base
change to K’ we get a Weil-Deligne representation (r/, N) with ' = r|Wg and associated Galois
representation p’ := p| Galg. Let us denote the corresponding mod-¢ reductions by p,p’ and make the
following assumption (which is independent of our choice of ¢ for £ > 0):

Assumption 4.31. p’ is unipotently ramified.
Under this assumption, (', N) = @le Sp(xi, ;) for a suitable partition ({1,...,[l;) of n and suitable

unramified characters y;. Thus, we can choose a basis B = (b1, ...,b,) of V such that N has the block
matrix form

B,
Bi,

B,

with By, as in (4.13). Assumption implies Ay = {triv}. As before, let us write (- = £ (oy(r)) for
T E Aﬁ

Proposition 4.32. Assume £ > 0, then the generators o4,y (for T € Agj) can be chosen such that
¢" == (; is contained in Galg/, does not depend on T and genemtes the first factor in Galp: | Ppr =2 ZyxZ.

Proof. Consider the inclusions
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and let F denote the fixed field of G.. As £ >> 0, we can assume that ¢ J/[K’: K]. Assume moreover
that the extensions F;|F are unramified, then the canonical maps

IK//PK/—)IK/PK and IKT/PKT%IK/PK
are isomorphisms (for all 7). It follows that the generators ¢, {; can be chosen such that «/(¢’) = ¢+ (¢;)

and the claim follows.

Thus, we are left to show that F;|F is unramified. For this, let us take s = #p(Ix) and observe that
s = p(Ix) as long as £ > s. For such an ¢, we also see that the operation of Zy and of Px commute on
any deformation of p. Hence, p|Ix factorizes through I'y x ', where I'y is a suitable ¢-group and Ty is
a suitable group of order s. But this implies that F|F is unramified. ]

For 7 € Ag, denote by V; C V the underlying vector space of p.. Then we can decompose V' into

isotypic components,
S

V=P V: =P,

TEA; =1

where (for ease of notation) we choose a numbering A; = {7,...,7s} with s = #A5;. Moreover,
possibly after re-arranging the blocks B,,, we can assume that there exists a disjoint partition

(1,...0k)=(a1=1,...;e1)U(aeg=e1+1,...;e2) U---U(as =es_1+1,...,e5 = k)

for suitable a; < e; € N such that (;, acts on V;, as Lagimv,, + diag(Blai, . ,Blbq_). (This all follows
from Proposition {.32] the shape of N and the fact that 1, + N respects the decomposition of p into
Pp-isotypic components, see [CHT08, Lemma 2.4.12].)

Now, let p be a k[e]-valued lift of p and assume that p’ := p| Galps is minimally ramified (as a lift of 7).

Lemma 4.33. Let £ >> 0 and presume Assumption[{.31 Then p is a minimally ramified lift of p.

Proof. We first remark that the minimal-ramified assumption for p’ can be expressed by the identity
rky im(p'(¢") — 1,)"™ = 2.1k, im N™ (4.14)

for all m € N, where we always have an inequality in the direction <, cf. Remark (The factor on
the right side comes from dimy k[e] = 2 and is necessary because we take rky instead of rkjq on the
left side.)

We want to show that p is minimally ramified. Therefore, we have to show that for each ¢ we have
rky im(pr, (¢r,) — Laimvs,)™ = 2.1k im diag(By, ..., By, )™, (4.15)

where we again always have an inequality <. As

S
rky im N = Z rky im diag(Blai, LB )™,
i=1

we see that the equality (4.14) can only be fulfilled if (4.15]) is fulfilled for all . The claim follows. [

Remark 4.34. We expect that Lemma holds without presuming Assumption
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We immediately get the following corollary:

Corollary 4.35. Let £ > 0 and presume Assumption . Denote by L C H'(Gp,ad(p)) and L' C
HY(Gr/,ad(p)) the subspaces parametrizing minimally ramified deformations. Then res™ (L") C L,
where

res : HY (K, ad(p)) — HY(K',ad(p|Gx)).

denotes the restriction map.

4.4.2 An R = R™"_-theorem

For this short section, let F, ¥ be number fields and consider a strictly compatible system of irreducible
E-rational Galois representations

R = (p)\ : Galp — GLn(E)‘)))\EPlE'

Let (r, N) be the associated Weil-Deligne representation at a fixed place v of F. We suppose the
following assumption:

Assumption 4.36. (r, N) is Frobenius-semisimple and r(Ir,) = 1, i.e. R is unipotently ramified at v.

Thus, we can write
k

(r,N) = @ Sp(7i, i)

i=1

for a suitable partition (I1,...,lx) of n and 1-dimensional W, -representations ;. Therefore, we can
assume that the generator ¢ of Tr, acts on the underlying vector space V of r as

01
Bi, 0 1
B
1+ N=(1+ ? N ) with By, = € M xm(C)
’ 0 1
B, 0
and Frob, acts on V as
Hi, (o) o
Hy, (« aq
H = 2(02) ) with H,,(a) = . € M, 5m (C)
Hi,, (our) ag™ !

for suitable numbers «; € C and where ¢ denotes the cardinality of the residue field of F,,. Let us
additionally assume

Assumption 4.37. For i # j, the g-orbits
“o; ={¢"a;|a€Z} and ¢"a; ={¢".aj|acZ}
are disjoint.
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Remark that Assumption implies the first part of Assumption 4.36| i.e. that (r, N) is Frobenius-

semisimple.

Definition 4.38 (JAll14 Definition 1.1.2|). The Weil-Deligne representation (r, N) is called generic if
HomWD—Rep ((Ta N)v (T(l), N)) = 0.

Lemma 4.39. Presume Assumptions and then (r,N) is generic.

Proof. Let f € Homwp.grep((r, N), (r(1), N)) and let Ay be the corresponding n x n matrix, then we
have
qArH =H.Ay, (4.16)

and
Af. N =N.A;. (4.17)

Let us write

Ap = (ADD) ¢ jep with AT € My, (C)

and
H.Af.H_l = (B(i’j))lgidgk with B(i’j) S Mlixlj ((C)

We claim that A; ; = 0 if i # j: By the shape of H we first see that

4.9 Qi oy 4(i,j
Bl = ZgvmuAlD  (0<u<1;,0<v<)

u,v U,V
) a] )

and by (4.16) it follows that

uU,U

(4.18)

By Assumption this implies A%’ =0.
Thus, we can assume w.l.o.g. that k& = 1. Comparing again the coefficients in (4.18) then yields

ASL{{}) = 0 whenever u # v + 1, in other words
0
B 0
Ap = 0 B2 O for suitable 3; € C.
0 -+ 0 Bpy O

By (4.17), we get
AfN = d1ag(0, Blv cee ,ﬂnfl) = diag(ﬂl, ey anl, O) = NAf
Hence, all §; vanish and the claim follows. O

We also have:

Lemma 4.40 (JAll14] Lemma 1.1.3|). Let m be an admissible complex representation of GL,(F) such
that m and (r, N) correspond to each other via the local Langlands correspondence. Then 7 is generic
(in the sense of [GKT5]) if and only if (r, N) is generic.
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Consider the following assumption, which is met for example if we know that the «; are Weil numbers,
which follows if we impose that R is pure:

Assumption 4.41. All the occurring numbers «; are algebraic integers.

We will restrict our exposition to those A € Plg for which ¢()) is large enough such that the following
analogue of Assumption holds:

Assumption 4.42. For i # j, the g-orbits
q{l"“’”}ai ={¢".a;|la€e{l,....,n}} C Fg(/\) and q{l""’"}aj ={q¢".ajlac{l,...,n}} C Fgo\)

are disjoint.

Lemma 4.43. Let A be such that {(\) > q and presume Assumptions [4.536, [4.41| and [{.42 Assume
moreover that px, is a minimal lift of its reduction py ,, in the sense of Definition . Then

Hom(ﬁAW, ﬁ)\,y(l)) =0.

Proof. The argument used in the proof of Lemma carries over: Let f € Hom(py ,,, Py, (1)) and let
Ay be the corresponding n x n matrix, then Ay must again fulfill (4.16)) and (4.17)) with the reductions
#H and N instead of H and N. As p,, is a minimal lift of p, ,, N and N have the same shape, so
thanks to Assumption we can compare the coeflicients and conclude the claim as in the proof of
Lemma [£.39] O

At this point we remark that we conjecture the vanishing of Hom(p) .7y, (1)) if the Weil-Deligne
representation (r, N) at v is generic. In other words (and using Lemma [4.40) we expect the following
to hold:

Congecture 4.44. Let m be a generic admissible representation of GL,,(F') with associated Weil-Deligne
representation (r, N) and Galois representation p : Galp — GL,(C). Then the reduction p, of
GLy, (1) 0 p fulfills

Hom (5, py(1)) = 0
for all £ > 0.

We expect this to be provable by methods of this thesis under certain standard hypotheses (Assumption
on the reductions of compatible systems of Galois representations.

We make another assumption on our compatible system R which will be verified later if R = Ry for a
RACSDC automorphic representation II of a general linear group over a totally real field, see Section
6.4.4]

Assumption 4.45. There exists a finite failure set X C PIiP such that for all A € Pl — X P IS a
minimally ramified lift of p, ,, (for all v € plin).

Corollary 4.46. Presume Assumptions[{.30, [{.37, [{.41 and [{. /5], then for almost all X we have

Hom(ﬁ)\,w ﬁ)\,lj(]‘)) =0.

Corollary 4.47. Presume Assumptions [4.30, [4.374.41] and [4.45], then for almost all X the canonical
surjection

Pas) = (o |
RY X (prs) = BYY " (y,) (4.19)

1S an 1somorphism.
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Proof. Let us first treat the case where the determinant is not fixed: By Lemma [1.23] the right hand
side of (4.19) is isomorphic to A[[z1, ..., z,2]]. By Corollary and Lemma for almost all A we

have

H*(F,,ad(p,)) = 0.

It follows (cf. [Kis09, Maz97b| and our Proposition ) that R (p,,) is formally smooth and hence
isomorphic to a power series ring over A in

B (Fy,ad(7y)) + n® — KO(Fy, ad(py)) = n?

variables, where the vanishing of h!(F),,ad(p,)) — h°(F,,ad(p,)) follows from the local Euler-Poincaré
formula. Therefore, Lemma implies the claim.

As we have shown that any lifting of p, is minimally ramified (subject to £(A) > 0), the claim in the
fixed determinant case is tautologically true. O
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5 Unobstructedness for Hilbert modular forms

Let F be a totally real number field and let I denote the set of embeddings F < R. Let f € Sk(n)
be a Hilbert modular newform of weight w = (w,)re; € Z' and of level n € Op. We include that
f is normalized (in the sense of the definition on p. 7 of [SW93|) in the definition of a newform. We
demand that w; > 2 and w, = w, mod 2 for all 7,7". Denote by Ky = Q({a,(f)|v 1 n}) the number
field generated by the eigenvalues a, (f) of f under the Hecke operators T,,, for all v { n.

For each A € Plﬁnf, we denote by K the completion of Ky at A (with ring of integers Oy \) and by ky »
the residue field of K ). According to [Car86|] (a more explicit reference is [Bocl3b, Theorem 4.12]),
we can associate to f a strictly compatible system

. Galp — GLy(K )
<Pf,>\ alp 2( f,/\) AePl’}g‘f

of Galois representations with ramification set So = {A|A divides n}. When we have specified a prime
A and a finite set of places S of F' containing Sy, we will denote by

ﬁfv)\ : GalF,S — GLQ(kﬂ)\)

the (semi-simplification of the) reduction modulo A. It is known, that there exists a cofinite subset
QUr) Pli}{“f such that py , is absolutely irreducible for A € QU™ (see item 1. below; this will later
also be deductible from Remark [6.8).

Now, fix such a finite set of non-archimedean places S which contains Sy. We want to describe a set
Q' c Plf}?f —S of places A\ where the framework of Theorem applies to G = GLg,p = p; \ and for
the following choices: min and sm are both the condition parametrizing arbitrary (fixed-determinant)
lifts and crys parametrizes (fixed-determinant) lifts which are FL-crystalline in the sense of Section

43l

1. By [Dim05, Proposition 3.1], there exists a cofinite subset Q") < PIi such that condition
(Representability) of Section [3.1]is fulfilled. (Cf. also [Tay95, Prop. 1.2[.)

2. Tt is a key computation of Gamzon [Gaml3l Proposition 4.4] that there exists a cofinite subset
QB ¢ Plf}(nf such that H(F,,ad’5(1)) vanishes for all v € QZA) if we suppos that w; > 2 for

all 7. By local Tate duality, this implies that DF"®™ = DZ'X is formally smooth, hence condition
(sm/k) is fulfilled. Using the local Euler characteristic formula, we get

h'(F,,ad’p) = h°(F,,ad" p) + dim(ad’ p)[F, : Q.

We can assume w.l.o.g. that the exact sequence (2.12) is available for all A € Q™ (if this is not
the case, we exclude the finitely many places where this fails from the set Q(Sm)). Thus we get

™ = dimt o = dimtpy + dimad” 5 — h°(F,, ad’ p)

= hY(F,,ad" p) + dim(ad’ p)[F, : Q] + dim(ad® p) — h°(F,,,ad’ p) = 3.([F, : Q¢] + 1).
Hence the additional condition in Theorem 2 is fulfilled with 6, = 0.

"Tn the recent version of [Gami3] (as accessed on 29 November 2015 via http://www.mtholyoke.edu/~agamzon/
homepage .html), Proposition 4.4 is formulated under the weaker condition that w, > 2 for at least one 7. However, we
cannot follow his argument and believe that this is a mistake.

77


http://www.mtholyoke.edu/~agamzon/homepage.html
http://www.mtholyoke.edu/~agamzon/homepage.html
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3. By [Tay95, Theorem 1.4] (see also [Bre99, Dim09]), there is a cofinite subset Q(¢*¥3) ¢ Q%) such
that the restriction py . of psx to a decomposition group at v is crystalline for all v € Q, (with
¢ =/())). By Lemma it follows that

RD&rys(ﬁy) = W[[:Elv s 7$m]]
with m =4 + [K, : Q¢]. We are, however, interested in a fixed-determinant version:

Theorem 5.1. Fiz a lift x of the determinant. Then, for all X € Q(™V3) with £()\) > 2,
ROXE (D) = Wlay, ..., zg]]
with k =3+ [K, : Q.

Before we can prove this theorem, we need a preparatory lemma (where we again take £ = £())):

Lemma 5.2. Recall that we abbreviate “FL-crystalline” for “crystalline with Hodge-Tate weights
in the Fontaine-Laffaille range [0,¢ — 2]”. We have:

1. Let p : Galp, — GLa(k) be an FL-crystalline representation (where k is a finite field of
characteristic £ = ((\) = £(v)) and let p € DO)TY3(5)(A) be an FL-crystalline lift to
some coefficient ring A € Cyy(ry. Assume moreover that all Hodge-Tate weights of p lie in
[0, LK_TIJ] Then det(p) is FL-crystalline and det(p) € D(E)°3(det(p))(A).

2. Let p : Galp, — GLa(k) and ¢ : Galp, — kX be FL-crystalline and assume that r + k' €
[0,€ — 2] for any Hodge-Tate weight k of p and any Hodge-Tate weight k' of 1. Let p,1) be
FL-crystalline lifts to some coefficient ring A. Then ¢ ® p is FL-crystalline.

3. A lift of the trivial character 1 : Galg, — k* is FL-crystalline if and only if it is unramified.

In other words,
Rev3(1) = RO (1),

where the object on the right denotes the universal deformation ring parametrizing unramified
deformations (resp. liftings) of 1.

4. Assumel > 2. Let A be a coefficient ring as above and consider two FL-crystalline characters
X, : Galp, — A* such that X = 1. Then (x.~")Y? is an FL-crystalline lift of 1.

(We believe the bound on the Hodge-Tate weights in part 1. to be unnecessary, but it enables us
to give a very simple proof. We remind the reader that we are ultimately interested in £ > 0. We
also emphasize that with our conventions, 62 is FL-crystalline, while eﬁ_l is not.)

Proof. Part 2. is a direct application of Remark

For part 1., we apply the same argument (i.e. Remark to the choice p1 = po = p. Then
the bound on the Hodge-Tate weights implies that p ® p is crystalline. We already saw that
the condition of being FL-crystalline passes over to quotients (see Theorem [£.3). Thus det(p) is
FL-crystalline, as it can be realized as the one-dimensional quotient A?(p) of p ® p. By the same
argument, det(p) is seen to be an FL-crystalline lift of det(p).

For part 3., remark that any unramified lift is automatically FL-crystalline (see e.g. [Wes04]
Example 4.2|, where the pre-image of an unramified character under the Fontaine-Laffaille functor
is described). Thus we get a canonical surjection

¢ : RDeve(1) — RO)2T(1) (5.1)
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of W-algebras. By our Lemma and [BLGGII, Proof of Lemma 3.4.2|, both objects in (5.1])
are isomorphic to W{[z]]. It follows by Lemma that ¢ is an isomorphism.

Concerning part 4., we first note that ~! is crystalline (albeit with Hodge-Tate weights in
[—(¢—2),0],i.e. generally not in the essential image of the Fontaine-Laffaille functor), cf. Section
2 of [Niz93]. Analogously to the proof of part 2., we conclude that x.¢p~! = y ® ¢y~! is an FL-
crystalline, hence (by part 3.) unramified lift of 1. But then, the square root of x.¢~! is also
unramified, hence FL-crystalline. (Observe that we had to assume ¢ > 2 in order to be able to
take the square root character.) O

Proof of Theorem [5.1 We use an argument analogous to [B6c98|, Proposition 2.1] to get an iso-
morphism
DD,crys(py) o~ DD,x,crys(ﬁV) X DD,crys(l)

by identifying a crystalline lift p of p, with the pair
((x-det(p) ™2 @ p, (x. det(p)~1)"/?).

(We use Lemma here to assure that both entries of this pair are crystalline lifts of p, and 1,
respectively.) Hence, by Proposition

RD,cryS(ﬁy) o~ R[],x,crys<py) ®WRD,cryS(1).

Thus, after another application of Lemma we have

Wllwr, ..., 2m]] = RZX2(p,) @w W/[z] = RPX2(5,)[[2]]. (5-2)
But this implies RP%TY3(p,) = W{[x1, ..., Tm_1]] by Lemma[2.19] O

. Condition (min) is fulfilled for a cofinite subset Q®® Plf}(“f. This follows from [Gaml3]

Corollary 9], local Tate duality and the finiteness of S. We have to see that do™™ = dim(sly) = 3
for v € ;. Using the formal smoothness, this follows from the fact that the Krull dimension of
REX(p,) is 4, see [Bocl3al, Theorem 3.3.1(h)].

. Condition (00) demands that R2X(p, ) = RP(p,) is formally smooth with u, = 2 for v|oo, which
is verified (independently of the choice of \) in [B6cl3al, Section 5.5 (see also our Proposition
2.70)).

. Condition (Presentability) is a direct consequence of our Corollary However, we can
alternatively deduce it from the more classical (i.e. GL,-bound) literature: The condition follows
from Key Lemma 5.2.2 and Lemma 5.3.1 of [Bc13al, as soon as we can show that the error term
d from loc. cit. vanishes. In both cases, we have to check that Assumption [2.63| holds for a cofinite
subset Q° C Q(°*¥9) which is the case thanks to Corollary

. Considering condition (R=T), we note that using Proposition it is sufficient to show that

Rg‘;crys = . The main ingredient for this is the following (conjectural) R = T-theorem:

e Let X(f,\) denote the set of all Hilbert modular newforms g of weight w such that pg »
(understood with values in GL2(Qy)) is a lift of p; , (understood with values in GLa(Fy))
which fulfills crys, has determinant y and is unramified outside Sy.
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e Let K denote the composite of all the fields of definition K, where g runs through X (f, \).
Denote by O the ring of integers of K.

e Let us chose a place § of K above A\. Then denote by T; the O,-subalgebra of ngx(ﬁ)\) Ok,
which is generated by all (a,(g))gex(f,n), Where v runs through the places of I outside S.

Conjecture 5.3. Suppose that the places A, § are chosen such that £ = £(\) = £() is odd, coprime
to S and such that F,|Qy is unramified for all v above £. Suppose moreover that the image of
Py is adequate in the sense of Section and that p; y is totally odd: detpy(c) = —1 for all
complex conjugations c. Then

R, 0, Pra) = Ts.

Remark 5.4. 1) It follows from Theorem 6.6 (with ¥ = S) and Remark 1.2 of [Dim09] that
Conjecture holds under the conditions that F'is Galois over Q and that f is not a theta
series nor a twist of a base change of a newform on some E C F.

2) If we let crys be the deformation condition parametrizing nearly ordinary or flat deforma-
tions, a suitable R = T-theorem is due to Fujiwara [Fuj06, Theorem 11.1].

3) If we let crys be the deformation condition parametrizing potentially Barsotti-Tate defor-
mations (and we correspondingly restrict the previous exposition to forms of parallel weight
2), there exists a suitable R = T-theorem (see [Chel3, Theorem 4.1]) under the following
additional assumption:

Corollary 5.5. Assume Conjecture . Then there ezists a cofinite subset Q=T ¢ QUTT) sych
that, for all X € Q=" we have

RGT(0r0) =Wk

Observe that Proposition [2.62|then implies that Rg[SwX,CIYS (

448, — 1 = dim(gly).#S, — dim(gl2®). ‘

Py.») is formally smooth of dimension

Proof. First, observe that the oddness requirement of Conjecture[5.3]is automatically fulfilled (cf.
[Dim05], Section 0.1] and the references therein). After excluding finitely many places A, also the
adequateness requirement is automatically fulfilled, cf. [GHTT12].

Let us first show that for almost all A we can chose a place § of the field K above A such that
R 0, (Pr0) = Ok (5.3)

We are clearly done if we can show X (f,\) = {f} for almost all .
Now if g1, g2 € X(f, A), we see that

a,(g1) = ay(g2) mod A Vv ¢ Sy,

by the construction of pg, \ from g; (see equation (1) in [Dim09]). Therefore, the assumption
91,92 € X(f, ) for infinitely many primes X\ implies that a,(g1) equals a,(g2) for all v ¢ Sy;. But
this implies g; = g2 by a suitable multiplicity one theorem, see e.g. [SW93l, Theorem 3.5].
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Therefore, for a given newform g # f there exist only finitely many A such that g € X(f, A). The
claim now follows as there are only finitely many newforms of a given level and weight (see [B.J79,
Section 4.3]).

The claim now follows from (5.3) by (the unframed version of) Corollary [2.35|3 and Lemma
2.17] O

Observe that the first two conditions of Corollary are automatically fulfilled for a cofinite subset
QP C Plf}{nf and that the third condition follows from [CHTO08|, Corollary 2.4.21]. Thus, considering

: : 1. R=T 1 i fi :
thf intersection Q! := QP N QR=T) N Q% N Qmin) N Qsm N (Plﬁf —S) and applying Corollary , we
ge

Theorem 5.6. Assume Conjecture and wr > 2 for all 7. Then, for almost all primes A, Dgz (Pfa)
has vanishing dual Selmer group.

Corollary 5.7. Assume Conjecture and wy > 2 for all 7. Then, for almost all primes X, Rgz (Prr)
15 globally unobstructed.

Proof. The local parts of the “globally unobstructed” notion (cf. Deﬁnition, i.e. the relative smooth-

ness of the local deformation rings R9X(p,) for v € Sy, follow from Proposition Corollary
and item 4. of this section.

O
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6 Unobstructedness for RACSDC automorphic representations

Let F' be a CM field with maximal real subfield F'* and recall from [CHT08] the following definition:

Definition 6.1 (RACSDC automorphic representation). An automorphic representation II of GL,,(AF)
is called RACSDC (regular, algebraic, conjugate self dual, cuspidal) if it is cuspidal and fulfills

o IIV = I where ¢ denotes the non-trivial element of Gal(F|FT);

e I, has the same infinitesimal character as some irreducible algebraic representation of the re-
striction of scalars from F' to Q of GL,,.

Remark 6.2. As we follow largely the article [CHTO0S], it would be natural to suppose additionally that
there is a prime vg of F* which splits as wow( in F' such that at least one of I1,,, Hw(c) is square integrable
(cf. condition 5. of [CHTO08| Theorem 4.4.2]). By the recent developments ([BLGGT14, Theorem 2.1.1],
but see also [Shilll [CHLNTIL [Guell]), this restriction is not necessary.

Remark 6.3. We remark that (by the same references as mentioned in Remark it is possible to
treat the material of this section for RAECSDC automorphic representations, i.e. for such II as above
where the “conjugate self-dual’-condition is weakened to the following “essentially conjugate self-dual’-
condition:

o IV =1I°® (x o Npjp+ o det), where x : AL, /(F")* — C* is a continuous character such that
Xv is independent of v|oo.

For the remainder, let us fix such a RACSDC automorphic representation IT of GL, (Ar). Then we can
associate to Il a compatible system of /-adic Galois representations:

Theorem 6.4. There exists a number field £ and an E-rational strictly compatible and pure of weight
n — 1 system of semisimple £-adic Galois representations attached to 11
Rit = (pa: Galp = GLy () )
= (px:Galp n(Emn) sepifn
with finite ramification set St == {v € Plp | I, is ramified } such that (in addition to the compatibility
requirements of Deﬁnition the following holds:

e The L-functions match: For all \, L(s,1I) = L(s, px);

o The py are polarized, i.e. py @ el—n = pS, where € is the A-adic cyclotomic character.

Proof. See [HT01, [TY07] and Section 5 of [BLGGT14]. Purity is proved in [Clo13]. O

Remark 6.5. Before we continue, let us add a remark on the role of the field of rationality: We will in
the sequel frequently consider finite extensions &£ of £;. We can understand Ry as an E-rational family
by the following convention: If X is a place of £, then write X’ for the place of £ below A. Then we
get from Ry a family

.
r = (p>\ . Galp — GLn(EA)%ePIEH

with

oy : Galp 2% GL, () < GLu(Ey).
We will not distinguish in our notation between Ry and R or between py and p) if their target is
clear from the context, i.e. we will suppress the prime symbol ’.
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Now, let £ be a finite extension of £ as in Remark Replacing the entries of Ry by their mod-A
reductions, we get a family of modular Galois representations

: (6.1)

Py : Galp — GLn(k)\)
< A )Aeplgﬂ

where k) denotes the residue field of £y, which is a finite extension of Fy,). We assume the following:
Assumption 6.6. The set
At = {) e PII" | 5, is absolutely irreducible }
has Dirichlet density 1 in Plgn. Consequently, the set
Af={l P | A€ A for all X € Pl above ¢ }

has Dirichlet density 1 in the set of rational primes. Finally, we take Aé to be the set of primes of F
above A(l@.

We remark that the validity of Assumption does not depend on the choice of £. Observe moreover
that we can have A} C Al but still the following holds:

Lemma 6.7. The set Aé has Dirichlet density 1 in Pl?n.

Proof. Recall that a subset X C PI of a number field E has Dirichlet density 6(X) € [0,1] if
1 1

———— ~§(X).log
;( N(v)s s—

Recall moreover [Mill3, Proposition 4.4 (d) and (e)]:

;a8 s N 0. (6.2)

e Let X1, Xo C PP be disjoint, then if any two of 6(X1),8(X2),8(X1 U Xo) are defined, so is the
third and we have
5(X1 (] Xg) = 5(X1) + 5(X2)

o Let X; C Xy C PIIM then 6(X;) < 6(Xy).

Write A' = PII" — 9 for a suitable defect set 2 of Dirichlet density 0. We first check the claim under
the assumption that £|Q is Galois: As Gal(£|Q) permutes the places above each rational prime, we
have
AL = Plﬁ“—< U 9").
oeGal(€|Q)
But Gal(€£]Q) is finite and by the characterization in we have 6(27) = §(Z) = 0 for each
o € Gal(€]|Q), so 6(A}) =

For the general case, we argue as follows: Let E and 7 be the sets of places of the Galois closure g
of €& above A! and 2, so that we have PP}n = Al LU 9. By assumption, §(A') = 1, but comparing the

left hand side of for E=&,X = A' and for E = <€~’ X = ;le, we see that 5(.7(1) = 1 and, hence,
0 (9) must vanish. By applying the above argument to & instead of & we end up with a decomposition

lﬁ“ A1 LI @~ such that 5(A1) =1, .@ = 0 and such that A1 contains precisely the places above A}.

Companng the left hand side of (6.2) for F = &£, X = Plﬁn —Aé and for E = E,X = @g, we see that
S(PIE» —AL) =0, i.e. that 6(A}) = 1. O
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Remark 6.8. Assumption is known e.g. if II is extremely regular [BLGGT14] or if n < 5 [CG13].
Results in this direction are also contained in [PT15], but they are not directly applicable to our
situation.

This implies that we can extend p to the group G, (see Section below, in particular Lemma [6.21])
at all A € A}, i.e. there is a family of Galois representations

(a  Galps — gn(/@))AGAl (6.3)
£

which fulfill the Schur-conditions (SmCtr) and (Centr) from Section [2.3] The purpose of this section
is to prove (in Theorem below) that certain deformation rings associated to these representations
7 are unobstructed for a large class of places A (and for the choice & = &).

6.1 Preparations
6.1.1 Algebraic representations of GL, and U,

Recall the following characterization of representations of the unitary and general linear groups in terms
of their highest weight character:

Theorem 6.9. 1. The isomorphism classes of complex, irreducible, continuous representations of
U,(R) can be parametrized by the set

vt ={(wi,...,wn) €Z" ‘ wi > ... > wp )
For such a tuple w € Z™™" denote the corresponding representation by
ot Un(R) — GL(W,),

where Wy, denotes a suitable C-vector space.

2. Let K be a finite extension of Qp with ring of integers Og. Then the isomorphism classes of
irreducible, algebraic GLy,(K)-representations over K can be parametrized by Z™. For such a
tuple w € Z™ denote the corresponding representation by

&8 GLn(K) — GL(W)),
where Wf denotes a suitable K-vector space.

3. The representations §£ from part 2. admit integral models: For each w there exists a finite free
Ok -module MEK and a representation

0% : GLn(Ok) — GL(MZI*¥)

such that
¢X1GLL(0K) = €% ®0, K.

Proof. Parts 1. and 2. are taken almost verbatim from [BC09| and the last part can be found e.g. in
[Guell] or [Gerl0a]. O
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6.1.2 A lemma on prime densities in non-Galois extensions

For this paragraph, consider the following setup:

e As before, F denotes a CM field with totally real subfield F'*;

o LT = F*(\/di,...,/d) denotes a totally real extension of '+ of degree 2¥, obtained by adjoining
the square roots of k elements dq,...,d; € N.

Let us also assume that each d; is a non-square in the Galois closure F* of F+. Then we have
Lemma 6.10. Let Eg be the set of all those rational primes ¢ with the following property: For any
place p of LT,

[go|4 = [p splits in L|L+]

1

Then the density 6(Eq) of Zq in the set of all rational primes is at least 1 — o -

Proof. Consider the following diagram of fields

/L:L+.F
Lt =F.L* \L
L+/
F Y L _F
\F+/
I

Q

with corresponding Galois groups
o A=7/27;
e 0= (z/22)",
e [' and H, for which we don’t make an assumption.
By the assumption that the d; are not squares we have
Gal(L1|Q) =T x Q,

and hence _
Gal(L|Q) =T x Q x A.

Let B be a place of L with corresponding Frobenius element (v,w,d) € Gal(Z[Q). As Q and A are
abelian, the conjugacy class of 8 can be written as

{(uyu™,w,8) |ueT}
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and consists precisely of the Frobenii of the places of L lying over the same rational prime p as L.

Let p be the place of L below 3. Its Frobenius element is given by
(y,w,0)15 € H x {1} x A = Gal(L|L")

for ey w6 € N minimal such that (y,w, )3 € H x {1} x A.
The condition that g splits in L|LT then amounts precisely to

(7, w,0)r«d € H x {1} x {1},
or, written in a more sophisticated way, that ¢((y,w, )% «¢) =1, where
q: Gal(L|L") — Gal(L|L™)/ Gal(L|LT)

is the quotient map.

If w # 1, we clearly must have 2|e, , 5, which implies that o splits in L|L*. It is also important to note
that the condition w # 1 is not destroyed by conjugation inside Gal(L|Q).

Now, set ~
E* = {(7,w,0) € Gal(L|Q) | ¢((y,w,8)*=) = 1}

and counsider the subset Z C Z* which consists of those g € Z* for which the complete conjugacy class
is contained in Z*, i.e.
E={geE [{9) cE}.

We can give another characterization of this set: = is the union of all conjugacy classes (g) C Gal(L|Q)
with the following property: If P, denotes the set of all places B of L such that Froby € (g), then for
any place p of L the following holds:

3P € P, such that *P divides p} = [p splits in L|L™T
Then we have

42 > #{(7,0,0) € Gal(E[Q) | w # 1} = (2 — 1).2.4T.

As
Eg = {¢ € Plg | 3g € Z such that P|¢ for all P € P},

it follows from Chebotarev’s density theorem that

(28 —1)2.4 L
Gal(LlQ) 2V

v

6(Zq)

6.1.3 Cuspidality and base change

We start with a general lemma:

Lemma 6.11. Let 7, be an irreducible unramified representation of GL,,(F,) for a local non-archimedean
field F,, of characteristic 0. Let x, be a smooth character of F* such that m, = x, @ m,.

Then x, 1s unramified.
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Proof. As m, is unramified, it follows from a result of Satake [Rog97, Thm. 4 on p. 337| that there
exist unramified characters

Y« F) — C~ (ie{l,...,n})

such that m, is a subquotient of
. GL,(F,
lndBorel( )(¢1 ®...® T/)n)

But then (by [Vig96), part d) of 1.5.2]), x, ® m, is a subquotient of

: G n v ~Y 3 G n v
Xo @ indge ) (1 @ ... @ ) 2 indgent ) (0 @ 1) @ ... © (X0 © ).

Assume that x, is ramified, then each x, ®1; is ramified. Then an isomorphism m, & y, ® m, would be
in conflict with unicity of supercuspidal support (see [GH11l, Corollary 14.5.6| for F, = Q, and [Vig98|
Chapter V 4] for the general case). O

Now, let 7 be an automorphic representation of GL,,(Ar). For a prime p in
Ap={pePly' |\/p¢F},
let us denote by X, the set of Hecke characters
X : IF/FX — C*

which fulfill
Nr(p)r(Irm) = ker(x).

Our aim here is to prove:
Lemma 6.12. For almost oll p € Ap, the set

Op =%, N{x|r=x®n}
1S empty.

We are interested in this lemma because ©, = ) implies that the base change BCF(\/Z;)‘F(TI') of 7 to
F(\/p) is cuspidal (provided that  is cuspidal), cf. [AC89, Thm. 4.2].

Proof. Denote by Plg_ram the set of rational primes which ramify in the extension F|Q. Then for an

odd pin Ap — Plg_ram and a place v of F' above p, the extension F),(,/p)|F, is ramified (as can easily
be deduced from the multiplicativity of the ramification index).
Hence, the image N, p)r, (Fv(v/P)*) equals wr, .NE,(5)|F, (lefb(\/ﬁ)) and we have

OF, : Nr(vpIr (Ok,p)] = 2

In particular, any x € O, is ramified at v.
By the Lemma [6.11], this is only possible if 7w ramifies at v. The claim follows. O
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The remainder of this section is aimed at showing that the initial base change in our main argument
later (Theorem can be chosen such that cuspidality of the automorphic representation will not
get destroyed. We start again with a general lemma. For this, consider a number field F” and two finite
extensions

jn E,

\ ) /
where we assume that E|F’ is Galois with Galois group

Gal(E|F') = (Frob,,, ..., Frob,,)

for suitable places vy, ..., of E which are unramified in E|F’. Let us denote by Wp (v4,...,v) the
set of places of F' below {v1,..., v}

Lemma 6.13. Assume that F"|F' splits completely at each place w € V. Then
F'nE=F'.

Proof. The case E = F' is trivial, so we can assume that & > 1. Let us first start with the case
k = 1: Then, clearly, w € U (1) = {w} is totally inert in the extension E|F’. Let us consider the
intermediate extension

F" E

N/

M
)l

with M = F” N E. By the multiplicativity of the inertial degree it follows that w is totally inert in
M]|F’, but on the other hand w must also split completely in M|F’ (as, otherwise, it could not split
completely in F”|F’). Tt follows that M = F’.

This result can easily be extended to arbitrary k, and we only carry out the step k =1~» kK = 2. For
this, consider the intermediate field E; = E¥°P» and the diagram

F/I El

/\/
\/

Let 7; be the place of E; below v;, for i € {1,2}. Then the Galois group of the extension Ei|F’ is
generated by Froby,, so it follows by the previous argument that F” N E; = F’. Now, Frob,, acts
trivially on Ej, so the place wg of F’ below vo does not split in F1|F’. Moreover, ws is not ramified as
it is not ramified in E|F’. If follows that ws is totally inert in E|F’ and splits completely in F”|F’. By
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multiplicativity of the inertial degree, it follows that y is totally split in the extension F”.F1|E;. Tt
follows from the previous argument that F”.E; N E = E1. We can now conclude

F'NnE=F'"NnF.EyNnE=F"'NnE,=F. O

Let us recall the following well-knowr[?] weak version of the Grunwald-Wang theorem:

Theorem 6.14. Let ¥ = {w1,...,wy} be a finite set of places of F'. For each i € {1,...,n} choose a
finite separable extension C; of F,, . Then there exists a finite separable extension F" of F' and places
vi of F" above w; such that F) is isomorphic to C; for every i. Moreover:

o Setd; = [C]: F,,.], then F" can be chosen such that [F" : F'] = max{dy,...,dmn};

e If S is a finite set of non-archimedean places of F' with SNY = 0, then F" can be chosen to be
unramified at all places in S;

o If all extensions C;|Fy, are Galois, then F" can be chosen such that F"|F' is Galois and solvable;

o If all extensions C;|Fy, are abelian (resp. cyclic), then F" can be chosen such that F"|F' is
abelian (resp. cyclic).

Proof. This is taken almost verbatim from [Con05, Theorem 3.1|. There, the first bullet point is only
stated for the case that all d; are equal, but our formulation is easily deductible from the proof in
[Con05l Theorem 3.1]. O

Recall that we have chosen a CM-field F' together with an automorphic representation II of GL,(AF)
in the beginning and that we denote by (p,)repl, the associated compatible family of residual GL,,-
valued Galois representations. Let S C Plg denote the ramification set of II and assume that any place
in S is unramified in the extension F|Q. Then there exists a finite solvable extension K of F' which
is a CM-field and such that the restriction of py to Galx has unipotent ramification (in the sense of
Definition at each v € Plg which lies above S if () # £(v). Write K for the maximal totally
real subfield of K, then we have K = KT .F.

Lemma 6.15. There exists a finite solvable Galois extension K' of F which is a CM-field and such
that

e The base change of 11 to K' remains cuspidal;

o The restriction of py to Galgs has unipotent ramification at each place v € Pljzl, above S in the

sense of Definition if LX) # L(v).

Proof. First, recall from [AC89| that there exists a finite extension E of F such that for any extension
K’ of F we have the following implication: If £ N K’ = F, then the base change of II to K’ remains
cuspidal. This implication remains true after replacing E by its Galois closure, so we can assume that
E|F is Galois. By Chebotarev’s density theorem, we can assume that Gal(E|F') = (Frob,,,...,Frob,,)
with Up(vy,...,vx) NS = 0. Using Lemma we have also the following implication: If for each

12Cf. the usage in [SWOI, Section 2]: “Here and throughout the paper we use the well-known fact that one can always
find a totally real cyclic extension of F with prescribed splitting and ramification at any given finite set of primes of F.”
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pair of places (v,w) € P x P with v|jw,w € $p(v1,..., ) we have [K! : F,] = 1, then the base
change of II to K’ remains cuspidal.

Now apply Theorem to
o ["=FT;

o ¥ ={wi,...,wy,} is the set of places of F'* which divide oo or lie below S UV (vy, ..., 1),

. O — Fr  if w; divides oo or lies below W (v, ..., v);
’ Ky, if w; lies below S.

(Here, 7; denotes an arbitrary choice of a place of the Galois closure K of K which lies above w;.) This

yields a finite solvable totally real Galois extension F” of F/ = F7T, and the extension K' := F'.F

fulfills the conditions of the lemma. O

We now give a slight generalization of this result. First, consider the following general lemma:

Lemma 6.16. Consider a field K together with a fized algebraic closure K. Let E., F be finite exlensions
of K, both contained in K, such that F|K is separable and such that E contains the Galois closure F'
of F'. Then

Fog E = EFK]L

Proof. Write F = Klz|/(f(z)) with f € K[x] irreducible. Over E, f decomposes completely in linear
factors, i.e.

[F:K]
f= H (x — ay).
i=1
Using the Chinese remainder theorem, we get
[F:K]
Fog E=E[z]/(f(z)) = H Elz]/(z — o) = EFK], .
i=1

Corollary 6.17. The extension K' in Lemma can be chosen such that any place v € Plg+ above
S is split in the extension K'|K'T. Here, K't = F” (in the notation of the proof of Lemma
denotes the mazximal totally real subfield of K'.

Proof. Let us denote the extension yielded by Lemma temporarily by ' K’ and the maximal totally
real subfield by 'K’*. We apply Theorem once again with
o F/ = K't:

e ¥ = {wi,...,wy} is the set of places of 'K’* which lie above the subset of Plp+ which was
denoted by ¥ in the proof of Lemma i.e. the set of places above the set S C Plp+ of places
below S, above oo or above the set U C Plg+ of places below Ur(vy,...,v).

LK if w; divides oo or lies above W,
o CZ = Wi _
IK{vi if w; lies above S,

where @; denotes an arbitrary place of 'K’ above w;.
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This yields a quadratic, totally real extension K'* of ' K'T and we claim that K’ = K'T.F fulfills the
condition of the corollary. It is clear that the two bullet points of Theorem carry over. It remains
to check that any place v € Plg/+ above S is split in the extension K’*|K'*. Denote by ¥ the place of
LK+ below v and consider the following diagram

K't

2N

1K/ K/+

M 4
1K/+

All the extensions (1),(2),(3) and (4) are quadratic.

Case 1: (7 issplit in (1).) As 7 is split in (1), it follows that 1K§ = K* hence that ¥ is split in (2). Tt
follows by [Neu99, Exercise 3 on p. 52| that ¥ splits completely in K’*|'K’*. But this implies
that 7 splits in (4) by the multiplicativity of the inertial degree.

Case 2: (7 is inert in (1).) This implies that 1K§ 2 'Kt and hence that 7 is inert in (2). Moreover, we
see that the conditions of Lemma [6.16] are fulfilled for the choices

o K= 1K;+,

.« B= K,

o F=1K.L.
14

It follows that
KL @ KiF = KP[ KT

i.e. that v splits in (4). O

6.1.4 The group G, from Clozel-Harris-Taylor

Let n € N and recall from [CHT08] the following definition:

Definition 6.18. By G,, we denote the group scheme over Z given by
(GL, x GL1) x {1,5},

where j acts as j(g,1)j = (utg~, p). G defines a linear algebraic group, which can either be deduced
from the definition or from the embedding G, — GSp,,, given in [BLGGT14, Section 1.1]. We denote
by GY the connected component of G, and by m: G,, — GL; the multiplier character given by

(g 1) » @) = (~1)oE)

We write g, for the Lie algebra of G,,. Observe that we differ here from [CHT08§|, where g, is used for
the Lie algebra of GL,, (to which we refer by gl,, instead).

Proposition 6.19. G&* = (GL,, x1) x 1 2 GL,, and G2* = GL; x{1,}.
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Proof. Tt is clear that G3°* C (GL, x1) x 1, as any commutator in G, is contained in this subgroup.
For the other inclusion, by taking commutators of the form [x,y] with x,y € (GL, x1) x 1, we see that
Gder 5 (SL,, x1) x 1. So we are good if we can show that an arbitrary scalar matrix

z2€ (G x1)x1cC(GL,x1)x1

is contained in G3°*. For this, consider the element Z € (1 x GL1) x 1 corresponding to z via G,,, = GLy
and observe that z = [j, Z]. O

Proposition 6.20. Let P be the image of the map GL; — GLy, x GL1, sending X to diag(), ..., \) x 2.
Then the center Zg, of Gn fulfills

Zg, =P x12GL.

Proof. First, consider a y = (g, 4) Xj € G, and compare y with ryr—!, where r = (diag(u, ..., p), 1) x1

is an element of G,, and for some p fulfilling ;2 # 1. This implies that y cannot be in the center, i.e.
that Zg, C G%. Solet x = (g, ) x 1 € Zg,, then we see that g € Zgp,, must be a diagonal matrix.
Comparing = and jzj, we see that (g, ) must be contained in P. It is easy to check that any element
in P x 1 is central. O

Recall that we consider a CM field F with maximal real subfield denoted by F'.

Lemma 6.21. Let ¢ € Galp+ be a compler conjugation and fir a topological field K together with a
continuous character x : Galp+ — K*. Let

p: Galp — GL,(K)

be continuous and absolutely irreducible and assume xp¥ = p°. (The latter condition means that p is a
conjugate self-dual representation.)

Then there exists a continuous representation
r: Galp+ — G, (K),
such that
o 7| Galp = p;
o (mor)|Galp = x| Galg;
e r(c) € Go(K) — G(K).
There is a bijection between the GLy,(K)-conjugacy classes of such r and K/K2, so in particular v is

uniquely determined (up to conjugacy) if K is algebraically closed. Moreover, if p is Schur, then so
57T,

Proof. This is [CHT08|, Lemma 1.1.4] in the formulation of [Geelll Lemma 5.1.1]. The last part about
Schurness of r follows easily from [CHT08) Lemma 2.1.3]. O
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Deformations We will be interested in deformations of G,-valued residual representations. In the
local split case, this becomes particularly simple: Let K = k be a finite field of positive characteristic
and let p,X,T be as in Lemma (but we put a bar over it to indicate that we consider them as
residual objects). Let A be the ring of integers of a finite extension of W (k).

Proposition 6.22. Let v be a place of F* which splits as vv° in F (in particular, we fix a place U
above v). We denote by T, the restriction of T to the decomposition group at v and by p; the restriction
of p to the decomposition group ot v. Fiz a lift x, : Gale — A* of moT,. Then

Ry w) = R (77) (6.4)
and ' ‘
HI(F,03) = H'(Fp.l,), 2'(F,65) = 2" (Fy.qt,)
for i € Ny.

(As usual, in the unframed situation our claim in (6.4 implicitly assumes that 7, is Schur.)

Proof. As Galp+ = Galp, is contained in Galp, the image of 7, (and all of its lifts) must be contained
in G2: The diagram

Gal s TX) QL (k) x QL (k)
Gu ()
Gn (k) 7.)27.

commutes and the resulting map Galp+ — Z /2Z is trivial.

As we fixed the multiplier character for the left hand side, it is therefore clear that there is a natural
isomorphism of the functors

Dy F,) = DY (7).

The last part is clear as we have an isomorphism of the Lie algebras gl,, & g¢°¥, compatible with the

action of Galp+ = Galp,. O

Let S be a finite set of finite places of FT which split in F. For each v € S fix a place ¥ of F' above v
and set S = {p|v € S}. For a global residual representation

T Ga1F+’5 — Qn(k)

we have defined what we mean by a lifting/deformation problem in Sections and [2.3] Proposition
justifies the following alternative characterization:

Definition 6.23 (Deformation problem, following [CHT08]). Fix a character x : Galp+ ¢ — A and
set x, = x| Gal Fif for v € S. Moreover, for each v € S fix a deformation condition D, for the functor

DX”’(D)(?V) = D/(\D)(ﬁ,;). Then the collection

S = (F|F*,S,8,A,7,x,{Dy}ves)
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defines a deformation problem for the functor D/(\D)(F) as follows: A (framed) deformation r of 7 (to
some A € Cp) is of type .7 if and only if

o mor=x;

e foreach v e S, r| GaIF; is a deformation of 7, of type D,,.

In this way, we get a relatively representable subfunctor D‘Ay’(lj)(F) C DEF)(F) which fits in the frame-
work of Section For the framed functors, however, there is a slight discrepancy between our
conventions and the conventions in [CHTO08| which we will explain now.

Framing conventions Retain all notation from above. Let . be a global deformation problem in
the sense of Definition [6.23] Assume that 7" C S is not empty and recall our Definition for the
multiply framed deformation functor DET”/ (7) and its representing object R%T’/ (7).

Definition 6.24. A T-framed lifting (in the sense of [CHTO08| and with respect to x) of 7 to A € Cy is
a tuple (r, ay)per, where r is an G, (A)-valued lift of 7 and ay, € 1+ M, »,(m4) and where we demand
mor = x. Two framed liftings (r, @) er and (17, &) e are equivalent if there is a 5 € 1+ M, (my)
such that 7/ = BrB~! and o/, = Ba,, for all v € T. An equivalence class is called a T-framed deformation
and the corresponding functor is denoted by DET(F). If . is as above, this gives rise to a conditioned

deformation functor DET’y(F).
Proposition 6.25. DET’y( ) is representable by an object RET’ (7) which fulfills
RYT7(7) = RY™7 (7)[[ X0, -, X4]]

with t = #7T.

Proof. The statement about representability is contained in [CHTO8|, Proposition 2.2.9]. For the second
claim, consider for A € Cp the assignment

DF™7 (7)(A) — D™ (7)(A) x DITX(mo7)(A)

given by
(Tv (Tl/v /BV)T) — (Tv (TVv 6151))T) X (Xa (Xlla 652))T)7

where we split up 8 € G9(A) as g = (8, B?) with 1) € GL, (A ) and ) ¢ GLl(A). It is easily
checked that this provides a natural isomorphism of the functors RDT’ (7) and RET’ (7) x RYTX(moT).
We conclude from Proposition [2.4] that

RY™ () = RY™ (7) & RYTX(mo¥) = RY™ (F) @ A[[X1,. .., X4)). O

6.2 Automorphic forms and Hecke algebras

Recall from the beginning of this section that we are working with a CM-field F' with totally real
subfield F'™ and with an automorphic representation II of the group GL,(Ar). Let us impose

Assumption 6.26. 1. F|F* is unramified at all finite places;
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2. If n is even, then §.[FT : Q] is even.

This allows us to fix a definite unitary group H over Op, as considered in [Guelll, Section 2.1| or
[Gerl0al, Section 1.1], whose key properties we recall here:

e The extension of scalars of H to F'* is an outer form of GL,, /F™ which becomes isomorphic to
GL,, /F after extending scalars to F;

e M is quasi-split at every finite place of F'T;

e H is totally definite, i.e. H(F) is compact and

for all infinite places v of F'*;
e For any finite place v of F* which splits as 7¢ in F', we can choose an isomorphism
1t H(FF) =5 GLy(Fy)
whose restriction to H(OF;) provides an isomorphism H(OFJ) = GL,(OF;,);

Level subgroup Let us fix two disjoint finite sets Yy an, Yaux of finite primes of F'™ subject to the
following conditions:

e cach v € Yoy U Dayy is split in F|FT;
e cach v € X,x is unramified over £(v) in F1|Q;

o [F'(Cuuy) : F] > n for all v € Taux;.

We write 7 = Ypan U Xaux and fix for each v € T a place v of F above v.

For the remainder of this section, the letter U will denote an open compact subgroup U of H (A%, ).
For later applications, we will be interested in particular in the choice

USimsu) = || U

fin
VGPIF+

with:

If v is not split in F|FT, then U, is a hyperspecial maximal compact subgroup of H(F,\);

If v ¢ T splits, then Uy, = H(Op+);

If v € Yaux, then U, = 15" ker(GL,(OF,) — GLy(kr,));

If v € Syan, then U, = ¢;*(Iw), where Iw C GL,,(OF,) denotes the Iwahori subgroup.
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Weight In order to characterize the weight of our automorphic forms, let us first consider the following
parametrization based on Theorem (cf. also [Guelll):

1. Let w = (w,) € (z™+)Hom(F"R) then we denote by

goHFL) = I mEn= I u.® -S> [ GLwE) ¢ GLw)
T€Hom(F*,R) T€Hom(F*,R) T€Hom(F*,R)

the (complex) representation which is given by

o Whi=Q, W}
o o= []. fZT
2. Let £ be a rational prime such that every place v of F™ above £ splits in F|FT and fix for each
such v a place U of F' above v. Let K be a finite extension of Qy which is F-big enough (i.e.
contains the image of every embedding F' < K) and let w = (w,) € (Z™»)Hom(FEK) " Ty each

7 € Hom(F,K) we can associate a place v of F'™ above ¢ for which we have just fixed a place .
Denote this assignment Hom(F, ) — QI by 7+ w,. Then denote by

& HE) = [[HEH= [[et@) XS T [[ @)= J[ GL.(F

I/EQf+ VEQ;+ VEQF+ T€Hom(F,K) T€Hom(F,K)
g g s.t. wr=r

2 I crwk) c aLwh)
T€Hom(F,K)

the representation which is given by

e cach d, is the diagonal embedding;
° VV’C X, W,
= HT €g7'

3. The representation £X from above admits an integral model: There exists a finite free Ox-module
MO% and a representation

o< H(Ops) — GL(MZ¥)

such that
Es[H(Ops) = £5F ®o, K

Automorphic forms Denote by A(H) the the space of (complex) automorphic forms on H, such
that we have a decomposition
— @ 7_[_m(7r)
™

into isomorphism classes of irreducible representations of H(Ap+ ), each occurring with finite multiplicity
m(m) (see e.g. [Guell]).
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Definition 6.27 (Vector-valued automorphic form). Let w € (Z%+)Hom(F"R) ho o weight, then we
denote by S, the space of locally constant functions

f N H( %O+) — ng,\/
which fulfill
f(v.h) =7 f(h)  VheHAR,),ye H(FT).

(We denote by v the image of v under the canonical embedding H(F*) — H(FZ).) H(A%,) acts on
S, via right translation, and for a level subgroup U we denote by S, (U) the space of U-fixed vectors.

This allows us to give an H(Ap+) = H(Ap+ o) x H(A, )-equivariant decomposition

A(H) = D Wi @S,

we(Zn,+)Hom(F‘+,]R)

This, in turn, allows us to associate to an f € S, the (irreducible) automorphic representation (f)
which is uniquely characterized by the condition that it contains all vectors of Wl & f.

The main feature of H is the existence of an avatar (using the language of M. Harris):

Theorem 6.28. Let I1 be RACSDC automorphic representation of GLy, (Ar) of weight w € (2™ +)Hom(F.C)
in the sense of [CHTO08, Section 4J. Then there ezists an automorphic representation my of H(Ap+)
such that 11 is a base change of mg, i.e.

u .

e For each archimedean place v of F* and each place U of F lying above v, we have m, = s

e For each finite place v of F™ which splits as vv° in F', Il is the local base change of T ,;

o Ifv is a finite place of F* which stays inert in F and for which I1, is unramified, then 7, has a
fized vector for a mazimal hyperspecial compact subgroups of H(F,").

Proof. See [Guelll, Theorem 2.2| and [Gerl0bl Lemma 2.2.7]. O

Hecke algebras Fix a sets of places T = Yyan Ll Yaux (with corresponding level subgroup U =
US an,Sane)) and a weight vector w € (zn+)Hom(F.R) 55 above. For j € {1,...,n} and w a place of F
which is split over F'* and does not divide an element of 7, we consider the Hecke operator

G _ 7,1 (®F,L 0
T = [U.Lw ( : 1”) .U]
acting on S, (U).

Let 77 be a finite set of places of F* containing 7 and let % be a subring of C, then define the Hecke
algebra

AT (U) = im( AT je{1,... ,n},wePERHET] End@(Sw(U))>
where Pl;plit’T/ denotes the set of places of F' which are split over F'™ and which do not divide an
element of 7'. Besides #Z = Z we will mainly be interested in the case Z = O¢(v), where Og(yy is the
ring of integers of the following field:
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Definition 6.29. For f € S, (U) an eigenform (with respect to 2T (U)) denote by
Er = T(j) : 1 Plsplit,T
f- Q(af( Fw)|.]€{7"'an}7w€ F )

the number field generated by the eigenvalues a;(T) of T € “T[(U) acting on C.f. We denote by
E(U) the composite of the fields £f, where f runs through all eigenforms of S, (U).

Note that the definition of £(U) depends also on the chosen weight, but we suppress this from the
notation. Let us also list two well-known facts:

e There are only finitely many one-dimensional eigenspaces C.fi,...,C.f, contained in S, (U). In
particular, £(U) is a number field. Moreover, S,,(U) admits a basis of eigenforms, i.e. we can
choose the f1,..., f. such that

So(U)y=C.fi@e...aC.f. (6.5)
(This follows from the decomposition (3.1.1) of [Guell] together with Proposition below.)

e Any eigenform f € S, (U) gives rise to a Z-algebra homomorphism
or: PTLU) — W) T — ag(TF)

and it can be shown that im(py) C Ogy. Moreover, f is uniquely characterized by ¢ (up to
C-multiples).

(-adic models of automorphic forms During the course of this paragraph (which is based strongly
on Section 2.3 of [Guell]) we will use the following statid™| setup:

e / denotes a rational prime (fixed throughout this paragraph) which does not lie below 7 and such
that all places of Qéﬁ are split in F|FT;

e we fix a finite extension K of Q, which is F-big enough together with an isomorphism ¢ : K = C;
e we fix an f-adic weight w, i.e. an element of

(Zn,+)?0m(F,IC) _ {w e (Zn,+)Hom(F,IC) ‘ ch,i _ _g‘nn—i—s—

| V7 € Hom(F,K),i € {1,...,n} }.

Definition 6.30. For U a compact subgroup of H(A%, ) and A an Ok-algebra, suppose that either the
projection of U to H(F,") is contained in H(OF;) or that A is a IC-algebra. Then we define S, (U, A)
to be the space of functions

frHFN\HAR) — A®o, MJ*

w

which fulfill
wf(hu) = f(h)  VueUhe HAR),

where u, denotes the image of u under the projection map H(AY,) — H(F,").

13With “static” we mean that we don’t vary the prime £, in contrast to the bigger part of this section.
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As we are primarily interested in the choice U = U s, 5.0, With Yaux # (), our level will be “sufficiently
small” in the sense of [CHTOS], i.e. there exists a place v of F'* such that the projection of U to H(F,})
contains no element of finite order except the identity. Thus we have

Sw(U, A) >~ A ROk Sw(U, O;C).

(This is also true without a condition on U if we suppose that A is flat as an Ox-module, cf. [Gerl0al.)

The main connection with complex automorphic forms is given by the following proposition:
Proposition 6.31. 1. The isomorphism v gives rise to a bijection

L*—&- . (Zn,-i-)}:{om(F,lC) i (Zn,+)Hom(F+,R);

Hom(F',K)

2. For w e (Z™), there is an isomorphism of C-vector spaces

0. : C®x, Wf = Wy,
3. The assignment f > (h > 0y, (he.f(h))) provides an isomorphism of CH (A%, )-modules

L({1},0) : Us U,C) 2 8,5 (6.6)

which restricts to an isomorphism S, (U,C) = S+ @)V (U) for alevel subgroup U. (In these isomor-
phisms C is understood as a Ox-algebra via v and vf (w)" is defined by vf (w)Y; = =1 (W)Y 01 i)

Proof. See |Guelll, Section 2.3]. O

For w f¢, the Hecke operators T}J) from above also act on S, (U,Ok) C S, (U,C) and this action
commutes with the isomorphism . This motivates the following definition: Let 7’ be a finite set
of places of F containing 7¢ =T U Qf T and Z a subring of K, then define the Hecke algebra

T W) =im( q: AT j € 11, n}w e P — Endo (Su(U, o,c))).

Let f € S,(U,Ok) be an eigenform for this algebra, then we see, using the compatibility with the
isomorphism , that the eigenvalue for a Hecke operator T is given by ¢! (af), where f € 5+, (U)
is the corresponding complex automorphic form. In other words, we can interpret the map ¢ 7 from
above as

ol PTL(U) — WEU)) = E(U).

Note that we use the bold symbol T for complex Hecke algebras and the blackboard bold symbol T for
l-adic Hecke algebras.

Fixed type Hecke algebra We will finish this subsection by defining a slight variation of the above
Hecke algebra. For this, fix a finite set X C (77 — Qf ) of places of F' together with a tuple

o= (01),c5 (6.7)
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where each o, is a complex representation of GL,(Op,). Let
o5 (U, Ox) C S, (U, O)

be the subspace of those f € Sy, (U, Ox) whose complex correspondents f (via ) fulfill the following
condition for all places v € X: If 7, denotes the local component of the automorphic representation

7= (f) at v, then m,|GL,(OF,) contains ¢, as a subrepresentation. Note that the Tgﬂ) (for w in

Pl;plit’T/) stabilize the subspace ;5. (U, Ok), so we can define

AT W) = im( oq: ZITE) G € {1, ,n}w € PIFHT] — Endoy (68w (U, Ox)) ).
We easily see that the assignment q(Té,jw)) — gq(T}({U)) defines an Z-algebra surjection

o0 217 (U) — 2717 (U). (6.8)

Q
€

Thus we can note the following (for Z = Ok):

Observation 6.32. 1. Assume that O<T7'(U)y = Ok holds for any maximal ideal m ¢ <T7'(U).
Then <T7'(U), is a quotient of Ok for any maximal ideal n ¢ 9<T7'(U). (This follows from

g

the fact that the completion process sends surjections to surjections.)

2. In the same way as for O<TT'(U) (see Corollary below) we can check that S’CTZ,(U) is

torsion-free and finitely generated. As Ok is a discrete valuation ring, it follows that S’CTZ’(U )
is free and finitely generated. Hence, the following strengthening of part 1. holds: Assume that
O TT (U)m = Ok holds for any maximal ideal m C O<T7(U). Then 5T/ (U)n = Ok holds for
any maximal ideal n C QO’C’]TZ:/(U).

6.3 From automorphic forms to Galois representations

Proposition 6.33 ([CHT08, Proposition 3.4.2 and 3.4.4]). Let m ¢ O<T/f(U) be a mazimal ideal.
Then there exists a representation

pum - Galp — GL,, ( OKTB(U)m)

(where the subscript-m denotes the completion, so that the coefficient ring of the general linear group is
an object of Co,. ) with the following properties (the first two already characterize py uniquely):

1. pw is unramified at all but finitely many places; If a place v of F' is inert and unramified in F
and if U, is a hyperspecial mazimal compact subgroup of H(F,"), then py is unramified above v;

2. If a place v ¢ Ty splits as vv° in F, then py is unramified at v and pn(Froby) has characteristic
polynomial

1-n,

3 P E @€
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4. Fiz a set of primes ﬁéﬁ of F such that ﬁfﬂr U (~25+’C = Q{ and denote by I, the set of embeddings
F — I which give rise to an element of Q{+. Suppose that w € Qf+ 15 unramified over £, that

Ugs = H(Op+ 5) (where W denotes the place of F* below w) and that for each T € I, above w we
have

E—l—n2g771 > 2w, >0
Then, for each open ideal I C O’CTZ}(U)
(Pm @ 072 1 O TTH(U)/1)| Gal(Fu) = 6, (M, 1,0)
for some object My 1.4 of MFo, o

If m is non-Fisenstein in the sense of [CHT08, Definition 3.4.3], then both pw and its reduction extend
to

rm : Galpy — gn<ofc’1rZ}(U)m)

and

P Galps = Go( OTL(U) /m),
where the coefficient ring of the group in the last case is a finite extension of ko, , hence of IFy.
We can visualize the compatibility of this theorem with the assignment from Theorem as follows:

e Recall that ITis a RACSDC automorphic representation of GL,, (A ), admitting an avatar mo = (f)
via Theorem Denote the level of f by U and the weight by w.

e For each finite place A of £(U) we fix an F-big enough field extension Ky of £(U)x. Our initial
choice of isomorphisms (i), between @, and C thus provides us with isomorphisms ¢, : K, = C.
We denote the corresponding isomorphisms between the complex and the f-adic weights from

part 1 of Proposition by At

e For each place A as above, denote by A’ the place of £f lying below A and by F) the residue field
of £ FN -
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Then the following diagram commutes:

(i : Galpe = Gu(Ep ))XeA1
gf

(2)
(1) \\/\\’\/\\/\x

1 C A(GLy(&7)) (P« Galer = GulEr))
r
(4) 3(3)
7o C A(H(Ap+)) (?H,A : Galp+ — gn(Fé()\)))/\eAl
£(U)
(5) ?(8)
(f( S S(.J)\(Ua (C)))\EA}:(U) (me,k : G31F+ — gn(kmf’k)))\eA}:(U)
(6) %
(rwA - Galpy — gn(Amf,A))AeAé(w
(6.9)

where

e (1) denotes the association induced by Theorem [6.4] .

e (2) and (7) denote the respective reduction processes;

and (8) are the appropriate inclusions into the algebraic closure;

)
)
)
)

(
(
e (3
(4) denotes the association of an avatar to II, cf. Theorem
(

5) comes from the identification of complex automorphic forms with f-adic models from Propo-
sition [6.31} (here, wy is short for yei " ' (wY).)

(6) maps each fO to Tm;, Vvia Proposition where my ) is the unique maximal ideal of
OraTL (U) containing

pra = ker(g:fm : O’CATZ‘;(U) — ICA>.

A denotes O« TZ}; (U) and kn, , denotes O’C"]I“Z}’A (U)/mg .

msA Mg A mE

6.4 Isomorphism theorems
6.4.1 A (conjectural) minimal R =T theorem

For this section, we keep the following list, which is in part a repetition of the notation and assumptions
made up to here:
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R.1) ¢ denotes a rational prime fulfilling ¢ > max(2, n);

R.2) F denotes a CM field of the form F = F1E for a totally real field F'* and an imaginary quadratic
ﬁeld[lz] FE in which £ splits.

R.3) Assumption is fulfilled: F|F* is unramified at all finite places and, if n is even, then also
Z[Ft : Q] is even.

R.4) We fix a finite non-empty set Yyan C (Plfﬁ —Qf+) such that

i) each v € Yyay splits in F|FT;
ii) if n is even, then
g[F'|r 1 Q) + #Xran = 0 mod2;
(Of course, assuming condition R.3, this simply amounts to #X,a, being even.)
R.5) We fix a finite non-empty set Yauy C (Pl’;ﬁ —Qer) of primes which split in F|FT, which is disjoint
from X, an and such that
VE Yaux = [F(CZ(V)) : F] > n.

R.6) We consider the sets T = Xaux U Xram, Tr =T U Qf+ and lifts 7~E@) C Plg of the same cardinality
as T(y such that 775) L 7?;) contains precisely the places above 7).

R.7) We fix a weight w and the level subgroup U = Uy, ~..,) a8 in Section .

R.8) We fix a number field £ containing the Hecke eigenvalues of all the (finitely many) eigenspaces of
weight w and level U, i.e. £ D E(U).

R.9) We fix a prime \ € Qf and a finite extension ICy of £, which is F-big enough. We denote by w)
the f-adic weigth corresponding to w via part 1. of Proposition m (with respect to our choice
of ,C)\)

Let m be a non-Eisenstein maximal ideal of 9% ']I‘Z,?A (U) in the sense of [CHT08], Definition 3.4.3, and set
ky = 9%a ']I‘ZZA(U )/m. This implies that the associated residual Galois representations p,, is absolutely
irreducible and that we have an extension T to G, (ky) as in Proposition [6.33] We will assume

R.10) The image X, := py,(Galp(c,)) is adequate in the sense of Thorne [Thol5, Definition 2.20]:

o H'(Xy, ky) =0 and H'(X,,gl°) = 0;

e For any simple k)[X,]-submodule W C gl,,, there exists a semi-simple element o € X, with
eigenvalue a € ky such that tre, oW # 0. (Here, e, € gl,, denotes the unique idempotent
in ky[o] with image equal to the a-eigenspace of o.)

R.11) For each v € Yauy, py 1S unramified at v and

HO(FV7 ad(ﬁm)(l)) =0.

'4We remark that this assumption does not introduce a loss of generality as the existence of such an E can be guaranteed
by arguments as in [Tay08| Theorem 5.2[; see also [Guelll, proof of Theorem 4.1].
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R.12) For each v € Yyan, Py, is unipotently ramified at v (cf. Definition 4.25f recall in particular that
this includes the possibility that p,, is unramified at v).

Remark 6.34. We remark that we will later consider a compatible system R = (py) AEPIfn where for
almost all A the representation p, will fulfill conditions R.1 - R.12, presuming Assumptlon 6.6

Remark 6.35. Observe that condition R.11 implies
H°(Galp,, k(1)) =0

for ¢ Jn: For such an ¢ one has ad(py,) = ad’(p,) © kx and hence ad(py)(1) = ad®(5y,) (1) @ ka(1).
Therefore

0 = HO(Fy,ad(7)(1)) = HO(F,, ad(5,)°(1)) & HO(F,, k(1)
Now, recall from [CHTO08, Chapter 3.5] that mo 7y, : Galp+ — G, (ky) — GL1(k)) equals 61 ”5;TF+
a suitable element juy € Z/2Z and where dpjp+ denotes the non-trivial character of Gal(F|F*). We
consider the global deformation problem

for

SMmers — (F|FY, Ty, Ty, Ok, Ty € "0k, {D})

which parametrizes deformations of 7, to coefficient Oi-algebras which are unramified outside 7Ty, of
determinant 7, Ee ”5;‘[}3 + and which fulfill locally the condition D,,. Here, D, parametrizes
e arbitrary lifts, if v € Yauy;
. . . . . Ft
e crystalline lifts in the sense of Section , ifveQ ;

e minimally ramified lifts in the sense of Section if v € Xran.

The associated deformation functor is representable by an object we call R™™*¥s(7 ) (or, closer to our
e "ot {Du}

notation from Section RT el (Tm))-

Remark 6.36. We remark that we can equivalently consider 7, as a representation of Galg7, and
waive the constraint that our deformations must be unramified outside 7;, as we did already during
Definiton This is mainly a matter of taste, but the convention we take from now on (that 7p
is a representation of Galp) has the advantage that it fits more nicely with the concept of residual
representations occurring as entries of a compatible systems.

Let Sran = {7 | v € Sran} denote the set of fixed lifts of the places in Lray to F.
Conjecture 6.37. Assume the notation and all assumptions from the list R.1-R.12. Then there exists a
tuple 0 = (0),,c5,  asin 1} such that there is an isomorphism

Ok
a

Rmin,crys (?m) i x']rzz/\ (U)n

and i =n mod2. (Here, n denotes the image of m under the projection ,6 from (6.8).)

Remark 6.38. We remark that this conJecture becomes more convincing in light of the fixed-type
deformation condition at the end of Section For each v € Y, there exists an inertial type 7,
associated to py , in the same manner as we d1d in preparation for Theorem @ To each 7, one
can associate a certain representation o, = o(7,) of K = GL,(Op,) (which is then the K-type of the
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GL, (F,)-representation associated to an extension of 7, to Galg, ). (For more details on the construction
of the K-type o(7), see [Shol5l, Section 4.6], [BC09, Section 6.5.2],[SZ99] and our Remark below.)

. 0 A . . .
Now for the tuple o = (0,) we conjecture that _ *T7¢(U), is isomorphic to a deformation ring

VEXran
parametrizing lifts of 7, as in S™™TYS above, but with the requirement that the associated GL,-valued
representation p, at v is a lift of type 7, of p, ,, (instead of being minimally ramified). (This conjecture
is plausible in light of [Sholbl Theorem 2.16] together with a suitable local-global compatibility.) Our
wording of Conjecture in terms of minimally ramified deformations is then justified by Theorem

together with condition R.12.
Remark 6.39. Recall the following:

e Consider the finite general linear group & = GL, (¢(v)) and its standard Borel subgroup 8 C &.
Then the irreducible constituents of the (complex) representation ind (1) are called the unipotent
representations of &. These representations can (canonically) be parametrized by the irreducible
representations of the Weyl group W(®) = S,,, see e.g. [Prald, Corollary 4.4]. The irreducible
representations of \S;, in turn can be parametrized by partitions of n in terms of Specht modules,
cf. [JK81]. In other words, we get a canonical bijection

h:Y, = Rep(@)‘mi,

where Rep(®)* denotes the set of all unipotent representations of & up to isomorphism. The
map h can be explicitly described in terms of induction from certain Levi subgroups (see [Shol5]
Definition 4.34|) and sends (1,...,1) to the trivial representation and (n) to the Steinberg repre-
sentation.

e Under the unipotent ramification assumption, the set of inertial types 7" is in bijection with
the set ), of partitions of n via the map V, cf. Section [{.4.1]

Then
indf (1) = infi§ ind§(1) = P mqinfl (),
mERep(®)unt

where I C K denotes the Iwahori subgroup, inﬂg denotes the inflation along the pro-£(v) radical of
K and the m,; > 1 are suitable multiplicities. Analogously to [BC09, Remark 6.5.2 iii)| one can thus
check that the assignment 7 +— o(7) is described in terms of partitions as

7+ o(7) = infl§ (ho V(7)).

Observe that the special case n = 2 of Remark is precisely [BC09, Remark 6.5.2 iii)] and [Shol5l
Example 2.17].

6.4.2 A T = O-theorem

Retain the notation from Section

Proposition 6.40. 1. Let K|E(U) be a field extension. Then

Ok ®0,y, COTLU) = O TL(U) and K ®o,,, O TL(U)= X TL(U).
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2. There exists a constant C depending on ©£@) TZ;(U) such that the following holds for all places A
of E(U) which fulfill £ := ¢(X\) > C: Let K be an F-big enough field extension of E(U)y, then

Ok ®O£(U) Oew) TZ(U) = O}CTZ;Z)\ (U)
Proof. Concerning part 1., we will only prove the K-case (the other case being analogous). First recall

from Section that S, (U) admits a basis (f1,..., f,) consisting of eigenforms for “=@TT (U). As
all eigenvalues are contained in Og gy, we can consequently embed

OenTT (U) — Ogwy X -+ X Og(rny (r factors) (6.10)

as Og(y)-algebras. K is a torsion-free Og(rr)-module (hence flat, as Og(r) is a Dedekind ring), so this
gives an injection

K @0y, COTLU) = K @0, (Ogwy % - % Ogry) 2K x ... x K.

The image of this map clearly lies in ¥ TZ;(U ) and contains all the operators TIE{U) , hence it equals
KTZ(U). Concerning part 2., we conclude from the inclusion that =) TI(U) is finitely gen-
erated as a Z-module, hence as a Z-algebra. It follows that there exists a Sturm-like bound C such
that Q2 TT (U) is already generated by those Tgu) for which ¢(w) < C. Hence, using part 1. and the
compatibility from Proposition [6.31] we see that

Ok @04 1) OeanTT(U) = O R0, OeanTe(U) = O’CTZ}’A(U). O

Now let E D E(U) be a number field with ring of integers Op. We get the following corollary:

Corollary 6.41. 92 TT (U) is finite and torsion-free as an Og-module and E@p,, ©F TT(U) is semisim-
ple (so, in particular, we have a decomposition

E®o, CFPTL(U) = ky X ... X kp (6.11)
as a finite product of fields.)

Note that the k; are in fact isomorphic to E (as we supposed E D E(U)).

Proof. That ©% TZ:(U ) is finite and torsion-free follows directly from the proof of Proposition So let
us show that E®p, 2T (U) is semisimple, i.e. that its Jacobson radical is trivial. As E®e,, 2T/ (U)
is commutative and finitely generated over F, the Jacobson radical equals the nilradical, so we have to
prove that E ®0, 2T (U) is reduced. But by the above it is clear that E ®0, “#T7(U) does not
contain nilpotent elements. The decomposition as a product of fields follows from the Artin-Wedderburn
theorem. O

For the following, let T be an Og-algebra subject to the following conditions:

e T is finite and torsion-free over Og;
o F®p, T is semisimple (so, in particular, we have a decomposition
E®o, T=k x...xkp (6.12)

as a finite product of fields.)
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By Corollary [6.41] T = ©2T7 (U) fulfills these conditions, and this is the choice for T we are interested
in. However, we choose to use this more general characterization in order to simplify the notation in
the following proof and to emphagize that we only use these two formal properties of T.

Theorem 6.42. There exists a constant N (depending on T) such that, for all places X of E fulfilling
(X\) > N, we have a decomposition

m n;

Op, @0, T= [ ] Oriss (6.13)

i=1j=1

of Op, ®oy T as a product of finitely many complete discrete valuation rings over Zyy).

Proof. By the semisimplicity of £ ®o, T, there exist orthogonal idempotents e1,...,e, € E ®o, T
which fulfill ), e; =1 and

ei.(E RKog T) = k.

Therefore, we can find a constant N € N such that e;,...,e, € T [%] and
T| L :é ei.(T kS )- (6.14)
N et N

Thus we see that for each A with ¢()\) JN tensoring with O, over Op [+] yields an isomorphism

r
OE)\ RKog T = @ 61'.((9]5A Rog T)
=1

Now comnsider the embeddings

1 en (T M) — o, m

fori = 1,...,r. As T is finite and torsion-free over O, it is finite and free as a Z-module. Hence

T [%] is finite and free as a Z [%]—module. Moreover

Q.eir(T M) ks,

so we see that both ei.(T [%]) and O, [%] are 7 [%]—orders in k;. In particular, they are both free

Z |+ ]-modules of the same rank (say, ¢;). So let us write Oy, [+] = Z [%]t’ and consider J; = im(z;)

as a submodule of Z [%]tl

Now, by the elementary divisor theorem for finitely generated Z [%}—modules, we see that
t; 1
) = @uz|y].
7j=1
ST 1
cok(y;) = ]@1 Z [N] /d;Z. [N} ,
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where all d; # 0 (as ¢; is injective and rk ei.(T [%]) =1k Oy, [%]) and where di|...|d;,. After possibly
multiplying by suitable elements of Z [%] * we can additionally assume that dj € Z and (d;,N) =1
for all j. Thus we get

t; _1 t;

cok(s;) = @Z[ }/dz[ﬂ @(Z/dZ)[] e, @Z/dz

7=1

(Alternatively, we can use the general fact that finitely generated torsion Z [%]—modules are finite.)
The same argument applied to @®;¢; instead of ¢ yields

c= #cok(@ Lz‘> < 00.

i

Thus, after replacing N by ¢N we see that the ¢; become isomorphisms and hence (6.14)) implies

T 1 T
Op, ®o, T =P Op, ®o, O, [N} = Ox, ®o, Ok,
i=1

=1

for all A with £(\) > N.

Now we use the following general fact: If K3|K; is an extension of number fields with rings of integers
Ok,, Ok, and if p is a place of K, then

Ok, ®0y, Ok, = H OKy -
PBlp

(This follows from [Ser79, Ch. 2, §3, Proposition 4].) This implies the decomposition in (6.13). Moreover
(after enlarging N if necessary) we can assume that the extensions k;|Q are unramified at all primes
not dividing N. It follows (e.g. from [Ser79, Ch. 2, §3, Theorem 1 (ii)]) that all the rings occurring
on the right hand side of are unramified extensions of Zj(y), 1.e. are complete discrete valuation
rings. O

Corollary 6.43. Write Oy = O, for a place X of E. There ezists a constant C' such that
AT (U)m =2 O

holds for any place A of E and for any mazimal ideal m C OV]I‘Z}A(U), as long as L(N\) > C'.

Proof. Using Proposition and Theorem (with T = ©2TT(U)) and observing that all the k;
in (6.11)) are isomorphic to E in this case, we see that for each A with £(\) > C' := max(C, N) we get
an isomorphism

ATl (U) = oF.

The claim follows. O
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6.4.3 An R = O-theorem and independence from the auxiliary primes

Definition 6.44. Let f € S,,(U) be an eigenform (for some level subgroup of the form U = Us__, s...)
and let ¢ be a rational prime. We say that a place v ¢ Yyan U Qf+ U ng of F* is (f,{)-auziliary if it
fulfills the following two conditions:

e v splits in F|FT (as, say, vi°);

e For each place A of £(U) which fulfills £()\) = ¢, the residual representation py , associated to f
is unramified at v and its zeroth cohomology vanishes:

H°(Galg,,ad(p;,)(1)) = 0. (6.15)

The significance of the (f, ¢)-auxiliary condition is reflected by:

Proposition 6.45. Let v be (f,{)-auziliary and X € Plgyyy a place above £, then the canonical surjection
h: RO(5; 5] Galg,) - RO (5| Galr,)

is an isomorphism. In other words: Any lift of ps | Galg, is automatically unramified.

Proof. This is seen as follows: First remark that Gal = Gal(F}"|F};) = Z and the corresponding
framed deformation ring RP(p; ,| Gal ) = RP™ (p; 5| Galp, ) is formally smooth of dimension d™ = n?
(cf. Remark and Lemma . By Assumption , also the unrestricted deformation ring is
formally smooth of dimension d = Z'(Galp,,ad(p;,)). Therefore, we are good as soon as we can show
that d = d™* (cf. Lemma [2.18)). For this, we remark that the coboundaries

— — GalZ" — _
B' = ad(py.)/ ad(py.) “"F = ad(p; )/ ad(py ) EFs

are the same in the unramified and in the unrestricted situation (because p;, was assumed to be
unramified at v). Thus we have the following diagram

" ZN(Z,ad(py ) H(Z,2d(py,5)) ——=0

|

0—— Bl e Zl(GalFZ;, ad(ﬁf)\)) e Hl(GalFf/, ad(ﬁf,)\)) ——0

where the vertical maps are the inflation maps along Galp, — Galp, / Galpyr = Galf. But, by the
local Euler-Poincare formula, we know that

e dim H'(Gal},ad(p;,)) = dim HO(GaIFDm, ad(py,)) = dim H%(Galp,, ad(ps));
o dim H'(Galp,,ad(p;,)) = dim H°(Galp,, ad(py,)) + dim H?(Galg,, ad(ps))
R dim H%(Galg,,ad(p;.)).

Thus, the outer vertical maps are both isomorphisms, hence the middle map must be an isomorphism
as well and we have d = d™. O
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Now, let f € Sa(Up) for Uy = Uy, . For a finite collection ® of (f,¢)-auxiliary places, denote

Up = Us,,,s. For any place A of £(Ugp)y with () = ¢ and any extension E|E(Us)s we have an
embedding

OETL (Ug) — BT (Us).
Let mgq (resp. mysg) be the maximal ideal of OE']I‘Z}A(UO) (resp. of OE']I‘Z}A(U@)) containing the kernel
of ©Lf-
Proposition 6.46.

OETZ})\ (UO)mf,o = OETZJZJ)\ (Uq))mfﬂ"

Proof. We claim that the canonical injection

%8 TZ})\ (Uo)mf,o — OETZ;Z)\ (U¢)mf,¢

is surjective: Any counter-example to this claim would lead to the existence of an eigenform
9 € Su(Us) — Suw(Uo)

such that ms e = my ¢. But then (cf. Proposition , the f-adic Galois representation pg ¢ lifts py .
Then Proposition tells us that p, ¢ is unramified at each v € ®. Using the local-global compatibility
of the Langlands correspondence, this implies that the local parts II,, must be unramified for v € @,
where II denotes the cuspidal automorphic representation generated by g, i.e. we get that g € S,,(Up).
This yields a contradiction as desired. O

Corollary 6.47. Assume that £ > C', where C' is the constant from Corollary[6.45 for U = Uy. Then

OETZ},\(U@)mﬁ@ = OE'

Let us subsume our observations so far (translated to the G,-valued family using Proposition |6.22)):

Theorem 6.48. Let Uy = Us,_ ¢ be a congruence subgroup and f € S,(Ug) be an automorphic form
such that 11 = (f) is a RACSDC automorphic representation which is unramified outside Yoy and
unipotently ramified at the places in Yran. Let us assume Conjecture and fix for each place A of
E(Uy) the following data:

o An (f,0)-auziliary place vy such that [F(Q(VM)) : F) > n;
e a finite field extension Ky of E(Up)x which is F-big enough.

Write Uy, = UEram,{w,l} and denote by mys C Orx TZ,Q; (Uy) the mazimal ideal which contains the kernel

of wy. Then there exists a constant K, depending on f,Uy and w, such that
E()\) > K o= Rmin,crYS(?mfﬂ)\) o~ O/C,\7
where RBi™CTYS (me‘)) is the universal deformation ring of Twm,, corresponding to the deformation con-
dition . B
Sl)r\llmcrys = (F’F+7 727 Tv OICA7?W7 61_n6';'r|np+7 {DIJ})
considered in Section (with T = Eran U {ra1}).

Proof. This is a combination of Conjecture Corollary and Observation [6.32] O

110



6 UNOBSTRUCTEDNESS FOR RACSDC AUTOMORPHIC REPRESENTATIONS

6.4.4 Congruences between automorphic forms and minimal ramification

Consider two eigenforms f1, fo € S,,(U), where U is a level subgroup of the form Uy, s, (and, as
before, we write 7 = Yyan U Yaux)-

Definition 6.49. Let A be a place of £(U) and set £ = ¢()\). For i = 1,2 consider the maps
by, P (U) — Ogy, — Fe

assigning to a Hecke operator T' the mod-A reduction of the eigenvalue of T" acting on the f-adic model
fi of fi. We say that fi and fy are congruent modulo X (in symbols: f1 = fo) if 1y, = 1)4,.

Remark 6.50. It seems most natural that one uses the same embedding Og ), < 68([])/\ in the
definition of ¢y, and typ,. If one allows different embeddings, then ¢y, = ¢, for some o € Galg. But
then ¢y = vgs where fJ is a form conjugate to fo. If f§ was then equal to f1, this would simply
describe a trivial congruence of f with itself, which is not interesting. If f§ # fi, then f§ is congruent
to f1 modulo A in the above sense, i.e. there is an interesting congruence in the sense of Definition [6.49]

We prove the following lemma under the condition ¢ > 0 (or, more precisely, £ > C, where C is a
Sturm-like bound depending only on @c@ T (U)):

Lemma 6.51. The existence of a congruence f1 =y fo with £ = £(X) > 0 implies that there exists a
mazimal ideal N in OS(U)TZ(U) which contains £ and both p; = ker 90}1 and ps = ker <p’f2, where

¢ o OO TL(U) — Og
1s defined by sending a Hecke operator T to the eigenvalue of T acting on f;

Proof. TFirst, recall that ©¢ <U>TZ(U ) is finitely generated as a Z-module. Hence there exists a constant C'
such that 9£w >TZ:(U) is already generated by the Hecke operators T }{j with 7 < C. In particular, we get
isomorphisms Of(U)TZ}’(U) =~ OeanTT(U) for all primes £ > C. (Recall that we defined Tp = T U QL)

The claim now follows from the commutative diagram

OS(U))\TZ;Z/\(U) %65([])/\ HFK ,

T o, j A

CeanTll(U)  —Ogy

ooty oo

where the concatenation of the two upper horizontal maps is the obvious continuation of 1y, to
Oc ), 'JI‘E; (U). The assumption fi =y fo implies ny, = ny,. So we see that the congruence condi-
tion implies that py and po are both contained in the maximal ideal kern;, = kerny,. O

Lemma 6.52. Let A be an algebra that is finite flat over Z and let p1,po be two distinct minimal primes
of A. Then there are only finitely many mazximal ideals of A that contain both py and po.
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Proof. By the going up and down theorems for A/Z (using finiteness and flatness), one can easily check
that the ring A has dimension 1, and that the minimal primes of A are in bijection to the maximal
ideals of the Artinian ring A ®7 Q. We need to show that B := A/(p1 + p2) contains only finitely many
maximal ideals. It suffices to show that B is finite. Since B is finitely generated over Z, we need to
show that B ®7 Q is zero. However, A ®7 Q is an algebra that is finite over Q, and hence a finite
product of local Artinian rings. In particular, the sum of any two distinct prime ideals of A ®z Q is all
of A®zQ, i.e. such ideals are relatively prime. It follows that B ®7 Q is zero, as was to be shown. [

Corollary 6.53. Presume Assumption and Conjecture [6.37. Then Assumption holds for the
compatible system Ry = (pf/\))\eAé(U) attached to I1 = (f).

Proof. By Conjecture , we know that for almost all A € A<1€(U) we can find an automorphic form

n

g™ such that Py 1s a minimal lift of py . Denote the finite failure set by X' C Plg(U). We enlarge
X' to
X =X'U{\|t) <O},

where C is the constant from (the proof of) Lemma [6.51] Then, any place A ¢ X at which py ) is not
a minimal lift of p; ) gives rise to a non-trivial congruence in S,,(U), i.e. to a triple

(£,9M,2) € Su(U) x 8u(U) x PIFyy fulfilling f # g™ and f =, gV, (6.16)

By Lemma , this implies the existence of a maximal ideal ) TT (U) containing £, p; = ker gplfl
and py = ker ¢’y , as long as £ is not contained in the finite failure set X ={{N)|)e X} C Pl%n. As
there are only finitely many eigenspaces in S, (U), Lemma with A = 2@ TT(U) implies that
there are only finitely many triples as in (6.16]). (Here, we tacitly identify triples of the form (f, g, A) and
(z2.f,2".g,\) with z,2" € C*, as they represent the same congruence condition.) The claim follows. [J

6.5 Unobstructedness of the minimal deformation rings

Finally, we are in a position to formulate and prove our main result. For this, recall the partial
compatible system Ry = (ﬁA)/\eAg associated to II by () and the G,-valued family (FA)/\EA}g' IfT

is a set of places of F', we denote by T the set of places of F'* below T. First we make the following
technical assumption, which will be revoked later on:

Assumption 6.54. Each place v € Sty o0 = ?HI_IQOFO+ splits in F|F'T as, say, v¢. (For Qf;, this splitting
is automatic, so we only put a constraint on Sty here.)

For each )\ € Aé, we consider the global deformation problem Dy = {D, ,}
parametrizes

VES o for 7y, where D, ,

e arbitrary lifts of p, 5, if v € QOFO+;
e minimally ramified lifts of p) ; in the sense of Section , if v € Sp.

Write x for the character 61_”6%?2(12) of Galp+. We now compile the necessary assumptions for
Theorem [6.56}
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Assumption 6.55. 1. (Irreducibility): Assumption holds: The set of places Ag, where our
residual compatible system is absolutely irreducible has Dirichlet density 1;

2. (Availability of a minimal R=T-theorem): Conjecture holds;

3. (No consecutive weights): The sets of Hodge-Tate weights HT, of the system Ry fulfill (for
all embeddings 7) the condition from Theorem If two numbers a, b occur in HT -, then either
a=bor|a—0bl>2

4. (Disjoint ¢-orbits): For v € Sy, let (r,, N,) be the Weil-Deligne representation associated to
II, via the local Langlands correspondence. Write

%Vy (O(V) 07 v
ry(Frob, ) ~ SR with #},,(a) = !

My, (o) agy
Then, for all v € S and for all 0 < i # j < kY, the g-orbits
gof ={qp-af |a€Z} and qrof ={q}.a} | acZ}

are disjoint. (This is Assumption 4.37).

(Observe that the first two parts can be understood as general conjectures, while the last two parts put
a constraint on our choice of II. Observe also that the first part implies that Aén has Dirichlet density 1

by Lemma ) For the next theorem, we set ?mg =S U Qf+ U ng.

Theorem 6.56. Presuming Assumptions and there exists a subset Agn C Aén of Dirichlet
D§H’£7X:D>\

density 1 such that the functor DSH%W(I@)

(7x) is globally unobstructed if A € Agn.

As afirst step towards the proof, consider the following assumption and the following alternative version
of Theorem [6.56}

Assumption 6.57 (Unipotent ramification). For all v € Sp, the Weil-Deligne representation (r,, N,)
associated to II at v has trivial restriction to the inertia subgroup. In particular, for any choice
A E Aln, v € Si with £(\) # ¢(v), the representation p,| Galg, is unipotently ramified.

Theorem 6.58. Presume (in addition to Assumptions and [6.55)) that Assumptions[6.26 and[6.57

hold. Then there exists a subset Agn C A}:H of Dirichlet density 1 such that for all \ € Agn the following
holds:

DgH,Z’X’D)‘

§H>27W(kk)(ﬁ\) has vanishing dual Selmer group;

o forallv e wa the local deformation ring REV’E%)(FA?V) 1s relatively smooth.

Before we come to the proof, let us introduce a new notation:

Definition 6.59. Let A be the valuation ring of a finite extension of Quot(W (ky)) and let L™ be a
finite, totally real extension of F'*. Fix two finite sets of places X C S C Plp+, a residual G, (ky)-valued
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representation 7 of Galp+ and a global deformation condition D = (D,)),ex, where each D, is either the
minimally ramified, the FL-crystalline or the unconditioned local deformation condition. We denote by

LY RIS O gy . OGPy Gl )

the deformation ring of p| Galy+, where S’, ¥ denote the sets of places of L above S,¥, and where
D' = (D!,)yesy with D!, parametrizing arbitrary (resp. minimally ramified, resp. FL-crystalline) lifts
of 7| Gal, + if D, parametrizes arbitrary (resp. minimally ramified, resp. FL-crystalline) lifts (for v
the place of F* below ). We use an analogous notational convention for the deformation functor (“D

instead of R”) and for the associated GL,,-valued representation (“p instead of 7 and L = F.L™ instead
of L),

Proof of Theorem assuming Theorem [6.58 The key observation is that we can always attain the
situation of Theorem by a finite solvable base change by using Lemma and Corollary
There exists a totally real field Fl+ which is a finite extension of F' such that Assumptions
and are fulfilled for the compatible system associated to the base change Iy, of Il to F} = FfrF
Now we use the unobstructedness framework from Section applied to the following functors:

D§H £7X7'D>\ (7 )
_ \):
St,e, W (kx) A

T VPR (Fy) = DDgH"ﬂX (7y), i.e. D? denotes the unconditioned deformation condition
SmeW(ka) Y N T TS Wik VA T EA
for 7y;
Oz x| Gal_,Dy(F1) Os. ,XDx
ST.e Fy _ Ft ST /
_ b 7| Gal = D_"" 7y ), where ST denotes the places of Fj above
Si—[l,W(kk) ( A’ FlJr) SH,va(kj)\)( )\)7 I p !

St and where Dy(Fy) = (D)) denotes the deformation condition defined analogously

vEST o

to Dy, i.e. parametrizing deformations of 7| Gal,+ which are minimally ramified at gi‘{ and
1

unconditioned at the infinite places;

0
Df/n,z’)d Galpt Dy (F1)

0
5 + Osp 00X

(Tl GalFf) =" D_ (7)) i.e. D?\(Fl) is the unconditioned deforma-

?H,Z:W(lﬂ) St,e,W (kx)

tion condition for 7| Gal+.
1

Now by Corollary Assumption Mholds. Let X C Plgﬁ be the finite failure set from Assumption
4.45] then by our local R = R™?®-result Corollary we have isomorphisms

D§ XD D§ 7X7D9
St gy posme R gy (6.17)
St,e,W(kx) St,e,W (k)
_ _ 0
Fi ESH,Z’X’D)\(Fl) m) Fi E'SH,e’X’DA(Fl)(?A) (6.18)
St,e,W (ky) St,e,W (kx) ’ )

for all A € Aén — X. It is clear from the definition that D?\ is a pre—dual—D?\(Fl)—condition, so it follows
that for A € Aén — X also D, is a pre-dual-Dj (F7)-condition.

Therefore, after eliminating the finitely many places which are not coprime to [F;" : F¥] or which are
contained in the failure set X, we can use the potential unobstructedness framework from Section
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DEI_LZ?X?/DA - DgH,Z»(;D/\(Fl)

St,e, W (ky) (72) Dgn,z,W(’fA)
group. This implies that there is no loss of generality if we presume Assumptions and (in
addition to Assumption [6.55)) when proving the “has vanishing dual Selmer group”part of Theorem
6.56l

The local parts of the “globally unobstructed” notion (cf. Definition , i.e. the relative smoothness
of the local deformation rings

has vanishing dual Selmer group if 1 () has vanishing dual Selmer

Ra/(kA)(ﬁ)\,I/) ifve Qgr’

Ry (Fag) = { min . ~ (6.19)
W (ky) RE{/’(@)@A,V) if v € S,
and . )
R (as) = R (Pas) it v € OF,

follow (for QL") from Proposition m, (for Sp1) from Lemma and (for QF ") from the second
bullet point in the statement of Theorem [6.58 This finishes the proof.

We remark that, for Qf +, we cannot simply cite Lemma, on the level of '™ because we don’t know
ifall v e Qéﬁ are split in the extension F|FT: If v is not split, then we cannot work with Py, instead
of 7) 5 as we cannot apply Proposition . This is also the reason why we included the second bullet
point in the statement of Theorem [6.58] We also remark that the min-condition in the second entry of
is redundant, i.e. we have

Oxv (= _ pOmin — o _
RWE(]?A)(T/\,D) = RW(kA)(pNV) - RVDV(kA)(P/\,u) (6.20)
for v € Sy, as long as £ >> 0. —

We give another (stronger) version of Theorem [6.56}

Theorem 6.60. Presuming Assumption there exists a subset Agn C A(l‘:H of Dirichlet density 1

Og X
such that the functor D?jg:fy(k)\)(?/\> is globally unobstructed if \ € Agn.

Remark that we do not impose Assumption here. Remark, moreover, that the deformation con-
dition Dy does not show up in the claim. This has two reasons: Firstly, D, is already dispensable
in Theorem [6.56] (i.e. Dy coincides with the unconditioned deformation condition) for £ > 0 by the
local R = R™7™ result Corollary [4.47l Secondly, condition Dy cannot be imposed on the functor
D?En,e’x
St1,e,W (kx)
we have no notion of minimally ramified deformations valued in other groups than GL,. Before we

come to a proof, consider the following adapted version of Theorem [6.58}

(T») in Theorem [6.60| because there might be places in Sy which are not split in F|F*, and

Theorem 6.61. Presume (in addition to Assumption and that Assumptions and hold.
Then there exists a subset Agn C Aén of Dirichlet density 1 such that for all X € Agn the following
holds:

D§HYZ»X

o D_

S o Wk )(FA) has vanishing dual Selmer group;
¢ A

o forallv e Qéﬁ the local deformation ring REV’?]:A)(FA,,,) 1s relatively smooth.
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o for all v € Sty the local deformation ring REV’ZCI:A)(FAW) 15 relatively smooth.

Proof of Theorem assuming Theorem [6.61 The “Proof of Theorem [6.56] assuming Theorem [6.58)

carries over verbatim, except for the local condition that REV’?,: )(m ) shall be relatively smooth for

v € St (because we don’t have an isomorphism as in (6.20)), as we allow v to stay inert in F|Ft). But
this condition is precisely the one added as the third bullet point of Theorem O

The remainder of this section will be devoted to the proof of Theorem (and Theorem [6.61]). Before
we come to this proof, let us first record a potential version of Theorem [6.56}

Corollary 6.62. Let F, E be number fields and

R — (m . Galp — GLn(EA))AGPlﬁn
E

a compatible system which is potentially automorphic: There exists a finite solvable extension L|F such
that the base change "R = (p,| Galr), pysn is of the form LR = Ru for a RAESDC automorphic form
E

IT of GL,(AL). Assume that 11 fulfills the conditions of Assumption and that the ramification set St

contains only places which are split in L|L*. Let (r)\)/\eplﬁn . denote the Qn—valued famz'ly associated to

X
W(k )( 7)) denote
the functor parametrizing fized-determinant Sy-framed deformations of Ty which are unmmzﬁed outside
S¢. Then there exists a subset Ap C Plﬁ of Dirichlet density 1 such that R

unobstructed if A € Ap —

R, where T C Plg" 1s the failure set where py is not absolutely irreducible. Let D

S, W(k )(7“)\) is globally

Proof. This follows immediately from Theorem applied to “R and the potential unobstructedness
descent from L to F applied verbatim as in the proof of Theorem [6.56] assuming Theorem [6.58] O

We remark that the assumption in Corollary on the splitting of the places in Sy can be avoided
by referring to Theorem instead of Theorem [6.56]
6.5.1 Auxiliary primes in extensions

Recall, that R = (px) \e AL defines a pure (of some weight w) and strictly compatible £-rational system
of Galp-representations for any finite extension £ of &. Let S = S. We want to check that we have
a sufficient supply of auxﬂlary primes as demanded by condition R.11 in Section [6.4.1} We say that a
prime v € Pl sz N is A-auziliary, if

e v splits in F|F* as vo°,
e p, is unramified at v,

o HO(F;,ad(py)(1)) or, equivalently, Homp, (py, px(1)) vanishes.

We say that \ admits auziliary primes if there exist (at least) two places in Pl QZ)\) which are
A-auxiliary. As a first step, we have the following:
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Theorem 6.63. 1. The set
Ae(auz, FT) = {\ € Pljgn |\ admits auziliary primes } C Pl’gn
is cofinite;
2. The set
Ak (auz, FT) = {\ € AL | N admits auziliary primes for all N € Q‘g()\) } C AL

has Dirichlet density 1.

Proof. 1t is clear that 1. implies 2., so we only prove 1. Let v; be a place of F'™ away from S which
splits in F|F* as 710§ and for which we want to determine those A for which vy is A-auxiliary. By the
pureness of the system R we know that the eigenvalues of p,(Froby,) are g,,-Weil numbers of some
weight w, i.e. algebraic numbers fulfilling condition (3.4). Denote the set of these eigenvalues by X.
Then the set of eigenvalues of p,(1)(Froby) is given by X' = {z.q,, |z € X}. Hence, if v; is not
A-auxiliary, the condition Homp, (py,px(1)) # 0 implies

r=1.q, mod £(\) (6.21)

for (at least one) suitable choice of elements z, 2’ € X. Clearly, a congruence as in (6.21]) can hold only
for finitely many A. Let Y] denote the (cofinite) complement of those A in Plfgn.

The same procedure with respect to another place vo of F* away from S which splits in F|FT leads
to a set Ys. Therefore, we see that

Y1 NYs C Ag(aux, FH) c PIi®

and the claim follows as Y7 N Y5 is cofinite in Plgn. O

Now for a finite, totally real extension L™|FT we write A}(aux, L) for the set of those A € A} which
admit auxiliary primes with respect to the compatible system associated to the base change Ry, i.e.
for those A\ € A}g for which there exist two places vq, 15 in Pljz?F —QKL&) such that

e v; splits in L|LT (with L := F.L") as p;0f,
® pyllL;, is trivial,
o HO(Ls,, ad(p,)(1)) =0,

where ¢ = 1,2. Then we have

Theorem 6.64. 1. The set

Ae(auz, LT|FT) = m Ag(auz, MT) C PV Ag
M+

is cofinite, where M runs through all intermediate extension fields of LT|FT.
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2. The set
A} (auz, LT|FT) = ﬂ Af(auz, MT) C A}
M+

has Dirichlet density 1, where M runs through all intermediate extension fields of LT|FT.

Proof. We easily see that the proof of Theorem carries over: Let v, 19 be places of Lt away from
S (Attention: not “away from the the ramification set of R”, which is a possibly weaker condition)
which are completely split in L|L* and L*|F*. (There are infinitely many such places we can choose
from, by applying Chebotarev’s density theorem to the Galois closure of L.)

Let Y; denote the sets of places as in the proof of Theorem applied to L™ instead of F*. For an
intermediate field M we let VZM " denote the place of M™T below v;. It is obvious that for any such
M™ and for any \ € Y; we have

o vM" gplits in M|M* (with M = F.M*) as oM M,

7

® palln . is trivial;
® HO(MDAI+,ad(ﬁ>\)(1)) =0.
The claim now follows as in the proof of Theorem [6.63] O

We can even get a stronger version of this: Denote

Z(LY|F') = ﬂ Z(M") with Z(M™") = {v € P | Vw € Plys+ below v : [M((y,)) : M] > n}
M+

and write A} (aux, L*|FT)° for the set of those A € A}(aux, LT|F) for which the following holds: Any
N e Qf( ») admits two auxiliary primes which lie in Z(L¥|F¥). We make the following easy observation:

Proposition 6.65. Z(L™|F) is cofinite in Pl +.

Proof. As there are only finitely many intermediate extensions, it suffices to show that each Z(M™)
has a finite complement in Pl;+. For this, consider the diagram

M (Ce)
M " T Q(<e)
\ o /
for a rational prime ¢. We are done if we can show that [M({,) : M] > n holds for almost all £.

Denote by d the degree [M : Q] and recall [Q({y) : Q] = ¢ — 1. Tt follows that for all £ > dn we have
[M(Ce) = M] > n. O

Theorem 6.66. The set
A} (auz, LT|FT)° C A}

has Dirichlet density 1.
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Proof. The proof of Theorem [6.64] carries over, if we replace the sentence

Let v1,v2 be places of Lt away from S |..]

Let v1, 15 be places of Lt away from S U (Pt —Z(L*|F*)) [.].

6.5.2 Proof of Theorem [6.58

Let L™ be a totally real, finite extension of F'T. We say that LT is pre-admissible, if the following
conditions are met:
P.1) L:= F.L*" is unramified over L™ at every finite place;

P.2) The extension L*|F™ is Galois and solvable.

These conditions are designed to capture the following:

Observation: If LT is pre-admissible, then there exists a unitary group H over LT (as considered
in Section and a unitary avatar (f) = 7 of H(Ap+) of the base change II;, of II to L. (Here,
f € Su(Up) denotes a suitable automorphic form on H of level Uy = Ua gy and suitable weight w
which generates I, where A := {v € Pl + |v lies above Sy }.)

Definition 6.67. We say that a prime A € Af is Lt-procurable if the following two conditions are
fulfilled:

1. The restriction of p, to Galy, remains absolutely irreducible;

2. There exists an L-big enough extension field ) of £, such that there is an isomorphism
LT pAcrys ~
ROIC)\ = Ok,, (6.22)

L+ pAerys . L+ pX,Da(crys)
Rg™® = 1TRG™ S
A m,0Y Ky

talline (above ¢), minimally ramified (at St1) deformations of 7| Galy + to coefficient Oy, -algebras

where 7») denotes the universal deformation ring parametrizing crys-

which are unramified outside the set gh,é C Ply+ of places which lie above Spp C Plp+ and with
fixed determinant x.

We remark that the first condition is rather harmless: As we presume Assumption (also for the
restricted system Rpy| Galy), this can only fail for finitely many A € AL. We furthermore remark that
in the second condition we have to consider the residual representation with values in the residue field
k:(g,CA instead of ky: If v : k) — ko,CA denotes the inclusion induced by the embedding £\ < Ky, we are
in fact considering

L+ M;DA(CIYS) (gn([,) o F)\) )

SHJ)OKZ)\
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In order to keep the notation simple, we will continue to abbreviate 7y for G,(¢) o 7x. (This is also
justified by Definition [2.20])

For a pre-admissible L™, we define the following set:
Proc(L*) = { X € A} | X is LT-procurable }

Theorem 6.68. There exists a nested sequence FT = L(J)r C Lf C ... of pre-admissible extensions of
FT such that

lim; oo (5( U Proc(L}") ) =1,
j=1

where 6(Y') denotes the density of those rational primes q for which each \ € Plg above q fulfills A € Y.

Proof. Let us first introduce another new notation: Let L™ be pre-admissible, then we say that A € Aé
is L -x-procurable, if the following list of conditions is met (with £ = ¢(\)):

£ is not divisibe by any element of St;
¢ is unramified in the extension L|Q;
All places of L above S are split over L™;

S.1
S.2
5.3
S.4) The base change IIy, of II to L is cuspidal;
S

)
)
)
4)
.5) There exists a place \ € Plg(g,) above A such that \' € Aé(UO)(aux,LﬂFJ“)O;
S.6) If v is a place of L above Sy, then IT;, admits a non-trivial fixed vector for the Iwahori subgroup

Iw(v) C GL,(Ly).

The set of all Lt-x-procurable X is denoted by Proc*(L*). (Observe that condition S.4 does not depend
on A, but we intentionally include it in the list. So, if IT}, fails to be cuspidal, we have Proc*(L1) = 0).)

Claim 1: Proc*(L") — Proc(L™") is finite.
Proof of Claim 1. We continue to denote by II; the base change of II to L. By condition S.4, this is

again a RACSDC representation. By the pre-conditions (P.1 and P.2), there exists a unitary group H
and an avatar wr, of H over L.

Now, for A € Proc*(L") we pick an L-big enough field extension K of £(Up)y and auxiliary places
vi,v9 € Ply+ as provided by condition S.5. Recall the set A = {v € Pl;+ |v lies above Sy } and take
Yaux = {1} and

(6.23)

Yiram =

{A U{re} if niseven and #A is odd,

A otherwise,

and denote T = Yaux U Xpan C Plp+, U = U(Sran, Sran) - The first case in is designed to ensure
that condition R.4 of Section is fulfilled. Adding an auxiliary place to the set where we allow our
lifts to ramify is harmless (i.e. does not change the deformation problem) as shown in Proposition
Note that we also have £(Up) = E(U). We consider now the complex Hecke algebra @) TT(U) and
the (-adic model T := 9% ’]I‘Z,ZA(U).

Recall that we wrote 7, = (f) for the unitary avatar of the base change of II to L and for a suitable
choice f € Su(Up). We see that py|Galy, (understood as a representation with values in GLy (koy, ))
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equals the reduction of the representation attached to the maximal ideal m = ker(¢;») C T by
Proposition where f® is the f-adic model of f.

We can now check the preconditions for Conjecture for this choice of L™, ¢, Y qux, Yram, w, U, E(U), K
and m:

e If / > max(2,n), conditions R.1-R.6, R.8-R.9 and R.11-R.12 are either fulfilled by our choices

above or are mere notational remarks which cannot fail;

e By condition 5.6, II; admits Iwahori fix vectors for all v € ¥, as demanded by the choice of
the level subgroup for Conjecture i.e. the subgroup U in condition R.7 is the right one;

e Adequateness condition R.10: Presuming Assumption this cannot fail if £ > 2(n 4 1), see
[GHTT12].

Thus, the desired isomorphism (6.22)) follows from Theorem as long as ¢ is bigger than the constant
K from there. We subsume:

Proc*(L") — Proc(L™) C {\ | £(\) < max(2,n,2(n+ 1), K)}.
End of proof of Claim 1. &

Therefore, it suffices to show that there exists a nested sequence F'™ = Lg C Lf C ... of pre-admissible
extensions of F'* such that

anwa( U Proc* (L) ) ~ 1.
j=1

For the construction of the extensions, define the set
Qp =={deN|Vd¢F, base change II ~» Il p/g) remains cuspidal }
By Lemma , Qp is not empty, so we choose a di € Qp and take L] = LT (y/dy).

Claim 2: Lf is pre-admissible.

Proof of Claim 2. Condition P.2 is automatically fulfilled because [L] : F*] = 2. Considering condition
P.1, we have to check that L, |L;r is unramified everywhere. For this, we observe that we have an identity
of the discriminants

Apyjr+ = Bt p+ Bpjpe = Bptips

(This follows e.g. from [Jan96l, Exercise 3 on p. 51].) Consider the following diagram:
(6.24)

Ly
L F
N A
Ft
Assuming there is a prime w of L] that ramifies in (3), the prime v of F'* which lies below w must
ramify in the extension L;|FT. But then v divides ALlﬂFJr = Ap,|p+, .. v ramifies in (1). This
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would imply that v has ramification index 4 in the extension Li|F*. But in (2), v is unramified by
the prerequisites, so it can at most ramify in (4), yielding a ramification index of 2 in L;|F™". This
contradicts the assumption that w ramifies in (3).

End of proof of Claim 2. &

Claim 3: §(Proc*(F}")) > 1.
Proof of Claim 8. We check which A fail the list S.1-S.6:

e Concerning S.1 and S.2, we have to exclude the finitely many A for which ¢()) is not coprime to
S or ramifies in L{|Q;

e Condition S.4 is universally fulfilled by our choice of L{;
e Condition S.5 excludes a set of places A of Dirichlet density 0, cf. Theorem [6.66]

e Concerning condition S.6, we remark that by local-global compatibility (cf. [CHI13, Theorem 1.4]
and the references therein) I, admits an Jw(v)-fixed vector if p| Galy, has unipotent ramification
at v [Wed08|, (4.3.6) Proposition|. Thus condition S.6 follows immediately from our Assumption
657

e We first explain why the “S-part” of condition S.3 is not destroyed, i.e. why each place w of L}
above S splits in LﬂLf. For this, let v be the prime of F* below w and consider again diagram
(6-24). We know that v splits in (2). If v stays inert in (1), then necessarily w must split in (3)
because v is split in L1|F". If v splits as w.w’ in (1), we can use [Neu99, Exercise 3 on p. 52|
to see that v splits completely in Li|F*. This again implies that w splits in (3). (Remark that,
by the same reasoning, we see that for A € Proc*(Ld) we have that any prime of L{ above £())
splits in L1|Lf. Loosely speaking, we don’t loose x-procuration when base changing from F' to
L;. Also remark that we used an analogous argument before, cf. the proof of Corollary [6.17])

e It remains to count those £ which fulfill the condition that all primes of Lf above £ are split in
the extension LﬂLi". By Lemma , their density is at least %

End of proof of Claim 3. &

For the next tower step we take F,f = Fj'(y/dg) for a dy € QF1+. It is checked as before that QF1+ # 0
and that F," is pre-admissible. Writing F;” = F(\/d1, v/da) we see that the extension F,F|F7T is Galois.
Claim 4: §(Proc*(Fy")) > 3.

Proof of Claim 4. This follows as in the proof of Claim 3, the main points being;:

e Remark that by Theorem we can assume that the auxiliary primes chosen at the Ffr -level
are exactly the primes lying below the auxiliary primes chosen at the F,f-level. In other words,
the (density-0) set of rational primes removed to guarantee condition S.5 during the proof of
Claim 3 is the same as the one during the proof of Claim 4;

e Analogously as in the proof of Claim 3 we use that we don’t loose x-procuration when base
changing from L' to L?;

e The quantity % follows again from Lemma .
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End of proof of Claim 4. &

Iterating this construction of quadratic extensions we get a nested sequence of pre-admissible fields F;r
such that

20 i—00

i 1
5( U Proc*(Ff)) > §(Proc*(F,N)>1-— — 1.
j=1
Together with Claim 1, this concludes the proof of Theorem [6.68] O

We now give a slight variation of Definition [6.67) and Theorem [6.68}

Definition 6.69. With regard to a pre-admissible extension Lt of F'", we say that a prime \ € Plgm
is LT-9-procurable if the restriction of p to Galy (with L = F.L™) remains absolutely irreducible and
if there is an isomorphism

+ JA,CTYS AL
FIRGESTE = W (k)1 @), (6.25)

Lt pOAcrys . L+ pO.x,Da(crys)
where RW = R=
(k>\) SH,Zv[ (kk)

(7») and u = dim(g3°*) = n?.

The set of all LT-9-procurable X is denoted by Proc®(L*).

Theorem 6.70. There exists a nested sequence FT = L(J)r C Lf C ... of pre-admissible extensions of
F* such that

lim; oo 5( LZJ Proca(L;r) ) =1.
j=1

Proof. For i € N denote

A= U Proc(L;.').
j=1

Also fix for each A € A; a j < ¢ such that A € Proc(Lj’). Denote the corresponding field extension

from the proof of Theorem by L) = LZ\).F. By Theorem for such a A € A; we have

L, A, Crys ~
) RO}C)\ = O]C/\
for a suitable extension Ok, of W (ky). Proposition then yields
LT O, ~
(A)Roﬁcrys = Ok, [z, - -+ x4l

Now we can use Corollary to deduce the isomorphism ([6.25)). O

Corollary 6.71. There exists a subset A% C A(lg of Dirichlet density 1 such that for each \ € A‘Qg there
exists a finite, totally real extension La) of F' and an isomorphism

L= Dgl_[’Z:XaD/\(Crys) _ ~
B R T ) 2 W) )

with w(\) = nz.#g}u — 1 and where gi'l,f denotes the places of La) above Str.
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Proof. This follows from another application of Proposition [2.62] O

Next, we will apply the framework of Section to the attained \. We remind the reader that D,
denotes the deformation condition parametrizing lifts of 7, which are minimally ramified at Stj.

L?:\) the corresponding extension from Corollary|6.71 Then the deformation functor

Theorem 6.72. There ezists a cofinite subset A3 C A2 such that the following holds: Let A € A} and
o

D/

o A

)

) Sty x| Gl
LT DSH Z’va)\ _ ’ ) _
N D ’ —
DSH,Z7W(k>\) () D?;T,Z,W(kk) (7l GalLZLM)

der,\/)

has vanishing dual Selmer group (i.e. Hé* (GalLTA) , g = 0, where L) is the system of local conditions

corresponding to the deformation condition D) ).

Proof. When applying the framework, we take

e sm as the condition parametrizing all deformations;
e crys as the condition parametrizing all crystalline deformations (see Section |4.3));

e min as the condition parametrizing all minimally ramified lifts (see Section [4.4));
o

We first check the following list of conditions (and we abbreviate Lt = La) as we check this for a fixed
A€ A2):

1. (Representability): The S; _-framed deformation functor

L+ Ogrx .
sp. (k) (TA)

O 15X
is representable (by an object & RS;éV(kA)(F)‘»'

Answer: This follows from our Proposition [2.61]

2. (sm/k): As we took for sm the unrestricted deformation condition, we have to check that for each

v € Qy the functor
+ _ L
Ly D‘E}?I:A)(T/\’V) = D%z(kk)(r)\\ GalL;r)

is representable and that the representing object RY'™°" is formally smooth of relative dimension

d,*" = dim(g;) (Lo = Q] +1) = n*([Lo : Qo] + 1) = n*([L} : Qe +1).
(This also amounts to the vanishing of the error terms §, in Theorem 2.)

Answer: Representability follows from the first part of Theorem [2.22] For the remaining claim,
we first refer to Proposition in order to get an isomorphism

Lj— RD7XV

Wiy Taw) = 77 Ry

W (ky) (ﬁ/\,ﬁ)-

Now everything follows from Lemma [4.11
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3. (crys): For each v € Qy, the subfunctor

Ly nO.xv, — LY nOxv (=
DWZC]C;):ryS(r/\,V) s DWE(IQ)(T’\”’)

is relatively representable and the representing object is formally smooth of relative dimension

d27® = dim(g®™) + (dim(g™) — dim (b)) (L : Q.

n

where b, denotes the Lie algebra of a Borel subgroup of G,.

Answer: By definition,

L pOxv, - ~ Ly pO, —
sz(]@\;:ryS( )\,V) = ch(:lzz)s(p)\,f/)'

Thus, the condition is fulfilled by Lemma [£.14

4. (min): For each v € S, the subfunctor
LtDD,xu,min(F ) L pOxw (Frw)
W(kx) Av W (ky)\" AV
is relatively representable and the representing object is formally smooth of relative dimension

O,min der
d,” ).

n

= dim(g
Answer: Again, by definition,

L} pO,Xvmin ~ Ly pOmin /—
RW?@) (7”/\,1/) = Rw(k)\)(p)\,ﬂ)'
Thus, the condition is fulfilled by Lemma [4.23

5. (00): For each v € Q, the local deformation ring L REV’?];’A)(F,\,,,) is formally smooth of relative

dimension df} = dim(bdeT).

Answer: We get from Proposition [2.70| that L REV’E‘];)(FA,V) is formally smooth of relative dimen-

sion dim((gde¥)="1) = dim(gl&='), where ¢, is the non-trivial element of the decomposition
group at v. By construction (see Lemma 2.1.4 and Proposition 3.4.4 of [CHT08§]|), the image of
7a(cy) is not contained in GL,, x GL;. Moreover,

der

(—=1).(=1)*~ if n is even,

_ 5 :71—71 > 5/Jrn L) =
moT(cy) =& " (cy)d"™ (cv) {(_1)Hm if n is odd.

Here, €, denotes the cyclotomic character (which sends ¢, to —1), d denotes the non-trivial
character of Gal(F|F™) and un is a suitable element of Z/27Z. It follows from our R = T-theorem
(Conjecture [6.37) that pm = n (mod 2), so we have mo7(¢,) = —1, independent from the parity

of n. Using [CHTO8, Lemma 2.1.3], this implies dim(gl&*="1) = % = dim(b2°).

6. (Presentability): Consider the ring

_ L*DIZI,XV,min — . X

~ ) ~ v T ifres

L+Rloc — ® _ L+R1j Wlth L+RV o { W (k:)\) ( 711) 9
VGSH,Z

 nOx (- . (6.26)
b DVDV’%)(TA,V) ifveQUs.

Then there exists a presentation

L+ psmeX o Lt plo
gl‘[,lzvév(k’)\)(rA) - Rl c[[:ﬁl’ T 7xa]]/(f1""7fb)
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with a — b= (#8p, — 1). dim(g2°).

Answer: This is the content of Corollary but we have to check Assumption 2.63] As
g%* = gl,, (Proposition [6.19)), this condition holds by Corollary for almost all A.

+ Og 7X3D (min,crys)
7. (R=T): The ring “0R_ "™

S e W (k) (7)) is formally smooth of relative dimension

ro = dim(g).#5Sy , — dim(g*).
Answer: This follows from Corollary [6.71]

We see that the requirements of Theorem [3.12]2 are met. So we can conclude the proof if we verify the
three requirements of Corollary

8. ¢ must be big enough so that g, = g3°* & g2°.
Answer: This can be achieved by excluding finitely many .
9. H(Galp+,ga™") = 0.
Answer: This can be proved analogously as in Section First, remark that
H°(Galp+, go7™") C HO(Galy, g3°™") = H'(Galg, gl,)),
for which we have to recall

o 7,| Galy, equals py (via the embedding GL,, C G,) by construction, see Lemma
e gder =~ gl see Proposition [6.19}

e the adjoint representation of Galy on g3°* (via 7)) corresponds to the adjoint representation

of Galy, on gl,, (via py) with respect to the identifications from the above two bullet points
(see [CHTOS8, Section 2.1]).

Thus we are good if we can show that H°(Galy, gl') vanishes for almost all A, which follows from

Corollary

10. For v € Sy, dim(Ly,) = hO(Gal 1, g3°%).
Answer: As v is split, we can use Proposition to get

h°(Galyy, gi") = h%(Galg,, gl,),
where the action on gl,, is via py ;. The claim now follows from [CHT08, Corollary 2.4.21].

The finitely many exclusions as required in parts 6., 8. and 9. are now the places we exclude from A%
to get A%. O

Now we can finally complete the desired proof:
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6 UNOBSTRUCTEDNESS FOR RACSDC AUTOMORPHIC REPRESENTATIONS

Proof of Theorem [6.58, First remark that Theorem is not far from the “has vanishing dual Selmer
group”-part of Theorem ﬂ: the main difference is that we have introduced field extensions L(+)\)|F+
Which we can eliminate with the potential unobstructedness methods of Section As each index
(L O : FT] is a power of 2 (and k) has odd characteristic for all A € A}), the “of degree coprime
to £-part of Lemma is universally fulfilled. For each extension L( N |F* we can now argue exactly
as in the proof of Theorem assuming Theorem but we have to take care of the (finite) failure

sets X = X(L+)) for which the local R = R™®-result Corollary fails at the L -level. For this,

(A ()
recall that the L, show up in the tower F't = L(J{ C Lf C ... and that we have

(M)
S’ 2X,Da (min)

lim; o 6 | 0D

7)) has vanishing dual Selmer group, La) c L } =1,

by Corollary and Corollary Hence,

S £7X D . ) . + +
lim; 00 {)\ ’ MDSHF:, (kk)(r,\) has vanishing dual Selmer group, L) C L7, A ¢ X(L (}\)) } 1.

The first bullet point of Theorem [6.5§] follows.

It remains to show that the local deformation ring R ( )(r,\ v) is relatively smooth for v € QF By
Corollary [4.7] we know that

L+
lim; 00 {/\ ’ DD X” (7“,\\ Galy+ ) is unobstructed for all Ve Qe((,\A;’LZFA) C L }
(>\)

+
=lim; ,o0 & {)\ ‘ any v € Qg(/\) is split in the extension L(,\)|L5), L(+>\) C L;r } =1.
Using Lemma [3.18]2 and Proposition [3.2] the second bullet point of Theorem follows. O

Proof of Theorem[6.61 The claim of Theorem [6.61]follows by performing a base change towards a finite
solvable extension F’ of F' (which needs to be a CM field) such that the restricted system Ryy| Galp+
fulfills the preconditions for Theorem , i.e. such that all places above Sp; are split in the extension
F'|F"+ | where F'" is the maximal totally real subfield of F’. This is possible by Corollary Using
Lemma and Proposition the first two bullet points of Theorem then follow directly from
Theorem (for all X such that ¢()\) does not divide [F” : F]). It remains to show the third bullet point
in Theor From Lemma it follows that for all v € Pl above Sy the local deformation
functor DW(k )(r)\7u| Gal) is unobstructed. Using Lemma [3.182 and Proposition , the third bullet
point follows. O

We repeat that this also completes the proof of Theorem m (using the “Proof of Theorem m
assuming Theorem [6.58)" following the statement of Theorem at the beginning of Section [6.5).
Likewise, this also completes the proof of Theorem [6.60]
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