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A framework for unobstructedness of Galois deformation rings
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Abstract

Let F be a number �eld, S a �nite set of places of F and GalF,S the Galois group of the
maximal unrami�ed outside S extension of F . Let k be a �nite �eld. Deformation theory of Galois
representations is a technique introduced by Mazur [Maz89] in the 1980's in order to study lifts
of a given residual Galois representation ρ : GalF,S → GLn(k). Mazur posed the question under
which conditions the functor parametrizing the deformations of ρ to complete local Noetherian
W (k)-algebras is unobstructed, i.e. when H2(GalF,S , ad ρ) vanishes. This unobstructedness implies
the formal smoothness of the corresponding universal deformation ring. In this thesis we present
a general framework to deduce unobstructedness from a list of standard assumptions (including a
suitable R=T theorem). This framework is developed more generally in terms of a smooth linear
algebraic group G over W (k), replacing GLn as the target of ρ. We apply the framework to deduce
that almost all entries in the compatible system of Galois representations associated to a Hilbert
modular form admit an unobstructed deformation functor, reproving a result of Gamzon [Gam13].
We also apply this framework to a RACSDC automorphic representation of GLn(AF ), deducing
from standard conjectures that a subset of Dirichlet density 1 of the entries of the associated Gn-
valued family of Galois representations admits unobstructed deformation functors, where Gn is the
group scheme from Clozel, Harris and Taylor [CHT08].

Zusammenfassung

Sei F ein Zahlkörper, S eine endliche Menge von Stellen von F und GalF,S die Galoisgruppe der
maximalen, auÿerhalb von S unverzweigten Erweiterung von F . Sei k ein endlicher Körper. Die De-
formationstheorie von Galoisdarstellungen wurde in den 1980er Jahren von Mazur [Maz89] entwickelt
um die Lifts einer gegebenen residuellen Galoisdarstellung ρ : GalF,S → GLn(k) zu untersuchen.
Mazur stellte die Frage unter welchen Bedingungen der Funktor, der die Deformationen von ρ zu voll-
ständigen NoetherschenW (k)-Algebren beschreibt, unobstruiert ist, d.h. wannH2(GalF,S , ad ρ) = 0
gilt. Diese Unobstruiertheit impliziert die formale Glattheit des zugehörigen universellen Deforma-
tionsringes. In der vorliegenden Arbeit wird eine Methode vorgestellt um Unobstruiertheit aus einer
Liste von Standardvermutungen abzuleiten, unter anderem von einem entsprechenden R=T-Satz.
Diese Methode wird allgemeiner für eine glatte algebraische Gruppe G über W (k) anstelle von GLn

als Wertebereich von ρ entwickelt. Mithilfe der Methode zeigen wir, dass fast alle Einträge in dem
kompatiblen System von Galoisdarstellung zu einer Hilbertschen Modulform einen unobstruierten
Deformationsfunktor besitzen und erhalten damit ein Resultat von Gamzon [Gam13]. Des Weit-
eren wenden wir die Methode auf eine RACSDC automorphe Darstellung von GLn(AF ) an und
erhalten, unter Ausnutzung von Standardvermutungen, dass eine Teilmenge von Dirichlet-Dichte
1 der Einträge der assoziierten Gn-wertigen Familie von Galoisdarstellungen einen unobstruierten
Deformationsfunktor besitzt, wobei Gn das Gruppenschema von Clozel, Harris und Taylor [CHT08]
bezeichnet.
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1 INTRODUCTION

1 Introduction

Let F be a number �eld, S a �nite set of places of F and GalF,S the Galois group of the maximal
unrami�ed outside S extension of F . Let k be a �nite �eld of characteristic ` > 0. The deformation
theory of Galois representations is a technique introduced by Mazur in the article [Maz89] in order to
study the lifts of a representation

ρ : GalF,S → GLn(k).

More precisely, let C◦W (k) be the category of Artinian local W (k)-algebras with residue �eld k and
consider the functor

D(ρ) : C◦W (k) −→ Ens A 7−→
{
ρ : GalF,S → GLn(A)

∣∣ ρ reduces mod mA to ρ
}
/ ∼

where two lifts are equivalent if they are conjugate by an element of ker(GLn(A) → GLn(k)). Under
suitable conditions, this functor is pro-representable by a complete Noetherian local W (k)-algebra
R(ρ), i.e. the conjugacy classes of lifts (which are called the deformations) to A are parametrized by
morphisms ϕ : R(ρ)→ A.

Assume for the moment that F = Q, n = 2, ` > 2 and let us �x a cuspidal eigenform f ∈ Sk(Γ0(N))
of some weight k and level N (which we assume to be relatively prime to ` and square-free). By the
work of Deligne [Del71] (for k > 2), Eichler and Shimura [Shi71] (for k = 2) and Deligne and Serre
[DS74] (for k = 1) we can attach to f an `-adic representation ρf,` of GalQ and we will take for ρ its
reduction modulo `. Then ρ is absolutely irreducible and crystalline at ` (so, in particular, ρ is odd and
det ◦ρ equals a tensor power of the mod-` cyclotomic character) for all but �nitely many choices for
`, cf. [Rib95, GK11] and the references therein. Moreover, there exists a quotient R̃(ρ) of R(ρ) which
parametrizes lifts whose determinant equals the cyclotomic character, which are unrami�ed outside N ,
ordinary at N and crystalline of �xed weight at `.

At the heart of the celebrated proof of Wiles and Taylor-Wiles [Wil95, TW95] of Fermat's Last Theorem
lies the fact that the canonical surjection

R̃(ρ) � T (1.1)

is an isomorphism, where T denotes a certain localization of a Hecke algebra and parametrizes those
lifts which come from modular forms. In particular, the R=T-theorem (1.1) implies the Taniyama-
Shimura conjecture for semistable elliptic curves, stating that any such curve is modular, i.e. comes
from a modular form. This leads to the formulation of more general modularity lifting statements, an
area which is being extensively studied by contemporary number theory.

Inspired by the observation that universal deformation rings in the classical setting (n = 2) are often
isomorphic to a power series ring over W (k) in three variables, one says that D(ρ) is unobstructed if

H2(GalF,S , ad ρ) = 0. (1.2)

It is easily seen that this implies that R(ρ) is formally smooth over W (k), hence isomorphic to a power
series ring overW (k). We also remark that this implies a partial solution to a conjecture of Jannsen for
ρ = ρf,λ with f as above: The Frobenius eigenvalues of ρ are Weil-numbers of some �xed weight w, i.e.
ρ is pure of weight w. Hence, ad ρ ∼= ρ⊗ ρ̌ is pure of weight w−w = 0. A conjecture of Jannsen [Jan89,
Conjecture 1] (see also [Bel09, Conjecture 5.1]) predicts that H2(GalF,S , ad ρ) vanishes. This implies
that H2(GalF,S ,Λ) is �nite and torsion, where Λ ⊂ ad ρ denotes an integral GalF,S-stable lattice. On
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1 INTRODUCTION

the other hand, our residual H2-vanishing (1.2) implies the vanishing of H2(GalF,S ,Λ) by Nakayama's
Lemma. This, in turn, implies the vanishing of H2(GalF,S , ad ρ), as predicted by Jannsen's conjecture.

Now `-adic and `-modular Galois representation often come in compatible systems, i.e. as families

R =
(
ρλ : GalF → GLn(F`(λ))

)
λ∈Pl�nE

,

where λ runs through the set Pl�nE of �nite places of another number �eld E, and the ρλ share certain
properties, e.g. a common rami�cation set S, see Section 3.3 below for a precise de�nition. (Here and
in the following, `(λ) denotes the rational prime lying below λ.) In this setting, write S` ⊂ PlF for the
set of all places which are in S or lie above ` or ∞. Then we say that the deformation functor D(ρλ)
of a member ρλ of R is unobstructed if D(ρλ|GalF,S`) is unobstructed, i.e. if

H2(GalF,S` , ad ρλ) = 0.

The following question was then posed by Mazur in [Maz89]:

Question 1.1. When is D(ρλ) unobstructed for almost all λ. (Alternatively: When is D(ρλ) unob-
structed for all λ in a subset of Pl�nE of Dirichlet density 1.)

This question was answered a�rmatively (under di�erent technical assumptions) in the following cases:

• Mazur [Maz97a]: R = RE , the compatible system attached to an elliptic curve E over F = Q;

• Weston [Wes04] (see also [Yam04, Hat15]): R = Rf , the compatible system attached to a newform
f of weight k ≥ 3 over F = Q;

• Gamzon [Gam13] (following the approach of Weston): R = Rf , the compatible system attached
to a Hilbert eigenform f over a totally real �eld F .

Weston uses Poitou-Tate duality and results on Selmer groups to deduce the H2-vanishing of (1.2) for
almost all ρλ from the following two statements:

1) For �xed p, H0(Qp, ad ρλ(1)) vanishes for almost all λ;

2) For almost all λ, H0(Q`(λ), ad ρλ(1)) vanishes.

Statement 1) is proved by using the local Langlands correspondence if the local part πp of the auto-
morphic representation π = 〈f〉 attached to f is supercuspidal or Steinberg and by a global argument
(suggested by Ribet) if πp is special, see [Wes04, Sections 3 and 5.2]. Concerning Statement 2), Weston
performs a local calculation at the level of Fontaine-La�aille modules, see [Wes04, Sections 4].

This thesis provides a framework for proving unobstructedness and for answering Question 1.1 more
generally. Section 2 is devoted to the deformation theory for G-valued representations, i.e. for mor-
phisms

ρ : GalF → G(k),

where G is a smooth linear algebraic group over W (k), generalizing the classical approach where G =
GLn. We start by collecting several preliminary results on the occurring coe�cient rings and continue
in Section 2.2 with an adapted version of Kisin's framed deformation functor (or: lifting functor) and
a study of its relatively representable subfunctors. We continue with deformations and deformation
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1 INTRODUCTION

conditions and give a G-valued version of Schur's Lemma (Lemma 2.50) and of the presentability
of multiply framed global deformations rings over local ones following Balaji [Bal12], see Corollary
2.66. Like [CDT99, Appendix A], to easily derive results on the change of the base ring for universal
deformation rings, cf. e.g. Lemma 2.22.2., we also consider deformations valued in the category ?CW (k)

of complete Noetherian local W (k)-algebras A where we do not assume kA = k.

In Section 3 we start by giving a suitable de�nition of unobstructedness for global deformation con-
ditions which are composed from local ones. The reason why we have to generalize the H2-vanishing
of (1.2) is that such a vanishing is connected to the unobstructedness of the full (i.e. unconditioned)
deformation ring R(ρ). As our framework uses crucially an R = T -theorem similar to (1.1) (and as
such results are currently only within reach in a minimally rami�ed situation), we can a priori not hope
for unobstructedness of R(ρ) but rather of a quotient

R(ρ) � Rχ,min(ρ), (1.3)

parametrizing all deformations which ful�ll a local condition min at all places inside a �xed set of
places S and whose determinant equals a �xed lift χ of the determinant of ρ (where S is usually the
rami�cation set of the system R and min denotes usually the condition of being minimally rami�ed). If
Lχ = (Lχν )ν denotes the system of local conditions associated to this choice (cf. De�nition 2.69), then
we call Rχ,min(ρ) globally unobstructed (De�nition 3.7) if

• the local framed deformation rings R�,χν ,min
ν (ρ) are formally smooth over W (k) (of predictable

dimension) for all ν ∈ S;

• the dual Selmer group vanishes:
H1
Lχ,∨(F, gder,∨) = 0, (1.4)

where gder = Lie(Gder) with the adjoint representation of GalF via ρ.

If Rχ,min(ρ) is globally unobstructed, it follows that it is isomorphic to a power series ring over W (k),
see Remark 3.8.

Our main result (Theorem 3.12) is the crucial step to deduce the vanishing of the dual Selmer group in
(1.4). It depends on seven standard assertions, as listed at the beginning of Section 3.1. In the situation
described above1, the main assertions to be mentioned are items 3., 4. and 7.:

3. For each place ν of F above ` = `(λ), there is a local deformation condition crys such that the
associated framed deformation functor D�,χ,crys(ρν) is relatively smooth over D�,χ(ρν) and such
that the representing object is formally smooth of relative dimension

dim(gder) + (dim(gder)− dim(bder))[Fν : Q`].

(Here, we �x a Borel subgroup B ⊂ G and we denote by gder (resp. bder) the Lie algebra of the
derived subgroup Gder of G (resp. the Lie algebra of B ∩Gder).)

4. For each place ν ∈ S, the local deformation ring R�,χ,min(ρν) is formally smooth of dimension
gder.

1For simplicity, we take the condition sm of Section 3.1 to be the unconditioned deformation condition during this
introduction.
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1 INTRODUCTION

7. The multiply framed global deformation ring R
�S` ,χ,min,crys
S`

, parametrizing deformations of ρ
which

� ful�ll condition min at all ν ∈ S,
� ful�ll condition crys at all ν above `,

� are of �xed determinant χ and

� are unrami�ed outside S`

is formally smooth of relative dimension dim(g).#S`−dim(gab). Here, S` denotes the set of places
which are contained in S or lie above `.∞ and gab denotes the Lie algebra of Gab.

Although this is not a critical assumption, let us presume for the ease of exposition during this intro-
duction that ρ is absolutely irreducible. Under these conditions, we obtain

Theorem A (Theorem 3.12.1). Rχ,minS`
is formally smooth.

If we additionally suppose that each local framed deformation ring R�,χ(ρν) is formally smooth of
dimension dim(gder)([Fν : Q`] + 1) for ν above `, we even get

Theorem B (Theorem 3.12.2). Rχ,minS`
is formally smooth of dimension [F : Q].dim(bder).

This can be used to deduce

Theorem C (Corollary 3.16). Assume (in addition to the requirements of Theorem B) the following:

• `� 0, so that g = gder ⊕ gab;

• H0(GalF , g
der,∨) = 0 (this holds automatically for G = GLn and `� 0);

• For ν ∈ S, dim(Lν) = h0(GalFν , g
der);

Then Dχ,min
S`

(ρ) has vanishing dual Selmer group.

Theorems A, B and C are proved by calculations using Galois cohomology and basic facts from com-
mutative algebra, introduced in Section 2.1.

We can now state our strategy to answer analogues of Question 1.1: We check that for a density-1 set
of places λ in our system R the representation ρλ ful�lls the requirements of Theorem C and the local
conditions in the �globally unobstructed�-notion.

In practice, we will often not succeed in establishing the requirements of Theorem C for the represen-
tations ρλ themselves but only for restrictions ρλ|GalF (λ) , where each F (λ) is a suitable �nite extension
of F , chosen in dependence of λ. To this end, we develop in Section 3.2 a potential version of the
above. More precisely, let us consider a �nite extension F ′ of F and a deformation condition D′ for
ρ|GalF ′ (with the associated system of local conditions L′χ = (L′ν

χ)ν). Let us assume that D′ ful�lls
res⊥ν′(L

⊥
ν ) ⊂ L′⊥ν′ for all pairs (ν ′, ν) ∈ Pl�nF ′ ×Pl�nF with ν ′|ν, where

res⊥ν′ : H1(Fν , g
der,∨)→ H1(F ′ν′ , g

der,∨)

is the usual restriction map. (We call such a D′ a dual-pre-(χ, min)-condition, cf. De�nition 3.19.) Let
S′` denote the places of F

′ above S`. We obtain
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1 INTRODUCTION

Theorem D (Lemma 3.21). Assume that the functor DD
′

S′`
(ρ|GalF ′) ful�lls the conditions of Theorem

C, and hence has vanishing dual Selmer group. Then also Dχ,min
S`

(ρ) has vanishing dual Selmer group
for `� 0.

Section 4 is devoted to a study of several local deformation conditions for G = GLn. We �rst recall
the basic notions of Fontaine-La�aille theory as normalized in [CHT08]. The main result here is the
following generalization of condition 2) of Weston:

Theorem E (Corollary 4.7). Let K,L be �nite extensions of Q` and let

ρ : GalK → GLn(L)

be a crystalline representation in the Fontaine-La�aille range. Assume that the Hodge-Tate numbers
of ρ are non-consecutive: if τ is an embedding K ↪→ Q` and two numbers a, b occur in HTτ (ρ), then
either a = b or |a− b| ≥ 2. Then

H2(K, ad ρ) = 0.

By this corollary, we deduce
R�

Λ (ρ) ∼= Λ[[x1, . . . , xm]] (1.5)

withm = n2.([K : Q`]+1), if ρmeets the �no consecutive weights�-assumption of Theorem E, cf. Lemma
4.11. In Section 4.3 we compile results about the crystalline deformation condition from [CHT08, Section
2.4.1], including a smoothness property similar to (1.5) and a compatibility with the corestriction map,
see Lemma 4.14 and Lemma 4.15. In Section 4.4 we study the minimally rami�ed deformation condition
from [CHT08, Section 2.4.4]. After recalling a smoothness property similar to (1.5) (Lemma 4.23) from
[CHT08] we restrict to the case of unipotent rami�cation, i.e. we consider a local Galois representation2

ρ : GalK → GLn(L)

where ρ is trivial on the kernel of one (hence, any) surjection IK � Z`. The two main results for
the minimal rami�cation condition are Theorem 4.30, where we identify the corresponding deformation
ring with a certain ��xed-type� deformation ring of Shotton [Sho15], and Corollary 4.47, where we show
that under su�cient assumptions on the system R an arbitrary deformation is locally almost always
automatically minimally rami�ed. The latter result can be expressed as a local equality

R = Rmin,

so that the restriction to the minimal rami�cation in (1.3) is a posteriori waived.

In Section 5 we apply the developed framework to Hilbert modular forms. We prove

Theorem F (Corollary 5.7). Let F be a totally real number �eld and f a Hilbert modular newform such
that each weight is ≥ 3 and such that all weights have the same parity. Let Kf denote the coe�cient
�eld of f and let

Rf =
(
ρf,λ : GalF → GL2(Kf,λ)

)
λ∈Pl�nKf

be the compatible system of Galois representations attached to f with rami�cation set S.

2In the minimal case we have ` 6= p, i.e. K (resp. L) is a p-adic (resp. `-adic) �eld with ` 6= p.
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1 INTRODUCTION

Let K denote the composite of all coe�cient �elds of Hilbert newforms of the same weight and level as
f . Assume that for almost all places λ we can choose a place δ of K above λ such that

R
χ,crys
S`,OKδ

(ρf,λ) ∼= Tδ, (1.6)

where

• Rχ,crysS`,OKδ
(ρf,λ) is the universal deformation ring which parametrizes deformations of ρf,λ to OKδ

which are crystalline above ` = `(λ) and unrami�ed outside S`;

• Tδ denotes the OKδ -subalgebra of
∏
g∈X(f,λ)OKδ which is generated by all (aν(g))g∈X(f,λ), where

ν runs through the places outside S and where X(f, λ) denotes the set of all Hilbert newforms of
the same weight and level as f .

Then, for almost all primes λ, RχS`(ρf,λ) is globally unobstructed.

The proof of this theorem proceeds by checking the preconditions of Theorem C with min being the
unconditioned deformation condition. The crucial R = T assertion (1.6) is used to check precondition
7. of Theorem A. This assertion is widely believed to hold true and is available in the literature in
several cases, cf. Remark 5.4. This gives a new proof of Theorem 1.1 of [Gam13] (assuming the R = T -
assumption (1.6)).

In Section 6 we apply the framework to the following situation: Let F be a CM-�eld and Π be
a RACSDC (regular algebraic conjugate self-dual cuspidal) automorphic representation of GLn(AF ).
Then there exists a number �eld E and an E-rational strictly compatible and pure of weight n − 1
system of semisimple `-adic Galois representations attached to Π,

RΠ =
(
ρλ : GalF → GLn(Eλ)

)
λ∈Pl�nE

,

with �nite rami�cation set S := {ν ∈ PlF | Πν is rami�ed }. As introduced in [CHT08], let Gn be the
group scheme over Z given by (

GLn×GL1

)
o {1, j}

where j acts as j(g, µ)j = (µ tg−1, µ). Let Λ1
E be the set of those λ ∈ Pl�nE for which each ρλ (as well

as any other ρλ′ with `(λ
′) = `(λ)) is absolutely irreducible. Then each ρλ with λ ∈ Λ1

E extends to a
representation

rλ : GalF+,S`
→ Gn(kλ),

where F+ denotes the maximal totally real sub�eld of F and where S denotes the set of places of F+

below S, cf. Lemma 6.21. Assume that every place of S is split in the extension F |F+. Our main result
is

Theorem G (Theorem 6.56). Assume the following (Assumption 6.55):

1. (Irreducibility): The set Λ1
E of those λ ∈ Pl�nE for which each ρλ (as well as any other ρλ′ with

`(λ′) = `(λ)) is absolutely irreducible has Dirichlet density 1 in PlE ;

2. (Availability of a minimal R=T-theorem): (Cf. Conjecture 6.37) For each λ ∈ Λ1
E there

exists a �nite extension Kλ of Eλ and an isomorphism

R
min,crys
OKλ

(rλ) ∼=
OKλ
σ TT`ωλ(U)n,

where
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• Rmin,crys
OKλ

(rλ) is the universal deformation ring parametrizing those deformations of rλ to

OKλ-algebras which are crystalline above ` = `(λ), minimally rami�ed above S, unrami�ed
outside S` and of �xed determinant;

• OKλσ TT`ωλ(U)n denotes the Hecke algebra with respect to all automorphic forms of the same
level U and weight ωλ as Π and of �minimal type� σ (as explained in Section 6.4.1), localized
at a maximal ideal n.

3. (No consecutive weights): Let λ ∈ Λ1
E and ν ∈ PlF with `(λ) = `(ν). Let moreover τ :

Fν ↪→ Q` be an embedding and denote by HTτ the corresponding multiset of Hodge-Tate weights
of ρλ|GalFν . Then, if two numbers a, b occur in HTτ , we must have a = b or |a− b| ≥ 2;

4. (Disjoint q-orbits): For ν ∈ S, let (rν , Nν) be the Weil-Deligne representation associated to Πν

via the local Langlands correspondence. Write

rν(Frobν) ∼


Hνlν1 (αν1)

Hνlν2 (αν2)

. . .
Hνlνkν (ανkν )

 with Hνm(α) =


α

αqν
. . .

αqm−1
ν

 .

Then for all ν ∈ S and for all 0 ≤ i 6= j ≤ kν , the q-orbits

qZνα
ν
i = {qaν .ανi | a ∈ Z} and qZνα

ν
j = {qaν .ανj | a ∈ Z}

are disjoint.

Then, the deformation ring Rmin(rλ) that parametrizes all minimally rami�ed, �xed-determinant defor-
mations of rλ is globally unobstructed for all λ in a subset of Pl�nE of Dirichlet density 1.

The proof of Theorem G is the content of Section 6.5.2 and consists again of checking the preconditions
of Theorem C, but here with min being the minimally rami�ed deformation condition. The main
di�culty here is that we cannot apply Theorem C directly, but that we have to introduce for each
λ a �nite, solvable extension L(λ) such that we can show that Dmin(rλ|GalL(λ)) has vanishing dual
Selmer group. This can be used in conjunction with the potential unobstructedness result Theorem D
to deduce that the original functor has vanishing dual Selmer groups. The following issues arise in this
approach:

• In order to apply Theorem D, we need that the minimally rami�ed deformation condition for rλ
is a dual-pre-condition for the the minimally rami�ed deformation condition for rλ|GalL(λ) . This
amounts to a certain calculation involving the tangent spaces for the minimally rami�ed condition
(similar to Lemma 4.15.2 in the crystalline case), which we do not perform in this thesis. This
local calculation is circumvented by the aforementioned local R = Rmin result.

• Theorem D fails at a �nite set of primes of E , depending on the extension L(λ)|L. This is harmless
in a static setting, but as we choose for each λ an extension L(λ), the approach could a priori
break down if each λ happens to be contained in the respective failure set. This will be handled
as follows: We specify a certain tower of extensions

F = L0 ⊂ L1 ⊂ L2 ⊂ . . .

9
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with [Li+1 : Li] = 2 and such that Li|F is Galois for all i. Then we show that the set

Ψi := {λ | L(λ) can be chosen such that L(λ) ⊂ Li}

has Dirichlet density 1 − 1
2i
. This allows us to use (for a given i) Theorem D in the harmless

static setting and deduce the desired result by a limit process.

Let us also comment on the assumptions of Theorem G:

1. Condition (Irreducibility) becomes necessary at an early part in our arguments, as the transition
ρλ ; rλ is only possible for those λ for which ρλ is absolutely irreducible. This condition
is conjectured to hold true in general, while a proof is only available in the literature if Π is
extremely regular [BLGGT14] or if n ≤ 5 [CG13].

2. The availability of a minimal R=T-theorem takes a similar crucial role as the assumption (1.6) in
Theorem F and is necessary to check precondition 7. of Theorem A. While we treat this condition
as a conjecture during this thesis, we believe that it should be possible to give a proof using
standard patching techniques and [CHT08].

3. The assumption that there are no consecutive weights is used to prove that a certain set of
homomorphisms between two Fontaine-La�aille modules vanishes (Corollary 4.7), which in turn
is needed to verify precondition 3. of Theorem A. As stated, the assumption presents a technically
simple su�cient condition for this vanishing and it is certain that there are �ner criteria. We
expect that this precondition of Theorem G can be replaced by a condition on Hecke polynomials
after a more careful study of the morphisms in the Fontaine-La�aille category.

4. The assumption on the disjointness of q-orbits is needed for the local R = Rmin result Corollary
4.47, and thus it is needed to apply the potential unobstructedness of Theorem D. Improvements
should be possible in two directions: On one hand, the R = Rmin result is believed true (almost
everywhere) without this technical assumption, presuming a natural condition of genericness
(cf. [All14]). On the other hand, the R = Rmin result is used to circumvent the usage of the
respective pre-dual property for the minimal deformation condition, similar to Lemma 4.15.2 for
the crystalline deformation condition. We expect that such an analogue derives from a careful
study of the minimal deformation condition, superseding the necessity of an R = Rmin result
altogether.

The last three items suggest promising questions for future research. It seems also promising to use the
described approach to establish certain missing cases in the treatment of Gamzon [Gam13], where his
assumptions on the weights and on a base-change property are not met. Another worthwhile project
would be to apply the presented framework to the conjectural association of (compatible systems
of) Galois representations to automorphic representations on more general groups, as predicted by
Langlands functoriality and described e.g. in [BG11].
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1 INTRODUCTION

Notation

• The category of sets is denoted by Ens.

• If C is a category, we will use �c ∈ C� as a shortcut notation for �c is an object of C�, acknowledging
but notationally suppressing the intricacies if C is not small.

• For each rational prime `, we �x an isomorphism ι` : C
∼=−→ Q`.

• For a local ring R, we denote by mR the maximal ideal and by kR the residue �eld of R. If R is
an integral domain, we denote by Quot(R) the quotient �eld of R.

• For a number �eld F , we denote by F̃ the Galois closure of F over Q.

• Let F be a number �eld and L a �nite extension of Q`. Then we say that L is F -big enough if L
contains the image of any �eld embedding F ↪→ L, i.e. if L contains the Galois closure of F over
Q`.

• For a number �eld F , we denote by OF the ring of integers of F and by PlF (resp. Pl�nF ) the set
of places (resp. �nite places) of F . We denote by AF the ring of adeles of F and by A∞F (resp.
by AF,∞) the �nite (resp. in�nite) adeles. If ν is a �nite place of F , the (unique) rational prime
lying below ν is denoted by `(ν).

• For a number �eld F , we will write ΩF
∞ ⊂ PlF for the set of archimedean places of F . If ` is a

rational prime, we will write ΩF
` ⊂ PlF for the set of all places ν ful�lling `(ν) = `. (We will also

use the notation Ω∞ and Ω` if there is no risk of confusion.) If S ⊂ PlF is some set of places of
F and ` a rational prime, we write S` for S ∪ Ω∞ ∪ Ω`.

• If k is a �eld, we denote by k[ε] = k[X]/X2 the ring of dual numbers of k (cf. [Har77, Ex. 9.13.1]).

• If G is a group (or a group scheme), we will denote by ZG the center of G.

• When referring to the dimension of cohomology groups, we will abbreviate hi(·, ·) for dimH i(·, ·).

• Let Γ = GalF be the absolute Galois group of a number �eld F , k a �nite �eld of characteristic
` and M a continuous kΓ-module. We denote by M∗ the Pontryagin dual of M , by M(m) (for
m ∈ N) the twist εm` ⊗M (where ε` denotes the mod-` cyclotomic character) and byM∨ = M∗(1)
the Tate (or Cartier) dual of M .

• We will often use parentheses to simplify the notation for simultaneous statements, in particular
for deformation rings (cf. the �Notational convention� at the beginning of Section 3 of [Böc07]).
If necessary, we will iterate this with squared brackets. For example, the (nonsense) statement
dimR(�),[χ](ρ) = 3 + (4)− [1] is to be read as(

dimR(ρ) = 3
)
∧
(
dimR�(ρ) = 7

)
∧
(
dimRχ(ρ) = 2

)
∧
(
dimR�,χ(ρ) = 6

)
.

• If A ↪→ A′ is a (previously �xed) ring extension, we will write ιnA′|A for the associated morphism

GLn(A)→ GLn(A′).

• For a ring R, we denote by Mn×n(R) the ring of n× n matrices with entries in R.

12



2 LIFTINGS AND DEFORMATIONS

2 Liftings and Deformations

Throughout this section, let us �x a �nite �eld k of characteristic ` > 0. We will denote the ring of
Witt vectors over k by W (k). Let us moreover consider a pro�nite group Γ which ful�lls the following
`-�niteness condition:

Assumption 2.1 (Condition Φ` from [Maz89]). For any open subgroup H ⊂ Γ, the maximal pro-`
quotient of H is topologically �nitely generated.

As remarked e.g. in [Böc13a, Ex. 1.2.2], absolute Galois groups of local �elds and the Galois groups of
extensions FS |F (with F being a number �eld and FS being the maximal extension of F unrami�ed
outside a �nite set of places S) ful�ll this assumption for all primes `.

Let G be a smooth linear algebraic group over W (k) and let

ρ : Γ −→ G(k)

be a continuous group homomorphism, where G(k) carries the discrete topology. We will commonly
refer to ρ as a residual representation. The purpose of this introductory section is to describe the
deformation theory of ρ to complete Noetherian local W (k)-algebras, building up on the expositions
of Tilouine [Til96], Mauger [Mau00], Levin [Lev13], Balaji [Bal12] and Bleher and Chinburg [BC03].
Historically, deformation theory was �rst studied by Mazur [Maz89, Maz97b] and others in the case
G = GLn.

We remark that the material of this section could be analogously developed for a linear algebraic group
over a discrete valuation ring which is �nite over W (k), but we don't need this.

2.1 Coe�cient rings

Let Λ be the valuation ring of a �nite extension of Q` with residue �eld k = kΛ.

De�nition 2.2. Denote by

• ?CΛ: the category of complete Noetherian local Λ-algebras A such that [kA : k] is �nite;

• ?C◦Λ: the (fully faithful) subcategory of ?CΛ consisting of those A which are Artinian;

• CΛ: the (fully faithful) subcategory of ?CΛ consisting of those A which ful�ll kA = k;

• C◦Λ: The intersection of ?C◦Λ and CΛ.

As morphisms we consider local maps which induce the identity on residue �elds. To be more precise
(cf. footnote 3 in [Gou01, Lecture 2]), we take as objects of ?CΛ pairs (A, ιA), where A is a complete
Noetherian local Λ-algebra and where ιA is an embedding A/mA ↪→ k. Then we consider as morphisms
f : (A, ιA) → (B, ιB) those local maps f : A → B whose induced map f : A/mA → B/mB on residue
�elds makes the following diagram commute:

A/mA
f //

� _

ιA
��

B/mB� _

ιB
��

k
id

// k

13



2 LIFTINGS AND DEFORMATIONS

Observe that, for CΛ, this is just the usual notion of �local maps which induce the identity on residue
�elds�.

Remark 2.3. Our main interest is in the categories CΛ and ?CΛ. The main problem is that pullbacks do
not exist in these categories, but they do exist in C◦Λ and ?C◦Λ, cf. [Gou01, Lecture 2].

Let us recall the de�nition of the completed tensor product (see e.g. [Maz97b, �12]): For objects A,B,C
of CΛ and maps A→ B,A→ C, we de�ne

B⊗̂AC := lim←−
i,j

(
B/mi

B

)
⊗A

(
C/mj

C

)
∈ CΛ.

This construction realizes the pushout of B and C along A (cf. Section 0.3 of Gabriel's Exposé V IIB
in [DG70]). Using the co-continuity of Hom-functors, we immediately get the following proposition on
representing objects:

Proposition 2.4. Let
A //

��

B

C

be a diagram in CΛ. Then HomCΛ(B⊗̂AC, ) is the pullback of the diagram of functors

HomCΛ(B, )

��
HomCΛ(C, ) // HomCΛ(A, ) .

Corollary 2.5. Let F1, . . . , Fm be �nitely many representable functors from CΛ to Ens. Let Ri denote
the representing object of Fi. Then ∏

i=1,...,m

Fi : CΛ −→ Ens

is representable by R1⊗̂ . . . ⊗̂Rm.

As a preparation for the next proposition, let us consider a pushout diagram in CΛ

A
f // //

π
��

B

��
C g

// P ,

such that f is surjective. This implies that g is surjective, so by taking I := ker(f) and J := ker(g) we
can extend π to a map of short exact sequences (of Λ-modules):

0 // I

π|I
��

// A
f //

π
��

B

��

// 0

0 // J // C g
// P // 0

(2.1)

14
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This diagram can be extended to

0 // I

��

// A //

��

B

��

// 0

C⊗̂AI

����

// C⊗̂AA // C⊗̂AB // 0

0 // J // C // P // 0

De�nition 2.6. For a �nitely generated ideal I of A we de�ne

gen(I) := dimk I/mAI.

Then gen(I) is the cardinality of a minimal set of generators for I.

Then we have:

Proposition 2.7. In diagram (2.1),
gen(J) ≤ gen(I).

Proof. This follows from the above extended diagram, using that both the map I → C⊗̂AI induced
by base change from A to C and the surjective module homomorphism C⊗̂AI � J send systems of
generators to systems of generators.

Recall the following elementary facts about regular systems of parameters:

Proposition 2.8 ([Ser00, Proposition 22] and the subsequent corollary).

a) Let x1, . . . , xl be l elements of the maximal ideal mA of a regular local ring A. Then the following
is equivalent:

i. x1, . . . , xl is a subset of a regular system of parameters of A;

ii. The images of x1, . . . , xl in mA/m
2
A are linearly independent over k;

iii. The local ring A/(x1, . . . , xl) is regular and has dimension dimA−l. (In particular, (x1, . . . , xl)
is a prime ideal.)

b) If I is an ideal of a regular local ring A, the following properties are equivalent:

i. A/I is a regular local ring;

ii. I is generated by a subset of a regular system of parameters of A.

Proposition 2.9. Let A = Λ[[x1, . . . , xa]], B = Λ[[y1, . . . , yb]] be objects of CΛ and assume that there
exists a surjective morphism f : A→ B whose kernel we denote by I. Then gen(I) = a− b ≥ 0.

Proof. It is clear that there cannot be a negative number of generators of I. By Proposition 2.8.b), the
ideal I can be generated by a subset (of, say, cardinality r) of a regular system of parameters of A. By
part a) of said proposition, the quotient A/I has dimension dimA− r = a+ 1− r. We get r = a− b,

15



2 LIFTINGS AND DEFORMATIONS

which is thus an upper bound on gen(I).
In order to derive a lower bound, consider the canonical surjection

π : A/mA.I � A/m2
A.

The image of I/mA.I under π is (I + m2
A)/m2

A
∼= I/(I ∩ m2

A). This implies gen(I) = dimk I/mAI ≥
dimk I/I ∩m2

A = r, where the last equality is taken from the proof of [Ser00, Proposition 22].

Lemma 2.10. Let A = Λ[[x1, . . . , xa]], B = Λ[[y1, . . . , yb]] be objects of CΛ and let J ⊂ A be an ideal
of the form J = (ϕ1, . . . , ϕu) with ϕi ∈ A and u ≤ a. Suppose moreover, that there exists a surjective
morphism f : A/J � B and denote its kernel by I.
Then A/J ∼= Λ[[x1, . . . , xa−u]] if and only if gen(I) = a− u− b.

Proof. The �only if� direction follows from the above proposition. For the other direction, assume
gen(I) = l := a− u− b and write I = (ψ1 + J, . . . , ψl + J) for suitable ψi ∈ A. Write

K := (ϕ1, . . . , ϕu, ψ1, . . . , ψl) ⊂ A.

It follows from the third isomorphism theorem for rings [Bou89, I.�8.9 Corollary] that

A/K ∼= (A/J)/(K/J) ∼= (A/J)/I ∼= B.

Because K ⊂ mA, we can apply the implication iii.⇒ i. of Proposition 2.8.a), which tells us that there
exists a regular system of of parameters of A which extends the system ϕ1, . . . , ϕu, ψ1, . . . , ψl. But then
this system also extends ϕ1, . . . , ϕu, hence (by Proposition 2.8.a), implication i.⇒ iii.) A/J is regular
of dimension a − u + 1. Thus, we can apply Cohen's structure theorem (see [Ser00], p. 108) to �nish
the proof as soon as we can show that A/J is unrami�ed, i.e. that ` /∈ m2

A/J . But this is clear: f is a

surjection onto the unrami�ed regular ring B, so mA/J = f−1(mB) and ` /∈ m2
B.

Remark 2.11. Retain the notation from Lemma 2.10. Then it follows from the above proof together
with Proposition 2.9 that gen(I) cannot be smaller than a−u−b. Thus, if we want to apply the lemma
in order to prove that A/J is isomorphic to a ring of power series, it su�ces to show that there exists
a generating set for I of cardinality not exceeding a− u− b. This implies that the number of variables
is precisely a− u.

Proposition 2.12. Let m ∈ N. Then an object A of CΛ is regular if and only if A[[x1, . . . , xm]] is
regular.

Proof. It is clearly su�cient to consider the case m = 1. The �only if� part is [Mat80, Proposition
24D]. For the other direction, assume that A[[x]] is regular. It is clear that x is not contained in
m2
A[[x]] = (mA, x)2, so implication ii.⇒ iii. of Proposition 2.8.a) yields regularity of A[[x]]/(x) ∼= A.

Recall the following de�nition from [Gro64, �19] (see also [Ser06, Appendix C]):

De�nition 2.13. A morphism f : A → B of rings is called formally smooth if the following lifting
property is ful�lled for any commutative A-algebra D and any nilpotent ideal I ⊂ D: Any A-algebra
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morphism h : B → D/I factors through the projection D � D/I. Written as a diagram: For any h
there exists an h̃ such that

A
f //

��

B

h
��

h̃

}}
D // // D/I

commutes.

One of the reasons why we are interested in this notion is the following result:

Proposition 2.14. Let f : A → B be a morphism in CΛ. Then f is formally smooth if and only if B
is isomorphic to a formal power series ring over A.

Proof. This is the equivalence (i)⇔ (ii) of [Ser06, Proposition C.6].

Lemma 2.15. Consider morphisms f : A → B and g : B → C in CΛ. If g and g ◦ f are formally
smooth, then f is formally smooth.

Proof. Using the formal smoothness of g and Proposition 2.14, we can consider the following diagram:

A
f //

��

B
h

��

h̃

~~

g // C ∼= B[[x1, . . . , xm]]

r
ww

r̃

ttD // // D/I

Here, we start with a morphism h : B → D/I and want to show the existence of a suitable h̃. For this,
take r as the unique map satisfying r◦g = h and r(xi) = 0 for all i ∈ {1, . . . ,m}. Using the assumption
that g ◦ f is formally smooth, we see that r lifts to a map r̃. But then h̃ := r̃ ◦ g yields the desired lift
of h.

We next prove a rather general lemma: Consider a ring of the form

R = Λ[[x1, . . . , xa]]/(f1, . . . , fb) (2.2)

where this is a minimal presentation, i.e. a ∈ N0 is minimal among all possibilities to write R as a
quotient of a power series ring over Λ and b = gen(f1, . . . , fb). Also consider

R′ := ∆⊗Λ R = ∆[[x1, . . . , xa]]/(f1, . . . , fb) (2.3)

for some ∆ ∈ ?CΛ such that the structure morphism Λ→ ∆ is �at.

Remark 2.16. We will mainly be interested in the case where ∆ is a discrete valuation ring extending
Λ, where we suppose [Quot(∆) : Quot(Λ)] <∞. In this case, the �atness condition is ful�lled.

Lemma 2.17. The presentation in (2.3) is minimal. In particular, R is formally smooth over Λ of
dimension a if and only if R′ is formally smooth over ∆ of dimension a.
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Proof. Minimality of (2.2) amounts to the inclusion I := (f1, . . . , fb) ⊂ (m2, `), where m denotes the
maximal ideal of Λ[[x1, . . . , xa]] and b = dim I/m.I. By the �atness of ∆, we can compare the exact
sequences

0 −→ I −→ Λ[[x1, . . . , xa]] −→ R −→ 0

and
0 −→ ∆⊗Λ I −→ ∆[[x1, . . . , xa]] −→ R′ −→ 0.

It remains to show that the latter gives a minimal presentation. We easily see that ∆⊗Λ I ⊂ (m′2, `),
where m′ is the maximal ideal of ∆[[x1, . . . , xa]]: Exactness of

0→ I → (m2, `)

implies exactness of
0→ ∆⊗Λ I → ∆⊗Λ (m2, `) = (m′2, `).

It remains to check that b equals b′ := dim∆/m′ ∆ ⊗Λ I/m
′.∆ ⊗Λ I. But this follows directly from the

isomorphism
∆⊗Λ I/m

′.∆⊗Λ I ∼= I/m.I ⊗Λ/m ∆/m′

and the fact that Λ/m→ ∆/m′ is a monomorphism of �elds:

b = dimΛ/m I/m.I = dim∆/m′ ∆⊗Λ I/m
′.∆⊗Λ I = b′.

We conclude this section with two general lemmas which will be useful for comparing two deformation
rings:

Lemma 2.18. Let R,R′ ∈ CΛ and let
ϕ : R� R′

be a surjective morphism. Assume moreover that R is formally smooth over Λ of relative dimension d.
Then ϕ is an isomorphism if dim(R′) = d+ 1.

Proof. Assume that ϕ is not injective, i.e. kerϕ 6= 0. Then it follows that dim(R/ kerϕ) < dimR. The
claim now follows from the additivity of the dimension.

Lemma 2.19. Let R ∈ CΛ such that

Λ[[x1, . . . , xm]] ∼= R ⊗̂Λ Λ[[x]]

for some m ∈ N. Then
R ∼= Λ[[x1, . . . , xm−1]].

Proof. Let $ be a uniformizing element of Λ. Clearly, the indeterminant

x ∈ (R/$.R)[[x]] ∼= k[[x1, . . . , xm]]

is contained in a regular system of parameters, so

R/$.R ∼= k[[x1, . . . , xm−1]]. (2.4)

18
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Now consider the diagram
Λ //

��

Λ[[x1, . . . , xm−1]]

h
����h̃

xx
R g

// // R/$.R

where h and g are the projection maps modulo $. As Λ[[x1, . . . , xm−1]] is formally smooth over
Λ, there exists a dotted map h̃. Because of the isomorphism (2.4), R modulo the maximal ideal of
Λ[[x1, . . . , xm−1]] is k and hence, by Nakayama's Lemma, the map h̃ is surjective.

Now we see that h̃ must be an isomorphism: Assume, this is not the case. Then dimR < m, which is
in con�ict with the isomorphism Λ[[x1, . . . , xm]] ∼= R⊗̂ΛΛ[[x]] ∼= R[[x]].

2.2 Liftings of G-valued representations

For an object A of ?CΛ with residue �eld kA we consider the following maps induced by reduction
modulo the maximal ideal and by the structure map Λ→ A, respectively:

modmA : G(A) −→ G(A/mA) = G(kA), ιk⊂kA : G(k) −→ G(kA). (2.5)

De�nition 2.20. Let
ρ : Γ −→ G(k)

be a residual representation and A be an object of ?CΛ. Then a lifting of ρ to A is a continuous group
homomorphism

ρ : Γ −→ G(A)

which ful�lls
modmA ◦ρ = ιk⊂kA ◦ ρ.

De�nition 2.21 (Lifting functor). Retaining the notation from the above de�nition, let

?D�
Λ (ρ) : ?CΛ −→ Ens

be the functor which assigns to an object A of ?CΛ the set of all liftings of ρ to A. The restriction of
?D�

Λ (ρ) to CΛ is denoted by D�
Λ (ρ).

Theorem 2.22. 1. Both ?D�
Λ (ρ) and D�

Λ (ρ) are representable by the same object R�
Λ (ρ) which lies

in CΛ.

2. Let Λ′ be the ring of integers of a �nite extension of Quot(Λ) with residue �eld k′ := kΛ′ and
abbreviate ρ′ for ιk⊂k′ ◦ ρ. Then

R�
Λ′(ρ

′) ∼= Λ′ ⊗Λ R
�
Λ (ρ).

We will call R�
Λ (ρ) the universal lifting ring (or universal framed deformation ring, cf. Proposition 2.61

below) of ρ. The a�orded morphism
ρ� : Γ→ G(R�

Λ (ρ))

is called the universal lifting of ρ.
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Proof. Representability of D�
Λ (ρ) is the content of Theorem 1.2.2 of Balaji's thesis [Bal12], where a

representing object is explicitly constructed. Moreover, it is easily seen that the proof is applicable
to the functor ?D�

Λ (ρ) without any changes (so in particular with the same constructed representing
object). An alternative proof using an embedding of G into GLN is given in [Lev13, Proposition 7.2.1].

Also, the second claim can be deduced by comparing the construction of the representing object ofD�
Λ (ρ)

and the representing object of D�
Λ′(ρ

′) in Balaji's proof: Using his notation, R�
Λ (ρ) is constructed as

the I-adic completion of a quotient R2 of a power series ring over Λ (for an explicitly described ideal
I ⊂ R2). Similarly, R�

Λ′(ρ
′) can be constructed as the I ′-adic completion of a quotient R′2 of a power

series ring over Λ′. The rings R2 and R′2 depend only on Γ and G (resp. on Γ and the extension of
scalars of G to Λ′), which immediately implies

R′2
∼= Λ′ ⊗Λ R2.

The ideal I (resp. I ′) is de�ned using the residual representation, and it follows directly from the
identity ρ′ = ιk′|k ◦ ρ that I ′ ∼= Λ′ ⊗Λ I, from which we conclude the claim.

Remark 2.23. It is easy to check that the Noetherian objects of the completion (̂?)C◦Λ lie in (?)CΛ (i.e.
that any object R of (?)CΛ ful�lls

R ∼= lim←−
i

R/mi
R

with R/mi
R ∈ (?)C◦Λ ), see [Gou01, Problem 2.3]. Moreover, the functors (?)D�

Λ (ρ) are continuous in the
following sense: For any object A of (?)CΛ with maximal ideal mA we have

(?)D�
Λ (ρ)(A) ∼= lim←−

i

(?)D�
Λ (ρ)(A/mi

A).

Thus, (?)D�
Λ (ρ) is already determined by its restriction (?)D◦,�Λ (ρ) to (?)C◦Λ. The �rst part of Theo-

rem 2.22 may therefore be rephrased as follows: The functors ?D◦,�Λ (ρ) and D◦,�Λ (ρ) are both pro-
representable by the same object R�

Λ (ρ).

Remark 2.24. The things said so far imply two extension principles:

1. A pro-representable functor on (?)C◦Λ can be extended to a continuous functor on (?)CΛ in a unique
way. This extension is representable by the same object.

2. A pro-representable functor F = HomC◦Λ(R, ) on C◦Λ can be extended to a pro-representable func-
tor ?F = Hom ?C◦Λ(R, ) on ?C◦Λ. Moreover, this extension is unique up to natural isomorphism:
Assume ?F ′ = Hom ?C◦Λ(R′, ) is another pro-representable extension of F , then the unicity of the
pro-representing object implies a unique isomorphism R ∼= R′. Using the �rst part of this remark,
this can equivalently be stated as follows: A representable functor on CΛ can be extended to a
representable functor on ?CΛ in a way which is unique up to natural isomorphism.

We will later generalize the extension principles of Remark 2.24.2, cf. Observation 2.34.

Relatively representable subfunctors and lifting conditions For this paragraph, let C be either
?C◦Λ or C◦Λ and consider a functor

F : C −→ Ens,
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which ful�lls
#F (k′) = 1 (2.6)

for any �nite �eld k′ in C.

Theorem 2.25 (Grothendieck's criterion [Gro95a]). The functor F is pro-representable if and only if
the following conditions are met:

1. Mayer-Vietoris property: F respects �ber products, i.e. for any two morphisms f : A→ E, g : B → E
in C, the canonical map

hFf,g : F (A×E B) −→ F (A)×F (E) F (B)

is an isomorphism of sets;

2. Finitude of tangent spaces: For any �nite �eld k′ which is contained in C, the set F (k′[ε]) is �nite.

De�nition 2.26 ([Maz97b, �19]). A subfunctor H of F is called relatively representable, if

1. H(k) = F (k);

2. For any two morphisms f : A→ E, g : B → E in C, the following is a pullback diagram in Ens:

H(A×E B)
hHf,g //

� _

��

H(A)×H(E) H(B)
� _

��
F (A×E B)

hFf,g

// F (A)×F (E) F (B)

(2.7)

Let f : A→ B, g : C → B be maps of sets. Then the pullback in Ens is explicitly given by

A×f,B,g C = {(a, c) ∈ A× C | f(a) = g(c)}.

Similarly, if F,G,H : C → Ens are functors together with natural transformations

τ : F → G,ψ : H → G,

we can characterize (or de�ne � as done e.g. in [Maz97b] � if we don't want to refer to the general limit
construction in functor categories) the pullback functor

F ×τ,G,ψ H : C → Ens

by sending C ∈ C to the set F (C)×τC ,G(C),ψC H(C).

Lemma 2.27. Consider a diagram of functors and natural transformations

F

τ
��

H �
�

ψ
// G
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and assume that ψ is injective (i.e. all components ψA are monic), so that we can view H as a subfunctor
of G. Assume that H is relatively representable in G via ψ. Then the induced natural transformation
to the �rst factor,

πF : F ×τ,G,ψ H → F,

allows us to view F ×τ,G,ψ H as a subfunctor of F and, as such, F ×τ,G,ψ H is relatively representable
in F .

Proof. Consider the commutative diagram

X

ζ2

''

ζ1

&&

ξ

##
H(A×E B) �

� g1 //

g2

��

G(A×E B)

g4

��
F ×τ,G,ψ H(A×E B)

p1 33

� � f1 //

f2

��

F (A×E B)
p4

33

f4

��
H(A)×H(E) H(B) �

�

g3

// G(A)×G(E) G(B) ,

F ×τ,G,ψ H(A)×F×τ,G,ψH(E) F ×τ,G,ψ H(B) �
�

f3

//

p2 33

F (A)×F (E) F (B)
p3

33

where X ∈ C is arbitrary and will be used as a test object. In order to prove the claim, we have to
show that the square in the foreground (f1− f2− f3− f4) is a pullback diagram, given that the square
in the background (g1 − g2 − g3 − g4) is one. So for any two maps ζ1, ζ2 ful�lling f4 ◦ ζ1 = f3 ◦ ζ2, we
have to show that there exists a unique ξ ful�lling

ζ1 = f1 ◦ ξ and ζ2 = f2 ◦ ξ. (2.8)

By assumption on the relative representability of H in G, we know that there exists a unique map
η : X → H(A×E B), such that g1 ◦ η = p4 ◦ ζ1 and g2 ◦ η = p2 ◦ ζ2. Thus we can de�ne

ξ : X −→ F ×τ,G,ψ H(A×E B) ∼= F (A×E B)×g1,G(A×EB),p4
H(A×E B)

by sending x to
(
ζ1(x), η(x)

)
. Checking the requirements (2.8) is obvious for ζ1, and for ζ2 we can use

the following observation: An element of

F ×τ,G,ψ H(A)×F×τ,G,ψH(E) F ×τ,G,ψ H(B)

is uniquely determined by its image under p2 and f3. Thus, in order to show ζ2 = f2 ◦ ξ, it is su�cient
to show

p2 ◦ ζ2 = p2 ◦ f2 ◦ ξ and f3 ◦ ζ2 = f3 ◦ f2 ◦ ξ.

The �rst identity follows from the de�nition of ξ and commutativity of the square p1-g2-f2-p2, and the
second identity follows from f4 ◦ ζ1 = f3 ◦ ζ2, ζ1 = f1 ◦ ξ and commutativity of the foreground square
f1 − f2 − f3 − f4.

It remains to check uniqueness of ξ: Let ξ′ be another map ful�lling the requirements (2.8). We use
the observation that an element of F ×τ,G,ψ H(A×E B) is uniquely determined by its image under p1

and f1. Hence, it su�ces to show

f1 ◦ ξ = f1 ◦ ξ′ and p1 ◦ ξ = p1 ◦ ξ′.
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The �rst identity is ful�lled by the requirements (2.8) made on ξ and ξ′, and the second identity follows
from commutativity of the square p1-g2-f2-p2 together with the assumption that the background square
g1− g2− g3− g4 is a pullback diagram: This implies that the map η as above is unique with respect to
the requirements g1 ◦ η = p4 ◦ ζ1 and g2 ◦ η = p2 ◦ ζ2. By commutativity of the above diagram, p1 ◦ ξ
and p1 ◦ ξ′ ful�ll these requirements and we get

p1 ◦ ξ = η = p1 ◦ ξ′

and the lemma follows.

Lemma 2.28. Let H be a relatively representable subfunctor of F and assume that F is pro-representable
by a suitable object R ∈ CΛ. Then there exists an ideal I ⊂ R such that H is pro-representable by R/I.

Proof. We �rst check that H ful�lls the Grothendieck criterion, provided that F does. Finitude of
tangent spaces is obvious, and the Mayer-Vietoris property can be read o� from diagram (2.7), using
that hFf,g is an isomorphism and using the formal property Y ×Y Z ∼= Z of the �ber product. That the
pro-representing object of H is a quotient of the pro-representing object of F follows from [Maz97b,
�19, Lemma]. (We remark that Lemma 2.28 is a standard fact, often proved via Schlessinger's criterion
instead of Grothendieck's criterion, see [Gou01, Problem 3.5] or, for more details, [Har07, Proposition
1.3].)

Remark 2.29. Although we will not make extensive use of this in the sequel, let us remark that the
following strengthening of Lemma 2.28 holds: If F is pro-representable, then a subfunctor H of F is
pro-representable if and only if it is relatively representable: One implication was proved in Lemma
2.28, so assume that H is pro-representable. This implies that both F and H ful�ll the Mayer-Vietoris
property (part 1. of Theorem 2.25). Using again the formal property Y ×Y Z ∼= Z, it is clear that
the diagram (2.7) is a pullback diagram. That condition 1. of De�nition 2.26 is ful�lled follows from
assumption (2.6) together with the pro-representability of H. Thus, H is relatively representable. (We
also remark that this strengthening appeared in [Gro95b] as Proposition 3.7, albeit for contravariant
functors.)

We make this explicit for the choice C = ?C◦Λ and F = ?D◦,�Λ (ρ):

De�nition 2.30. A lifting condition is a family ?D = (S(A))A∈ ?C◦Λ , where each S(A) is a set of
A-valued liftings of ρ such that

1. ρ ∈ S(k);

2. Let f : A→ A′ be a morphism in ?C◦Λ and ρ ∈ S(A). Then ρ′ := G(f) ◦ ρ is in S(A′);

3. Let f1 : A1 → A, f2 : A2 → A be morphisms in ?C◦Λ and let ρ3 be a lifting of ρ to A3 := A1×AA2.
For i ∈ {1, 2} denote by πi : A3 → Ai the canonical projection and by ρi the lifting G(πi) ◦ ρ3 of
ρ to Ai. Then, ρ3 ∈ S(A3) if and only if ρ1 ∈ S(A1) and ρ2 ∈ S(A2).

By condition 2. of this de�nition, the assignment A 7→ S(A) de�nes a subfunctor ?D◦,�,
?D

Λ (ρ) of
?D◦,�Λ (ρ).

Proposition 2.31. ?D◦,�,
?D

Λ (ρ) is a relatively representable subfunctor of ?D◦,�Λ (ρ).
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Proof. Observe that condition 3. of De�nition 2.30 is just the Mayer-Vietoris property spelled out. As
condition 1. of De�nition 2.30 is the same as condition 1. of De�nition 2.26, we can use Remark 2.29
(or check condition 2. of De�nition 2.26 by hand) to verify the claim.

There exists a converse to this proposition:

Proposition 2.32. Let H be a relatively representable subfunctor of ?D◦,�Λ (ρ). Then
(
H(A)

)
A∈ ?C◦Λ

is

a lifting condition.

Proof. Let I ⊂ R�
Λ (ρ) be the ideal corresponding to H via Lemma 2.28, so that we have

H(A) =
{
ϕ ◦ ρ�

∣∣∣ϕ ∈ HomΛ

(
R�

Λ (ρ), A
)
, ϕ(I) = 0

}
for A ∈ ?C◦Λ. (2.9)

It is clear that ρ ∈ H(k). For condition 2. of De�nition 2.30, let ρ ∈ H(A) for some A ∈ ?C◦Λ. Then
ρ = ϕ ◦ ρ� for a suitable ϕ as in (2.9). If f : A → A′ is a morphism in ?C◦Λ′ , we have to check
f ◦ ρ ∈ H(A′). But this is obvious from the characterization (2.9).
Recall the notation from condition 3. of 2.30. That ρ3 ∈ H(A3) implies ρ1 ∈ H(A1), ρ2 ∈ H(A2) follows
from the same argument we used for condition 2. For the reverse implication, assume that ρ1 ∈ H(A1)
and ρ2 ∈ H(A2) and let ϕ1, ϕ2 be the respective maps as in (2.9). Let A4 = A1 ×A2 and ρ4 = ρ1 × ρ2

and observe that A3 embeds into A4. We see that ρ4 : Γ→ G(A4) factors as

ρ4 = (ϕ1 ◦ ρ�)× (ϕ2 ◦ ρ�) = ϕ4 ◦ ρ�

for ϕ4 = (ϕ1, ϕ2) which ful�lls ϕ4(I) = 0 (but observe that ϕ4 is not a lifting of ρ, since A4 is not
local). On the other hand, we have a commutative diagram

A3� _

��

Γ
ρ�

// R�
Λ (ρ)

ϕ3

77

ϕ4

''
A4

for a suitable map ϕ3. It follows that ϕ3(I) = 0 and hence ρ3 ∈ H(A3).

This justi�es that we will not distinguish between the terms �relatively representable subfunctor of
?D◦,�Λ (ρ)� and �lifting condition�.

Proposition 2.33. Let ?D = (S(A))A∈ ?C◦Λ and ?D′ = (S′(A))A∈ ?C◦Λ be two deformation conditions.
Then the assignment

?C◦Λ → Ens A 7→ S(A) ∩ S′(A)

de�nes a lifting condition denoted ?D ∧?D′ or ?D,?D′.

Proof. Conditions 1.-3. of De�nition 2.30 are easily checked for ?D∧?D′. Alternatively, we can observe
that the pullback of the diagram

?D◦,�,
?D

Λ (ρ)

��
?D◦,�,

?D′
Λ (ρ) // ?D◦,�Λ (ρ)
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corresponds precisely to the condition ?D ∧?D′, so the claim follows from Lemma 2.27.

We come now to our second extension principle:

Observation 2.34. Let D be a family (S(A))A∈C◦Λ ful�lling the conditions of De�nition 2.30, then the

a�orded subfunctor D◦,�,DΛ (ρ) of D◦,�Λ (ρ) is relatively representable, hence gives rise to a quotient

R�,D
Λ (ρ) of R�

Λ (ρ) as pro-representing object. Let us assume that R�,D
Λ (ρ) is reduced3. Then we can

extend the family D to a lifting condition ?D (in the sense of De�nition 2.30) by setting

S(A) :=
{
ϕ ◦ πD ◦ ρ�

∣∣∣ϕ ∈ HomΛ

(
R�,D

Λ (ρ), A
)}
,

where πD : R�
Λ (ρ) → R�,D

Λ (ρ) is the canonical quotient map and A ∈ ?C◦Λ. Moreover, by the unicity
of the pro-representing object, this is the unique lifting condition which extends D. This sets up a
bijection between lifting conditions (denoted ?D) and C◦Λ-truncated lifting conditions (denoted D) and
justi�es the omittance of the star in the notation of lifting conditions from now on.

Let us �x some consequences:

Corollary 2.35. Let D = (S(A))A∈C◦Λ be a lifting condition. Then:

1. There is an ideal ID ⊂ R�
Λ (ρ) such that both D◦,�,DΛ (ρ) and ?D◦,�,DΛ (ρ) are pro-representable by

R�,D
Λ (ρ) = R�

Λ (ρ)/ID;

2. D◦,�,DΛ (ρ) and ?D◦,�,DΛ (ρ) extend to continuous subfunctors D�,D
Λ (ρ) of D�

Λ (ρ) and ?D�,D
Λ (ρ) of

?D�
Λ (ρ). Both D�,D

Λ (ρ) and ?D�,D
Λ (ρ) are representable by R�

Λ (ρ)/ID;

3. Let Λ′ be an object of ?CΛ with residue �eld k′ := kΛ′, and observe that, via the structure map
Λ→ Λ′, we can understand (?)C[◦]

Λ′ as a subcategory of (?)C[◦]
Λ . Abbreviate ρ′ for ιk⊂k′ ◦ρ and D′ for

the truncation of D to those S(A) for which A is in ?C◦Λ′. Then, both D�,D′
Λ′ (ρ′) and ?D�,D′

Λ′ (ρ′)
are representable by

R�,D′
Λ′ (ρ′) ∼= Λ′ ⊗Λ R

�,D
Λ (ρ).

(We remark that a special case of part 3. can also be found in [BLGGT14, Lemma 1.2.1]. We also remark
at this point that an unframed version of these assertions hold true, i.e. anticipating the language of
Section 2.3 below we have

RD
′

Λ′ (ρ
′) ∼= Λ′ ⊗Λ R

D
Λ (ρ).

if D is a deformation condition and if RDΛ (ρ) is representable.)

Proof. Only the last part requires an explanation: Let ID denote the ideal associated to D. Then S(A)
consists precisely of those f ∈ HomΛ(R�

Λ (ρ), A) which vanish on ID. If A is an object of ?C◦Λ′ , S(A) is
in canonical bijection with the set of those f ∈ HomΛ′(Λ

′ ⊗Λ R
�
Λ (ρ), A) which vanish on Λ′ ⊗Λ ID. It

follows that D�,D′
Λ′ (ρ′) and ?D�,D′

Λ′ (ρ′) are representable by(
Λ′ ⊗Λ R

�
Λ (ρ)

)
/
(
Λ′ ⊗Λ ID

)
= Λ′ ⊗Λ

(
R�

Λ (ρ)/ID
)

= Λ′ ⊗Λ R
�,D
Λ (ρ).

(Note that this also gives an alternative proof for the second part of Theorem 2.22.)

In the remainder of this section, we introduce several examples for lifting conditions.
3The reducedness is a su�cient condition for the extension ?D to de�ne a deformation condition, cf. the corrections

to [CHT08] in [BLGHT11, Lemma 3.2].
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Liftings with a constraint on the kernel Let us �x another pro�nite group ∆ together with an
inclusion ι : ∆ ↪→ Γ. Consider the family Dker⊃∆ = (S(A))A∈C◦Λ with

S(A) =
{
ρ ∈ D◦,�Λ (ρ)(A)

∣∣ ρ|∆ = 1A
}
,

where 1A : ∆→ G(A) denotes the trivial map (sending everything to the neutral element of G(A)) and
where we abbreviate ρ|∆ for ρ ◦ ι.

Proposition 2.36. Assume that ρ|∆ is trivial, so that ρ ∈ S(k). Then Dker⊃∆ de�nes a lifting
condition.

Proof. We easily observe that D◦,�,D
ker⊃∆

Λ (ρ) is the pullback of the diagram

D◦,�Λ (ρ)

ι∗

��
T ϕ

// D◦,�Λ (ρ|∆) ,

where T : C◦Λ → Ens is the functor sending any coe�cient ring A to the one point set {∗} and where
ϕA sends {∗} to the set {trivA} containing only the trivial lift

trivA : ∆→ G(A) δ 7→ 1G(A)

of ρ|∆. Thus, the claim follows once again from Lemma 2.27.

We will be mainly interested in the case where Γ is the absolute Galois group of a local �eld and where
∆ is the inertia subgroup. We will then denote the a�orded subfunctor by D◦,�,nrΛ (ρ) and refer to the
parametrized liftings as unrami�ed liftings.

Liftings of �xed factorization type In order to give another example of a deformation condition,
let G′ be a smooth linear algebraic group over W (k) together with a morphism d : G→ G′ of algebraic
groups. Let χ : Γ→ G′(Λ) be a �xed representation such that the following diagram commutes:

G′(Λ)
G′(modmΛ

)

''
Γ

χ
88

ρ &&

G′(k)

G(k)

dk

77

Consider the family Dd=χ = (S(A))A∈C◦Λ with

S(A) = {ρ ∈ D◦,�Λ (ρ)(A) | dA ◦ ρ = ιA ◦ χ},

where ιA : G′(Λ) → G′(A) is the homomorphism induced by the canonical structure morphism
ι̃A : Λ→ A.
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Proposition 2.37. Dd=χ is a lifting condition.

Proof. Let us �rst treat the special case G′ = G, d = id (and, hence, ρ = χ): As S(A) = {ιA ◦ χ},
both conditions of De�nition 2.26 are trivially ful�lled. Thus, D◦,�,D

d=χ

Λ (χ) is a relatively representable
subfunctor of D◦,�Λ (χ) and Dd=χ is a lifting condition. The general case now follows immediately from

Lemma 2.27, as D◦,�,D
d=χ

Λ (ρ) is the pullback of the diagram

D◦,�Λ (ρ)

��
D◦,�,D

d=χ

Λ (χ) �
� // D◦,�Λ (χ) ,

where the horizontal map is the canonical inclusion and the (A-component of the) vertical map sends
a lift ρ of ρ to the lift dA ◦ ρ of χ.

We will be mainly interested in the case where G′ = Gab and d : G → Gab is the projection modulo
the derived subgroup Gder, where we abbreviate D(◦),�,χ

Λ (ρ) for the subfunctor of D(◦),�
Λ (ρ) a�orded by

Dd=χ. We call D(◦),�,χ
Λ (ρ) the universal �xed determinant lifting ring.

Ramakrishna lifting functor We will continue with a categorical description of certain lifting
conditions in the case G = GLn, �rst considered in [Ram93]: Let Rep◦

Λ
(Γ) be the category of �nite

length Λ-modules together with a continuous action of Γ.

De�nition 2.38. A full subcategory R of Rep◦
Λ

(Γ) which is stable under taking subobjects, quotients
and �nite direct sums is called a Ramakrishna subcategory.

The choice of a Ramakrishna subcategory R gives rise to a functor

?D◦,�,RΛ (ρ) : ?C◦Λ −→ Ens

characterized by
?D◦,�,RΛ (ρ)(A) = {ρ ∈ ?D◦,�Λ (ρ)(A) | ρ ∈ R},

where ρ is considered as an object of Rep◦
Λ

(Γ) via the structure morphism Λ→ A.

Proposition 2.39. Suppose that ρ is in R (and that G = GLn). Then
(?
D◦,�,RΛ (ρ)(A)

)
A∈ ?C◦Λ

is a

lifting condition in the sense of De�nition 2.30.

Proof. Let f : A→ A′ be a morphism in ?C◦Λ and consider a diagram

Γ
ρ //

ρ′ ((

GLn(A)

GLn(f)
��

GLn(A′) ,

where we suppose that M = An (considered as a Λ-module via ρ) is in R. In order to verify part 2. of
De�nition 2.30, we have to check that M ′ := M ⊗AA′ is in R. In order to do this, we may assume that
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A′ is of the form A[X1, . . . , Xm]/I for some m ∈ N and for a suitable ideal I ⊂ A[X1, . . . , Xm] which
contains (X1, . . . , Xm)t for some t ∈ N. The passage

M ;M ′′ := M ⊗A A[X1, . . . , Xm]/(X1, . . . , Xm)t

replaces M by a �nite direct sum of copies of M , which is in R. The passage

M ′′ ;M ′ = M ′′ ⊗A[X1,...,Xm]/(X1,...,Xm)t A[X1, . . . , Xm]/I

replaces M ′′ by a quotient of M ′′, which is in R.
Let f1 : A1 → A, f2 : A2 → A be a morphisms in ?C◦Λ and let ρ be a lifting of ρ3 to A3 := A1 ×A A2.
Recall the notation ρ1, ρ2, ρ3 from part 3. of De�nition 2.30 and assume that ρ3 is in R. If Mi is the
underlying module of ρi, it is clear that M1 = M3 ⊗A3 A1 and M2 = M3 ⊗A3 A2 are quotients of M3,
thus it follows that M1 and M2 are in R. For the opposite direction, assume that M1,M2 are in R.
Then M3 can be realized as a submodule of M1 ×M2, hence the claim follows.

(This proof is based on unpublished lecture notes of M. Harris [Har07].)

Global conditions composed by local conditions For this �nal paragraph, �x pro�nite groups
∆σ together with inclusions (

ισ : ∆σ ↪→ Γ
)
σ∈Σ

,

for a �nite index set Σ. (The example we have in mind is where Γ is the absolute Galois group of a
global �eld F and the ∆σ are decomposition groups at places of F .) We continue to denote by ρ a �xed
G-valued residual representation of Γ, so we get natural transformations

fσ : D
◦,�,(χ)
Λ (ρ)→ D

◦,�,(χσ)
Λ (ρσ),

characterized by sending a lift ρ of ρ to the lift ρσ := ρ ◦ ισ of ρσ := ρ ◦ ισ. (Here, χσ denotes the lift
χ ◦ ισ of the determinant of ρσ.)

In addition to the given data, let us �x for each σ ∈ Σ a lifting condition Dσ = (Sσ(A))
A∈C(◦)

Λ

for ρσ.

We de�ne a family D = (S(A))
A∈C(◦)

Λ

by

S(A) =
{
ρ ∈ D◦,�,(χ)

Λ (ρ)(A)
∣∣ ρσ ∈ Sσ(A) for all σ ∈ Σ

}
.

Lemma 2.40. D is a lifting condition for ρ.

Proof. We argue as in the proof of Proposition 2.37: First observe that the fσ glue to a natural
transformation

f : D
◦,�,(χ)
Λ (ρ)→

∏
σ∈Σ

D
◦,�,(χσ)
Λ (ρσ). (2.10)

If we denote by gσ the inclusion transformation D
◦,�,(χσ),Dσ
Λ ↪→ D

◦,�,(χσ)
Λ , we get another natural

transformation

g =
∏
σ∈Σ

gσ :
∏
σ∈Σ

D
◦,�,(χσ),Dσ
Λ ↪→

∏
σ∈Σ

D
◦,�,(χσ)
Λ (ρσ).
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It is easy to check that this inclusion is relatively representable, using our assumption that each inclusion
gσ is relatively representable (use Corollary 2.5 together with Remark 2.29). Thus we get a diagram of
natural transformations

D
◦,�,(χ)
Λ (ρ)

f

��∏
σ∈ΣD

◦,�,(χσ),Dσ
Λ

� �

g
//
∏
σ∈ΣD

◦,�,(χσ)
Λ (ρσ)

and the subfunctor D◦,�,(χ),D
Λ (ρ) of D◦,�,(χ)

Λ (ρ) corresponding to D is its pullback. Thus, the claim
follows immediately from Lemma 2.27 and Proposition 2.32.

(We remark that there is a similar statement in [Böc99, Lemma 2.3].)

2.3 Deformations and deformation conditions

For A ∈ CΛ, recall the reduction map modmA : G(A) → G(k) from (2.5) and consider the following
subsets of G(A):

Ĝ(A) = ker(modmA) and ZA,ρ = {g ∈ G(A) | modmA(g).ρ.modmA(g)−1 = ρ}.

De�nition 2.41. Two liftings ρ1, ρ2 ∈ D�,
Λ (ρ)(A) are called equivalent (in symbols: ρ1 ∼ ρ2) if they

are conjugate by an element of ZA,ρ. They are called strictly equivalent (in symbols: ρ1
st∼ ρ2) if they

are conjugate by an element of Ĝ(A).

We will usually impose the following two conditions:

(Centr)k : ZG,k contains the centralizer CG(ρ(Γ)) as schemes over k;

(SmCtr) : ZG is formally smooth over Λ.

(Here, ZG,k denotes the base change of ZG to k.)

Proposition 2.42. If (Centr)k and (SmCtr) are ful�lled, then ρ1 and ρ2 are equivalent if and only
if they are strictly equivalent.

Proof. See [Til96, Section 3.2].

De�nition 2.43 (Deformation functor). Let

DΛ(ρ) : CΛ −→ Ens

denote the functor which assigns to A the set of strict equivalence classes of lifts of ρ to A:

DΛ(ρ)(A) = D�
Λ (ρ)(A)/Ĝ(A).

For ease of notation, we will refer to elements of DΛ(ρ)(A) by representatives, i.e. we will write ρ instead
of [ρ]st∼

.
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Remark 2.44. It is possible to develop a theory of deformations of ρ to rings in ?CΛ entirely analogous
to Section 2.2. However, we do not need this and refer the reader to Appendix A of [CDT99] where
this is carried out in detail. Another reference for (partial) results in that direction is [Maz97b, �12].

Let us denote by g = Ĝ(k[ε]) (resp. by z) the Lie algebra of the special �ber of G (resp. of the center
ZG of G). With reference to our �xed residual representation ρ, we will regard g as a Γ-module via the
adjoint representation, i.e.

γ.X := Ad(ρ(γ)).X (γ ∈ Γ, X ∈ g).

This operation restricts to the subalgebra gder. In the case G = GLn, we will also use the more familiar
notation ad ρ (resp. ad ρ0) instead of g (resp. gder).

Now, consider the condition

(Centr) : H0(Γ, g) = z.

Remark 2.45. 1. It is shown in [Mau00, Lemma 2.4(i)] that (Centr) is equivalent to the following
condition: For any A ∈ CΛ and any deformation ρ of ρ to A, we have an inclusion(

ZA,ρ ∩ Ĝ(A)
)
⊂ ZG(A),

where
ZA,ρ = {g ∈ G(A) | g.ρ.g−1 = ρ}.

2. Assume (SmCtr) and assume that we have an equality

Z◦G = CG(ρ(Γ))◦ (as varieties).

Then an equality

Z◦G = CG(ρ(Γ))◦ (as group schemes) (2.11)

follows if we suppose that the closed subgroup ρ(Γ) ⊂ G is separable in G (in the sense of [BMR05,
De�nition 3.27]).

3. Assume (SmCtr). Then the equality (2.11) is equivalent to (Centr), cf. [Til96], Comment 2
following Theorem 3.3.

De�nition 2.46 ([BMRT10]). Fix a maximal torus T ⊂ G and a Borel subgroup B ⊂ G containing
T . Let Ψ = Ψ(G,T ) denote the set of roots of G with respect to T , let Σ = Σ(G,T ) denote the set
of simple roots of Ψ de�ned by B and and let Ψ+ = Ψ(B, T ) denote the set of positive roots of G. If
β ∈ Ψ+, we write

β =
∑
α∈Σ

cα,βα

for suitable cα,β ∈ N0. A prime ` is then called good for G if it does not divide any non-zero cα,β .
A prime ` is called very good for G if ` is good for G and if ` does not divide n + 1 for any simple
component of G of type An.

Lemma 2.47 ([BMRT10, Theorem 1.2 and Corollary 2.13]).

1. If ` = char k is very good for G, then any closed subgroup H ⊂ G is separable in G;
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2. If there exists an embedding G ↪→ GL(V ) such that (GL(V ), G) is a reductive pair, then any closed
subgroup H ⊂ G is separable in G.

Moreover, we have the following result:

Theorem 2.48 ([Til96, Theorem 3.3]). Assume that (SmCtr) and (Centr) are ful�lled. Then DΛ(ρ)
is representable by some ring RΛ(ρ) in CΛ.

We call RΛ(ρ) the universal deformation ring of ρ and the a�orded deformation ρ : Γ→ G(RΛ(ρ)) the
corresponding universal deformation.

Observe that in the case G = GLn, (Centr) corresponds to the usual centralizer condition

Homk[Γ](ρ, ρ) = k.

In practice, this condition is often deduced from absolute irreducibility of ρ by Schur's Lemma. In order
to generalize this implication for more general groups, we �rst make a de�nition following [Ser98]:

De�nition 2.49 (Irreducibility). We say that ρ is absolutely irreducible if there does not exist a proper
parabolic subgroup P ( G over k such that ρ(Γ) ⊂ P .

Lemma 2.50 (Schur's Lemma). Assume (SmCtr) and assume that ` is very good for G or that there
exists an embedding G ↪→ GL(V ) such that (GL(V ), G) is a reductive pair. Then (Centr) is ful�lled if
ρ is absolutely irreducible.

Proof. As the image ρ(Γ) is �nite, it follows from [BMR05, Proposition 2.13] that Z◦G = CG(ρ(Γ))◦ (as
varieties) if ρ is absolutely irreducible. The claim now follows from Remark 2.45 and Lemma 2.47.

In the sequel, we will say that ρ is Schur if the conditions of Lemma 2.50 are ful�lled. (Observe that
Clozel, Harris and Taylor give a di�erent de�nition of �Schur� in [CHT08, De�nition 2.1.6].)

Tangent spaces

De�nition 2.51. The tangent spaces of D�
Λ (ρ) and DΛ(ρ) are the �nite-dimensional k-vector spaces4

tD�
Λ (ρ) = D�

Λ (ρ)(k[ε]) and tDΛ(ρ) = DΛ(ρ)(k[ε]).

Proposition 2.52. 1. There are canonical isomorphisms

tD�
Λ (ρ)
∼= Z1(Γ, g) and tDΛ(ρ)

∼= H1(Γ, g);

2. The natural transformation
η : D�

Λ (ρ)→ DΛ(ρ)

de�ned by ηA(ρ) = [ρ] ∈ DΛ(ρ)(A) for A ∈ CΛ and ρ ∈ D�
Λ (ρ)(A) is formally smooth5.

4For an explanation how D�
Λ (ρ)(k[ε]) and DΛ(ρ)(k[ε]) are regarded as k-vector spaces, see e.g. [Gou01, Lecture 2].

5For the de�nition of the term �formally smooth� in this context see [Böc13a, De�nition 1.4.5].
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3. If (Centr) and (SmCtr) hold, then there is an isomorphism

R�
Λ (ρ) ∼= RΛ(ρ)[[X1, . . . , Xm]]

with m = dim g− h0(Γ, g) = dim g− dim z.

Proof. For the �rst part, consider the diagram

Γ
δρ

||

ρ

��

ρ

$$
0 // g // G(k[ε]) π

// G(k) // 0 .

If ρ ∈ D�
Λ (ρ)(k[ε]), we set

δρ : Γ→ g = ker(π), γ 7→ ρ(γ)ρ(γ)−1.

We easily check that this de�nes a 1-cocycle:

δρ(γ1γ2) = ρ(γ1γ2)ρ(γ1γ2)−1 = ρ(γ1)ρ(γ1)−1ρ(γ1)ρ(γ2)ρ(γ2)−1ρ(γ1)−1 = δρ(γ1) δρ(γ2)γ1 .

On the other hand, let δ ∈ Z1(Γ, g). We de�ne a map

ρδ : Γ→ G(k[ε]), γ 7→ δ(γ)ρ(γ),

and we easily check that this de�nes a representation (which obviously lifts ρ):

ρδ(γ1γ2) = δ(γ1)δ(γ2)γ1ρ(γ1γ2) = δ(γ1)ρ(γ1)δ(γ2)ρ(γ1)−1ρ(γ1)ρ(γ2) = ρδ(γ1)ρδ(γ2)

Therefore, the assignments ρ 7→ δρ and δ 7→ ρδ provide the desired identi�cation between Z1(Γ, g) and
D�
ρ (k[ε]).

For the claim in the unframed situation (which is also treated in Chapter 3 of [Til96]), we easily check
that conjugating a lift ρ with elements of Ĝ(k[ε]) amounts to multiplying δρ with coboundaries. (Further
references are: [Mau00, Theorem 2.6] and [Böc07, Theorem 2.2 (c)].)

Formal smoothness is proved in [Lev13, Proposition 7.2.5] (using smoothness of G) for the corresponding
natural transformation between deformation groupoids6

η̃ : D�(ρ)→ D(ρ).

It remains to check that for a surjection A→ A′ in CΛ, the map

D�(ρ)(A′)×D(ρ)(A′) D(ρ)(A) −→ D�(ρ)(A′)×D(ρ)(A′) D(ρ)(A)

is surjective, which is straightforward.

In [Lev13] it is also explained that the �ber z := η̃−1
k[ε](ρ) of η̃k[ε] is a principal homogeneous space for

Ĝ(k[ε]) = g. If | · | denotes the canonical map from D�(ρ) to D�(ρ), it is clear that the kernel K in

0→ K → z→ |z| → 0

can be identi�ed with {g ∈ Ĝ(k[ε]) | gρg−1 = ρ} ∼= H0(Γ, g). Therefore, the �ber η−1
k[ε](ρ) is a principal

homogeneous space for g/H0(Γ, g) and the claims follow. (This can also be found in the proof of [Bal12,
Proposition 4.1.5].)

6Cf. [Böc13a, Section 1.6].
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From now on, let us assume conditions (Centr) and (SmCtr).

Theorem 2.53. There exists a presentation

0→ J → Λ[[X1, . . . , Xh]]→ RΛ(ρ)→ 0

with h = h1(Γ, g) and where the number of generators of J is bounded from above by h2(Γ, g).

Proof. See [Böc07, Theorem 2.2 (d)].

Deformation conditions

De�nition 2.54. Let D = (S(A))A∈C◦Λ be a lifting condition in the sense of De�nition 2.30 (and
Observation 2.34). Then D is called a deformation condition if the following additional condition is
ful�lled:

4. Let ρ ∈ S(A) and g ∈ Ĝ(A) for some A ∈ C◦Λ. Then gρg−1 ∈ S(A).

A deformation condition D de�nes a subfunctor DDΛ (ρ) of DΛ(ρ) which is relatively representable:

Lemma 2.55. DDΛ (ρ) is representable by a quotient RDΛ (ρ) of RΛ(ρ).

Proof. Using condition 4., this can be deduced as in the framed case (Proposition 2.31).

It is straightforward to check that the conditions from the end of Section 2.2,

• Liftings with a constraint on the kernel,

• Liftings of �xed factorization type,

• Ramakrishna liftings,

• Global conditions composed by local conditions,

ful�ll the additional property 4. Moreover, it is clear that an assertion analogous to Proposition 2.33
holds, i.e. that if D and D′ are deformation conditions, then so is D ∧ D′. We introduce another
condition:

Example 2.56 (Deformations unrami�ed outside Σ). Let Γ be the absolute Galois group of a global
�eld F and let Σ be a �nite subset of PlF such that ρ is unrami�ed outside Σ. We denote by DΣ−nr the
condition on deformations of being unrami�ed outside Σ, i.e. parametrizing those deformations ρ of ρ for
which ρν is unrami�ed if ν 6∈ Σ. It is easily checked by hand that this de�nes a deformation condition,
but this can also be achieved by the following characterization: A lift ρ of ρ which is unrami�ed outside
Σ can be regarded as a (unconditioned) lift of ρ|Gal(FΣ|F ) and vice versa, where FΣ denotes the
maximal extension of F unrami�ed outside Σ. In this way, we get a natural isomorphism of functors

DD
Σ−nr

Λ (ρ) ∼= DΛ(ρ|Gal(FΣ|F )).

In the sequel, we will not distinguish between these two and refer to them as DΛ,Σ(ρ).
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Let gder denote the Lie algebra of Gder, gab the Lie algebra of Gab and let H1(Γ, gder)′ denote the image
of the map

H1(Γ, gder)→ H1(Γ, g).

(We remark that for `� 0, we have H1(Γ, gder)′ = H1(Γ, gder).)
Then we have the following variation of Proposition 2.52.1 for the �xed determinant condition:

Proposition 2.57. There are canonical isomorphisms of k-vector spaces

tD�,χ
Λ (ρ)

∼= Z1(Γ, gder) and tDχΛ(ρ)
∼= H1(Γ, gder)′.

Proof. The �rst part is shown as in the proof of Proposition 2.52, except that we have to check that
ρδ = δρ is of type Dd=χ precisely if the values of δ lie in the subspace gder ⊂ g. Assume �rst that δ
ful�lls this condition, then it follows from the fact that δ(γ) ∈ Gder(k[ε]) (for any γ ∈ Γ) that

dk[ε] ◦ (δρ)(γ) = dk[ε] ◦ ρ(γ) = χk[ε],

where d : G→ Gab is the projection map modulo Gder and where χk[ε] is the concatenation of χ with the
canonical map Λ× → k[ε]×. On the other hand, suppose that ρ is of type Dd=χ, then the corresponding
δ = δρ is given by γ 7→ ρ(γ)ρ(γ)−1. Thus, we have that dk[ε] ◦ δ = 1, i.e. that δ has values in gder.
The second claim is proved in [Til96, Proposition 3.2]. We also refer to [Bal12], where this isomorphism
is explicitly stated (following the proof of Proposition 4.2.4).

Proposition 2.58. There is an exact sequence

0 −→ g/gΓ −→ t
D

�,(χ)
Λ (ρ)

−→ t
D

(χ)
Λ (ρ)

−→ 0.

Proof. The �bers of t
D

�,(χ)
Λ (ρ)

−→ t
D

(χ)
Λ (ρ)

are isomorphic to Ĝ(k[ε])/Ĝ(k[ε])Γ, so the claim follows by

applying the exponential map. (See also [Bal12, proof of Proposition 4.1.5], and the remarks following
Proposition 4.2.4 in the �xed determinant case.)

We remark that for ` � 0, we have a decomposition g = gder ⊕ gab. Thus gΓ = (gder)Γ ⊕ gab and we
get the following alternative version:

0 −→ gder/(gder)Γ −→ t
D

�,(χ)
Λ (ρ)

−→ t
D

(χ)
Λ (ρ)

−→ 0. (2.12)

2.4 Multiply framed deformations

Let F be a number �eld and �x for each place ν of F an embedding ιν : Gal(Fν) ↪→ Gal(F ). For this
section, we take Γ = Gal(F ) or Γ = Gal(FS), the absolute Galois group of the maximal extension of F
which is unrami�ed outside a �nite set S of places of F . With respect to a residual representation

ρ : Γ→ G(k)

ful�lling (Centr) and (SmCtr) we consider the local representations ρν := ρ ◦ ιν . Likewise, we will
denote the deformation and lifting functors with respect to ρ by D?

?(ρ) if Γ = Gal(F ), by D?
S,?(ρ) if

Γ = Gal(FS), and with respect to ρν by D
?
?(ρν).

34



2 LIFTINGS AND DEFORMATIONS

De�nition 2.59. For a �nite set Σ of places of F de�ne the functor D�Σ
S,Λ(ρ) by the assignment

A 7→
{

(ρ, (ρν , βν)ν∈Σ)
∣∣∣ ρ∈D�

S,Λ(ρ)(A), ρν∈D�
Λ (ρν)(A), βν∈Ĝ(A)

s.t. ρ|Gal(Fν)=βνρνβ
−1
ν

}
/∼

,

where (ρ, (ρν , βν)ν∈Σ) and (ρ′, (ρ′ν , β
′
ν)ν∈Σ) are equivalent if ρν = ρ′ν for all ν and if there is a γ ∈ Ĝ(A)

such that ρ′ = γργ−1 and β′ν = γ−1βν for all ν.

Remark 2.60. Note that specifying the ρν is not strictly necessary, as they can be obtained from ρ and
βν .

We will consider three types of subfunctors of D�Σ
S,Λ(ρ), all of which are familiar from the previous

subsections (and which de�ne deformation conditions, cf. the remark preceding Example 2.56):

• Fixed determinant liftings: Fix a lift χ : Γ→ Gab(Λ) of the determinant map

χ : Γ
ρ−→ G(k) −→ Gab(k),

then we de�ne the subfunctor D�Σ
S,Λ(ρ) via

D�Σ,χ
S,Λ (ρ)(A) =

{
[ρ, (ρν , βν)ν∈Σ] ∈ D�Σ

S,Λ(ρ)
∣∣ ρ ∈ D�,χ

S,Λ (ρ)(A)
}
.

• Liftings constraint by local conditions: Fix a family D = (Dν)ν∈Σ of local deformation
conditions for ρν . De�ne the subfunctor D

�Σ,D
S,Λ (ρ) of D�Σ

S,Λ(ρ) by

D�Σ,D
S,Λ (ρ)(A) =

{
[ρ, (ρν , βν)ν∈Σ] ∈ D�Σ

S,Λ(ρ)
∣∣ ρν ∈ D�,Dν

Λ (ρν)(A) for all ν ∈ Σ
}
.

• A combination of the two: Let χ,D be as above, then we de�ne the subfunctor D�Σ,χ,D
S,Λ (ρ)

of D�Σ
S,Λ(ρ) by

D�Σ,χ,D
S,Λ (ρ)(A) =

{
[ρ, (ρν , βν)ν∈Σ] ∈ D�Σ

S,Λ(ρ)
∣∣ ρ ∈ D�Σ,D

S,Λ (ρ)(A) ∩D�Σ,χ
S,Λ (ρ)(A)

}
.

Note that we have an equality

D�Σ,χ,D
S,Λ (ρ) = D�Σ,χ,Dχ

S,Λ (ρ),

where Dχ = (Dχν )ν∈Σ is the family where each Dχν parametrizes those lifts of ρν which are of type
Dν and of determinant χν .

Proposition 2.61. 1. D�Σ,(χ),D
S,Λ (ρ) is representable;

2. If #Σ = 1, then the functors D�Σ,(χ),D
S,Λ (ρ) and D�,(χ),D

S,Λ (ρ) are naturally isomorphic;

3. If Σ 6= ∅, then D�Σ,(χ),D
S,Λ (ρ) is formally smooth over D�,(χ),D

S,Λ (ρ).

We denote the a�orded deformation ring as R�Σ,(χ),D
S,Λ (ρ) and the universal deformation by ρ�Σ,(χ),D

S,Λ .

If D is the unconditioned deformation condition, we abbreviate this as R�Σ,(χ)
S,Λ (ρ) and ρ�Σ,(χ)

S,Λ .

35



2 LIFTINGS AND DEFORMATIONS

Proof. For part 1, let us �rst assume that Σ = ∅. Then D
�Σ,(χ),D
S,Λ (ρ) = D

(χ),D
S,Λ (ρ), and it follows

from Proposition 2.40 and the material below Remark 2.60 that D (resp. χ ∧ D) de�nes a global
deformation condition (i.e. a deformation condition in the sense of De�nition 2.54 for the global residual
representation ρ). Thus the claim follows from Lemma 2.55.

For the remaining claims, �x a place ν0 ∈ Σ and consider the natural transformation

η : D
�Σ,(χ),D
S,Λ (ρ) −→ D

�,(χ),D
S,Λ (ρ)×

∏
ν∈Σ,ν 6=ν0

Ĝ ,

where the components ηA are given by sending (ρ, (ρν , βν)ν∈Σ)/∼ to (βν0ρβ
−1
ν0
, (β−1

ν0
βν)ν∈Σ,ν 6=ν0). Re-

mark that the target of η is representable (by Proposition 2.31 and Corollary 2.5). We readily check
that ηA is a bijection, with inverse given by sending (ρ, (βν)ν∈Σ,ν 6=ν0) to the equivalence class of
(ρ, (β−1

ν ρβν |GalFν , βν)ν∈Σ) with βν0
:= 1. So η provides a natural isomorphism and the claims fol-

low.

We remark that condition 1. of the proposition is not true if Σ = ∅ and ρ is not Schur.

Proposition 2.62. Assume Σ 6= ∅. Then

R�
S,Λ(ρ) ∼= RS,Λ(ρ)[[x1, . . . , xu]] and R�Σ

S,Λ(ρ) ∼= R�
S,Λ(ρ)[[x1, . . . , xt]]

and
R

�,(χ),D
S,Λ (ρ) ∼= R

(χ),D
S,Λ (ρ)[[x1, . . . , xu]] and R�Σ,(χ),D

S,Λ (ρ) = R
�,(χ),D
S,Λ (ρ)[[x1, . . . , xt]]

with

• t = dim(g).(#Σ− 1),

• u = dim(g)− dim(z) = dim(gder).

(Note that the �rst set of formulae follows from the second one if we leave χ out and take for D the
unconditioned deformation condition.)

(We remark that the two isomorphisms on the right hold even if the (unframed) deformation functors
are not representable. We will not use this in the sequel, however.)

Proof. The �rst (upper left) isomorphism is Proposition 2.52.3. Its proof can be easily generalized to
a non-trivial deformation condition D: Recall that deformation conditions are in correspondence with
(certain) ideals of RS,Λ(ρ) and denote by I(χ) the ideal corresponding to D, (χ). Then

R
(χ),D
S,Λ (ρ) ∼= RS,Λ(ρ)/I(χ)

and
R

�,(χ),D
S,Λ (ρ) ∼= R�

S,Λ(ρ)/R�
S,Λ(ρ).I(χ) = RS,Λ(ρ)[[x1, . . . , xu]]/I(χ)[[x1, . . . , xu]]

∼=
(
RS,Λ(ρ)/I(χ)

)
[[x1, . . . , xu]] ∼= R

(χ),D
S,Λ (ρ)[[x1, . . . , xu]].

This gives the lower left isomorphism. Now we can �nish the proof if we can provide an isomorphism

R
�Σ,(χ),D
S,Λ (ρ) ∼= R

�,(χ),D
S,Λ (ρ)[[x1, . . . , xt]].
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This can be done in an entirely analogous way, citing from Proposition 2.61 that the natural transfor-
mation

D�Σ
S,Λ(ρ)→ D�

S,Λ(ρ)

is formally smooth and observing that consequently the �bers of D�Σ
S,Λ(ρ)(k[ε]) → D�

S,Λ(ρ)(k[ε]) are∏#Σ−1
i=1 g -torsors (cf. also [KW09, Proposition 4.1], where this is carried out for G = GL2).

Presentations over local deformation rings For this section, we will suppose

Assumption 2.63.
H0(GalF,S , g

(der),∨) = 0.

De�nition 2.64. Let Σ ⊂ S be �nite sets of places of F containing Ω∞ t Ω`, then we de�ne

R
locΣ,(χ)
Λ (ρ) =

⊗̂
ν∈Σ

R
�,(χν)
Λ (ρν).

There is an obvious map RlocΣ,(χ)
S,Λ (ρ)→ R

�,(χ)
Λ (ρ) induced from f in (2.10) and we have

Theorem 2.65.
R

�,(χ)
S,Λ (ρ) ∼= R

locΣ,(χ)
Λ (ρ)[[x1, . . . , xa]]/(f1,...,fa+b)

for a suitable a ∈ N0 and

b =

{
(#Σ− 1). dim gder (determinant �xed);

(#Σ− 1). dim g (determinant not �xed).

(The set S does not show up in the de�nition of the object on the right side of the isomorphism.

However, we remark that this does not imply that R�,(χ)
S,Λ (ρ) ∼= R

�,(χ)
S′,Λ (ρ) for S 6= S′, as the number a

of variables and the elements fi can di�er in either case.)

Proof. For the �xed determinant, this is (a special case of) [Bal12, Proposition 4.2.5]. The case where
the determinant is not �xed can be proved analogously.

Corollary 2.66. Assume that the unframed deformation functor Dχ
Λ(ρ) is representable. Then

R
�Σ,(χ)
S,Λ (ρ) ∼= R

locΣ,(χ)
Λ (ρ)[[x1, . . . , xa+b]]/(f1,...,fa)

for a suitable a ∈ N0 and

b =

{
(#Σ− 1). dim gab (determinant �xed);

0 (determinant not �xed).

Proof. By Proposition 2.62, we have

R
�Σ,(χ)
S,Λ (r) ∼= R

�,(χ)
S,Λ (ρ)[[x1, . . . , xc]] (2.13)

with c = (#Σ− 1). dim g. The claim follows immediately from the identity dim g = dim gder + dim gab.
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2 LIFTINGS AND DEFORMATIONS

Now, for each ν ∈ Σ �x a local deformation condition Dν . This gives rise to a global condition D in
the sense that a global lift ρ of ρ is of type D if and only if each local component ρν is of type Dν for
ν ∈ Σ. This gives rise to a global functor D�Σ,(χ),D

S,Λ (ρ) with representing object R�Σ,(χ),D
S,Λ (ρ) and we

de�ne

R
locΣ,(χ),D
Λ (ρ) =

⊗̂
ν∈Σ

R
�,(χν),Dν
Λ (ρν).

Corollary 2.67.

R
�Σ,(χ),D
S,Λ (ρ) ∼= R

locΣ,(χ),D
Λ (ρ)⊗

R
locΣ,(χ)
Λ (ρ)

R
�Σ,(χ)
S,Λ (ρ).

Proof. We only give a proof for the �xed determinant case (the other case being analogous): Write

D
locΣ,χ,(D)
Λ (ρ) for the functor ∏

ν∈Σ

D
�,χν ,(Dν)
Λ (ρν)

with representing object RlocΣ,χ,(D)
Λ (ρ). The claim then follows from Proposition 2.4 as

D�Σ,χ,D
S,Λ (ρ) //

��

D�Σ,χ
S,Λ (ρ)

��
DlocΣ,χ,D

Λ (ρ) // DlocΣ,χ
Λ (ρ)

is a pull-back diagram of functors.

Thus by tensoring the claim of Corollary 2.66 with RlocΣ,χ,D
Λ (ρ) we get

Corollary 2.68.

R
�Σ,(χ),D
S,Λ (ρ) ∼= R

locΣ,(χ),D
Λ (ρ)[[x1, . . . , xa+b]]/(f1,...,fa)

for a suitable a ∈ N0 and

b =

{
(#Σ− 1). dim gab (determinant �xed);

0 (determinant not �xed).

We will conclude this subsection with another characterization of a composed global deformation con-
dition:

De�nition 2.69 (System of local conditions). Let ρ, χ be as above, then a system of local conditions

L(χ) = (L
(χ)
ν )ν∈PlF consists of a choice of subspaces Lν ⊂ H1(Fν , g) (resp. Lχν ⊂ H1(Fν , g

der)′) such
that

Lν = H1(Gal(Fν)/IFν , g) (resp. Lχν = H1(Gal(Fν)/IFν , g
der)′ ) (2.14)

holds for almost all ν.

Now let T be a �nite set of �nite places of F containing the rami�cation set of ρ. Let D(χ) be a global
deformation condition composed of local conditions D(χ)

ν for ν ∈ T . Then, for each ν, we have an
inclusion of tangent spaces

t
D
D(χ)
ν

ν (ρν)
↪→ t

D
(χ)ν
ν (ρν)

∼=

{
H1(Fν , g) determinant not �xed;

H1(Fν , g
der)′ determinant �xed.
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2 LIFTINGS AND DEFORMATIONS

Thus we can de�ne a system L(χ) attached to D and T by decreeing L(χ)
ν = t

D
D(χ)
ν

ν (ρν)
for ν ∈ T and as

in (2.14) for ν /∈ T . This gives rise to a map from the set of composed global deformation conditions
to the set of systems of local conditions.

2.5 Liftings at in�nity

Proposition 2.70. Consider a representation

ρ : Z/2Z = {1, c} → G(F)

and assume that ` = char(F) 6= 2. Then

R�
Λ (ρ) ∼= Λ[[x1, . . . , xm]] with m = dim(gc=−1).

If χ denotes a lift of the determinant, then the same result holds for R�,χ
Λ (ρ) after replacing g by gder.

Proof. Let k ∈ N. We use the general formula H2(Z/kZ,M) ∼= MZ/kZ/ im(ϕ) for a Z/kZ-module M
and with

ϕ : M →M, m 7→
k−1∑
i=0

i.m.

Now, if x ∈ g{1,c}, we see that (c+ 1)(1
2x) = x ∈ im(c+ 1), hence H2({1, c}, g) = 0 and the lifting ring

is unobstructed. To get the number of variables we have to evaluate

Z1({1, c}, g) = {f : {1, c} → g | f(xy) = f(x) + xf(y)}.
Looking at x = y = c, we see that f is uniquely determined by the vector v = f(c). Looking at
x = 1, y = c, we see that f(1) = v+ cv = 0, i.e. that v ∈ gc=−1. On the other hand, any such v de�nes
an f ∈ Z1 via 1 7→ 0, c 7→ v.
The modi�cations of this argument for the �xed-determinant case are straight-forward.

2.6 A criterion for vanishing of cohomology groups

Recall that if Γ is the absolute Galois group of a non-archimedean local �eld, then by Tate local duality
[NSW08, Theorem 7.2.6] we have

H2(Γ, g)∗ ∼= H0(Γ, g∨) = (g∨)Γ (2.15)

where ∗ denotes the Pontryagin dual and ∨ denotes the Tate dual. We now give a simple (and presum-
ably well-known) criterion to determine if H2(Γ, g(der)) vanishes in the case G = GLn.

Lemma 2.71 (Local case). Let Γ be the absolute Galois group of a non-archimedean local �eld, k be a
�nite �eld of characteristic ` and

ρ : Γ→ GLn(k)

a representation. Then

1. HomΓ(ρ, ρ(1)) vanishes if and only if H2(Γ, ad ρ) vanishes;

2. Assume that ` 6 |n. Then, if HomΓ(ρ, ρ(1)) vanishes, also H2(Γ, ad ρ0) vanishes.

Proof. By (2.15), we need to show that H0(Γ, (ad ρ(0))∨) vanishes. As explained7 in [Böc07, Example

7Remark that there is a mistake in [Böc07]: In Example 4.1 is should say ad
(0)
ρ
∼= (ad

(0)
ρ )∗ instead of ad

(0)
ρ
∼= (ad

(0)
ρ )∨.
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2 LIFTINGS AND DEFORMATIONS

4.1], the trace pairing allows us to identify (ad ρ(0))∨ and (ad ρ(0))(1), where we have to assume ` 6 |n
for the ad ρ0-case so that we have ad ρ ∼= ad ρ0 ⊕ k . We thus see that

H0(Γ, (ad ρ0)(1)) ⊂ H0(Γ, (ad ρ)(1)) ∼= HomΓ(ρ, ρ(1))

and the claim follows.

In the global case, there is no duality theorem and we record the following:

Lemma 2.72 (Global case). Let Γ = GalF,S for a number �eld F and a �nite set S of places of F .
Let k, ρ be as in Lemma 2.71 above.

1. HomΓ(ρ, ρ(1)) ∼= H0(Γ, (ad ρ)∨);

2. Assume that ` 6 |n. Then H0(Γ, (ad ρ0)∨) is a direct summand of HomΓ(ρ, ρ(1)).

Proof. The proof is identical to the proof of Lemma 2.71.

We deduce the following result, which also implies the vanishing of the error term δ in [Böc13a, Remark
5.2.3.(d)] for large `:

Corollary 2.73. There exists a constant C, depending only on n and F , such that Assumption 2.63
holds if char(k) > C, G = GLn and ρ is irreducible.

In preparation for a proof, let us �rst consider the following:

Lemma 2.74. Let F be a number �eld and denote by ζ ∈ Q a primitive `-th root of unity. Assume
that ` does not ramify in F . Then [F (ζ) : F ] = `− 1.

Proof. Write F (ζ) for the composite �eld of F and Q(ζ). If we can show that F and Q(ζ) are linearly
disjoint, then

[F (ζ) : F ] = [Q(ζ) : Q] = `− 1

by [Bou89, A.V.14, �2, Prop. 5.a]. For this, by [Coh91, Proposition 5.4 (on p. 188)], it su�ces to check
that F ∩ Q(ζ) = Q. Assume that this does not hold. Then ` rami�es in F ∩ Q(ζ), hence in F . This
was excluded in the claim of the lemma.

Corollary 2.75. Let F be a number �eld and consider the mod-` cyclotomic character ε` : GalF,S → F×` .
Then, for `� 0, ε` is surjective.

Proof. By de�nition, im(ε`) ∼= Gal(F (ζ)|F ). Thus, if we take ` large enough (so that ` does not ramify
in F ), the result follows from Lemma 2.74.

Proof of Corollary 2.73. Let us �rst exclude all ` which divide n. Because ρ is irreducible, by Lemma
2.72 we have to check in what situations we can have an isomorphism ρ ∼= ρ(1). Assume that ` is big
enough such that the cyclotomic character ε` is surjective, according to Corollary 2.75. Let α ∈ F be
a non-zero eigenvalue of ρ(x), where x ∈ Γ is some element which maps to a generator β of F×` under
ε`. Then, ρ ∼= ρ(1) ∼= ρ(2) ∼= . . . implies that there are `− 1 distinct eigenvalues α, βα, β2α, . . . of ρ(x).
This can only happen if n ≥ `− 1. Thus, C can be taken to be the maximum of n+ 2 and the bound
from Corollary 2.75.
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2 LIFTINGS AND DEFORMATIONS

Remark 2.76. We expect Corollary 2.73 to hold more generally for any linear group scheme G over Z and
any absolutely irreducible representation ρ (in the sense of De�nition 2.49) by embedding G ↪→ GLN
over Z[ 1

N ] for a suitable N ∈ N, but we did not check the details.
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3 UNOBSTRUCTEDNESS OF UNIVERSAL DEFORMATION RINGS

3 Unobstructedness of universal deformation rings

As in Section 2.1, let Λ be the valuation ring of a �nite extension of Q` with residue �eld k. We consider
a residual representation ρ : Γ→ G(k) together with a �xed lift χ of the determinant.

De�nition 3.1. The functors D�,(χ)
Λ (ρ) and D(χ)

Λ (ρ) are called unobstructed if h2(Γ, g(der)) = 0.

We will apply this mainly for Γ = GalF,S and Γ = GalFν , where F is a number �eld and S, {ν} are sets
of places of F .

Proposition 3.2. Assume that D�,(χ)
Λ (ρ) is unobstructed and, in the �xed-determinant case, assume

that ` � 0. Let b = h1(Γ, g) (resp. h1(Γ, gder)′ if the determinant is �xed) and a = b + dim(g(der)) −
h0(Γ, g(der)).

Then
R

�,(χ)
Λ (ρ) ∼= Λ[[x1, . . . , xa]].

If in addition the conditions (SmCtr) and (Centr) are ful�lled, then

R
(χ)
Λ (ρ) ∼= Λ[[x1, . . . , xb]].

Proof. Assume �rst the conditions (SmCtr) and (Centr) (so that D(χ)
Λ (ρ) is representable), then

the isomorphism R
(χ)
Λ (ρ) ∼= Λ[[x1, . . . , xb]] follows from Theorem 2.2 (resp. Theorem 2.4 in the �xed-

determinant case) of [Böc07]. (Observe that we already cited Theorem 2.2 of ibid. as Theorem 2.53).
Using the decomposition following Proposition 2.58, we see that

a− b =


dim(g)− dim(z) = dim(gder) determinant not �xed,

dim(gder) + dim(gab)− h0(Γ, gder)− dim(gab)

= dim(g)− dim(z) = dim(gder) determinant �xed.

Thus, the isomorphism R
�,(χ)
Λ (ρ) ∼= Λ[[x1, . . . , xa]] follows from Proposition 2.62. This isomorphism

can be proved without representability by an analogous argument as in [Böc07]: We get a presentation

f : Λ[[x1, . . . , xc]]→ R
�,(χ)
Λ (ρ)

with c = dimD
�,(χ)
Λ (ρ)(k[ε]) and such that Hom(ker(f)/mΛ[[x1,...,xc]] ker(f), k) ↪→ H2(Γ, g(der)). Thus,

the claim follows from Proposition 2.57 and Proposition 2.58.

Remark 3.3. If, for example, RΛ(ρ)/(`) is known to have Krull dimension h1(Γ, g) − h2(Γ, g), then it
follows that RΛ(ρ) is of relative dimension h1(Γ, g)−h2(Γ, g) over Λ. Thus, in this situation, a converse
to the above proposition holds: An isomorphism

RΛ(ρ) ∼= Λ[[x1, . . . , xh1(Γ,g)]]

implies the vanishing of h2(Γ, g). However, the assumption on RΛ(ρ)/(`) holds (conjecturally) only
in certain circumstances, cf. [Böc07, Remark 2.3]. Positive results exist in the local Galois case for
G = GLn [Sho15, Theorem 2.4] (cf. also [Böc07, Remark 6.2] for n = 2). (An analogous remark holds
for RχΛ(ρ).)
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3 UNOBSTRUCTEDNESS OF UNIVERSAL DEFORMATION RINGS

Let us resume the assumptions and notations from the beginning of Section 2.4, i.e. that Γ = GalF,S
and that we have �xed embeddings ιν : GalFν ↪→ GalF,S (now, for all places ν ∈ PlF ). If ρ denotes our
�xed global residual representation, we denote the a�orded restriction to GalFν by ρν .

De�nition 3.4. A relatively representable subfunctor of D�,(χ)
Λ (ρν) or D(χ)

Λ (ρν) is called smooth (of
dimension m) if its representing object is isomorphic to Λ[[x1, . . . , xm]].

Now, let L(χ) = (L
(χ)
ν )ν∈PlF be a system of local conditions in the sense of De�nition 2.69 and denote

the corresponding global deformation condition by D(χ) = (D(χ)
ν )ν∈PlF .

De�nition 3.5 (Dual Selmer group). Denote by g(der),∨ the Tate dual of g(der) and by L
(χ),⊥
ν the

annihilator of L(χ)
ν under the Tate pairing

H i(Fν , g
(der),∨)×H2−i(Fν , g

(der)) −→ H2(Fν , k(1)) ∼= Q/Z

for i = 1, cf. [NSW08, (7.2.6) Theorem]. Then we denote by H1
L(χ),⊥(F, g(der),∨) the kernel of the map⊕

ν∈PlF

resν : H1(F, g(der),∨) −→
⊕
ν∈PlF

H1(Fν , g
(der),∨)/L(χ),⊥

ν .

For the next de�nitions we assume that S contains all places at which ρ rami�es and that D(χ)
ν

parametrizes unrami�ed deformations for ν /∈ S.

De�nition 3.6. We say that DD
(χ)

S,Λ (ρ) (or D�,D(χ)

S,Λ (ρ), or D�S ,D(χ)

S,Λ (ρ)) has vanishing dual Selmer group

if H1
L(χ),⊥(F, g(der),∨) = 0.

De�nition 3.7. Let m = (mν)ν∈S ∈ NS0 . We say that DD
(χ)

S,Λ (ρ) (resp. D�,D(χ)

S,Λ (ρ), resp. D�S ,D(χ)

S,Λ (ρ))

is globally unobstructed (of local dimensionm) if its dual Selmer group vanishes and if each D�,D(χ)
ν

Λ (ρν),
for ν ∈ S, is smooth (of dimension mν).

To simplify the exposition, the following remark is stated in the unframed setting. Analogous statements
hold in the framed setting as well.

Remark 3.8. If D̃(ψ)
Λ (ρ) := DD

(χ)

S,Λ (ρ) is globally unobstructed, it follows that the ideals J̃ (η)
ν from [Böc07],

equation (6), vanish. Hence [Böc07, Theorem 5.2] implies that RD
(χ)

S,Λ (ρ) is isomorphic to a power series

ring in h1
L(F, g(der)) ( ′ ) variables. For general pro�nite groups Γ, the converse direction is known not

to hold, i.e. the formal smoothness of R̃(ψ)(ρ) does not imply that the deformation problem is globally
unobstructed, see [Spr13].

For the next proposition, we consider the system of local conditions L(χ) parametrizing all deformations
which are unrami�ed outside S with corresponding deformation condition (D(χ)∧)DS−nr.

Proposition 3.9. Assume that

1. D(χ)
Λ (ρν) is unobstructed (in the sense of De�nition 3.1) for all ν ∈ S;

2. D(χ)
S,Λ(ρ) is globally unobstructed (and we don't make an assumption on the dimension).

43
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Then D(χ)
S,Λ(ρ) is unobstructed (in the sense of De�nition 3.1).

Proof. As X2
S(g(der)) := H1

L⊥(F, g(der),∨)∗ vanishes8 by Assumption 2., we can deduce this directly
from the following exact sequence (see p. 7 of [Böc07]):

0→X2
S(g(der))→ H2(F, g(der))→

⊕
ν∈S

H2(Fν , g
(der))→ H0(F, g(der),∨)∗ → 0. (3.1)

If we are in a situation where Remark 3.3 applies locally (so e.g. when G = GLn), we can replace
Assumptions 1. and 2. by

1'. D(χ)
S,Λ(ρ) is globally unobstructed of local dimension m0 = (h1(Fν , g

(der)) ( ′ ))ν∈S .

On the other hand, assume that D(χ)
Λ,S(ρ) is unobstructed. Then the sequence (3.1) implies that

X2
S(g(der)) vanishes. We see that the vanishing of the local dimensions h2(Fν , g

(der)) is equivalent
to the vanishing of H0(F, g(der),∨)∗, or alternatively, to the vanishing of H0(F, g(der)(1)). If we suppose
this vanishing (which was proved for almost all ` given that G = GLn, see Section 2.6), the condi-

tion that D(χ)
Λ,S(ρ) is unobstructed therefore implies that D(χ)

Λ,S(ρ) is globally unobstructed of dimension

m0 and that each D
(χ)ν
Λ (ρν) (for ν ∈ S) is unobstructed (and, hence, locally smooth of dimension

h1(Fν , g
(der)) ( ′ )).

3.1 A general framework for unobstructedness

We will retain the notations and conventions from the previous sections. In particular, we �x a repre-
sentation

ρ : GalF,S → G(k),

together with a lift χ : GalF,S → Gab(Λ) of the determinant, where F is a totally real number �eld,
S ⊂ Pl∞F is a �nite set of �nite places and k is a �nite �eld of characteristic ` := char(k). We suppose
that ` /∈ S ∪ {2}. At this point, we will consider only liftings and deformations with values in CΛ for
Λ = W := W (k), so we will suppress the speci�cation of Λ in the index of the deformation functors
and rings. As we will not vary the residual representation ρ, we will also suppress �(ρ)� in the notion
of the deformation rings.

Let us �x a Borel subgroup B ⊂ G and denote by gder (resp. bder) the Lie algebra of the derived
subgroup Gder of G (resp. the Lie algebra of B ∩Gder). Consider the following assumptions:

1. (Representability): The S`-framed deformation functor

D
�S` ,χ
S`

(ρ)

is representable (by an object R
�S` ,χ
S`

).

8We remark that the vanishing of the �Tate-Shafarevich group� X2
S(g

(der)) implies that all obstructions for D
(χ)
Λ (ρν)

come from local obstructions, see [Böc07, Theorem 3.1].
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2. (sm/k): For each ν ∈ Ω`, there exists a relatively representable subfunctor

D�,χ,sm(ρν) ↪→ D�,χ(ρν)

such that the representing object R�,χ,sm
ν is formally smooth (and we denote the relative dimension

by d�,sm
ν ).

3. (crys): For each ν ∈ Ω`, there exists a subfunctor

D�,χ,crys(ρν) ↪→ D�,χ,sm(ρν)

which is relatively representable over D�,χ(ρν) and such that the representing object R�,χ,crys
ν is

formally smooth over W of relative dimension

d�,crys
ν = dim(gder) + (dim(gder)− dim(bder))[Fν : Q`].

In other words,

R�,χ,crys
ν

∼= W [[x1, . . . , xd�,crys
ν

]].

4. (min): For each ν ∈ S, there exists a relatively representable subfunctor

D�,χ,min(ρν) ↪→ D�,χ(ρν)

such that the representing ring R�,χ,min
ν is formally smooth over W of relative dimension

d�,min
ν = dim(gder).

5. (∞): For each ν ∈ Ω∞, the local deformation ring R�,χ
ν is formally smooth of relative dimension

d�
ν = dim(bder). (As ` > 2 ≥ # GalFν , the strict `-cohomological dimension scd`(GalFν ) is zero,
i.e. R�,χ

ν is automatically unobstructed.)

6. (Presentability): Consider the ring

Rloc,sm :=
⊗̂
ν∈S`

R̃ν with R̃ν =


R�,χ,min
ν if ν ∈ S;

R�,χ,sm
ν if ν ∈ Ω`;

R�,χ
ν if ν ∈ Ω∞.

(3.2)

Then there exists a presentation

R
�S` ,χ,min,sm
S`

∼= Rloc[[x1, . . . , xa]]/(f1,...,fb)

for suitable a, b ∈ N with a− b = (#S` − 1).dim(gab).

7. (R=T): The ring R
�S` ,χ,min,crys
S`

is formally smooth of relative dimension

r0 := dim(g).#S` − dim(gab).
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Remark 3.10. Assume G = GLn. For crys we will mainly consider the crystalline deformation condition
which will be introduced in Section 4.3 and for sm the unconditioned deformation condition. However,
the presented general framework is also applicable to sm = ord, with ord parametrizing ordinary
deformations (cf. [Hid89a, Hid89b, CM14, Ger10a, Til96]). For n = 2, this corresponds to twisted Hida
families and there exists a criterion for smoothness of ord, cf. [Sno11]. (Remark that what we call
ordinary is called nearly ordinary by Tilouine [Til96].) For n > 2 there exists no such criterion9. It
seems worthwhile to investigate whether a su�cient condition for the smoothness of ord can be derived
from properties of the mod-` reduction of the Hecke polynomial in the �xed weight case.

Remark 3.11 (Taylor-Wiles condition). From condition (∞), scd`(GalFν ) = 0 for ` > 2 and Proposition
3.2 it follows that, for ν ∈ Ω∞, we have

dim(bder) = dimW (R�
ν ) = h1(GalFν , g

der)′ + dim(gder)− h0(GalFν , g
der)

= dim(gder)− h0(GalFν , g
der).

This implies ∑
ν∈Ω∞

h0(GalFν , g
der) = [F : Q].

(
dim(gder)− dim(bder)

)
. (3.3)

Our main result is now as follows:

Theorem 3.12. 1. If assumptions 1-7 are met, then R
�S` ,χ,min,sm
S`

is formally smooth (i.e. isomor-

phic to a ring of power series over W ). If the unframed deformation functor Dχ,min,sm
S`

is repre-

sentable, then the representing object Rχ,min,smS`
is also formally smooth.

2. For ν ∈ Ω`, write d
�,sm
ν = dim(gder)([Fν : Q`] + 1) − δν for suitable numbers δν ∈ N0. Then

R
�S` ,χ,min,sm
S`

is formally smooth of dimension

#S`.dim(g)− dim(gab) + [F : Q]. dim(bder)−
∑
ν∈Ω`

δν .

If the unframed deformation functor Dχ,min,sm
S`

is representable, then Rχ,min,smS`
is formally smooth

of dimension [F : Q].dim(bder)−
∑

ν∈Ω`
δν .

Remark 3.13. As the deformation conditions in (min) and (sm/k) were chosen as relatively repre-
sentable, Dχ,min,sm

S`
is representable if Dχ

S`
is representable. For example, this is the case if ρ is Schur

(i.e. ful�lls conditions (SmCtr) and (Centr) of Section 2.3).

Remark 3.14. If D�,χ
ν is unobstructed for ν ∈ Ω`, the condition in part 2. (with δν = 0) amounts to sm

being the unrestricted deformation condition.

Proof of Theorem 3.12. First remark that the second claim of part 1. follows directly from Lemma

2.15, as we know that R
�S` ,χ,min,sm
S`

is a power series ring over Rχ,min,smS`
by Proposition 2.62. The same

reasoning (together with the formula dim g = dim gder + dim gab) also shows the second claim of part
2.

9But cf. [Ger10a].
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For the �rst sentences (of 1. and 2.), we use the shorthand notation d?T =
∑

ν∈T d
?
ν if T denotes a subset

of PlF . Moreover we write d�
∞ for d�

Ω∞
and d?` for d

?
Ω`
. Consider the diagram

0 // I //

π

��

Rloc,sm

π
��

f // Rloc,crys

π′
��

// 0

0 // J // R
�S` ,χ,min,sm
S` g

// R
�S` ,χ,min,crys
S`

// 0 ,

where

• the right square is a pushout diagram;

• Rloc,crys is de�ned as in (3.2) with crys in place of sm;

• f and g are the canonical projections;

• π = ⊗ν∈S` πν is induced by the natural transformations

D
�S` ,χ,min,sm
S`

→ D̃ν ,

where D̃ν is the deformation functor corresponding to (i.e. being represented by) the ring R̃ν in
(3.2);

• Analogously, π′ = ⊗ν∈S` π′ν is induced by the natural transformations

D
�S` ,χ,min,crys
S`

→ D̃′ν ,

where D̃′ν = D̃ν for ν coprime to ` and D̃′ν being the crystalline deformation functor for ν|`.

Using the assumptions, we can rewrite this as

0 // I //

π

��

W [[x1, . . . , xd�,sm
` +d�

∞+d�,min
S

]]

π

��

f //W [[x1, . . . , xd�,crys
` +d�

∞+d�,min
S

]]

��

// 0

0 // J //W [[x1, . . . , xm]]/(f1, . . . , fm−γ) g
//W [[x1, . . . , xr0 ]] // 0

with γ = (#S`− 1).dim(gab) +d�,sm
` + d�

∞ + d�,min
S . Using Lemma 2.10, we are good as soon as we can

show that gen(J) ≤ m− (m− γ)− r0 = γ− r0. By Proposition 2.7 and Proposition 2.9, we can replace
this inequality by

d�,sm
` − d�,crys

` ≤ γ − r0 = (#S` − 1). dim(gab) + d�,sm
` + d�

∞ + d�,min
S − dim(g).#S` + dim(gab)

= #S`.(dim(gab)− dim(g)) + d�,sm
` + d�

∞ + d�,min
S .

Using assumptions (min), (∞) and the identity dim(gder) + dim(gab) = dim(g), this amounts to the
inequality

d
�,crys
` ≥ dim(gder).(#Ω` + [F : Q])− dim(bder)[F : Q].
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Now assumption (crys) amounts precisely to the fact that this inequality is ful�lled (with equality),
which completes part 1.

Concerning (the remaining �rst sentence of) part 2., we use Remark 2.11 which tells us that the relative

dimension of R
�S` ,χ,min,sm
S`

is given by

γ = (#S` − 1).dim(gab) + d�,sm
` + d�

∞ + d�,min
S

= #S`. dim(gab)− dim(gab) + dim(gder)([F : Q] + #Ω`)−
∑
ν∈Ω`

δν + [F : Q]. dim(bder) + #S.dim(gder)

= #S`. dim(g) + [F : Q]. dim(bder)− dim(gab)−
∑
ν∈Ω`

δν .

Corollary 3.15. Assume that `� 0, so that g = gder⊕gab. Assume that the requirements of Theorem
3.12.2 are met (with δν = 0) for the trivial choice in (min) and (sm/k), i.e. D�,χ,sm(ρν) = D�,χ(ρν)

(for ν ∈ Ω`) and D�,χ,min(ρν) = D�,χ(ρν) (for ν ∈ S). Then the deformation functor D
(�S` ),χ,min,sm
S`

=

D
(�S` ),χ
S`

is unobstructed.

Proof. Recall (e.g. from [NSW08, (8.7.4)]) the global Euler-Poincaré formula

χ(GalF,S , g
der) := h1(GalF,S , g

der)− h0(GalF,S , g
der)− h2(GalF,S , g

der)

= [F : Q]. dim(gder)−
∑
ν∈Ω∞

h0(GalFν , g
der).

Using the Taylor-Wiles condition (3.3), this implies

h1(GalF,S , g
der)− h0(GalF,S , g

der)− h2(GalF,S , g
der) = [F : Q].dim(bder).

By Theorem 3.12.2 we know that Dχ
S`
∼= W [[x1, . . . , xr]] with r := [F : Q]. dim(bder). But this implies

h1(GF,S , g
der) = r. As both h0(GF,S , g

der) and h2(GF,S , g
der) are non-negative, they must vanish and

the claim follows. (This argument is easily seen to be adaptable to the framed situation, so the case
where Dχ

S`
is not representable is handled in the same way.)

Corollary 3.16. Let L := Lχ = (Lχν )ν be the system of local conditions corresponding to the deformation
functor Dχ,min,sm(ρ) (see De�nition 2.69). Assume (in addition to the requirements of Theorem 3.12.2
with δν = 0) the following:

• `� 0, so that g = gder ⊕ gab;

• H0(GalF , g
der,∨) = 0 (this holds automatically for G = GLn and `� 0, see Lemma 2.72);

• For ν ∈ S, dim(Lν) = h0(GalFν , g
der).

Then D
(�S` ),χ,min,sm
S`

(ρ) has vanishing dual Selmer group (i.e. H1
L⊥(GalF,S , g

der,∨) = 0, cf. De�nition
3.6). Moreover,

h0(GalF,S , g
der) = 0.

48



3 UNOBSTRUCTEDNESS OF UNIVERSAL DEFORMATION RINGS

Let us �rst mention that the last condition (dim(Lν) = h0(GalFν , g
der)) holds automatically for ν /∈ S`

if ` � 0 (so that g = gder ⊕ gab). We also remind the reader that the deformation condition sm is
assumed to ful�ll d�,sm

ν = dim(gder)([Fν : Q`] + 1) for ν ∈ Ω`, as demanded by Theorem 3.12.2 with
δν = 0.

Proof. Using (a sm-conditioned version of) the exact sequence (2.12), we see for ν ∈ Ω`:

dim(Lν) = dim tDχ,sm(ρν)
3.12.2

= h0(GalFν , g
der) + [Fν : Q`]. dim(gder).

Recall the Wiles-Formula (e.g. from [NSW08, Theorem 8.7.9]):

dimH1
L(GalF,S , g

der)− dimH1
L⊥(GalF,S , g

der,∨)

= h0(GalF,S , g
der)− h0(GalF,S , g

der,∨) +
∑
ν∈S`

(
dim(Lν)− h0(GalFν , g

der)
)

By [Böc07, Section 5], we know that H1
L(GalF,S , g

der) can be identi�ed with the tangent space of
Dχ,min,sm
S`

. Thus, it follows from Theorem 3.12.2 that dimH1
L(GalF,S , g

der) = [F : Q].dim(bder). On
the other hand, h0(GalF,S , g

der,∨) was assumed to vanish. Concerning the places in Ω∞, we know that
Lν ⊂ H1(GalF,S , g

der) = 0. Thus, using the Taylor-Wiles formula (3.3), the sum on the right evaluates
to ∑

ν∈S`

(
dim(Lν)− h0(GalFν , g

der)
)

= [F : Q]. dim(gder)− [F : Q].
(
dim(gder)− dim(bder)

)
.

Therefore we get
−dimH1

L⊥(GalF,S , g
der,∨) = h0(GalF,S , g

der).

As neither quantity can be negative, they must both vanish and the result follows.

Corollary 3.17. Retain the assumptions of Corollary 3.16. Then X2
S`

(gder) = 0. In particular, the

unrestricted deformation functor D
(�S` ),χ
S`

(ρ) is globally unobstructed precisely if the local deformation

functors D(�),χ(ρν) (for ν ∈ S`) are relatively smooth. (This is automatic for Ω∞, so it has only to be
checked for S t Ω`.)

Proof. This follows from the exact sequence

dimH1
L⊥(GalF,S , g

der,∨)∗ →X2
S`

(gder)→ 0

(see e.g. equation (9) on p. 10 of [Böc07]).

3.2 Potential unobstructedness

In this short subsection, we will investigate how unobstructedness of a deformation functor for ρ can
be deduced from unobstructedness of the restricted functor to the base change of ρ to a �nite extension
F ′ of F . Let us �rst start with the easy case of unconditioned deformations:

Lemma 3.18. Let
ρ : GalF,S → G(k)

be a global Galois representation as considered previously and let F ′ be a �nite extension of F such that
[F ′ : F ] is coprime to `.
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1. Assume that D
(�S′

`
),χ

S′`
(ρ|GalF ′,S′) is unobstructed, where S′ denotes the set of places of F ′ lying

over S. Then D
(�S` ),χ
S`

(ρ) is unobstructed.

2. Let ν be a place of F and assume that there exists a place ν ′ of F ′ which lies above ν such
that the local deformation functor D(�),χν (ρν |GalF ′

ν′
) is unobstructed. Then also D(�),χν (ρν) is

unobstructed.

Proof. For the �rst part, we have to show that the vanishing of H2(GalF ′,S′` , g
der) implies the vanishing

of H2(GalF,S` , g
der). This is seen using [NSW08, Corollary (1.5.7)] and our assumption that

(GalF ′,S′` : GalF,S`) = [F ′ : F ]

is invertible in k, therefore the restriction map

H2(GalF,S` , g
der)→ H2(GalF ′,S′` , g

der)

is injective and the claim follows.

For the second part, we can argue analogously by considering the local restriction map

H2(Fν , g
der)→ H2(F ′ν′ , g

der)

and using that [F ′ν′ : Fν ] is a divisor of [F ′ : F ], hence is also invertible in k.

We continue to denote by F ′ a �nite extension of F . For any GF -module M and any pair of primes
ν, ν ′ with ν ∈ PlF , ν

′ ∈ PlF ′ such that ν ′ divides ν, the diagram

H1(F,M) //

��

H1(Fν ,M)

��
H1(F ′,M) // H1(F ′ν′ ,M)

is commutative, where all maps are the respective restriction maps. If now S is some �nite set of primes
of F , the diagram

H1(F,M) //

��

⊕
ν∈S H

1(Fν ,M)

��
H1(F ′,M) //

⊕
ν′∈S′ H

1(F ′ν′ ,M)

is commutative as well.

De�nition 3.19 (Dual-pre system). Let L′ = (L′ν′){ν′∈PlF ′} be a system of local conditions for F ′

(i.e. Lν′ is a subgroup of H1(F ′ν′ , g
der), cf. De�nition 2.69). We say that a system L = (Lν){ν∈PlF } of

conditions for F is dual-pre-L′ if res⊥ν′(L
⊥
ν ) ⊂ L′⊥ν′ for all pairs ν, ν

′ with ν ∈ PlF , ν
′ ∈ PlF ′ , such that

ν ′ divides ν, where
res⊥ν′ : H1(Fν , g

der,∨)→ H1(F ′ν′ , g
der,∨)

is the usual restriction map.

Remark 3.20. We now give two criteria for De�nition 3.19:
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1. Let
resν′ : H1(Fν , g

der)→ H1(F ′ν′ , g
der)

denote the restriction map and let L be a system of conditions of F . If resν′(Lν) contains L′ν′
for all pairs ν, ν ′ with ν ∈ PlF , ν

′ ∈ PlF ′ , such that ν ′ divides ν, then L is dual-pre-L′. This can
be seen by using the fact that Tate duality is given by the cup product: We have to check that
res⊥ν′(l)∪ l′ = 0 for any l ∈ L⊥ν and any l′ ∈ L′ν′ . By our assumption, we can write l′ = resν′(l̃) for
some l̃ ∈ Lν . But then the claim follows from the formula

(resx) ∪ (res y) = res(x ∪ y).

2. Let
corν′ : H1(F ′ν′ , g

der)→ H1(Fν , g
der)

denote the corestriction map and let L be a system of conditions of F . If Lν contains corν′(L
′
ν′)

for all pairs ν, ν ′ with ν ∈ PlF , ν
′ ∈ PlF ′ , such that ν ′ divides ν, then L is dual-pre-L′. As above,

we argue with the cup product and check the equivalent condition res⊥ν′(l)∪ l′ = 0 for any l ∈ L⊥ν
and any l′ ∈ L′ν′ . As the corestriction map on the H2-level

corν′ : H2(F ′ν′ , k(1))→ H2(Fν , k(1))

is an isomorphism, this is equivalent to

corν′(res⊥ν′(l) ∪ l′) = l ∪ corν′(l
′) = 0

for any l ∈ L⊥ν and any l′ ∈ L′ν′ . The claim follows.

For the next theorem, we again assume `� 0.

Lemma 3.21. Let
ρ : GalF,S → G(k)

be a global residual representation together with a �nite extension F ′ of F of degree coprime to `.

Furthermore, let min, crys, sm be suitable deformation conditions for the functor D
(�S′

`
),χ

S′`
(ρ|GalF ′,S′)

as demanded by the framework of Theorem 3.12 and Corollary 3.16, such that D
(�S′

`
),χ,min,sm

S′`
(ρ|GalF ′,S′)

has vanishing dual Selmer group. Let L be a dual-pre-(χ, min, sm) system for F (with corresponding

deformation condition DL), then D
(�S` ),DL
S`

(ρ) has vanishing dual Selmer group.

Proof. Analogous to the proof of Lemma 3.18, because [F ′ : F ] is invertible in k, the map

H1(GalF,S` , g
der,(∨))→ H1(GalF ′,S′` , g

der,(∨))

is injective. We consider the following diagram

H1
L⊥(GalF,S` , g

der,∨) �
� //

ϕ

��

H1(GalF,S` , g
der,∨)

� _

��

//
⊕

ν∈S` H
1(Fν , g

der,∨)/L⊥ν

��
H1
L(min)⊥

(GalF ′,S′` , g
der,∨) �

� // H1(GalF ′,S′` , g
der,∨) //

⊕
ν′∈S′`

H1(F ′ν′ , g
der,∨)/L(min)⊥ν′ ,

where L(min) = (L(min)ν′)ν′ is the local system of conditions associated to the deformation condition
χ, min, sm. The vertical map on the right is de�ned because L is dual-pre-L(min), and this implies the
well-de�nedness of ϕ. A simple diagram chase implies injectivity of ϕ, from which the claim follows.
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3.3 Compatible systems of Galois representations

In the sequel, we will apply the framework of Theorem 3.12 not for a �xed residue �eld k, but we
will rather consider systems of Galois representations valued in various residue �elds of characteristic
running through all rational primes `. For this, let us �rst recall the relevant notions from p-adic Hodge
theory, where we follow [Gue11, Section 0.3] and [Böc13b, Section 5.2]:

De�nition 3.22. Let L,K be �nite extensions of Qp (with maximal unrami�ed sub�eld L0 of L and
where K is L-big enough) and let

ρ : GalL → GLn(K)

be a continuous representation. Recall the p-adic period rings BHT, BdR and Bcrys of Fontaine [Fon94].
We say that ρ is

• Hodge-Tate, if (ρ⊗Qp BHT)
GalL is free over L⊗Qp K of rank dim ρ;

• de Rham, if (ρ⊗Qp BdR)
GalL is free over L⊗Qp K of rank dim ρ;

• crystalline, if (ρ⊗Qp Bcrys)
GalL is free over L0 ⊗Qp K of rank dim ρ.

We remark that there is a chain of implications

crystalline ⇒ de Rham ⇒ Hodge-Tate.

If ρ is Hodge-Tate, it follows that also (ρ ⊗L,τ BHT)
GalL is free over L ⊗Qp K of rank dim ρ for any

embedding τ : L ↪→ K. This space inherits a grading from BHT, and we de�ne the Hodge-Tate weights
of ρ as the multiset HTτ (ρ) consisting of those m ∈ Z for which

gr−m(ρ⊗L,τ BHT)
GalL 6= 0.

The multiplicity of such an m is then taken as dim gr−m(ρ⊗L,τ BHT)
GalL .

With this convention, the p-adic cyclotomic character εp has Hodge-Tate weight −1.

Recall from [Tat79] the notions of the Weil group WF of F , of Weil-Deligne representations and their
link to Galois representations.

De�nition 3.23 (Compatible system of Galois representations for G = GLn, [BLGGT14], [Böc13b]).
A weakly (E-rational) compatible system (with rami�cation set S and defect set T ) is a tuple

R =
(
F,E, S, T, (ρλ)λ∈Λ, (Qν)ν∈PlF −S , (HTτ )τ∈I

)
with Λ := PlE −T , where

• F,E are number �elds;

• S is a �nite subset of PlF and T is a subset of PlE ;

• each
ρλ : GalF → GLn(Eλ)

is a continuous, semisimple representation;
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• each Qλ ∈ E[X] is a monic polynomial of degree n;

• I denotes the set of embeddings F ↪→ E and each HTτ is a multiset of n integers.

We impose the following list of compatibilities:

• For λ ∈ Λ and ν ∈ PlF −(S ∪ Ω`(λ)), the representation ρλ is unrami�ed at ν. Moreover, the
characteristic polynomial of ρλ(Frobν) equals Qν for all ν /∈ S ∪ Ω`(λ);

• For λ ∈ PlE and ν ∈ Ω`(λ), ρλ is de Rham; if and ν /∈ S, then ρλ is even crystalline;

• The set of Hodge-Tate weights HTιλ◦τ (ρλ) coincides with HTτ for any place λ ∈ Λ and any
embedding τ ∈ I.

Additionally, we say that R is

• regular, if every element of Hτ (for any τ) has multiplicity one;

• strict, if, for any ν ∈ PlF , there exists a Weil-Deligne representation WDν of the Weil group
WFν of Fν over E such that the following holds: For any choice of places ν ∈ PlF , λ ∈ PlE
with `(ν) 6= `(λ), the Frobenius-semi-simpli�cation of the Weil-Deligne representation attached
to ρλ|GalFν is isomorphic to WDν ;

• pure of weight w ∈ R: We de�ne pureness only for strictly compatible systems, and here we
additionally suppose

� for any ν /∈ S, any root α of the characteristic polynomial of ρλ|GalFν (which is independent
of the place λ coprime to ν) and any embedding ι : E ↪→ C, we have

|ι(α)|2 = qwν ; (3.4)

� for any τ : F ↪→ E and any complex conjugation c ∈ GalQ, we have

HTτc = {w − h|h ∈ HTτ}.

De�nition 3.24. Let ψ : GL1 → (GL1)n be a cocharacter and let (e1, . . . , en) be the standard basis of
E
n
. Then we de�ne the multiset weights(ψ) consisting of all integers j which ful�ll

ψ(x)ei = xjei (3.5)

for all x ∈ E and for a suitable i ∈ {1, . . . , n}. The multiplicity of j is

#
{
i′ ∈ {1, . . . , n}

∣∣(3.5) holds for i = i′
}
.

We will also use the notation weights(ψ) for a GLn-valued cocharacter. Any such cocharacter factorizes
as in the following diagram where one chooses a maximal split torus that contains the image of ψ:

GL1
ψ //

$$

GLn

(GL1)n

::

Now we want to stretch the notion of a compatible system to cover families of Galois representations
with values in a more general (connected and reductive) group G:
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De�nition 3.25 (Compatible system of Galois representations, cf. [BG11, Pat14]). A weakly (E-
rational) compatible system (with rami�cation set S and defect set T ) is a tuple

R =
(
F,E, S, T, (ρλ)λ∈Λ, ([ϕν ])ν∈PlF −S , (µτ )τ∈I

)
(3.6)

with Λ := PlE −T and I := {τ ∈ Hom�elds(F,E) | τ injective }, where

• F,E are number �elds;

• S is a �nite subset of PlF and T is a subset of PlE ;

• each
ρλ : GalF → G(Eλ)

is a continuous, semisimple representation;

• each [ϕν ] is a semisimple G-conjugacy class in G(E);

• each µτ : GL1 /E → G/E is a Hodge-Tate cocharacter.

We impose the following list of compatibilities:

• For λ ∈ Λ and ν ∈ PlF −(S ∪ Ω`(λ)), the representation ρλ is unrami�ed at ν. Moreover, the
semi-simpli�cation ρλ(Frobν)ss is contained in [ϕν ] for all ν /∈ S ∪ Ω`(λ);

• For λ ∈ Λ,ν ∈ Ω`(λ) and any faithful representation η : G→ GLn of algebraic groups, ηEλ ◦ ρλ is
de Rham; if ν /∈ S, then ηEλ ◦ ρλ is even crystalline;

• For any choice of

� a place λ ∈ Λ,

� a place ν ∈ Ω`(λ),

� a faithful representation η : G→ GLn of algebraic groups,

� an embedding τ : F ↪→ E

we have
HTτ (ηEλ ◦ ρλ) = weights(η ◦ µτ ).

In the sequel, we will often use the abbreviatory notation

R = (ρλ)λ∈Λ

and suppress the remaining data of the compatible system if there is no risk of confusion.
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4 Local deformation conditions

In the course of this section, we will consider certain deformation conditions in the local case for
G = GLn. To this end, let us denote by

ρ : GalK → GLn(k)

a residual representation, where K is a �nite extension of Qp (for some prime number p) and k is a �nite
�eld of characteristic `. In our presentation of the various deformation conditions we will distinguish
between the cases ` = p and ` 6= p. Before we start, we will need to generalize a key computation of
Weston [Wes04, Proposition 4.4] using Fontaine-La�aille theory.

4.1 Fontaine-La�aille theory

In this subsection, we will recall the main results of Fontaine-La�aille theory [FL82] as normalized in
[CHT08, Section 2.4.1] and draw conclusions about the vanishing of a certain H2-group. Our main
reference for this material is [BLGGT14, Section 1.4].

Let K, k, `, p be as before and assume ` = p. Let moreover L be a �nite extension of Q` with ring
of integers OL, such that the residue �eld of L is isomorphic to k. We assume furthermore that the
extension K|Q` is unrami�ed. The ring of integers of K is denoted by OK .
As in [CHT08, Section 2.4.1], we also make the following bigness assumption (which will be revoked
later on):

Assumption 4.1. L contains the images of all embeddings K ↪→ Q`, i.e. L ⊃ K since K is unrami�ed
over Q`.

We denote by σ : OK → OK the arithmetic Frobenius morphism.

De�nition 4.2. We de�ne the category MFOK ,OL as follows: An objectM = (M, (FiliM)i∈Z, (ϕM,i)i∈Z)
of MFOK ,OL consists of

• an OK ⊗Z` OL-module M of �nite type;

• A decreasing �ltration (FiliM)i∈Z of M by OK ⊗Z` OL-submodules which are OK-direct sum-
mands and ful�ll Fil0M = M and Fil`−1M = 0;

• A family of σ ⊗ 1-linear maps ϕM,i : FiliM →M , such that

Fili+1M �
� //

ϕM,i+1

��

FiliM

ϕM,i
��

M
multiplication with `

//M

commutes for all i ∈ Z and such that∑
i∈Z

ϕM,i(FiliM) = M.
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A morphism
f : M −→ N = (N, (FiliN)i∈Z, (ϕN,i)i∈Z)

is an OK ⊗Z` OL-linear map M → N satisfying f(FiliM) ⊂ FiliN and making

FiliM

ϕM,i
��

f |FiliM // FiliN

ϕN,i
��

M
f

// N

(4.1)

commutative.

We remark thatM can be understood as a strongly admissible lattice in the �ltered ϕ-moduleM⊗OLL,
cf. [Böc13a, Section 4.6.3].

We also consider the following categories:

• MF
proj
OK ,OL : The full subcategory of MFOK ,OL consisting of projective objects;

• MF◦OK ,OL : The full subcategory of MFOK ,OL consisting of objects of �nite length;

• MFOK ,k: The full subcategory of MF◦OK ,OL consisting of objects annihilated by the maximal ideal
$L.OL of OL;

• RepOL
(GalK): The category of OL-modules of �nite type together with a continuous GalK-action;

• Rep◦OL
(GalK): The full subcategory of RepOL(GalK) consisting of objects of �nite length;

• Rep◦
k
(GalK): The full subcategory of Rep◦OL(GalK) consisting of �nite k-modules together with

a continuous GalK-action;

Let EK denote the set of all embeddings K ↪→ Q`. For τ ∈ EK and V ∈ RepOL
(GalK) being Hodge-

Tate we will denote by HTτ (V ) the multiset of Hodge-Tate numbers with respect to τ , counted with
multiplicity. For M ∈ MFOK ,k, we denote by FLτ (M) the multiset of integers i such that

gri(Mτ ) := FiliM ⊗OK⊗Z`OL,τ⊗1 OL/Fili+1M ⊗OK⊗Z`OL,τ⊗1 OL

does not vanish, where i is counted with multiplicity dimk gri(Mτ ).

Theorem 4.3 (Fontaine-La�aille).

1. There is an exact, fully faithful, covariant and OL-linear functor

GK : MFOK ,OL −→ RepOL
(GalK).

The essential image of GK is closed under taking subobjects and quotients. Moreover, the functor
GK maps MF◦OK ,OL to Rep◦OL

(GalK).

2. Let
ρ : GalK −→ GLL(V )

be a crystalline representation with Hodge-Tate weights in the range [0, ` − 2]. Then any GalK-
stable OL-lattice Λ ⊂ V is in the image of GK , and so is its reduction Λ/$F .Λ.
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3. Let M ∈ MF◦OK ,OL , then

lengthOL−Mod(M) = [K : Q`]. lengthOL−Mod(GK(M)).

4. GK restricts to a functor
MFOK ,k −→ Rep◦

k
(GalK).

For M ∈ MF
proj
OK ,OL we have

HTτ (GK(M)⊗Z` Q`) = FLτ (M⊗OL k)

for all τ ∈ EK .

A representation ρ as in part 2. will be called crystalline in the Fontaine-La�aille range or FL-crystalline.

Proof. See [FL82], [CHT08, Section 2.4.1] or [BLGGT14, Section 1.4].

Remark 4.4. The functor GK is compatible with the tensor product in the following sense [DFG04, p.
670]: If M,N are as in De�nition 4.2, we can de�ne a �ltered module M ⊗OL N by taking the m-th
�ltration step as

Film(M ⊗OL N) := im
( ⊕
i+j=m

FiliM ⊗OL Filj N →M ⊗OL N
)
.

Then, if M⊗OL N ∈ MFOK ,OL , we have

GK(M⊗OL N) ∼= GK(M)⊗OL GK(N).

Remark that the requirement M ⊗OL N ∈ MFOK ,OL boils down to the following condition on the
vanishing of the �ltration steps: Film(M ⊗OL N) = 0 holds for all m ≥ ` − 1. Thus, by parts 2. and
4. of Theorem 4.3, we can state this compatibility in the following, equivalent form: Assume that
V,W ∈ Rep◦OL

(GalK) are FL-crystalline and assume that V ⊗OL W has Hodge-Tate weights in the

Fontaine-La�aille range [0, ` − 2]. Then V ⊗OL W is FL-crystalline. In other words, the property of
being FL-crystalline is stable with respect to taking tensor products, as long as the Hodge-Tate weights
stay in the Fontaine-La�aille range.

Proposition 4.5. Morphisms in MFOK ,k are strict with �ltrations: Let M,N ∈ MFOK ,k and let
f ∈ HomMFOK,k

(M,N), then

f(FiliM) = f(M) ∩ FiliN

for all i ∈ Z.

Proof. In general, a morphism f in an additive category with �ltered objects is strict if and only if the
canonical morphism

coim(f)→ im(f)

is an isomorphism [CZGT14, Section 3.2.1.3]. Therefore the claim follows from the abelianness of
MFOK ,k, cf. e.g. [Alu09, Proof of Theorem 1.12 on p. 573]. (Abelianness follows from [FL82, 1.10].
Alternatively we can use the embedding

MFOK ,k
full
⊂ MF◦OK ,OL ,

and refer to [GL14, Section 2.2] for the abelianness of MF◦OK ,OL and conclude that also MFOK ,k must
be abelian using [Rot79, Proposition 5.92].)
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For M ∈ MFOK ,k and τ ∈ EK , we get a decreasing �ltration

. . . ⊃M τ
i ⊃M τ

i+1 ⊃ . . . (i ∈ Z) (4.2)

of M τ , where
M τ
i := FiliM ⊗OK⊗Z`OL,τ⊗1 OL and M τ := M ⊗OK⊗Z`OL,τ⊗1 OL

arise from the homomorphism τ ⊗ 1 : OK ⊗Z` OL → OL (which uses K ⊂ L). As explained before, the
jumps in this �ltration correspond to the entries of the multiset FLτ (M). Moreover (cf. [CHT08, proof
of Corollary 2.4.3]),

M =
⊕
τ∈EK

M τ and Mi =
⊕
τ∈EK

M τ
i

and morphisms respect this decomposition: Let f : M→ N, then

f =
⊕
τ∈EK

f τ with f τ := f |M τ : M τ → N τ .

Then each f τ respects the �ltration (4.2) and it follows from Proposition 4.5 that it does so strictly:

f τ (M τ
i ) = f τ (M τ ) ∩N τ

i . (4.3)

Thus we get:

Proposition 4.6. Let M,N ∈ MFOK ,k such that for all τ ∈ EK we have

FLτ (M) ∩ FLτ (N) = ∅. (4.4)

Then HomMFOK,k
(M,N) = 0.

Proof. Let f ∈ HomMFOK,k
(M,N). By (4.3), we are clearly done if we can show

f τ (M τ
i ) = f τ (M τ

i+1) (4.5)

for all i ∈ Z, τ ∈ EK : If this is the case, then

f τ (M τ ) = f τ (M τ
0 ) = f τ (M τ

`−1) = f τ (0) = 0,

hence f = ⊕τ∈EK 0 = 0.

For i, τ with M τ
i = M τ

i+1, equation (4.5) holds trivially. For i, τ with M τ
i )M τ

i+1 our assumption (4.4)
on the �ltration jumps implies N τ

i = N τ
i+1. Thus we can use (4.3) to conclude

f τ (M τ
i ) = f τ (M τ ) ∩N τ

i = f τ (M τ ) ∩N τ
i+1 = f τ (M τ

i+1).

Corollary 4.7. Let K and L be �nite �eld extensions of Q` and assume that K is unrami�ed (but we
do not impose Assumption 4.1). Let

ρ : GalK −→ GLn(L)

be a crystalline representation and assume that

1. There exists an α ∈ Z such that all Hodge-Tate weights of ρ lie in the range [α, α+ `− 3];

58



4 LOCAL DEFORMATION CONDITIONS

2. The Hodge-Tate weights of ρ are non-consecutive: if τ ∈ EK and two numbers a, b occur in
HTτ (ρ), then either a = b or |a− b| ≥ 2.

Then
H2(K, ad ρ) = 0.

Proof. Because the assertion is invariant under any change of the �nite coe�cient �eld k ; k′, we may
apply coe�cient change to L (by replacing ρ by ρ⊗L L′) and then assume that L satis�es Assumption
4.1 and the �su�ciently rami�ed�-hypothesis of Lemma 4.10 below.

Making use of Lemma 2.71, we are good if we can show that

HomGalK (ρ, ρ(1))

vanishes. Because

HomGalK (ρ, ρ(1)) = HomGalK (ρ(1− α), ρ(2− α))

we can assume without loss of generality that α = 1.

Let Λ be a GalK-stable OL-lattice in ρ and recall that ρ is de�ned as the semi-simpli�cation of the
reduction Λ/$L.Λ of Λ. By Lemma 4.10 (postponed to the end of this section), we can choose Λ in a
way such that Λ/$L.Λ is already semisimple. By our �rst assumption that all weights of ρ lie in the
range [1, ` − 2] it thus follows from Theorem 4.3, parts 1. and 2., that ρ is of the form GK(M) for a
suitable M ∈ MFOK ,k. By the same argument, ρ(1) = GK(N) for a suitable N ∈ MFOK ,k.

Using Theorem 4.3, part 4, and the fact that twisting by the cyclotomic character shifts the Hodge-Tate
numbers by −1, we see that our second condition on the weights of ρ translates precisely to condition
(4.4) of Proposition 4.6. Thus, using fully faithfulness of GK , we get

0 = HomMFOK,k
(M,N) ∼= HomGalK (ρ, ρ(1)).

Example 4.8. Let f =
∑

i aiq
i be a newform of some weight k ≥ 2 and level N as considered in

[Wes04, Example 4.3]. Let E|Q be a �nite extension which contains all Hecke eigenvalues of f and �x
a place λ of E. Assume moreover that `(λ) does not divide N and `(λ) > k + 1. Then the associated
representation

ρf,λ : GalQ` −→ GL2(Eλ)

is crystalline with Hodge-Tate weights 0, k− 1 and Corollary 4.7 yields an alternative proof of [Wes04,
Proposition 4.4]:

H2(Q`, ad ρf,λ) = 0.

Remark 4.9. Let A ∈ COL and M ∈ Rep◦
A

(GalK). Via the canonical map OL → A we can understand
M as an OL-module. In this way, we can talk about M being �FL-crystalline� or �in the image of the
functor GK� even if A is not the ring of integers of a �nite extension of Q`. On the other hand, we can
consider a subcategory MFOK ,A ⊂ MFOK ,OL consisting of OK ⊗Z` A-modules of �nite type together
with additional data analogous to De�nition 4.2. The embedding of categories is again via the canon-
ical map OL → A. The essential image of the restriction of GK to MFOK ,A consists then precisely of
the FL-crystalline objects of Rep◦

A
(GalK). An analogue of Theorem 4.3 holds for this restricted functor.
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On the existence of a suitable lattice Let (L,O, k) denote an `-modular system, i.e. O is a
discrete valuation ring with uniformizing element $, maximal ideal m = ($), �eld of fractions L and
residue �eld k = O/m of characteristic `. Let

ρ : Γ→ GLn(L)

be a representation of a compact group Γ. It is well-known (and we already used this several times)
that there exists a Γ-invariant O-lattice Λ ⊂ Ln and that the semi-simpli�cation of the reduction

ρΛ : Γ y Λ/$.Λ ∼= kn

does not depend on the choice of Λ (as a corollary of the Brauer-Nesbitt Theorem). In our notation,
ρ = ρssΛ . If mρ̄ denotes the length of the Γ-module ρ, we say that L is su�ciently rami�ed for ρ if there
exists a sub�eld L? ⊂ L, such that

La.1) there exists a representation
ρ? : Γ→ GLn(L?),

such that ιnL?|L ◦ ρ
? = ρ;

La.2) the extension L|L? is totally rami�ed of degree mρ̄ (so we can �x a uniformizer $? of OL? for
which we can assume $? = $mρ̄);

La.3) mρ̄ = mρ? .

Lemma 4.10. Assume that L is su�ciently rami�ed for ρ, then we can chose a lattice Λ such that ρΛ

is semisimple.

This fact is essentially well known (cf. the closely related result [Fei82, Lemma 18.2], and the usage at
the end of Section 2.6 in [Böc13a]). However, in lack of a citeable reference, we include a proof which is
based on [Dat05, proof of Lemma 6.11]. We also remark that condition La.3 was added to technically
simplify the proof and can certainly be weakened (but this would o�er no additional bene�ts for our
purposes).

Proof. Let us �rst write
ρ = ⊕mρ̄i=1σi,

where each σi is a di-dimensional irreducible representation of Γ. Let Λ? ⊂ (K?)n be a Γ-stable OL?-
lattice. By the Brauer-Nesbitt theorem (and La.3), we can assume (up to rearranging the components
σi) that there is a basis B? = (e?1, . . . , e

?
n) of Λ?, such that ρ? factors through the standard parahoric

subgroup associated to the partition (d1, . . . , dmρ̄) of n (see e.g. [Gui13, Section 2.2]). We make this

explicit: For 0 ≤ j ≤ mρ̄ denote 〈j〉 =
∑j

i=1 dj (with 〈0〉 := 0). Then our choice of B? is such that for
i with 〈r − 1〉 ≤ i < 〈r〉 we have

ρ(γ)(e?i ) ∈
〈r〉⊕
j=1

OL? .e?j ⊕
n⊕

j=〈r〉+1

OL? .$?.e?j for all γ ∈ Γ.

Now consider the OL-lattice Λ ⊂ Ln spanned by

B = (e1, . . . , en) := (
1

$mρ̄−1
.e?1, . . . ,

1

$mρ̄−1
.e?〈1〉,

1

$mρ̄−2
.e?〈1〉+1, . . . ,

1

$mρ̄−2
.e?〈2〉, . . . , e

?
n).
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It is a straight-forward computation (using crucially property La.2) to check the following: For i with
〈r − 1〉 ≤ i < 〈r〉 we have

ρ(γ)(ei) ∈
〈r〉⊕

j=〈r−1〉+1

OL.ej ⊕
⊕

j /∈{〈r−1〉+1,...,〈r〉}

OL.$.ej for all γ ∈ Γ.

This implies the claim.

Observe that for given ρ and L, the preconditions of this lemma can always be achieved after a totally
rami�ed, �nite coe�cient base change, i.e. after (if necessary, repeatedly until La.3 is ful�lled) adjoining
a suitable root of a uniformizer to L.

4.2 ` = p: Unconditioned deformations

Let Λ be the ring of integers of a �nite extension of Quot(W (k)) such that kΛ = k.

Lemma 4.11. Assume that ρ : GalK → GLn(L) ful�lls the conditions of Corollary 4.7. Then

R�
Λ (ρ) ∼= Λ[[x1, . . . , xm]]

with m = n2.([K : Q`] + 1).

Proof. AsH2(K, ad ρ) vanishes (Corollary 4.7), this follows from Proposition 2.52 (part 2) and Theorem
2.53 with

m = h1(K, ad ρ) + dim g− dim z = h1(K, ad ρ) + (n2 − 1).

After replacing h1(K, ad ρ) by h0(K, ad ρ) + h2(K, ad ρ) − χ(K, ad ρ), the claim becomes a simple
consequence of the local Euler-Poincaré formula [Böc13a, Chapter 5.3] and condition (Centr):

m = h0(K, ad ρ)+h2(K, ad ρ)−χ(K, ad ρ)+(n2−1) = 1+0+n2.[K : Q`]+(n2−1) = n2.([K : Q`]+1).

There is a variation for the �xed determinant deformation ring, which we will only formulate in the
case Λ = W := W (k):

Corollary 4.12. Retain all notation from above and �x a lift χ of the determinant. Then

R�,χ(ρ) ∼= W [[x1, . . . , xm′ ]]

with m′ = n2.[K : Q`].

Proof. By [Böc98, Proposition 2.1], we have an isomorphism

R�(ρ) ∼= R�,χ(ρ)⊗̂WW [[x]].

Thus, by Lemma 4.11, we have

R�,χ(ρ)[[x]] = R�,χ(ρ)⊗̂WW [[x]] ∼= W [[x1, . . . , xm]]. (4.6)

But this implies R�,χ(ρ) ∼= W [[x1, . . . , xm−1]] by Lemma 2.19.
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4.3 ` = p: Crystalline deformations

Consider again a representation ρ : GalK → GLn(L) which ful�lls the conditions of Corollary 4.7.
We will also make the additional regularity assumption that all occurring Hodge-Tate weights of ρ
have multiplicity one. We will consider the deformation problem crys of ρ consisting of those lifts
ρ̃ : GalK → GLn(A) of ρ for which ρ̃⊗A A′ lies in the essential image of GK for all Artinian quotients
A′ of A (cf. [CHT08], Section 2.4.1). We refer to those lifts as (FL)-crystalline lifts of ρ.

That crys de�nes a lifting condition in the sense of De�nition 2.30 follows from the Ramakrishna
framework10: We already remarked that the essential image of GK is closed under subobjects and
quotients (Theorem 4.3). That the essential image is closed under direct sums follows immediately
from the exactness of GK , since then GK preserves direct sums (see [Fre64, Theorem 3.12(∗)]). Thus
Proposition 2.39 and Corollary 2.35 yield the following lemma:

Lemma 4.13. Let Λ be the ring of integers of a �nite extension E of Quot(W (k)), such that kΛ = k.
Let Λ′ be the ring of integers of a �nite extension of E. Denote the residue �eld of Λ′ by k′ and set
ρ′ = ιk′|k ◦ ρ. Then:

1. The functor D�,crys
Λ (ρ) is representable by a quotient R�,crys

Λ (ρ) of R�
Λ (ρ).

2. The functor D�,crys
Λ′ (ρ′) is representable by

R
�,crys
Λ′ (ρ′) ∼= Λ′ ⊗Λ R

�,crys
Λ (ρ).

Lemma 4.14. Under the above hypotheses,

R
�,crys
Λ (ρ) ∼= Λ[[x1, . . . , xm]]

with m = n2 + [K : Q`]
n.(n−1)

2 .

Proof. This is a part of the statement of [CHT08, Corollary 2.4.3].

Let us also note the following useful compatibility with base change:

Lemma 4.15. Let K ′ be a �nite unrami�ed extension of K with associated inclusion map ιK′|K :
GalK′ → GalK . Set ρ′ = ρ ◦ ιK′|K . Let ρ̃ be a crystalline lift of ρ. Then the following holds:

1. ρ̃′ = ρ̃ ◦ ιK′|K is a crystalline lift of ρ′.

In particular, the restriction map res : H1(K, ad ρ) → H1(K ′, ad ρ′) maps the tangent subspace
associated to the crystalline deformation condition for ρ into the tangent subspace associated to
the crystalline deformation condition for ρ′.

2. The corestriction map cor : H1(K ′, ad ρ′)→ H1(K, ad ρ) maps the tangent subspace associated to
the crystalline deformation condition for ρ′ into the tangent subspace associated to the crystalline
deformation condition for ρ.

10This was already noticed in [CHT08] (see the remark preceding Lemma 2.4.1), albeit without explanation.
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Proof. The �rst part is a direct consequence of the following compatibility of the Fontaine-La�aille
functor with base change: Let M ∈ MFOK ,OL , then OK′ ⊗OK M de�nes an object of MFOK′ ,OL . It
follows from the de�nition of the functors GK , GK′ and a calculation analogous to the one in Section 3.11
of [FL82] that GK(M) and GK′(OK′ ⊗OK M) are isomorphic as OL-modules and that this isomorphism
commutes with the action of GalK′ . In other words,

rKK′
(
GK(M)

) ∼= GK′(OK′ ⊗OK M),

where rKK′ denotes the restriction to GalK′ .

For the second part, we need the following assertions:

• (The induction functor respects the property of being FL-crystalline.) Let ρ0 : GalK′ → GLn(L)
be an FL-crystalline representation. Then ρ̄0 is in the essential image of GK′ . Then we claim that

indKK′ ρ0 : GalK → GLn.[K′:K](k)

is in the essential image of GK . There are several ways to see this. By de�nition, (ρ0⊗Q`Bcrys)
GalK′

is free overK ′0⊗Q`L of rank n and has Hodge-Tate weights in the Fontaine-La�aille range [0, `−2].
We see that

(indKK′ ρ0 ⊗Q` Bcrys)
GalK ∼= (ρ0 ⊗Q` Bcrys)

GalK′

as free K ′0 ⊗Q` L-modules. As [K ′ : K] = [K ′0 : K0], it follows that indKK′ ρ0 is crystalline.
A similar observation for the BHT-�ltration shows that the Hodge-Tate weights of indKK′ ρ0 are
again in the Fontaine-La�aille range, thus the claim follows from Theorem 4.3 and the fact
that the reduction functor and the induction functor commute with each other. Alternatively
we can explicitly describe the Fontaine-La�aille module MK = G−1

K (indKK′ ρ0) in terms of M =
(M, (FiliM)i∈Z, (ϕM,i)i∈Z) = G−1

K′ (ρ0): We take MK = (M ′, (FiliM ′)i∈Z, (ϕM ′,i)i∈Z) with

� M ′ := M (understood as an OK ⊗Z` OL-module);

� FiliM ′ := FiliM (understood as OK ⊗Z` OL-submodules of M ′);

� ϕM ′,i = ϕM,i.

For N ∈ MFOK ,OL , we can check the Frobenius-like reciprocity

HomMFOK,OL
(MK ,N) ∼= HomMFOK′ ,OL

(M,OK′ ⊗OK N),

showing that the functor M ; MK is left-adjoint to N ; OK′⊗OKN. Using that the functor GK
(resp. GK′) establishes an equivalence between MFOK ,OL and a full subcategory of RepOL

(GalK)

(resp. between MFOK′ ,OL and a full subcategory of RepOL
(GalK′)) and the adjointness relation

between the induction- and restriction-functors on representations, the claim follows from the �rst
part of this lemma.

• (Explicit characterization of the corestriction map.) We use the identi�cations

H1(K ′, ad ρ′) ∼= Ext1
k[GalK′ ]

(ρ′, ρ′) and H1(K, ad ρ) ∼= Ext1
k[GalK ](ρ, ρ)

and the corresponding characterization of the corestriction map as the concatenation

Ext1
k[GalK′ ]

(ρ′, ρ′)
∼=−→ Ext1

k[GalK ](ρ, indKK′ ρ
′) −→ Ext1

k[GalK ](ρ, ρ), (4.7)
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where the �rst map is the isomorphism from the Eckman-Shapiro Lemma [Ben98, Cor. 2.8.4] and
the second map is induced from

can : indKK′ ρ
′ = k[GalK ]⊗k[GalK′ ]

ρ′ −→ ρ, σ ⊗ v 7−→ σv.

Now, as explained following the proof of Corollary 2.8.4 in [Ben98] (in the dual situation), the
Eckman-Shapiro isomorphism can be explicitly characterized by sending an extension

0 −→ ρ′ −→M −→ ρ′ −→ 0

to the extension
0 −→ indKK′ ρ

′ −→ X −→ ρ −→ 0,

where X is the pullback as in the following diagram:

0 // indKK′ ρ
′ // indKK′M

// indKK′ ρ
′ // 0

0 // indKK′ ρ
′ // X //

OO

ρ //

can′

OO

0

(4.8)

Here, the vertical map on the right is de�ned as

can′ : ρ −→ indKK′ ρ
′ = k[GalK ]⊗k[GalK′ ]

ρ′, v 7−→ 1⊗ v.

The map on the right hand of (4.7) now maps the extension X to the the pushout Y in the
following diagram:

0 // indKK′ ρ
′ //

can

��

X

��

// ρ // 0

0 // ρ // Y // ρ // 0

We can now complete the proof: Start with an M ∈ Ext1
k[GalK ](ρ, ρ) which is FL-crystalline. By the

�rst bullet point applied to ρ0 = ρ, it follows that indKK′ ρ
′ is FL-crystalline. Moreover, we know that

the universal lifting ring of M is formally smooth over Λ (Lemma 4.14), so there exists a lift

M̃ : GalK′ −→ GL2.dim ρ(Λ)

of M . Applying the �rst bullet point to ρ0 = M̃ ⊗OL L, we see that indKK′M is FL-crystalline. Thus,
all objects in (4.8) (except for possibly X) are FL-crystalline. But the category MFOK ,OL is abelian,
hence it is closed under taking �nite limits and colimits. It follows that also X must be FL-crystalline.
The same argument applied to (4.8) shows that Y = cor(X) is FL-crystalline.

4.4 ` 6= p: Minimally rami�ed deformations

We continue to denote by Λ be the ring of integers of a �nite extension of Quot(W (k)) such that kΛ = k,
but this time we consider an (absolutely irreducible) residual representation

ρ : GalK → GLn(k),
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where K is a �nite extension of Qp with p 6= ` = char k. Denote by

ρ : GalK → GLn(A) ( with A ∈ CΛ )

a lift of ρ. Let us shortly recall from [CHT08, Section 2.4.4], what it means for ρ to be minimally
rami�ed: Let PK denote the kernel of one (hence, any) surjection IK � Z` and set TK = GalK /PK .
For an integer q coprime to `, de�ne the group

Tq := Z` o Ẑ,

where we denote by σq a generator of the factor Z`, by ϕq a generator of the factor Ẑ, and where the
semi-direct product is de�ned by ϕqσqϕ−1

q = σqq . Then the sequence

0 −→ PK −→ GalK −→ TK −→ 0 (4.9)

splits (so that GalK ∼= PK o TK) and TK ∼= T#k.

Now let τ be an irreducible PK-representation over k and set d := dim τ . Set

Gτ = {σ ∈ GalK |τσ ∼ τ}, Tτ = Gτ/PK .

We have an isomorphism ξτ : Tτ ∼= Tq(τ) (with q(τ) = (#k)[GalK :Gτ .IK ]) and the splitting from (4.9)
restricts to a splitting Tτ ↪→ Gτ . It is shown in [CHT08, Lemma 2.4.11] that τ admits a unique lift
τ̃ : PK → GLn(Λ). For M a �nite Λ-module with a continuous action of GalK , we set

Mτ = HomPK (τ̃ ,M)

and regard Mτ as a (continuous) Tτ -module. Finally, let ΨK,k (or ΨK , if k is understood) denote the
set of equivalence classes of irreducible PK-representations over k.

Proposition 4.16. For A ∈ C◦Λ, the association

ρ 7→ (ρτ )[τ ]∈ΨK

provides a bijection between the deformations of ρ (as a GalK-representation) to A and the tuples of
deformations of ρτ (as Tτ -representations) to A.

Proof. For a proof, we refer to [CHT08, Corollary 2.4.13]. We remark however that the representation
ρ can be can be reconstructed from the tuple (ρτ )[τ ]∈ΨK as

ρ =
⊕

[τ ]∈ΨK

indGalK
Gτ

(τ̃ ⊗ ρτ ), (4.10)

cf. [CHT08, Lemma 2.4.12].

De�nition 4.17. 1. Let τ be in ΨK and let π be a lift of τ to A ∈ CΛ. Then π is minimally rami�ed
if the natural map

ker(π(ζτ )− 1)i ⊗A k −→ ker(τ(ζτ )− 1)i

(with ζτ = ξ−1
τ (σq(τ))) is an isomorphism for all i ∈ N.

2. Let ρ be a lift of ρ to A ∈ CΛ. Then ρ is minimally rami�ed if ρτ is a minimally rami�ed lift of
ρτ for each τ ∈ ΨK .
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Remark 4.18. If ρ is unrami�ed, then a lift ρ is minimally rami�ed if and only if it is unrami�ed (see
the remark in [CHT08] after De�nition 2.4.14).

Remark 4.19. Let A ∈ C◦Λ, then a lift π of τ to A is minimally rami�ed in the sense of De�nition 4.17.1
if and only if each ker(π(ζτ )− 1)i is free over A and

rkA im(π(ζτ )− 1)i = length(A). rkk im(τ(ζτ )− 1)i. (4.11)

Moreover, we always have an inequality in the direction ≤, i.e. (4.11) can only fail via a loss of rank
upon reduction (in the non-minimally rami�ed case). (This all follows from [CHT08, Lemma 2.4.15]).

For convenience, we will denote the set of all τ ∈ ΨK with ρτ 6= 0 by ∆ρ. Consider the following
assumption:

Assumption 4.20. Any τ ∈ ∆ρ is absolutely irreducible.

(In Lemma 4.24 we will give a simple criterion from which we can deduce Assumption 4.20 in many
situations.)

Now, let Λ′ be the ring of integers of a �nite extension of Quot(Λ) with residue �eld k′ and denote the
induced embedding by ιnk′|k : GLn(k) ↪→ GLn(k′). This gives rise to a residual representation

ρ′ = ιnk′|k ◦ ρ : GalK → GLn(k′).

Similarly, if A ∈ CΛ, A
′ ∈ CΛ′ and A ↪→ A′ is an inclusion which induces the inclusion of k into k′ as

above, we get an embedding ιnA′|A : GLn(A) ↪→ GLn(A′). Thus, if ρ is an A-valued lift of ρ as above,
we can de�ne

ρ′ = ιnA′|A ◦ ρ : GalK → GLn(A′)

which then is a lift of ρ′. Thanks to Assumption 4.20, the sets ∆ρ and ∆ρ′ are in correspondence via
[τ ] ↔ [τ ′] with τ ′ = ιdim τ

k′|k ◦ τ . Moreover, as is easily extractable from Section 2.4.4 of [CHT08], the

tuples (ρτ )[τ ]∈∆ρ
and (ρ′τ ′)[τ ′]∈∆ρ′

correspond to each other via ρ′τ ′ = ι
dim(ρτ )
A′|A ◦ ρτ .

We have

Proposition 4.21. Under Assumption 4.20, ρ is a minimally rami�ed lift of ρ if and only if ρ′ is a
minimally rami�ed lift of ρ′.

Proof. By Assumption 4.20, we have ΨK,k = ΨK,k′ , i.e. no di�culties arise in terms of irreducible τ
becoming reducible as we go from k to k′. We write this bijection as τ ↔ τ ′, i.e. we write τ ′ instead of
τ when we consider τ ∈ ΨK,k as an element of ΨK,k′ . Moreover, for dimension reasons (cf. (4.10)), we
then also have an equality ∆ρ = ∆ρ′ .

We will check the claim by checking the �rst part of De�nition 4.17 for any τ ∈ ∆ρ. For this, write
Xτ = (ρτ (ζτ )−1) which we consider as an element of Mdim ρτ ,dim ρτ (A) and Xτ ′ = (ρ′τ ′(ζτ ′)−1) for Xτ

if considered as an element of Mdim ρτ ,dim ρτ (A′). Write Xτ (resp. Xτ ′) for the reduction of Xτ (resp. of
Xτ ′), which we consider as an element of Mdim ρτ ,dim ρτ (k) (resp. Mdim ρτ ,dim ρτ (k′)). The claim becomes
obvious when we write down the commuting diagram of k′-vector spaces

ker(Xi
τ ′)⊗A′ k′ //

∼=

ker(X
i
τ ′)

∼=

(ker(Xi
τ )⊗A k)⊗k k′ // ker(X

i
τ )⊗k k′.
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The vertical arrows are isomorphisms by construction of ρ from ρ′. Now we use the following simple
fact: Let V,W be k-vector spaces together with a k-linear map f : V →W . Then f is an isomorphism
if and only if f ⊗k k′ : V ⊗k k′ →W ⊗k k′ is an isomorphism.

We have the following consequence of Proposition 4.21:

Lemma 4.22. Let ρ ful�ll Assumption 4.20. Then the condition of being minimally rami�ed de�nes a
lifting condition, denoted min. Moreover, we have

R�,min
Λ′ (ρ′) ∼= Λ′ ⊗Λ R

�,min
Λ (ρ). (4.12)

Proof. It su�ces to prove that min de�nes a lifting condition in the sense of De�nition 2.30, as the
isomorphism (4.12) is then a direct consequence of Corollary 2.35. That min de�nes a lifting condition on
CΛ follows from [CHT08, Corollary 2.4.18], and by Observation 2.34 this extends to a lifting condition,
say ?D, on ?CΛ. It remains to show that ?D indeed parametrized minimally rami�ed lifts of ρ to ?CΛ.
For this, let A′ ∈ ?CΛ with residue �eld k′ and consider a lift ρ′ of ρ to A′ which is in the image of ?D,
i.e. such that the corresponding map

ϕρ′ : R�
Λ (ρ)→ A′

factors through R�,min
Λ (ρ). We have to show that ρ′ is a minimally rami�ed lift of ρ (i.e. of ρ′ = ιnk′|k ◦ρ).

If there exists an A ∈ CΛ, an embedding ψ : A ↪→ A′ which is a morphism of ?CΛ and a lift ρ of ρ′ to
A such that ρ′ = ιnA′|A ◦ ρ, then this is clear: The map corresponding to ρ,

ϕρ : R�
Λ (ρ)→ A,

�ts in the equation ψ ◦ ϕρ = ϕρ′ , so ϕρ also factors through R�,min
Λ (ρ). Hence, by de�nition, ρ is a

minimally rami�ed lift of ρ and the claim follows from Proposition 4.21. We now claim that there
always exist such an A and a lift ρ: First, it is su�cient to consider the case where A is Artinian, cf.
Remark 2.23. Now de�ne A := p−1(k), where p : A′ → k′ is the projection map. As A is the pullback
of the diagram

A′

p
��

k �
� // k′

and as ?C◦Λ is closed with respect to pullbacks (Remark 2.3), we see that A is an object of CΛ. Moreover
ρ := ρ′ clearly has values in A and ful�lls ρ′ = ιnA′|A ◦ ρ. The claim follows.

Lemma 4.23.
R�,min

Λ (ρ) ∼= Λ[[X1, . . . , Xn2 ]].

Proof. This is part of the statement of [CHT08, Corollary 2.4.21].

We will now give a criterion for Assumption 4.20 to hold. For this, as the image of ρ is �nite, we can
understand resGalK

PK
(ρ) as a representation of a �nite quotient G of PK . Let us write the exponent of G

in the form exp(G) = `a.m with (`,m) = 1.

Lemma 4.24. Assume that k contains all m-th roots of unity. Then Assumption 4.20 is ful�lled.

Proof. Under the above assumptions, a theorem of Brauer (see [DH92], Corollary (5.21) and the pre-
ceding remarks) guarantees that k is a splitting �eld for G, i.e. that a k-valued representation of G is
irreducible if and only if it is absolutely irreducible.
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4.4.1 Unipotent rami�cation and �xed-type lifting rings

During this paragraph, we will study the case where ρ ful�lls the following condition:

De�nition 4.25. We say that ρ has unipotent rami�cation if ρ(PK) is trivial.

Remark 4.26. This notion is explained by the following observation: ρ has unipotent rami�cation if
and only if ρ|IK has values in a conjugate of the standard unipotent subgroup

Un(k) =


1 ∗ ∗ ∗ · · ·

1 ∗ ∗ · · ·
. . .

1 ∗
1

 ⊂ GLn(k).

Clearly, if ρ is unipotently rami�ed we have ∆ρ = {triv} and Assumption 4.20 is automatically ful�lled.
Moreover, in the unipotent case we have a strong connection between minimally rami�ed liftings and
liftings of prescribed type as considered in [Sho15]. In order to make this precise, let E denote the
quotient �eld of Λ and E its algebraic closure (considered with the `-adic topology).

De�nition 4.27 (Def. 2.10 of [Sho15]). Let τ : IK → GLn(E) be a representation which extends to
a continuous representation of the Weil group WK of K. Then the isomorphism class of τ is called an
inertial type. (Warning : 1. This di�ers from the usual de�nition of an inertial type as e.g. in [GK14].
2. There is no connection with the elements of ΨK , but the usage of the letter τ seems to be so common
in both cases that we are reluctant to use a di�ering notation.)

Let ρ be a lift of ρ which has values in E, then we say that ρ �is of type τ � if ρ|IK is isomorphic to τ .

For the following we consider a τ which is de�ned over E. Then we say that a morphism

x : SpecE → SpecR�
Λ (ρ)

is of type τ if the associated E-valued representation ρx is of type τ . This notion depends only on the
image of x (because τ is de�ned over E).

De�nition 4.28 (Fixed type deformation ring, [Sho15, Def. 2.14]). Let R�,τ
Λ (ρ) be the reduced quotient

of R�
Λ (ρ) which is characterized by the requirement that SpecR�,τ

Λ (ρ) is the Zariski closure of the E-
points of type τ in SpecR�

Λ (ρ).

A general classi�cation of inertial types is given in Section 2.2.1 of [Sho15]. Under the unipotent
rami�cation assumption, this becomes particularly simple: The set Iuni of those inertial types is in
bijection with the set Yn of Young diagrams of size n. The partition (l1, . . . , lk) corresponds (using the
notation of [Sho15]) to the type given by the restriction of the Weil-Deligne representation

k⊕
i=1

Sp(1, li)

68



4 LOCAL DEFORMATION CONDITIONS

to IK . We can express this di�erently: Each member of Iuni is uniquely characterized by (the conjugacy
class of) its value on the generator ζ := ζtriv, and a bijection ∇ with Yn is given by

(l1, . . . , lk)
∇←→
(
1 +


Bl1

Bl2
. . .

Blk

) with Bm =


0 1

0 1
. . . . . .

0 1
0

 ∈Mm×m(E). (4.13)

On the other hand, we can associate to a τ ∈ Iuni a partition of n by considering the kernel sequence,
i.e. we have a map

Θ : Iuni → Yn τ 7→ (s1, . . . , sr)

with

si := dim ker(τ(ζ)− 1)i − dim ker(τ(ζ)− 1)i−1

and

r := min
{
i
∣∣dim ker(τ(ζ)− 1)i = dim ker(τ(ζ)− 1)i+1

}
= min

{
i
∣∣ker(τ(ζ)− 1)i = V

}
.

(We use the convention that f0 is the identity map for any f .) It follows easily from the characterization
of Iuni in (4.13) that si ≥ si+1, i.e. that Θ has values in Yn.
It is an easy combinatorial calculation to check that τ is uniquely characterized by its value under Θ
and that each Young diagram occurs as a kernel sequence (i.e. that Θ is a bijection). More precisely,
we have

Lemma 4.29. The map Θ ◦ ∇−1 : Yn → Yn is given by the conjugation operation on Young diagrams
(cf. [FH91, �4.1] or [HHM08, Section 2.8]). In particular, for a given τ ∈ Iuni, the block matrix
structure of τ(ζ) (up to reordering blocks) as in (4.13) determines its kernel sequence and vice versa.

Proof. Retaining the notation used in (4.13), we �rst remark that for i ∈ N0 we have

dim kerBim = min(i,m).

Thus, setting B = diag(Bl1 , . . . ,Blk), we get

dim kerBi =
k∑
j=1

min(i, lj).

Consequently, the kernel sequence (s1, . . . , sr) associated to (l1, . . . , lk) is given by

si =

k∑
j=1

min(i, lj)−min(i− 1, lj) = #{j|lj ≥ i} = max{j|lj ≥ i}

and

r = max{lj |j = 1, . . . , k} = l1.
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Hence, the transition (l1, . . . , lk) ; (s1, . . . , sr) is precisely the conjugation operation of re�ecting a
Young diagram at the main diagonal (cf. [HHM08, Section 2.8]), e.g.

;

In order to state the desired comparison result, let us recap that we consider a residual representation
ρ : GalK → GLn(k) with unipotent rami�cation. Let λ = (l1, . . . , lk) ∈ Yn such that

ρ(ζ) ∼ 1+ diag(Bl1 , . . . ,Blk).

Let τ = ∇(λ) ∈ Iuni.

Theorem 4.30. Assume ρ is unipotently rami�ed and let τ be as above. Then there is an isomorphism
of the quotients

R�,min
Λ (ρ) ∼= R�,τ

Λ (ρ)

of R�
Λ (ρ), i.e. a lifting of ρ is minimally rami�ed if and only if it is of type τ .

Proof. The diagram

R�,min
Λ (ρ)

''
R�

Λ (ρ)

66

((

E

R�,τ
Λ (ρ)

77

allows us to consider the E-points of SpecR�,min
Λ (ρ) and SpecR�,τ

Λ (ρ) as subsets of the E-points of
SpecR�

Λ (ρ). We claim that they are equal: Translated into terms of E-valued representations, we have
to compare the sets

Ξmin =
{
ρ : GalK → GLn(E)

∣∣∣ ρ lifts ρ and has values in OE ,
dim ker(ρ(ζ)−1)i−1−dim ker(ρ(ζ)−1)i=li ∀i

}
and

Ξτ =
{
ρ : GalK → GLn(E)

∣∣∣ ρ lifts ρ and has values in OE ,
ρ|IK∼=τ

}
.

Lemma 4.29 implies that Ξmin = Ξτ .

Now by de�nition of the ring R�,τ
Λ (ρ) (as the schematic closure of the points in Ξτ ) we have

ker
(
R�

Λ (ρ)→ R�,τ
Λ (ρ)

)
=
⋂
ρ∈Ξτ

ker(ϕρ),

where
ϕρ : R�

Λ (ρ)→ E
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is the map corresponding to the lift ρ. Moreover, we clearly have

ker
(
R�

Λ (ρ)→ R�,min
Λ (ρ)

)
⊆

⋂
ρ∈Ξmin

ker(ϕρ).

Hence, by Ξτ = Ξmin, we get a factorization

R�
Λ (ρ) � R�,min

Λ (ρ)
ϕ
� R�,τ

Λ (ρ),

where the middle and the right ring have the same spectrum as topological spaces. Now we know by
Lemma 4.23 that R�,min

Λ (ρ) is formally smooth over Λ of relative dimension n2 and that dimR�,τ
Λ (ρ)

equals n2 + 1 (combine Theorem 2.4 with Proposition 2.15 of [Sho15]). Thus, ϕ is an isomorphism by
Lemma 2.18 and the claim follows.

Minimal rami�cation and base change For this paragraph, consider two �nite extensions K ′,K
of Qp with K ⊂ K ′. Moreover let (r,N) be a Weil-Deligne representation of WK . Let ` 6= p be a
rational prime and recall that we �xed an isomorphism C ∼= Q`, so let us denote by

ρ : GalK → GLn(Q`)

the `-adic Galois representation associated to (r,N) and by V the underlying vector space. After base
change to K ′ we get a Weil-Deligne representation (r′, N) with r′ := r|WK′ and associated Galois
representation ρ′ := ρ|GalK′ . Let us denote the corresponding mod-` reductions by ρ, ρ′ and make the
following assumption (which is independent of our choice of ` for `� 0):

Assumption 4.31. ρ′ is unipotently rami�ed.

Under this assumption, (r′, N) ∼=
⊕k

i=1 Sp(χi, li) for a suitable partition (l1, . . . , lk) of n and suitable
unrami�ed characters χi. Thus, we can choose a basis B = (b1, . . . , bn) of V such that N has the block
matrix form

N =


Bl1

Bl2
. . .

Blk


with Bm as in (4.13). Assumption 4.31 implies ∆ρ′ = {triv}. As before, let us write ζτ = ξ−1

τ (σq(τ)) for
τ ∈ ∆ρ.

Proposition 4.32. Assume ` � 0, then the generators σq(τ) (for τ ∈ ∆ρ) can be chosen such that

ζ ′ := ζτ is contained in GalF ′, does not depend on τ and generates the �rst factor in GalF ′ /PF ′ ∼= Z`oẐ.

Proof. Consider the inclusions
Gτ � p

ιτ

""
GF

GF ′
. � ι′

<<
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and let Fτ denote the �xed �eld of Gτ . As `� 0, we can assume that ` 6 | [K ′ : K]. Assume moreover
that the extensions Fτ |F are unrami�ed, then the canonical maps

IK′/PK′ → IK/PK and IKτ /PKτ → IK/PK

are isomorphisms (for all τ). It follows that the generators ζ ′, ζτ can be chosen such that ι′(ζ ′) = ιτ (ζτ )
and the claim follows.

Thus, we are left to show that Fτ |F is unrami�ed. For this, let us take s = #ρ(IK) and observe that
s = ρ(IK) as long as ` > s. For such an `, we also see that the operation of Z` and of PK commute on
any deformation of ρ. Hence, ρ|IK factorizes through Γ` × Γs, where Γ` is a suitable `-group and Γs is
a suitable group of order s. But this implies that Fτ |F is unrami�ed.

For τ ∈ ∆ρ, denote by Vτ ⊂ V the underlying vector space of ρτ . Then we can decompose V into
isotypic components,

V =
⊕
τ∈∆ρ

Vτ =
s⊕
i=1

Vτi ,

where (for ease of notation) we choose a numbering ∆ρ = {τ1, . . . , τs} with s = #∆ρ. Moreover,
possibly after re-arranging the blocks Bm, we can assume that there exists a disjoint partition

(1, . . . , k) = (a1 = 1, . . . , e1) t (a2 = e1 + 1, . . . , e2) t · · · t (as = es−1 + 1, . . . , es = k)

for suitable ai ≤ ei ∈ N such that ζτi acts on Vτi as 1dimVτi
+ diag(Blai , . . . ,Blbi ). (This all follows

from Proposition 4.32, the shape of N and the fact that 1n + N respects the decomposition of ρ̄ into
PK-isotypic components, see [CHT08, Lemma 2.4.12].)

Now, let ρ̃ be a k[ε]-valued lift of ρ̄ and assume that ρ̃′ := ρ̃|GalF ′ is minimally rami�ed (as a lift of ρ̄′).

Lemma 4.33. Let `� 0 and presume Assumption 4.31. Then ρ̃ is a minimally rami�ed lift of ρ.

Proof. We �rst remark that the minimal-rami�ed assumption for ρ̃′ can be expressed by the identity

rkk im(ρ̃′(ζ ′)− 1n)m = 2. rkk imNm (4.14)

for all m ∈ N, where we always have an inequality in the direction ≤, cf. Remark 4.19. (The factor on
the right side comes from dimk k[ε] = 2 and is necessary because we take rkk instead of rkk[ε] on the
left side.)

We want to show that ρ̃ is minimally rami�ed. Therefore, we have to show that for each i we have

rkk im(ρ̃τi(ζτi)− 1dimVτi
)m = 2. rkk im diag(Blai , . . . ,Blbi )

m, (4.15)

where we again always have an inequality ≤. As

rkk imNm =

s∑
i=1

rkk im diag(Blai , . . . ,Blbi )
m,

we see that the equality (4.14) can only be ful�lled if (4.15) is ful�lled for all i. The claim follows.

Remark 4.34. We expect that Lemma 4.33 holds without presuming Assumption 4.31
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We immediately get the following corollary:

Corollary 4.35. Let ` � 0 and presume Assumption 4.31. Denote by L ⊂ H1(GL, ad(ρ)) and L′ ⊂
H1(GL′ , ad(ρ)) the subspaces parametrizing minimally rami�ed deformations. Then res−1(L′) ⊂ L,
where

res : H1(K, ad(ρ)) −→ H1(K ′, ad(ρ|GK′)).

denotes the restriction map.

4.4.2 An R = Rmin-theorem

For this short section, let F,E be number �elds and consider a strictly compatible system of irreducible
E-rational Galois representations

R =
(
ρλ : GalF → GLn(Eλ)

)
λ∈PlE

.

Let (r,N) be the associated Weil-Deligne representation at a �xed place ν of F . We suppose the
following assumption:

Assumption 4.36. (r,N) is Frobenius-semisimple and r(IFν ) = 1, i.e. R is unipotently rami�ed at ν.

Thus, we can write

(r,N) ∼=
k⊕
i=1

Sp(r̃i, li)

for a suitable partition (l1, . . . , lk) of n and 1-dimensional WFν -representations r̃i. Therefore, we can
assume that the generator ζ of TFν acts on the underlying vector space V of r as

1 +N =
(
1 +


Bl1

Bl2
. . .

Blk

) with Bm =


0 1

0 1
. . . . . .

0 1
0

 ∈Mm×m(C)

and Frobν acts on V as

H =


Hl1(α1)

Hl2(α2)
. . .

Hlk(αk)

 with Hm(α) =


α

αq
. . .

αqm−1

 ∈Mm×m(C)

for suitable numbers αi ∈ C and where q denotes the cardinality of the residue �eld of Fν . Let us
additionally assume

Assumption 4.37. For i 6= j, the q-orbits

qZαi = {qa.αi | a ∈ Z} and qZαj = {qa.αj | a ∈ Z}

are disjoint.
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Remark that Assumption 4.37 implies the �rst part of Assumption 4.36, i.e. that (r,N) is Frobenius-
semisimple.

De�nition 4.38 ([All14, De�nition 1.1.2]). The Weil-Deligne representation (r,N) is called generic if

HomWD-Rep

(
(r,N), (r(1), N)

)
= 0.

Lemma 4.39. Presume Assumptions 4.36 and 4.37, then (r,N) is generic.

Proof. Let f ∈ HomWD-Rep

(
(r,N), (r(1), N)

)
and let Af be the corresponding n × n matrix, then we

have
qAf .H = H.Af , (4.16)

and
Af .N = N.Af . (4.17)

Let us write
Af = (A(i,j))1≤i,j≤k with A

(i,j) ∈Mli×lj (C)

and
H.Af .H−1 = (B(i,j))1≤i,j≤k with B

(i,j) ∈Mli×lj (C).

We claim that Ai,j = 0 if i 6= j: By the shape of H we �rst see that

B(i,j)
u,v =

αi
αj
qv−uA(i,j)

u,v (0 ≤ u ≤ li, 0 ≤ v ≤ lj)

and by (4.16) it follows that

qA(i,j)
u,v =

αi
αj
qv−uA(i,j)

u,v . (4.18)

By Assumption 4.37 this implies A(i,j)
u,v = 0.

Thus, we can assume w.l.o.g. that k = 1. Comparing again the coe�cients in (4.18) then yields

A
(1,1)
u,v = 0 whenever u 6= v + 1, in other words

Af =


0
β1 0
0 β2 0
...

. . . . . .
0 · · · 0 βn−1 0

 for suitable βi ∈ C.

By (4.17), we get

Af .N = diag(0, β1, . . . , βn−1) = diag(β1, . . . , βn−1, 0) = N.Af .

Hence, all βi vanish and the claim follows.

We also have:

Lemma 4.40 ([All14, Lemma 1.1.3]). Let π be an admissible complex representation of GLn(F ) such
that π and (r,N) correspond to each other via the local Langlands correspondence. Then π is generic
(in the sense of [GK75]) if and only if (r,N) is generic.
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4 LOCAL DEFORMATION CONDITIONS

Consider the following assumption, which is met for example if we know that the αi are Weil numbers,
which follows if we impose that R is pure:

Assumption 4.41. All the occurring numbers αi are algebraic integers.

We will restrict our exposition to those λ ∈ PlE for which `(λ) is large enough such that the following
analogue of Assumption 4.37 holds:

Assumption 4.42. For i 6= j, the q-orbits

q{1,...,n}αi = {qa.ᾱi | a ∈ {1, . . . , n}} ⊂ F`(λ) and q{1,...,n}αj = {qa.ᾱj | a ∈ {1, . . . , n}} ⊂ F`(λ)

are disjoint.

Lemma 4.43. Let λ be such that `(λ) > q and presume Assumptions 4.36, 4.41 and 4.42. Assume
moreover that ρλ,ν is a minimal lift of its reduction ρλ,ν in the sense of De�nition 4.17. Then

Hom(ρλ,ν , ρλ,ν(1)) = 0.

Proof. The argument used in the proof of Lemma 4.39 carries over: Let f ∈ Hom
(
ρλ,ν , ρλ,ν(1)

)
and let

Af be the corresponding n×n matrix, then Af must again ful�ll (4.16) and (4.17) with the reductions
H and N instead of H and N . As ρλ,ν is a minimal lift of ρλ,ν , N and N have the same shape, so
thanks to Assumption 4.42 we can compare the coe�cients and conclude the claim as in the proof of
Lemma 4.39.

At this point we remark that we conjecture the vanishing of Hom
(
ρλ,ν , ρλ,ν(1)

)
if the Weil-Deligne

representation (r,N) at ν is generic. In other words (and using Lemma 4.40) we expect the following
to hold:

Conjecture 4.44. Let π be a generic admissible representation of GLn(F ) with associated Weil-Deligne
representation (r,N) and Galois representation ρ : GalF → GLn(C). Then the reduction ρ` of
GLn(ι`) ◦ ρ ful�lls

Hom
(
ρ`, ρ`(1)

)
= 0

for all `� 0.

We expect this to be provable by methods of this thesis under certain standard hypotheses (Assumption
6.6) on the reductions of compatible systems of Galois representations.

We make another assumption on our compatible system R which will be veri�ed later if R = RΠ for a
RACSDC automorphic representation Π of a general linear group over a totally real �eld, see Section
6.4.4.

Assumption 4.45. There exists a �nite failure set X ⊂ Pl�nE such that for all λ ∈ Pl�nE −X, ρλ,ν is a
minimally rami�ed lift of ρλ,ν (for all ν ∈ Pl�nF ).

Corollary 4.46. Presume Assumptions 4.36, 4.37, 4.41 and 4.45, then for almost all λ we have

Hom
(
ρλ,ν , ρλ,ν(1)

)
= 0.

Corollary 4.47. Presume Assumptions 4.36, 4.37 4.41 and 4.45, then for almost all λ the canonical
surjection

R
�,(χν)
Λ (ρλ,ν) � R

�,(χν),min
Λ (ρλ,ν) (4.19)

is an isomorphism.
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4 LOCAL DEFORMATION CONDITIONS

Proof. Let us �rst treat the case where the determinant is not �xed: By Lemma 4.23, the right hand
side of (4.19) is isomorphic to Λ[[x1, . . . , xn2 ]]. By Corollary 4.46 and Lemma 2.71, for almost all λ we
have

H2(Fν , ad(ρλ)) = 0.

It follows (cf. [Kis09, Maz97b] and our Proposition 2.58) that R�
Λ (ρλ,ν) is formally smooth and hence

isomorphic to a power series ring over Λ in

h1(Fν , ad(ρλ)) + n2 − h0(Fν , ad(ρλ)) = n2

variables, where the vanishing of h1(Fν , ad(ρλ))− h0(Fν , ad(ρλ)) follows from the local Euler-Poincaré
formula. Therefore, Lemma 2.18 implies the claim.

As we have shown that any lifting of ρλ is minimally rami�ed (subject to `(λ) � 0), the claim in the
�xed determinant case is tautologically true.
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5 UNOBSTRUCTEDNESS FOR HILBERT MODULAR FORMS

5 Unobstructedness for Hilbert modular forms

Let F be a totally real number �eld and let I denote the set of embeddings F ↪→ R. Let f ∈ Sk(n)
be a Hilbert modular newform of weight ω = (ωτ )τ∈I ∈ ZI and of level n ⊂ OF . We include that
f is normalized (in the sense of the de�nition on p. 7 of [SW93]) in the de�nition of a newform. We
demand that ωτ ≥ 2 and ωτ ≡ ωτ ′ mod 2 for all τ, τ ′. Denote by Kf = Q({aν(f) | ν - n}) the number
�eld generated by the eigenvalues aν(f) of f under the Hecke operators Tν , for all ν - n.
For each λ ∈ Pl�nKf , we denote by Kf,λ the completion of Kf at λ (with ring of integers Of,λ) and by kf,λ
the residue �eld of Kf,λ. According to [Car86] (a more explicit reference is [Böc13b, Theorem 4.12]),
we can associate to f a strictly compatible system(

ρf,λ : GalF → GL2(Kf,λ)
)
λ∈Pl�nKf

of Galois representations with rami�cation set S0 = {λ|λ divides n}. When we have speci�ed a prime
λ and a �nite set of places S of F containing S0, we will denote by

ρf,λ : GalF,S → GL2(kf,λ)

the (semi-simpli�cation of the) reduction modulo λ. It is known, that there exists a co�nite subset
Q(irr) ⊂ Pl�nKf such that ρf,λ is absolutely irreducible for λ ∈ Q(irr) (see item 1. below; this will later
also be deductible from Remark 6.8).

Now, �x such a �nite set of non-archimedean places S which contains S0. We want to describe a set
Q1 ⊂ Pl�nKf −S of places λ where the framework of Theorem 3.12 applies to G = GL2, ρ = ρf,λ and for
the following choices: min and sm are both the condition parametrizing arbitrary (�xed-determinant)
lifts and crys parametrizes (�xed-determinant) lifts which are FL-crystalline in the sense of Section
4.3.

1. By [Dim05, Proposition 3.1], there exists a co�nite subset Q(irr) ⊂ Pl�nKf such that condition
(Representability) of Section 3.1 is ful�lled. (Cf. also [Tay95, Prop. 1.2].)

2. It is a key computation of Gamzon [Gam13, Proposition 4.4] that there exists a co�nite subset
Q(sm) ⊂ Pl�nKf such that H0(Fν , ad0 ρ(1)) vanishes for all ν ∈ ΩF

`(λ) if we suppose
11 that ωτ > 2 for

all τ . By local Tate duality, this implies that D�,χ,sm
ν = D�,χ

ν is formally smooth, hence condition
(sm/k) is ful�lled. Using the local Euler characteristic formula, we get

h1(Fν , ad0 ρ) = h0(Fν , ad0 ρ) + dim(ad0 ρ)[Fν : Q`].

We can assume w.l.o.g. that the exact sequence (2.12) is available for all λ ∈ Q(sm) (if this is not
the case, we exclude the �nitely many places where this fails from the set Q(sm)). Thus we get

d�,sm
ν = dim tD�,χ

ν
= dim tDχν + dim ad0 ρ− h0(Fν , ad0 ρ)

= h0(Fν , ad0 ρ) + dim(ad0 ρ)[Fν : Q`] + dim(ad0 ρ)− h0(Fν , ad0 ρ) = 3.([Fν : Q`] + 1).

Hence the additional condition in Theorem 3.12.2 is ful�lled with δν = 0.
11In the recent version of [Gam13] (as accessed on 29 November 2015 via http://www.mtholyoke.edu/~agamzon/

homepage.html), Proposition 4.4 is formulated under the weaker condition that ωτ > 2 for at least one τ . However, we
cannot follow his argument and believe that this is a mistake.
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3. By [Tay95, Theorem 1.4] (see also [Bre99, Dim09]), there is a co�nite subset Q(crys) ⊂ Q(irr) such
that the restriction ρf,λ,ν of ρf,λ to a decomposition group at ν is crystalline for all ν ∈ Ω` (with
` = `(λ)). By Lemma 4.14 it follows that

R�,crys(ρν) ∼= W [[x1, . . . , xm]]

with m = 4 + [Kν : Q`]. We are, however, interested in a �xed-determinant version:

Theorem 5.1. Fix a lift χ of the determinant. Then, for all λ ∈ Q(crys) with `(λ) > 2,

R�,χ,crys(ρν) ∼= W [[x1, . . . , xk]]

with k = 3 + [Kν : Q`].

Before we can prove this theorem, we need a preparatory lemma (where we again take ` = `(λ)):

Lemma 5.2. Recall that we abbreviate �FL-crystalline� for �crystalline with Hodge-Tate weights
in the Fontaine-La�aille range [0, `− 2]�. We have:

1. Let ρ : GalFν → GL2(k) be an FL-crystalline representation (where k is a �nite �eld of
characteristic ` = `(λ) = `(ν)) and let ρ ∈ D(�),crys(ρ)(A) be an FL-crystalline lift to
some coe�cient ring A ∈ CW (k). Assume moreover that all Hodge-Tate weights of ρ lie in
[0, b `−1

2 c]. Then det(ρ) is FL-crystalline and det(ρ) ∈ D(�),crys(det(ρ))(A).

2. Let ρ : GalFν → GL2(k) and ψ : GalFν → k× be FL-crystalline and assume that κ + κ′ ∈
[0, ` − 2] for any Hodge-Tate weight κ of ρ and any Hodge-Tate weight κ′ of ψ. Let ρ, ψ be
FL-crystalline lifts to some coe�cient ring A. Then ψ ⊗ ρ is FL-crystalline.

3. A lift of the trivial character 1 : GalFν → k× is FL-crystalline if and only if it is unrami�ed.
In other words,

R(�),crys(1) = R(�),nr(1),

where the object on the right denotes the universal deformation ring parametrizing unrami�ed
deformations (resp. liftings) of 1.

4. Assume ` > 2. Let A be a coe�cient ring as above and consider two FL-crystalline characters
χ, ψ : GalFν → A× such that χ = ψ. Then (χ.ψ−1)1/2 is an FL-crystalline lift of 1.

(We believe the bound on the Hodge-Tate weights in part 1. to be unnecessary, but it enables us
to give a very simple proof. We remind the reader that we are ultimately interested in `� 0. We
also emphasize that with our conventions, ε0` is FL-crystalline, while ε

`−1
` is not.)

Proof. Part 2. is a direct application of Remark 4.4.

For part 1., we apply the same argument (i.e. Remark 4.4) to the choice ρ1 = ρ2 = ρ. Then
the bound on the Hodge-Tate weights implies that ρ ⊗ ρ is crystalline. We already saw that
the condition of being FL-crystalline passes over to quotients (see Theorem 4.3). Thus det(ρ) is
FL-crystalline, as it can be realized as the one-dimensional quotient Λ2(ρ) of ρ⊗ ρ. By the same
argument, det(ρ) is seen to be an FL-crystalline lift of det(ρ).

For part 3., remark that any unrami�ed lift is automatically FL-crystalline (see e.g. [Wes04,
Example 4.2], where the pre-image of an unrami�ed character under the Fontaine-La�aille functor
is described). Thus we get a canonical surjection

ϕ : R(�),crys(1) −→ R(�),nr(1) (5.1)
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5 UNOBSTRUCTEDNESS FOR HILBERT MODULAR FORMS

of W -algebras. By our Lemma 4.14 and [BLGG11, Proof of Lemma 3.4.2], both objects in (5.1)
are isomorphic to W [[x]]. It follows by Lemma 2.18 that ϕ is an isomorphism.

Concerning part 4., we �rst note that ψ−1 is crystalline (albeit with Hodge-Tate weights in
[−(`−2), 0] , i.e. generally not in the essential image of the Fontaine-La�aille functor), cf. Section
2 of [Niz93]. Analogously to the proof of part 2., we conclude that χ.ψ−1 = χ ⊗ ψ−1 is an FL-
crystalline, hence (by part 3.) unrami�ed lift of 1. But then, the square root of χ.ψ−1 is also
unrami�ed, hence FL-crystalline. (Observe that we had to assume ` > 2 in order to be able to
take the square root character.)

Proof of Theorem 5.1. We use an argument analogous to [Böc98, Proposition 2.1] to get an iso-
morphism

D�,crys(ρν) ∼= D�,χ,crys(ρν)×D�,crys(1)

by identifying a crystalline lift ρ of ρν with the pair(
(χ.det(ρ)−1)1/2 ⊗ ρ, (χ.det(ρ)−1)1/2

)
.

(We use Lemma 5.2 here to assure that both entries of this pair are crystalline lifts of ρν and 1,
respectively.) Hence, by Proposition 2.5,

R�,crys(ρν) ∼= R�,χ,crys(ρν) ⊗̂WR�,crys(1).

Thus, after another application of Lemma 4.14 we have

W [[x1, . . . , xm]] ∼= R�,χ,crys(ρν) ⊗̂WW [[x]] = R�,χ,crys(ρν)[[x]]. (5.2)

But this implies R�,χ,crys(ρν) ∼= W [[x1, . . . , xm−1]] by Lemma 2.19.

4. Condition (min) is ful�lled for a co�nite subset Q(min) ⊂ Pl�nKf . This follows from [Gam13,

Corollary 9], local Tate duality and the �niteness of S. We have to see that d�,min
ν = dim(sl2) = 3

for ν ∈ Ω`. Using the formal smoothness, this follows from the fact that the Krull dimension of
R�,χ(ρν) is 4, see [Böc13a, Theorem 3.3.1(h)].

5. Condition (∞) demands that R�,χ(ρν) = R�(ρν) is formally smooth with uν = 2 for ν|∞, which
is veri�ed (independently of the choice of λ) in [Böc13a], Section 5.5 (see also our Proposition
2.70).

6. Condition (Presentability) is a direct consequence of our Corollary 2.68. However, we can
alternatively deduce it from the more classical (i.e. GLn-bound) literature: The condition follows
from Key Lemma 5.2.2 and Lemma 5.3.1 of [Böc13a], as soon as we can show that the error term
δ from loc. cit. vanishes. In both cases, we have to check that Assumption 2.63 holds for a co�nite
subset Qδ ⊂ Q(crys), which is the case thanks to Corollary 2.73.

7. Considering condition (R=T), we note that using Proposition 2.62 it is su�cient to show that
R
χ,crys
S`

∼= W . The main ingredient for this is the following (conjectural) R = T -theorem:

• Let X(f, λ) denote the set of all Hilbert modular newforms g of weight ω such that ρg,λ
(understood with values in GL2(Q`)) is a lift of ρf,λ (understood with values in GL2(F`))
which ful�lls crys, has determinant χ and is unrami�ed outside S`.
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• Let K denote the composite of all the �elds of de�nition Kg, where g runs through X(f, λ).
Denote by O the ring of integers of K.

• Let us chose a place δ ofK above λ. Then denote by Tδ theOKδ -subalgebra of
∏
g∈X(f,λ)OKδ

which is generated by all (aν(g))g∈X(f,λ), where ν runs through the places of F outside S.

Conjecture 5.3. Suppose that the places λ, δ are chosen such that ` = `(λ) = `(δ) is odd, coprime
to S and such that Fν |Q` is unrami�ed for all ν above `. Suppose moreover that the image of
ρf,λ is adequate in the sense of Section 6.4.1 and that ρf,λ is totally odd: det ρf,λ(c) = −1 for all
complex conjugations c. Then

R
χ,crys
S`,OKδ

(ρf,λ) ∼= Tδ.

Remark 5.4. 1) It follows from Theorem 6.6 (with Σ = S) and Remark 1.2 of [Dim09] that
Conjecture 5.3 holds under the conditions that F is Galois over Q and that f is not a theta
series nor a twist of a base change of a newform on some E ( F .

2) If we let crys be the deformation condition parametrizing nearly ordinary or �at deforma-
tions, a suitable R = T -theorem is due to Fujiwara [Fuj06, Theorem 11.1].

3) If we let crys be the deformation condition parametrizing potentially Barsotti-Tate defor-
mations (and we correspondingly restrict the previous exposition to forms of parallel weight
2), there exists a suitable R = T -theorem (see [Che13, Theorem 4.1]) under the following
additional assumption:

∀ ν ∈ Ω` : EndF`[GalFν ](ρf,λ,ν ⊗ F`) = F`.

Corollary 5.5. Assume Conjecture 5.3. Then there exists a co�nite subset Q(R=T) ⊂ Q(irr) such
that, for all λ ∈ Q(R=T), we have

R
χ,crys
S`

(ρf,λ) ∼= W (kf,λ).

Observe that Proposition 2.62 then implies that R
�S` ,χ,crys
S`

(ρf,λ) is formally smooth of dimension
4.#S` − 1 = dim(gl2).#S` − dim(glab2 ).

Proof. First, observe that the oddness requirement of Conjecture 5.3 is automatically ful�lled (cf.
[Dim05, Section 0.1] and the references therein). After excluding �nitely many places λ, also the
adequateness requirement is automatically ful�lled, cf. [GHTT12].

Let us �rst show that for almost all λ we can chose a place δ of the �eld K above λ such that

R
χ,crys
S`,OKδ

(ρf,λ) ∼= OKδ . (5.3)

We are clearly done if we can show X(f, λ) = {f} for almost all λ.

Now if g1, g2 ∈ X(f, λ), we see that

aν(g1) ≡ aν(g2) modλ ∀ν /∈ S`,

by the construction of ρgi,λ from gi (see equation (1) in [Dim09]). Therefore, the assumption
g1, g2 ∈ X(f, λ) for in�nitely many primes λ implies that aν(g1) equals aν(g2) for all ν /∈ S`. But
this implies g1 = g2 by a suitable multiplicity one theorem, see e.g. [SW93, Theorem 3.5].
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Therefore, for a given newform g 6= f there exist only �nitely many λ such that g ∈ X(f, λ). The
claim now follows as there are only �nitely many newforms of a given level and weight (see [BJ79,
Section 4.3]).

The claim now follows from (5.3) by (the unframed version of) Corollary 2.35.3 and Lemma
2.17.

Observe that the �rst two conditions of Corollary 3.16 are automatically ful�lled for a co�nite subset
Q(sp) ⊂ Pl�nKf and that the third condition follows from [CHT08, Corollary 2.4.21]. Thus, considering

the intersection Q1 := Q(sp) ∩Q(R=T) ∩Qδ ∩Q(min) ∩Qsm ∩ (Pl�nKf −S) and applying Corollary 3.16, we
get

Theorem 5.6. Assume Conjecture 5.3 and ωτ > 2 for all τ . Then, for almost all primes λ, Dχ
S`

(ρf,λ)
has vanishing dual Selmer group.

Corollary 5.7. Assume Conjecture 5.3 and ωτ > 2 for all τ . Then, for almost all primes λ, RχS`(ρf,λ)
is globally unobstructed.

Proof. The local parts of the �globally unobstructed� notion (cf. De�nition 3.7), i.e. the relative smooth-
ness of the local deformation rings R�,χ(ρν) for ν ∈ S`, follow from Proposition 2.70, Corollary 4.12
and item 4. of this section.
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6 Unobstructedness for RACSDC automorphic representations

Let F be a CM �eld with maximal real sub�eld F+ and recall from [CHT08] the following de�nition:

De�nition 6.1 (RACSDC automorphic representation). An automorphic representation Π of GLn(AF )
is called RACSDC (regular, algebraic, conjugate self dual, cuspidal) if it is cuspidal and ful�lls

• Π∨ ∼= Πc, where c denotes the non-trivial element of Gal(F |F+);

• Π∞ has the same in�nitesimal character as some irreducible algebraic representation of the re-
striction of scalars from F to Q of GLn.

Remark 6.2. As we follow largely the article [CHT08], it would be natural to suppose additionally that
there is a prime ν0 of F+ which splits as w0w

c
0 in F such that at least one of Πw0 ,Πwc0

is square integrable
(cf. condition 5. of [CHT08, Theorem 4.4.2]). By the recent developments ([BLGGT14, Theorem 2.1.1],
but see also [Shi11, CHLN11, Gue11]), this restriction is not necessary.

Remark 6.3. We remark that (by the same references as mentioned in Remark 6.2) it is possible to
treat the material of this section for RAECSDC automorphic representations, i.e. for such Π as above
where the �conjugate self-dual�-condition is weakened to the following �essentially conjugate self-dual�-
condition:

• Π∨ ∼= Πc ⊗ (χ ◦ NF |F+ ◦ det), where χ : A×
F+/(F

+)× → C× is a continuous character such that
χν is independent of ν|∞.

For the remainder, let us �x such a RACSDC automorphic representation Π of GLn(AF ). Then we can
associate to Π a compatible system of `-adic Galois representations:

Theorem 6.4. There exists a number �eld EΠ and an EΠ-rational strictly compatible and pure of weight
n− 1 system of semisimple `-adic Galois representations attached to Π

RΠ =
(
ρλ : GalF → GLn(EΠ,λ)

)
λ∈Plfin

EΠ

with �nite rami�cation set SΠ := {ν ∈ PlF | Πν is rami�ed } such that (in addition to the compatibility
requirements of De�nition 3.23) the following holds:

• The L-functions match: For all λ, L(s,Π) = L(s, ρλ);

• The ρλ are polarized, i.e. ρ∨λ ⊗ ε1−n ∼= ρcλ, where ε is the λ-adic cyclotomic character.

Proof. See [HT01, TY07] and Section 5 of [BLGGT14]. Purity is proved in [Clo13].

Remark 6.5. Before we continue, let us add a remark on the role of the �eld of rationality: We will in
the sequel frequently consider �nite extensions E of EΠ. We can understand RΠ as an E-rational family
by the following convention: If λ is a place of E , then write λ′ for the place of EΠ below λ. Then we
get from RΠ a family

R′Π =
(
ρ′λ : GalF → GLn(Eλ)

)
λ∈Pl�nE

with
ρ′λ : GalF

ρλ′−→ GLn(EΠ,λ′) ↪→ GLn(Eλ).

We will not distinguish in our notation between RΠ and R′Π or between ρλ and ρ′λ if their target is
clear from the context, i.e. we will suppress the prime symbol ′.
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Now, let E be a �nite extension of EΠ as in Remark 6.5. Replacing the entries of RΠ by their mod-λ
reductions, we get a family of modular Galois representations(

ρλ : GalF → GLn(kλ)
)
λ∈Pl�nE

, (6.1)

where kλ denotes the residue �eld of Eλ, which is a �nite extension of F`(λ). We assume the following:

Assumption 6.6. The set

Λ1 := {λ ∈ Pl�nE | ρλ is absolutely irreducible }

has Dirichlet density 1 in Pl�nE . Consequently, the set

Λ1
Q := {` ∈ Pl�nQ | λ ∈ Λ1 for all λ ∈ PlE above ` }

has Dirichlet density 1 in the set of rational primes. Finally, we take Λ1
E to be the set of primes of E

above Λ1
Q.

We remark that the validity of Assumption 6.6 does not depend on the choice of E . Observe moreover
that we can have Λ1

E ( Λ1, but still the following holds:

Lemma 6.7. The set Λ1
E has Dirichlet density 1 in Pl�nE .

Proof. Recall that a subset X ⊂ Pl�nE of a number �eld E has Dirichlet density δ(X) ∈ [0, 1] if∑
ν∈X

1

N (ν)s
∼ δ(X). log

1

s− 1
as s↘ 0. (6.2)

Recall moreover [Mil13, Proposition 4.4 (d) and (e)]:

• Let X1, X2 ⊂ Pl�nE be disjoint, then if any two of δ(X1), δ(X2), δ(X1 tX2) are de�ned, so is the
third and we have

δ(X1 tX2) = δ(X1) + δ(X2).

• Let X1 ⊂ X2 ⊂ Pl�nE , then δ(X1) ≤ δ(X2).

Write Λ1 = Pl�nE −D for a suitable defect set D of Dirichlet density 0. We �rst check the claim under
the assumption that E|Q is Galois: As Gal(E|Q) permutes the places above each rational prime, we
have

Λ1
E = Pl�nE −

( ⋃
σ∈Gal(E|Q)

Dσ
)
.

But Gal(E|Q) is �nite and by the characterization in (6.2) we have δ(Dσ) = δ(D) = 0 for each
σ ∈ Gal(E|Q), so δ(Λ1

E) = 1.

For the general case, we argue as follows: Let Λ̃1 and D̃ be the sets of places of the Galois closure Ẽ
of E above Λ1 and D , so that we have Pl�nẼ = Λ̃1 t D̃ . By assumption, δ(Λ1) = 1, but comparing the

left hand side of (6.2) for E = E , X = Λ1 and for E = Ẽ , X = Λ̃1, we see that δ(Λ̃1) = 1 and, hence,
δ(D̃) must vanish. By applying the above argument to Ẽ instead of E we end up with a decomposition

Pl�nẼ = Λ̃1
Ẽ
t D̃Ẽ such that δ(Λ̃1

Ẽ
) = 1, D̃Ẽ = 0 and such that Λ̃1

Ẽ
contains precisely the places above Λ1

E .

Comparing the left hand side of (6.2) for E = E , X = Pl�nE −Λ1
E and for E = Ẽ , X = D̃Ẽ , we see that

δ(Pl�nE −Λ1
E) = 0, i.e. that δ(Λ1

E) = 1.
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Remark 6.8. Assumption 6.6 is known e.g. if Π is extremely regular [BLGGT14] or if n ≤ 5 [CG13].
Results in this direction are also contained in [PT15], but they are not directly applicable to our
situation.

This implies that we can extend ρ to the group Gn (see Section 6.1.4 below, in particular Lemma 6.21)
at all λ ∈ Λ1

E , i.e. there is a family of Galois representations(
rλ : GalF+ → Gn(kλ)

)
λ∈Λ1

E

(6.3)

which ful�ll the Schur-conditions (SmCtr) and (Centr) from Section 2.3. The purpose of this section
is to prove (in Theorem 6.56 below) that certain deformation rings associated to these representations
rλ are unobstructed for a large class of places λ (and for the choice E = EΠ).

6.1 Preparations

6.1.1 Algebraic representations of GLn and Un

Recall the following characterization of representations of the unitary and general linear groups in terms
of their highest weight character:

Theorem 6.9. 1. The isomorphism classes of complex, irreducible, continuous representations of
Un(R) can be parametrized by the set

Zn,+ =
{

(ω1, . . . , ωn) ∈ Zn
∣∣ ω1 ≥ . . . ≥ ωn

}
.

For such a tuple ω ∈ Zn,+ denote the corresponding representation by

ξuω : Un(R) −→ GL(W u
ω ),

where W u
ω denotes a suitable C-vector space.

2. Let K be a �nite extension of Q` with ring of integers OK . Then the isomorphism classes of
irreducible, algebraic GLn(K)-representations over K can be parametrized by Zn,+. For such a
tuple ω ∈ Zn,+ denote the corresponding representation by

ξKω : GLn(K) −→ GL(WK
ω ),

where WK
ω denotes a suitable K-vector space.

3. The representations ξKω from part 2. admit integral models: For each ω there exists a �nite free
OK-module MOKω and a representation

ξOKω : GLn(OK) −→ GL(MOKω )

such that
ξKω |GLn(OK) = ξOKω ⊗OK K.

Proof. Parts 1. and 2. are taken almost verbatim from [BC09] and the last part can be found e.g. in
[Gue11] or [Ger10a].
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6.1.2 A lemma on prime densities in non-Galois extensions

For this paragraph, consider the following setup:

• As before, F denotes a CM �eld with totally real sub�eld F+;

• L+ = F+(
√
d1, . . . ,

√
dk) denotes a totally real extension of F+ of degree 2k, obtained by adjoining

the square roots of k elements d1, . . . , dk ∈ N.

Let us also assume that each di is a non-square in the Galois closure F̃+ of F+. Then we have

Lemma 6.10. Let ΞQ be the set of all those rational primes ` with the following property: For any
place ℘ of L+, [

℘|`
]

=⇒
[
℘ splits in L|L+

]
.

Then the density δ(ΞQ) of ΞQ in the set of all rational primes is at least 1− 1
2k
.

Proof. Consider the following diagram of �elds

L̃ = L̃+.F

L̃+ = F̃ .L+ L

L+

F̃ F

F+

H ∆

Q

Γ

Ω
Q(
√
d1, . . . ,

√
dk)

with corresponding Galois groups

• ∆ = Z/2Z;

• Ω =
(
Z/2Z

)k
;

• Γ and H, for which we don't make an assumption.

By the assumption that the di are not squares we have

Gal(L̃+|Q) ∼= Γ× Ω,

and hence
Gal(L̃|Q) ∼= Γ× Ω×∆.

Let P be a place of L̃ with corresponding Frobenius element (γ, ω, δ) ∈ Gal(L̃|Q). As Ω and ∆ are
abelian, the conjugacy class of P can be written as

{(uγu−1, ω, δ) | u ∈ Γ}
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and consists precisely of the Frobenii of the places of L lying over the same rational prime p as P.

Let ℘ be the place of L below P. Its Frobenius element is given by

(γ, ω, δ)eγ,ω,δ ∈ H × {1} ×∆ = Gal(L̃|L+)

for eγ,ω,δ ∈ N minimal such that (γ, ω, δ)eγ,ω,δ ∈ H × {1} ×∆.

The condition that ℘ splits in L|L+ then amounts precisely to

(γ, ω, δ)eγ,ω,δ ∈ H × {1} × {1},

or, written in a more sophisticated way, that q((γ, ω, δ)eγ,ω,δ) = 1, where

q : Gal(L̃|L+)→ Gal(L̃|L+)/Gal(L̃|L̃+)

is the quotient map.

If ω 6= 1, we clearly must have 2|eγ,ω,δ, which implies that ℘ splits in L|L+. It is also important to note
that the condition ω 6= 1 is not destroyed by conjugation inside Gal(L̃|Q).

Now, set
Ξ∗ = {(γ, ω, δ) ∈ Gal(L̃|Q) | q((γ, ω, δ)eγ,ω,δ) = 1}

and consider the subset Ξ ⊂ Ξ∗ which consists of those g ∈ Ξ∗ for which the complete conjugacy class
is contained in Ξ∗, i.e.

Ξ = {g ∈ Ξ∗ | 〈g〉 ⊂ Ξ∗}.

We can give another characterization of this set: Ξ is the union of all conjugacy classes 〈g〉 ⊂ Gal(L̃|Q)
with the following property: If Pg denotes the set of all places P of L̃ such that FrobP ∈ 〈g〉, then for
any place ℘ of L+ the following holds:[

∃P ∈ Pg such that P divides ℘
]

=⇒
[
℘ splits in L|L+

]
Then we have

#Ξ ≥ #{(γ, ω, δ) ∈ Gal(L̃|Q) | ω 6= 1} = (2k − 1).2.#Γ.

As
ΞQ = {` ∈ PlQ | ∃g ∈ Ξ such that P|` for all P ∈ Pg},

it follows from Chebotarev's density theorem that

δ(ΞQ) ≥ (2k − 1).2.#Γ

Gal(L̃|Q)
= 1− 1

2k
.

6.1.3 Cuspidality and base change

We start with a general lemma:

Lemma 6.11. Let πν be an irreducible unrami�ed representation of GLn(Fν) for a local non-archimedean
�eld Fν of characteristic 0. Let χν be a smooth character of F×ν such that πν ∼= χν ⊗ πν .
Then χν is unrami�ed.
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Proof. As πν is unrami�ed, it follows from a result of Satake [Rog97, Thm. 4 on p. 337] that there
exist unrami�ed characters

ψi : F×ν → C× (i ∈ {1, . . . , n})

such that πν is a subquotient of

ind
GLn(Fν)
Borel (ψ1 ⊗ . . .⊗ ψn).

But then (by [Vig96, part d) of I.5.2]), χν ⊗ πν is a subquotient of

χν ⊗ ind
GLn(Fν)
Borel (ψ1 ⊗ . . .⊗ ψn) ∼= ind

GLn(Fν)
Borel

(
(χν ⊗ ψ1)⊗ . . .⊗ (χν ⊗ ψn)

)
.

Assume that χν is rami�ed, then each χν⊗ψi is rami�ed. Then an isomorphism πν ∼= χν⊗πν would be
in con�ict with unicity of supercuspidal support (see [GH11, Corollary 14.5.6] for Fν = Qp and [Vig98,
Chapter V.4] for the general case).

Now, let π be an automorphic representation of GLn(AF ). For a prime p in

∆F := {p ∈ Pl�nQ |
√
p /∈ F} ,

let us denote by Σp the set of Hecke characters

χ : IF /F
× → C×

which ful�ll

NF (
√
p)|F (IF (

√
p)) = ker(χ).

Our aim here is to prove:

Lemma 6.12. For almost all p ∈ ∆F , the set

Θp := Σp ∩ {χ | π ∼= χ⊗ π}

is empty.

We are interested in this lemma because Θp = ∅ implies that the base change BCF (
√
p)|F (π) of π to

F (
√
p) is cuspidal (provided that π is cuspidal), cf. [AC89, Thm. 4.2].

Proof. Denote by PlF−ramQ the set of rational primes which ramify in the extension F |Q. Then for an

odd p in ∆F − PlF−ramQ and a place ν of F above p, the extension Fν(
√
p)|Fν is rami�ed (as can easily

be deduced from the multiplicativity of the rami�cation index).
Hence, the image NFν(

√
p)|Fν (Fν(

√
p)×) equals $Fν .NFν(

√
p)|Fν (O×Fν(

√
p)) and we have

[
O×Fν : NFν(

√
p)|Fν (O×Fν(

√
p))
]

= 2.

In particular, any χ ∈ Θp is rami�ed at ν.

By the Lemma 6.11, this is only possible if π rami�es at ν. The claim follows.
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The remainder of this section is aimed at showing that the initial base change in our main argument
later (Theorem 6.56) can be chosen such that cuspidality of the automorphic representation will not
get destroyed. We start again with a general lemma. For this, consider a number �eld F ′ and two �nite
extensions

F ′′ E

F ′

,

where we assume that E|F ′ is Galois with Galois group

Gal(E|F ′) = 〈Frobν1 , . . . ,Frobνk〉

for suitable places ν1, . . . , νk of E which are unrami�ed in E|F ′. Let us denote by ΨF ′(ν1, . . . , νk) the
set of places of F ′ below {ν1, . . . , νk}.

Lemma 6.13. Assume that F ′′|F ′ splits completely at each place w ∈ ΨF ′ . Then

F ′′ ∩ E = F ′.

Proof. The case E = F ′ is trivial, so we can assume that k ≥ 1. Let us �rst start with the case
k = 1: Then, clearly, w ∈ ΨF ′(ν1) = {w} is totally inert in the extension E|F ′. Let us consider the
intermediate extension

F ′′ E

M

F ′

with M := F ′′ ∩ E. By the multiplicativity of the inertial degree it follows that w is totally inert in
M |F ′, but on the other hand w must also split completely in M |F ′ (as, otherwise, it could not split
completely in F ′′|F ′). It follows that M = F ′.

This result can easily be extended to arbitrary k, and we only carry out the step k = 1 ; k = 2. For
this, consider the intermediate �eld E1 = EFrobν2 and the diagram

F ′′.E1 E

F ′′ E1

F ′

Let ν̃i be the place of E1 below νi, for i ∈ {1, 2}. Then the Galois group of the extension E1|F ′ is
generated by Frobν̃1 , so it follows by the previous argument that F ′′ ∩ E1 = F ′. Now, Frobν2 acts
trivially on E1, so the place w2 of F ′ below ν2 does not split in E1|F ′. Moreover, w2 is not rami�ed as
it is not rami�ed in E|F ′. If follows that w2 is totally inert in E|F ′ and splits completely in F ′′|F ′. By
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multiplicativity of the inertial degree, it follows that ν̃2 is totally split in the extension F ′′.E1|E1. It
follows from the previous argument that F ′′.E1 ∩ E = E1. We can now conclude

F ′′ ∩ E = F ′′ ∩ F ′.E1 ∩ E = F ′′ ∩ E1 = F ′.

Let us recall the following well-known12 weak version of the Grunwald-Wang theorem:

Theorem 6.14. Let Σ = {w1, . . . , wm} be a �nite set of places of F ′. For each i ∈ {1, . . . , n} choose a
�nite separable extension Ci of F ′wi . Then there exists a �nite separable extension F ′′ of F ′ and places
νi of F ′′ above wi such that F ′′νi is isomorphic to Ci for every i. Moreover:

• Set di = [C ′i : F ′wi ], then F
′′ can be chosen such that [F ′′ : F ′] = max{d1, . . . , dm};

• If S is a �nite set of non-archimedean places of F ′ with S ∩ Σ = ∅, then F ′′ can be chosen to be
unrami�ed at all places in S;

• If all extensions Ci|F ′wi are Galois, then F
′′ can be chosen such that F ′′|F ′ is Galois and solvable;

• If all extensions Ci|F ′wi are abelian (resp. cyclic), then F ′′ can be chosen such that F ′′|F ′ is
abelian (resp. cyclic).

Proof. This is taken almost verbatim from [Con05, Theorem 3.1]. There, the �rst bullet point is only
stated for the case that all di are equal, but our formulation is easily deductible from the proof in
[Con05, Theorem 3.1].

Recall that we have chosen a CM-�eld F together with an automorphic representation Π of GLn(AF )
in the beginning and that we denote by (ρλ)λ∈PlE the associated compatible family of residual GLn-
valued Galois representations. Let S ⊂ PlF denote the rami�cation set of Π and assume that any place
in S is unrami�ed in the extension F |Q. Then there exists a �nite solvable extension K of F which
is a CM-�eld and such that the restriction of ρλ to GalK has unipotent rami�cation (in the sense of
De�nition 4.25) at each ν ∈ PlK which lies above S if `(λ) 6= `(ν). Write K+ for the maximal totally
real sub�eld of K, then we have K = K+.F .

Lemma 6.15. There exists a �nite solvable Galois extension K ′ of F which is a CM-�eld and such
that

• The base change of Π to K ′ remains cuspidal;

• The restriction of ρλ to GalK′ has unipotent rami�cation at each place ν ∈ Pl�nK′ above S in the
sense of De�nition 4.25 if `(λ) 6= `(ν).

Proof. First, recall from [AC89] that there exists a �nite extension E of F such that for any extension
K ′ of F we have the following implication: If E ∩K ′ = F , then the base change of Π to K ′ remains
cuspidal. This implication remains true after replacing E by its Galois closure, so we can assume that
E|F is Galois. By Chebotarev's density theorem, we can assume that Gal(E|F ) = 〈Frobν1 , . . . ,Frobνk〉
with ΨF (ν1, . . . , νk) ∩ S = ∅. Using Lemma 6.13, we have also the following implication: If for each

12Cf. the usage in [SW01, Section 2]: �Here and throughout the paper we use the well-known fact that one can always
�nd a totally real cyclic extension of F with prescribed splitting and rami�cation at any given �nite set of primes of F.�
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pair of places (ν, w) ∈ Pl�nK′ ×Pl�nF with ν|w,w ∈ ΨF (ν1, . . . , νk) we have [K ′ν : Fw] = 1, then the base
change of Π to K ′ remains cuspidal.

Now apply Theorem 6.14 to

• F ′ = F+;

• Σ = {w1, . . . , wm} is the set of places of F+ which divide ∞ or lie below S tΨF (ν1, . . . , νk),

• Ci =

{
F+
wi if wi divides ∞ or lies below ΨF (ν1, . . . , νk);

K̃ν̃i if wi lies below S.

(Here, ν̃i denotes an arbitrary choice of a place of the Galois closure K̃ of K which lies above wi.) This
yields a �nite solvable totally real Galois extension F ′′ of F ′ = F+, and the extension K ′ := F ′′.F
ful�lls the conditions of the lemma.

We now give a slight generalization of this result. First, consider the following general lemma:

Lemma 6.16. Consider a �eld K together with a �xed algebraic closure K. Let E,F be �nite extensions
of K, both contained in K, such that F |K is separable and such that E contains the Galois closure F̃
of F . Then

F ⊗K E = E[F :K].

Proof. Write F = K[x]/(f(x)) with f ∈ K[x] irreducible. Over E, f decomposes completely in linear
factors, i.e.

f =

[F :K]∏
i=1

(x− αi).

Using the Chinese remainder theorem, we get

F ⊗K E = E[x]/(f(x)) =

[F :K]∏
i=1

E[x]/(x− αi) = E[F :K].

Corollary 6.17. The extension K ′ in Lemma 6.15 can be chosen such that any place ν ∈ PlK′+ above
S is split in the extension K ′|K ′+. Here, K ′+ = F ′′ (in the notation of the proof of Lemma 6.15)
denotes the maximal totally real sub�eld of K ′.

Proof. Let us denote the extension yielded by Lemma 6.15 temporarily by 1K ′ and the maximal totally
real sub�eld by 1K ′+. We apply Theorem 6.14 once again with

• F ′ =1 K ′+;

• Σ = {w1, . . . , wm} is the set of places of 1K ′+ which lie above the subset of PlF+ which was
denoted by Σ in the proof of Lemma 6.15, i.e. the set of places above the set S ⊂ PlF+ of places
below S, above ∞ or above the set Ψ ⊂ PlF+ of places below ΨF (ν1, . . . , νk).

• Ci =

{
1K ′+wi if wi divides ∞ or lies above Ψ,
1K ′w̃i if wi lies above S,

where w̃i denotes an arbitrary place of 1K ′ above wi.
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This yields a quadratic, totally real extension K ′+ of 1K ′+ and we claim that K ′ = K ′+.F ful�lls the
condition of the corollary. It is clear that the two bullet points of Theorem 6.15 carry over. It remains
to check that any place ν ∈ PlK′+ above S is split in the extension K ′+|K ′+. Denote by ν the place of
1K ′+ below ν and consider the following diagram

K ′+

(4)

1K ′

(3)

(1)

K ′+

1K ′+
(2)

All the extensions (1),(2),(3) and (4) are quadratic.

Case 1: (ν is split in (1).) As ν is split in (1), it follows that 1K ′
ν̃

= 1K ′+ν , hence that ν is split in (2). It
follows by [Neu99, Exercise 3 on p. 52] that ν splits completely in K ′+| 1K ′+. But this implies
that ν splits in (4) by the multiplicativity of the inertial degree.

Case 2: (ν is inert in (1).) This implies that 1K ′
ν̃
) 1K ′+ν and hence that ν is inert in (2). Moreover, we

see that the conditions of Lemma 6.16 are ful�lled for the choices

• K = 1K ′+ν ,

• E = K ′+ν ,

• F = 1K ′
ν̃
.

It follows that
1K ′

ν̃
⊗ 1K′+ν

K ′+ν = K ′+ν
∏

K ′+ν ,

i.e. that ν splits in (4).

6.1.4 The group Gn from Clozel-Harris-Taylor

Let n ∈ N and recall from [CHT08] the following de�nition:

De�nition 6.18. By Gn we denote the group scheme over Z given by(
GLn×GL1

)
o {1, j} ,

where j acts as j(g, µ)j = (µ tg−1, µ). Gn de�nes a linear algebraic group, which can either be deduced
from the de�nition or from the embedding Gn ↪→ GSp2n given in [BLGGT14, Section 1.1]. We denote
by G0

n the connected component of Gn and by m : Gn → GL1 the multiplier character given by

m

(
(g, µ) o x

)
= (−1)1+ord(x).µ.

We write gn for the Lie algebra of Gn. Observe that we di�er here from [CHT08], where gn is used for
the Lie algebra of GLn (to which we refer by gln instead).

Proposition 6.19. Gdern = (GLn×1) o 1 ∼= GLn and Gabn ∼= GL1×{1, j}.
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Proof. It is clear that Gdern ⊂ (GLn×1) o 1, as any commutator in Gn is contained in this subgroup.
For the other inclusion, by taking commutators of the form [x, y] with x, y ∈ (GLn×1)o 1, we see that
Gdern ⊃ (SLn×1) o 1. So we are good if we can show that an arbitrary scalar matrix

z ∈ (Gm × 1) o 1 ⊂ (GLn×1) o 1

is contained in Gdern . For this, consider the element z̃ ∈ (1×GL1)o1 corresponding to z via Gm
∼= GL1

and observe that z = [j, z̃].

Proposition 6.20. Let P be the image of the map GL1 → GLn×GL1, sending λ to diag(λ, . . . , λ)×λ2.
Then the center ZGn of Gn ful�lls

ZGn = P o 1 ∼= GL1 .

Proof. First, consider a y = (g, µ)oj ∈ Gn and compare y with ryr−1, where r = (diag(µ, . . . , µ), 1)o1
is an element of Gn and for some µ ful�lling µ2 6= 1. This implies that y cannot be in the center, i.e.
that ZGn ⊂ G0

n. So let x = (g, µ) o 1 ∈ ZGn , then we see that g ∈ ZGLn must be a diagonal matrix.
Comparing x and jxj, we see that (g, µ) must be contained in P . It is easy to check that any element
in P o 1 is central.

Recall that we consider a CM �eld F with maximal real sub�eld denoted by F+.

Lemma 6.21. Let c ∈ GalF+ be a complex conjugation and �x a topological �eld K together with a
continuous character χ : GalF+ → K×. Let

ρ : GalF −→ GLn(K)

be continuous and absolutely irreducible and assume χρ∨ ∼= ρc. (The latter condition means that ρ is a
conjugate self-dual representation.)

Then there exists a continuous representation

r : GalF+ −→ Gn(K),

such that

• r|GalF = ρ;

• (m ◦ r)|GalF = χ|GalF ;

• r(c) ∈ Gn(K)− G0
n(K).

There is a bijection between the GLn(K)-conjugacy classes of such r and K/K2, so in particular r is
uniquely determined (up to conjugacy) if K is algebraically closed. Moreover, if ρ is Schur, then so
is r.

Proof. This is [CHT08, Lemma 1.1.4] in the formulation of [Gee11, Lemma 5.1.1]. The last part about
Schurness of r follows easily from [CHT08, Lemma 2.1.3].

92



6 UNOBSTRUCTEDNESS FOR RACSDC AUTOMORPHIC REPRESENTATIONS

Deformations We will be interested in deformations of Gn-valued residual representations. In the
local split case, this becomes particularly simple: Let K = k be a �nite �eld of positive characteristic
and let ρ, χ, r be as in Lemma 6.21 (but we put a bar over it to indicate that we consider them as
residual objects). Let Λ be the ring of integers of a �nite extension of W (k).

Proposition 6.22. Let ν be a place of F+ which splits as ν̃ν̃c in F (in particular, we �x a place ν̃
above ν). We denote by rν the restriction of r to the decomposition group at ν and by ρν̃ the restriction
of ρ to the decomposition group at ν̃. Fix a lift χν : GalF+

ν
→ Λ× of m ◦ rν . Then

R
χν ,(�)
Λ (rν) ∼= R

(�)
Λ (ρν̃) (6.4)

and
H i(F+

ν , g
der
n ) ∼= H i(Fν̃ , gln), Z1(F+

ν , g
der
n ) ∼= Z1(Fν̃ , gln)

for i ∈ N0.

(As usual, in the unframed situation our claim in (6.4) implicitly assumes that rν is Schur.)

Proof. As GalF+
ν

= GalFν̃ is contained in GalF , the image of rν (and all of its lifts) must be contained
in G0

n: The diagram

GalF+
ν

rν

��

(rν ,χν) // GLn(k)×GL1(k)� _

��
Gn(k)

��
Gn(k) // Z/2Z

commutes and the resulting map GalF+
ν
→ Z/2Z is trivial.

As we �xed the multiplier character for the left hand side, it is therefore clear that there is a natural
isomorphism of the functors

D
χν ,(�)
Λ (rν) ∼= D

(�)
Λ (ρν̃).

The last part is clear as we have an isomorphism of the Lie algebras gln ∼= gdern , compatible with the
action of GalF+

ν
= GalFν̃ .

Let S be a �nite set of �nite places of F+ which split in F . For each ν ∈ S �x a place ν̃ of F above ν
and set S̃ = {ν̃|ν ∈ S}. For a global residual representation

r : GalF+,S −→ Gn(k)

we have de�ned what we mean by a lifting/deformation problem in Sections 2.2 and 2.3. Proposition
6.22 justi�es the following alternative characterization:

De�nition 6.23 (Deformation problem, following [CHT08]). Fix a character χ : GalF+,S → Λ× and
set χν = χ|GalF+

ν
for ν ∈ S. Moreover, for each ν ∈ S �x a deformation condition Dν for the functor

D
χν ,(�)
Λ (rν) ∼= D

(�)
Λ (ρν̃). Then the collection

S = (F |F+, S, S̃,Λ, r, χ, {Dν}ν∈S)
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de�nes a deformation problem for the functor D(�)
Λ (r) as follows: A (framed) deformation r of r (to

some A ∈ CΛ) is of type S if and only if

• m ◦ r = χ;

• for each ν ∈ S, r|GalF+
ν
is a deformation of rν of type Dν .

In this way, we get a relatively representable subfunctor DS ,(�)
Λ (r) ⊂ D

(�)
Λ (r) which �ts in the frame-

work of Section 2.3. For the framed functors, however, there is a slight discrepancy between our
conventions and the conventions in [CHT08] which we will explain now.

Framing conventions Retain all notation from above. Let S be a global deformation problem in
the sense of De�nition 6.23. Assume that T ⊂ S is not empty and recall our De�nition 2.59 for the
multiply framed deformation functor D�T ,S

Λ (r) and its representing object R�T ,S
Λ (r).

De�nition 6.24. A T -framed lifting (in the sense of [CHT08] and with respect to χ) of r to A ∈ CΛ is
a tuple (r, αν)ν∈T , where r is an Gn(A)-valued lift of r and αν ∈ 1 + Mn×n(mA) and where we demand
m ◦ r = χ. Two framed liftings (r, αν)ν∈T and (r′, α′ν)ν∈T are equivalent if there is a β ∈ 1 +Mn×n(mA)
such that r′ = βrβ−1 and α′ν = βαν for all ν ∈ T . An equivalence class is called a T -framed deformation
and the corresponding functor is denoted by D�T

Λ (r). If S is as above, this gives rise to a conditioned

deformation functor D�T ,S
Λ (r).

Proposition 6.25. D�T ,S
Λ (r) is representable by an object R�T ,S

Λ (r) which ful�lls

R�T ,S
Λ (r) ∼= R�T ,S

Λ (r)[[X1, . . . , Xt]]

with t = #T .

Proof. The statement about representability is contained in [CHT08, Proposition 2.2.9]. For the second
claim, consider for A ∈ CΛ the assignment

D�T ,S
Λ (r)(A) −→ D�T ,S

Λ (r)(A)×D�T ,χ
Λ (m ◦ r)(A)

given by (
r, (rν , βν)T

)
7−→

(
r, (rν , β

(1)
ν )T

)
×
(
χ, (χν , β

(2)
ν )T

)
,

where we split up β ∈ G0
n(A) as β = (β(1), β(2)) with β(1) ∈ GLn(A) and β(2) ∈ GL1(A). It is easily

checked that this provides a natural isomorphism of the functors R�T ,S
Λ (r) and R�T ,S

Λ (r)×R�T ,χ
Λ (m◦r).

We conclude from Proposition 2.4 that

R�T ,S
Λ (r) ∼= R�T ,S

Λ (r) ⊗̂Λ R
�T ,χ
Λ (m ◦ r) = R�T ,S

Λ (r) ⊗̂Λ Λ[[X1, . . . , Xt]].

6.2 Automorphic forms and Hecke algebras

Recall from the beginning of this section that we are working with a CM-�eld F with totally real
sub�eld F+ and with an automorphic representation Π of the group GLn(AF ). Let us impose

Assumption 6.26. 1. F |F+ is unrami�ed at all �nite places;
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2. If n is even, then n
2 .[F

+ : Q] is even.

This allows us to �x a de�nite unitary group H over OF+ as considered in [Gue11, Section 2.1] or
[Ger10a, Section 1.1], whose key properties we recall here:

• The extension of scalars of H to F+ is an outer form of GLn /F
+ which becomes isomorphic to

GLn /F after extending scalars to F ;

• H is quasi-split at every �nite place of F+;

• H is totally de�nite, i.e. H(F+
∞) is compact and

H(F+
ν ) ∼= Un(R)

for all in�nite places ν of F+;

• For any �nite place ν of F+ which splits as ν̃ν̃c in F , we can choose an isomorphism

ιν̃ : H(F+
ν )

∼=−→ GLn(Fν̃)

whose restriction to H(OF+
ν

) provides an isomorphism H(OF+
ν

) ∼= GLn(OFν̃ );

Level subgroup Let us �x two disjoint �nite sets Σram,Σaux of �nite primes of F+ subject to the
following conditions:

• each ν ∈ Σram t Σaux is split in F |F+;

• each ν ∈ Σaux is unrami�ed over `(ν) in F+|Q;

• [F (ζ`(ν)) : F ] > n for all ν ∈ Σaux;.

We write T = Σram t Σaux and �x for each ν ∈ T a place ν̃ of F above ν.

For the remainder of this section, the letter U will denote an open compact subgroup U of H(A∞F+).
For later applications, we will be interested in particular in the choice

U(Σram,Σaux) :=
∏

ν∈Plfin
F+

Uν

with:

• If ν is not split in F |F+, then Uν is a hyperspecial maximal compact subgroup of H(F+
ν );

• If ν /∈ T splits, then Uν = H(OF+
ν

);

• If ν ∈ Σaux, then Uν = ι−1
ν̃ ker

(
GLn(OFν̃ )→ GLn(kFν̃ )

)
;

• If ν ∈ Σram, then Uν = ι−1
ν̃ (Iw), where Iw ⊂ GLn(OFν̃ ) denotes the Iwahori subgroup.
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Weight In order to characterize the weight of our automorphic forms, let us �rst consider the following
parametrization based on Theorem 6.9 (cf. also [Gue11]):

1. Let ω = (ωτ ) ∈ (Zn,+)Hom(F+,R), then we denote by

ξuω : H(F+
∞) =

∏
τ∈Hom(F+,R)

H(F+
τ ) ∼=

∏
τ∈Hom(F+,R)

Un(R)
φ−→

∏
τ∈Hom(F+,R)

GL(W u
ωτ

) ⊂ GL(W u
ω)

the (complex) representation which is given by

• W u
ω :=

⊗
τ W

u
ωτ
;

• φ :=
∏
τ ξ

u
ωτ
.

2. Let ` be a rational prime such that every place ν of F+ above ` splits in F |F+ and �x for each
such ν a place ν̃ of F above ν. Let K be a �nite extension of Q` which is F -big enough (i.e.
contains the image of every embedding F ↪→ K) and let ω = (ωτ ) ∈ (Zn,+)Hom(F,K). To each
τ ∈ Hom(F,K) we can associate a place ν of F+ above ` for which we have just �xed a place ν̃.
Denote this assignment Hom(F,K)→ ΩF

` by τ 7→ wτ . Then denote by

ξKω : H(F+
` ) =

∏
ν∈ΩF

+
`

H(F+
ν ) ∼=

∏
ν∈ΩF

+
`

GLn(Fν̃)
∏
dν−→

∏
ν∈ΩF

+
`

∏
τ∈Hom(F,K)
s.t. wτ=ν̃

GLn(Fν̃) =
∏

τ∈Hom(F,K)

GLn(Fν̃)

ψ−→
∏

τ∈Hom(F,K)

GL(WKωτ ) ⊂ GL(WKω )

the representation which is given by

• each dν is the diagonal embedding;

• WKω :=
⊗

τ W
K
ωτ
;

• ψ :=
∏
τ ξ
K
ωτ
.

3. The representation ξKω from above admits an integral model: There exists a �nite free OK-module
MOKω and a representation

ξOKω : H(OF+
`

) −→ GL(MOKω )

such that
ξKω |H(OF+

`
) = ξOKω ⊗OK K.

Automorphic forms Denote by A(H) the the space of (complex) automorphic forms on H, such
that we have a decomposition

A(H) =
⊕
π

πm(π)

into isomorphism classes of irreducible representations ofH(AF+), each occurring with �nite multiplicity
m(π) (see e.g. [Gue11]).
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De�nition 6.27 (Vector-valued automorphic form). Let ω ∈ (Zn,+)Hom(F+,R) be a weight, then we
denote by Sω the space of locally constant functions

f : H(A∞F+) −→W u,∨
ω

which ful�ll
f(γ.h) = γ∞f(h) ∀ h ∈ H(A∞F+), γ ∈ H(F+).

(We denote by γ∞ the image of γ under the canonical embedding H(F+)→ H(F+
∞).) H(A∞F+) acts on

Sω via right translation, and for a level subgroup U we denote by Sω(U) the space of U -�xed vectors.

This allows us to give an H(AF+) = H(AF+,∞)×H(A∞F+)-equivariant decomposition

A(H) =
⊕

ω∈(Zn,+)Hom(F+,R)

W u
ω ⊗ Sω.

This, in turn, allows us to associate to an f ∈ Sω the (irreducible) automorphic representation 〈f〉
which is uniquely characterized by the condition that it contains all vectors of W u

ω ⊗ f .
The main feature of H is the existence of an avatar (using the language of M. Harris):

Theorem 6.28. Let Π be RACSDC automorphic representation of GLn(AF ) of weight ω ∈ (Zn,+)Hom(F,C)

in the sense of [CHT08, Section 4]. Then there exists an automorphic representation π0 of H(AF+)
such that Π is a base change of π0, i.e.

• For each archimedean place ν of F+ and each place ν̃ of F lying above ν, we have π0,ν
∼= ξuων̃ ;

• For each �nite place ν of F+ which splits as ν̃ν̃c in F , Πν̃ is the local base change of π0,ν ;

• If ν is a �nite place of F+ which stays inert in F and for which Πν is unrami�ed, then πν has a
�xed vector for a maximal hyperspecial compact subgroups of H(F+

ν ).

Proof. See [Gue11, Theorem 2.2] and [Ger10b, Lemma 2.2.7].

Hecke algebras Fix a sets of places T = Σram t Σaux (with corresponding level subgroup U =
U(Σram,Σaux)) and a weight vector ω ∈ (Zn,+)Hom(F+,R) as above. For j ∈ {1, . . . , n} and w a place of F
which is split over F+ and does not divide an element of T , we consider the Hecke operator

T
(j)
Fw

=

[
U.ι−1

w

(
$Fw1j 0

0 11−j

)
.U

]
acting on Sω(U).

Let T ′ be a �nite set of places of F+ containing T and let R be a subring of C, then de�ne the Hecke
algebra

RTT
′

ω (U) := im
(

R[T
(j)
Fw
| j ∈ {1, . . . , n}, w ∈ Pl

split,T ′
F ] −→ EndC(Sω(U))

)
where Pl

split,T ′
F denotes the set of places of F which are split over F+ and which do not divide an

element of T ′. Besides R = Z we will mainly be interested in the case R = OE(U), where OE(U) is the
ring of integers of the following �eld:
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De�nition 6.29. For f ∈ Sω(U) an eigenform (with respect to ZTTω(U)) denote by

Ef := Q(af (T
(j)
Fw

) | j ∈ {1, . . . , n}, w ∈ Pl
split,T
F )

the number �eld generated by the eigenvalues af (T ) of T ∈ ZTTω(U) acting on C.f . We denote by
E(U) the composite of the �elds Ef , where f runs through all eigenforms of Sω(U).

Note that the de�nition of E(U) depends also on the chosen weight, but we suppress this from the
notation. Let us also list two well-known facts:

• There are only �nitely many one-dimensional eigenspaces C.f1, . . . ,C.fr contained in Sω(U). In
particular, E(U) is a number �eld. Moreover, Sω(U) admits a basis of eigenforms, i.e. we can
choose the f1, . . . , fr such that

Sω(U) ∼= C.f1 ⊕ . . .⊕ C.fr. (6.5)

(This follows from the decomposition (3.1.1) of [Gue11] together with Proposition 6.31 below.)

• Any eigenform f ∈ Sω(U) gives rise to a Z-algebra homomorphism

ϕf : ZTTω(U) −→ E(U) T
(j)
Fw
7−→ af (T

(j)
Fw

)

and it can be shown that im(ϕf ) ⊂ OE(U). Moreover, f is uniquely characterized by ϕf (up to
C-multiples).

`-adic models of automorphic forms During the course of this paragraph (which is based strongly
on Section 2.3 of [Gue11]) we will use the following static13 setup:

• ` denotes a rational prime (�xed throughout this paragraph) which does not lie below T and such
that all places of ΩF+

` are split in F |F+;

• we �x a �nite extension K of Q` which is F -big enough together with an isomorphism ι : K ∼= C;

• we �x an `-adic weight ω, i.e. an element of

(Zn,+)Hom(F,K)
c =

{
ω ∈ (Zn,+)Hom(F,K)

∣∣ ωτc,i = −ωτ,n−i+1 ∀τ ∈ Hom(F,K), i ∈ {1, . . . , n}
}
.

De�nition 6.30. For U a compact subgroup of H(A∞F+) and A an OK-algebra, suppose that either the
projection of U to H(F+

` ) is contained in H(OF+
`

) or that A is a K-algebra. Then we de�ne Sω(U,A)

to be the space of functions
f : H(F+)\H(A∞F+) −→ A⊗OK M

OK
ω

which ful�ll
u`.f(hu) = f(h) ∀u ∈ U, h ∈ H(A∞F+),

where u` denotes the image of u under the projection map H(A∞F+)→ H(F+
` ).

13With �static� we mean that we don't vary the prime `, in contrast to the bigger part of this section.

98



6 UNOBSTRUCTEDNESS FOR RACSDC AUTOMORPHIC REPRESENTATIONS

As we are primarily interested in the choice U = U(Σram,Σaux) with Σaux 6= ∅, our level will be �su�ciently
small� in the sense of [CHT08], i.e. there exists a place ν of F+ such that the projection of U to H(F+

ν )
contains no element of �nite order except the identity. Thus we have

Sω(U,A) ∼= A⊗OK Sω(U,OK).

(This is also true without a condition on U if we suppose that A is �at as an OK-module, cf. [Ger10a].)

The main connection with complex automorphic forms is given by the following proposition:

Proposition 6.31. 1. The isomorphism ι gives rise to a bijection

ι+∗ : (Zn,+)Hom(F,K)
c

∼=−→ (Zn,+)Hom(F+,R);

2. For ω ∈ (Zn,+)
Hom(F,K)
c there is an isomorphism of C-vector spaces

θω : C⊗K,ιWKω
∼=−→W u

ω;

3. The assignment f 7→ (h 7→ θω(h`.f(h))) provides an isomorphism of CH(A∞F+)-modules

Sω({1},C) :=
⋃
U

Sω(U,C) ∼= Sι+∗ (ω)∨ (6.6)

which restricts to an isomorphism Sω(U,C) ∼= Sι+∗ (ω)∨(U) for a level subgroup U . (In these isomor-

phisms C is understood as a OK-algebra via ι and ι+∗ (ω)∨ is de�ned by ι+∗ (ω)∨τ,i = −ι+∗ (ω)∨τ,n+1−i.)

Proof. See [Gue11, Section 2.3].

For w 6 | `, the Hecke operators T (j)
Fw

from above also act on Sω(U,OK) ⊂ Sω(U,C) and this action
commutes with the isomorphism (6.6). This motivates the following de�nition: Let T ′ be a �nite set
of places of F+ containing T ` := T ∪ ΩF+

` and R a subring of K, then de�ne the Hecke algebra

RTT
′

ω (U) := im
(
q : R[T

(j)
Fw
| j ∈ {1, . . . , n}, w ∈ Pl

split,T ′
F ] −→ EndOK(Sω(U,OK))

)
.

Let f ∈ Sω(U,OK) be an eigenform for this algebra, then we see, using the compatibility with the
isomorphism (6.6), that the eigenvalue for a Hecke operator T is given by ι−1(af̃ ), where f̃ ∈ Sι+∗ (ω)∨(U)
is the corresponding complex automorphic form. In other words, we can interpret the map ϕf̃ from
above as

ϕ`f : ZTT`ω (U) −→ ι(E(U)) ∼= E(U).

Note that we use the bold symbol T for complex Hecke algebras and the blackboard bold symbol T for
`-adic Hecke algebras.

Fixed type Hecke algebra We will �nish this subsection by de�ning a slight variation of the above
Hecke algebra. For this, �x a �nite set Σ̃ ⊂ (T ′ − ΩF

` ) of places of F together with a tuple

σ = (σν)
ν∈Σ̃

, (6.7)
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where each σν is a complex representation of GLn(OFν ). Let

σSω(U,OK) ⊂ Sω(U,OK)

be the subspace of those f ∈ Sω(U,OK) whose complex correspondents f̃ (via (6.6)) ful�ll the following
condition for all places ν ∈ Σ̃: If πν denotes the local component of the automorphic representation
π = 〈f̃〉 at ν, then πν |GLn(OFν ) contains σν as a subrepresentation. Note that the T (j)

Fw
(for w in

Pl
split,T ′
F ) stabilize the subspace σSω(U,OK), so we can de�ne

R
σ TT

′
ω (U) := im

(
σq : R[T

(j)
Fw
| j ∈ {1, . . . , n}, w ∈ Pl

split,T ′
F ] −→ EndOK( σSω(U,OK))

)
.

We easily see that the assignment q(T (j)
Fw

) 7→ σq(T
(j)
Fw

) de�nes an R-algebra surjection

σθ : RTT
′

ω (U) −→ R
σ TT

′
ω (U). (6.8)

Thus we can note the following (for R = OK):
Observation 6.32. 1. Assume that OKTT ′ω (U)m ∼= OK holds for any maximal ideal m ⊂ OKTT ′ω (U).

Then OKσ TT ′ω (U)n is a quotient of OK for any maximal ideal n ⊂ OK
σ TT ′ω (U). (This follows from

the fact that the completion process sends surjections to surjections.)

2. In the same way as for OKTT
′

ω (U) (see Corollary 6.41 below) we can check that OKσ TT ′ω (U) is

torsion-free and �nitely generated. As OK is a discrete valuation ring, it follows that OKσ TT ′ω (U)
is free and �nitely generated. Hence, the following strengthening of part 1. holds: Assume that
OKTT ′ω (U)m ∼= OK holds for any maximal ideal m ⊂ OKTT ′ω (U). Then OKσ TT ′ω (U)n ∼= OK holds for

any maximal ideal n ⊂ OK
σ TT ′ω (U).

6.3 From automorphic forms to Galois representations

Proposition 6.33 ([CHT08, Proposition 3.4.2 and 3.4.4]). Let m ⊂ OKTT`ω (U) be a maximal ideal.
Then there exists a representation

ρm : GalF → GLn

(
OKTT`ω (U)m

)
(where the subscript-m denotes the completion, so that the coe�cient ring of the general linear group is
an object of COK) with the following properties (the �rst two already characterize ρm uniquely):

1. ρm is unrami�ed at all but �nitely many places; If a place ν of F+ is inert and unrami�ed in F
and if Uν is a hyperspecial maximal compact subgroup of H(F+

ν ), then ρm is unrami�ed above ν;

2. If a place ν /∈ T` splits as ν̃ν̃c in F , then ρm is unrami�ed at ν̃ and ρm(Frobν̃) has characteristic
polynomial

Xn − T (1)
ν̃ Xn−1 + . . .+ (−1)j(Nν̃)j(j−1)/2T

(j)
ν̃ Xn−j + . . .+ (−1)n(Nν̃)n(n−1)/2T

(n)
ν̃ .

3. ρcm ∼= ρm ⊗ ε1−n` ;
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4. Fix a set of primes Ω̃F+

` of F such that Ω̃F+

` t Ω̃F+,c
` = ΩF

` and denote by Ĩ` the set of embeddings
F ↪→ K which give rise to an element of Ω̃F+

` . Suppose that w ∈ Ω̃F+

` is unrami�ed over `, that
Uw = H(OF+,w) (where w denotes the place of F+ below w) and that for each τ ∈ Ĩ` above w we
have

`− 1− n ≥ ωτ,1 ≥ . . . ≥ ωτ,n ≥ 0.

Then, for each open ideal I ⊂ OKTT`ω (U)

(
ρm ⊗OKTT`ω (U)

OKTT`ω (U)/I
)∣∣Gal(Fw) ∼= GFw(Mm,I,w)

for some object Mm,I,w of MFOFw ,OK .

If m is non-Eisenstein in the sense of [CHT08, De�nition 3.4.3], then both ρm and its reduction extend
to

rm : GalF+ → Gn
(
OKTT`ω (U)m

)

and

rm : GalF+ → Gn
(
OKTT`ω (U)/m

)
,

where the coe�cient ring of the group in the last case is a �nite extension of kOK , hence of F`.

We can visualize the compatibility of this theorem with the assignment from Theorem 6.4 as follows:

• Recall that Π is a RACSDC automorphic representation of GLn(AF ), admitting an avatar π0 = 〈f〉
via Theorem 6.28; Denote the level of f by U and the weight by ω.

• For each �nite place λ of E(U) we �x an F -big enough �eld extension Kλ of E(U)λ. Our initial
choice of isomorphisms (ι`)` between Q` and C thus provides us with isomorphisms ιKλ : Kλ ∼= C.
We denote the corresponding isomorphisms between the complex and the `-adic weights from
part 1 of Proposition 6.31 by λι

+
∗ .

• For each place λ as above, denote by λ′ the place of Ef lying below λ and by Fλ the residue �eld
of Ef,λ′ .
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Then the following diagram commutes:

(
rΠ,λ′ : GalF+ → Gn(Ef,λ′)

)
λ′∈Λ1

Ef
(2)

**

Π ⊂ A(GLn(AF ))

(1)

55

(4)

��

(
rΠ,λ′ : GalF+ → Gn(Fλ′)

)
λ′∈Λ1

Ef

(3)

��

π0 ⊂ A(H(AF+))

(5)

��

(
rΠ,λ : GalF+ → Gn(F`(λ))

)
λ∈Λ1

E(U)

(
f (λ) ∈ Sωλ(U,C)

)
λ∈Λ1

E(U)

(6)
**

(
rmf,λ : GalF+ → Gn(kmf,λ)

)
λ∈Λ1

E(U)

(8)

OO

(
rmf,λ : GalF+ → Gn(Amf,λ)

)
λ∈Λ1

E(U)

(7)

44

(6.9)
where

• (1) denotes the association induced by Theorem 6.4;

• (2) and (7) denote the respective reduction processes;

• (3) and (8) are the appropriate inclusions into the algebraic closure;

• (4) denotes the association of an avatar to Π, cf. Theorem 6.28;

• (5) comes from the identi�cation of complex automorphic forms with `-adic models from Propo-
sition 6.31; (here, ωλ is short for λι

+,−1
∗ (ω∨).)

• (6) maps each f (λ) to rmf,λ via Proposition 6.33, where mf,λ is the unique maximal ideal of
OKλTT`ωλ(U) containing

pf,λ := ker
(
ϕf (λ) : OKλTT`ωλ(U)→ Kλ

)
.

• Amf,λ denotes OKTT`ωλ(U)mf,λ and kmf,λ denotes OKTT`ωλ(U)/mf,λ.

6.4 Isomorphism theorems

6.4.1 A (conjectural) minimal R = T theorem

For this section, we keep the following list, which is in part a repetition of the notation and assumptions
made up to here:
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R.1) ` denotes a rational prime ful�lling ` > max(2, n);

R.2) F denotes a CM �eld of the form F = F+E for a totally real �eld F+ and an imaginary quadratic
�eld14 E in which ` splits.

R.3) Assumption 6.26 is ful�lled: F |F+ is unrami�ed at all �nite places and, if n is even, then also
n
2 [F+ : Q] is even.

R.4) We �x a �nite non-empty set Σram ⊂ (Pl�n
F+ −ΩF+

` ) such that

i) each ν ∈ Σram splits in F |F+;

ii) if n is even, then
n

2
[F+ : Q] + #Σram = 0 mod 2;

(Of course, assuming condition R.3, this simply amounts to #Σram being even.)

R.5) We �x a �nite non-empty set Σaux ⊂ (Pl�n
F+ −ΩF+

` ) of primes which split in F |F+, which is disjoint
from Σram and such that

ν ∈ Σaux ⇒ [F (ζ`(ν)) : F ] > n.

R.6) We consider the sets T = Σaux tΣram, T` = T tΩF+

` and lifts T̃(`) ⊂ PlF of the same cardinality

as T(`) such that T̃(`) t T̃ c(`) contains precisely the places above T(`).

R.7) We �x a weight ω and the level subgroup U = U(Σram,Σaux) as in Section 6.2.

R.8) We �x a number �eld E containing the Hecke eigenvalues of all the (�nitely many) eigenspaces of
weight ω and level U , i.e. E ⊃ E(U).

R.9) We �x a prime λ ∈ ΩE` and a �nite extension Kλ of Eλ which is F -big enough. We denote by ωλ
the `-adic weigth corresponding to ω via part 1. of Proposition 6.31 (with respect to our choice
of Kλ).

Let m be a non-Eisenstein maximal ideal of OKλTT`ωλ(U) in the sense of [CHT08], De�nition 3.4.3, and set
kλ = OKλTT`ωλ(U)/m. This implies that the associated residual Galois representations ρm is absolutely
irreducible and that we have an extension rm to Gn(kλ) as in Proposition 6.33. We will assume

R.10) The image X` := ρm(GalF (ζ`)) is adequate in the sense of Thorne [Tho15, De�nition 2.20]:

• H1(X`, kλ) = 0 and H1(X`, gl
0
n) = 0;

• For any simple kλ[X`]-submodule W ⊂ gln, there exists a semi-simple element σ ∈ X` with
eigenvalue α ∈ kλ such that tr eσ,αW 6= 0. (Here, eσ,α ∈ gln denotes the unique idempotent
in kλ[σ] with image equal to the α-eigenspace of σ.)

R.11) For each ν ∈ Σaux, ρm is unrami�ed at ν and

H0(Fν , ad(ρm)(1)) = 0.

14We remark that this assumption does not introduce a loss of generality as the existence of such an E can be guaranteed
by arguments as in [Tay08, Theorem 5.2]; see also [Gue11, proof of Theorem 4.1].
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R.12) For each ν ∈ Σram, ρm is unipotently rami�ed at ν (cf. De�nition 4.25; recall in particular that
this includes the possibility that ρm is unrami�ed at ν).

Remark 6.34. We remark that we will later consider a compatible system R = (ρλ)λ∈Pl�nE
, where for

almost all λ the representation ρλ will ful�ll conditions R.1 - R.12, presuming Assumption 6.6.

Remark 6.35. Observe that condition R.11 implies

H0(GalFν , kλ(1)) = 0

for ` 6 |n: For such an ` one has ad(ρm) ∼= ad0(ρm) ⊕ kλ and hence ad(ρm)(1) ∼= ad0(ρm)(1) ⊕ kλ(1).
Therefore

0 = H0(Fν , ad(ρm)(1)) = H0(Fν , ad(ρm)0(1))⊕H0(Fν , kλ(1)).

Now, recall from [CHT08, Chapter 3.5] that m ◦ rm : GalF+ → Gn(kλ)→ GL1(kλ) equals ε1−n` δµm
F |F+ for

a suitable element µm ∈ Z/2Z and where δF |F+ denotes the non-trivial character of Gal(F |F+). We
consider the global deformation problem

Smin,crys = (F |F+, T`, T̃`,OK, rm, ε1−n` δµm
F |F+ , {Dν})

which parametrizes deformations of rm to coe�cient OK-algebras which are unrami�ed outside T`, of
determinant rm, ε

1−n
` δµm

F |F+ and which ful�ll locally the condition Dν . Here, Dν parametrizes

• arbitrary lifts, if ν ∈ Σaux;

• crystalline lifts in the sense of Section 4.3, if ν ∈ ΩF+

` ;

• minimally rami�ed lifts in the sense of Section 4.4, if ν ∈ Σram.

The associated deformation functor is representable by an object we call Rmin,crys(rm) (or, closer to our

notation from Section 2, R
ε1−n` δµm

F |F+ ,{Dν}
T` (rm)).

Remark 6.36. We remark that we can equivalently consider rm as a representation of GalF,T` and
waive the constraint that our deformations must be unrami�ed outside T`, as we did already during
De�niton 6.23. This is mainly a matter of taste, but the convention we take from now on (that rm
is a representation of GalF ) has the advantage that it �ts more nicely with the concept of residual
representations occurring as entries of a compatible systems.

Let Σ̃ram = {ν̃ | ν ∈ Σram} denote the set of �xed lifts of the places in Σram to F .

Conjecture 6.37. Assume the notation and all assumptions from the list R.1-R.12. Then there exists a
tuple σ = (σν)

ν∈Σ̃ram
as in (6.7) such that there is an isomorphism

Rmin,crys(rm)
∼=−→ OKλ

σ TT`ωλ(U)n

and µm ≡ n mod 2. (Here, n denotes the image of m under the projection σθ from (6.8).)

Remark 6.38. We remark that this conjecture becomes more convincing in light of the �xed-type
deformation condition at the end of Section 4.4: For each ν ∈ Σ̃ram there exists an inertial type τν ,
associated to ρm,ν in the same manner as we did in preparation for Theorem 4.30. To each τν one
can associate a certain representation σν = σ(τν) of K = GLn(OFν ) (which is then the K-type of the
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GLn(Fν)-representation associated to an extension of τν to GalFν ). (For more details on the construction
of the K-type σ(τ), see [Sho15, Section 4.6], [BC09, Section 6.5.2],[SZ99] and our Remark 6.39 below.)

Now for the tuple σ := (σν)
ν∈Σ̃ram

we conjecture that
OKλ
σ TT`a (U)n is isomorphic to a deformation ring

parametrizing lifts of rm as in Smin,crys above, but with the requirement that the associated GLn-valued
representation ρν at ν is a lift of type τν of ρm,ν (instead of being minimally rami�ed). (This conjecture
is plausible in light of [Sho15, Theorem 2.16] together with a suitable local-global compatibility.) Our
wording of Conjecture 6.37 in terms of minimally rami�ed deformations is then justi�ed by Theorem
4.30 together with condition R.12.

Remark 6.39. Recall the following:

• Consider the �nite general linear group G = GLn(`(ν)) and its standard Borel subgroup B ⊂ G.
Then the irreducible constituents of the (complex) representation indG

B(1) are called the unipotent
representations of G. These representations can (canonically) be parametrized by the irreducible
representations of the Weyl group W(G) ∼= Sn, see e.g. [Pra14, Corollary 4.4]. The irreducible
representations of Sn in turn can be parametrized by partitions of n in terms of Specht modules,
cf. [JK81]. In other words, we get a canonical bijection

h : Yn
∼=−→ Rep(G)uni,

where Rep(G)uni denotes the set of all unipotent representations of G up to isomorphism. The
map h can be explicitly described in terms of induction from certain Levi subgroups (see [Sho15,
De�nition 4.34]) and sends (1, . . . , 1) to the trivial representation and (n) to the Steinberg repre-
sentation.

• Under the unipotent rami�cation assumption, the set of inertial types Iuni is in bijection with
the set Yn of partitions of n via the map ∇, cf. Section 4.4.1.

Then
indKI (1) ∼= inflKG indG

B(1) ∼=
⊕

π∈Rep(G)uni

mπ inflKG (π),

where I ⊂ K denotes the Iwahori subgroup, inflKG denotes the in�ation along the pro-`(ν) radical of
K and the mπ ≥ 1 are suitable multiplicities. Analogously to [BC09, Remark 6.5.2 iii)] one can thus
check that the assignment τ 7→ σ(τ) is described in terms of partitions as

τ 7→ σ(τ) = inflKG
(
h ◦ ∇(τ)

)
.

Observe that the special case n = 2 of Remark 6.39 is precisely [BC09, Remark 6.5.2 iii)] and [Sho15,
Example 2.17].

6.4.2 A T = O-theorem

Retain the notation from Section 6.2.

Proposition 6.40. 1. Let K|E(U) be a �eld extension. Then

OK ⊗OE(U)

OE(U)TTω(U) ∼= OKTTω(U) and K ⊗OE(U)

OE(U)TTω(U) ∼= KTTω(U).
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2. There exists a constant C depending on OE(U)TTω(U) such that the following holds for all places λ
of E(U) which ful�ll ` := `(λ) > C: Let K be an F -big enough �eld extension of E(U)λ, then

OK ⊗OE(U)

OE(U)TTω(U) ∼= OKTT`ωλ(U).

Proof. Concerning part 1., we will only prove the K-case (the other case being analogous). First recall
from Section 6.2 that Sω(U) admits a basis (f1, . . . , fr) consisting of eigenforms for OE(U)TTω(U). As
all eigenvalues are contained in OE(U), we can consequently embed

OE(U)TTω(U) ↪→ OE(U) × . . .×OE(U) (r factors) (6.10)

as OE(U)-algebras. K is a torsion-free OE(U)-module (hence �at, as OE(U) is a Dedekind ring), so this
gives an injection

K ⊗OE(U)

OE(U)TTω(U) ↪→ K ⊗OE(U)
(OE(U) × . . .×OE(U)) ∼= K × . . .×K.

The image of this map clearly lies in KTTω(U) and contains all the operators T (j)
Fw

, hence it equals
KTTω(U). Concerning part 2., we conclude from the inclusion (6.10) that OE(U)TTω(U) is �nitely gen-
erated as a Z-module, hence as a Z-algebra. It follows that there exists a Sturm-like bound C such
that OE(U)TTω(U) is already generated by those T (j)

Fw
for which `(w) ≤ C. Hence, using part 1. and the

compatibility from Proposition 6.31, we see that

OK ⊗OE(U)

OE(U)TTω(U) = OK ⊗OE(U)

OE(U)TT`ω (U) ∼= OKTT`ωλ(U).

Now let E ⊃ E(U) be a number �eld with ring of integers OE . We get the following corollary:

Corollary 6.41. OETTω(U) is �nite and torsion-free as an OE-module and E⊗OE OETTω(U) is semisim-
ple (so, in particular, we have a decomposition

E ⊗OE
OETTω(U) ∼= k1 × . . .× km (6.11)

as a �nite product of �elds.)

Note that the ki are in fact isomorphic to E (as we supposed E ⊃ E(U)).

Proof. That OETTω(U) is �nite and torsion-free follows directly from the proof of Proposition 6.40. So let
us show that E⊗OE OETTω(U) is semisimple, i.e. that its Jacobson radical is trivial. As E⊗OE OETTω(U)
is commutative and �nitely generated over E, the Jacobson radical equals the nilradical, so we have to
prove that E ⊗OE OETTω(U) is reduced. But by the above it is clear that E ⊗OE OETTω(U) does not
contain nilpotent elements. The decomposition as a product of �elds follows from the Artin-Wedderburn
theorem.

For the following, let T be an OE-algebra subject to the following conditions:

• T is �nite and torsion-free over OE ;

• E ⊗OE T is semisimple (so, in particular, we have a decomposition

E ⊗OE T ∼= k1 × . . .× km (6.12)

as a �nite product of �elds.)
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By Corollary 6.41, T = OETTω(U) ful�lls these conditions, and this is the choice for T we are interested
in. However, we choose to use this more general characterization in order to simplify the notation in
the following proof and to emphasize that we only use these two formal properties of T.

Theorem 6.42. There exists a constant N (depending on T) such that, for all places λ of E ful�lling
`(λ) > N , we have a decomposition

OEλ ⊗OE T ∼=
m∏
i=1

ni∏
j=1

Oλ,i,j , (6.13)

of OEλ ⊗OE T as a product of �nitely many complete discrete valuation rings over Z`(λ).

Proof. By the semisimplicity of E ⊗OE T, there exist orthogonal idempotents e1, . . . , er ∈ E ⊗OE T
which ful�ll

∑
i ei = 1 and

ei.
(
E ⊗OE T

) ∼= ki.

Therefore, we can �nd a constant N ∈ N such that e1, . . . , er ∈ T
[

1
N

]
and

T

[
1

N

]
=

r⊕
i=1

ei.
(
T

[
1

N

])
. (6.14)

Thus we see that for each λ with `(λ) 6 |N tensoring with OEλ over OE
[

1
N

]
yields an isomorphism

OEλ ⊗OE T =
r⊕
i=1

ei.
(
OEλ ⊗OE T

)
.

Now consider the embeddings

ιi : ei.
(
T

[
1

N

])
↪→ Oki

[
1

N

]
for i = 1, . . . , r. As T is �nite and torsion-free over OE , it is �nite and free as a Z-module. Hence
T
[

1
N

]
is �nite and free as a Z

[
1
N

]
-module. Moreover

Q.ei.
(
T

[
1

N

])
= ki,

so we see that both ei.
(
T
[

1
N

])
and Oki

[
1
N

]
are Z

[
1
N

]
-orders in ki. In particular, they are both free

Z
[

1
N

]
-modules of the same rank (say, ti). So let us write Oki

[
1
N

]
= Z

[
1
N

]ti and consider Ji := im(ιi)

as a submodule of Z
[

1
N

]ti .
Now, by the elementary divisor theorem for �nitely generated Z

[
1
N

]
-modules, we see that

im(ιi) ∼=
ti⊕
j=1

djZ
[

1

N

]
,

cok(ιi) ∼=
ti⊕
j=1

Z
[

1

N

]
/djZ

[
1

N

]
,
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where all dj 6= 0 (as ιi is injective and rk ei.
(
T
[

1
N

])
= rkOki

[
1
N

]
) and where d1| . . . |dti . After possibly

multiplying by suitable elements of Z
[

1
N

]×
, we can additionally assume that dj ∈ Z and (dj , N) = 1

for all j. Thus we get

cok(ιi) ∼=
ti⊕
j=1

Z
[

1

N

]
/djZ

[
1

N

]
∼=

ti⊕
j=1

(
Z/djZ

)[ 1

N

]
(dj ,N)=1
∼=

ti⊕
j=1

Z/djZ.

(Alternatively, we can use the general fact that �nitely generated torsion Z
[

1
N

]
-modules are �nite.)

The same argument applied to ⊕iιi instead of ι yields

c := # cok
(⊕

i

ιi

)
<∞.

Thus, after replacing N by cN we see that the ιi become isomorphisms and hence (6.14) implies

OEλ ⊗OE T ∼=
r⊕
i=1

OEλ ⊗OE Oki
[

1

N

]
=

r⊕
i=1

OEλ ⊗OE Oki

for all λ with `(λ) > N .

Now we use the following general fact: If K2|K1 is an extension of number �elds with rings of integers
OK2 ,OK1 and if p is a place of K1, then

OK1,p ⊗OK1
OK2

∼=
∏
P|p

OK2,P
.

(This follows from [Ser79, Ch. 2, �3, Proposition 4].) This implies the decomposition in (6.13). Moreover
(after enlarging N if necessary) we can assume that the extensions ki|Q are unrami�ed at all primes
not dividing N . It follows (e.g. from [Ser79, Ch. 2, �3, Theorem 1 (ii)]) that all the rings occurring
on the right hand side of (6.13) are unrami�ed extensions of Z`(λ), i.e. are complete discrete valuation
rings.

Corollary 6.43. Write Oλ = OEλ for a place λ of E. There exists a constant C ′ such that

OλTT`ωλ(U)m ∼= Oλ

holds for any place λ of E and for any maximal ideal m ⊂ OλTT`ωλ(U), as long as `(λ) > C ′.

Proof. Using Proposition 6.40 and Theorem 6.42 (with T = OETTω(U)) and observing that all the ki
in (6.11) are isomorphic to E in this case, we see that for each λ with `(λ) > C ′ := max(C,N) we get
an isomorphism

OλTT`ωλ(U) ∼= Omλ .

The claim follows.
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6.4.3 An R = O-theorem and independence from the auxiliary primes

De�nition 6.44. Let f ∈ Sω(U) be an eigenform (for some level subgroup of the form U = UΣram,Σaux)
and let ` be a rational prime. We say that a place ν /∈ Σram ∪ ΩF+

` ∪ ΩF+

∞ of F+ is (f, `)-auxiliary if it
ful�lls the following two conditions:

• ν splits in F |F+ (as, say, ν̃ν̃c);

• For each place λ of E(U) which ful�lls `(λ) = `, the residual representation ρf,λ associated to f
is unrami�ed at ν and its zeroth cohomology vanishes:

H0(GalFν̃ , ad(ρf,λ)(1)) = 0. (6.15)

The signi�cance of the (f, `)-auxiliary condition is re�ected by:

Proposition 6.45. Let ν be (f, `)-auxiliary and λ ∈ PlE(U) a place above `, then the canonical surjection

h : R�(ρf,λ|GalFν̃ ) � R�,nr(ρf,λ|GalFν̃ )

is an isomorphism. In other words: Any lift of ρf,λ|GalFν̃ is automatically unrami�ed.

Proof. This is seen as follows: First remark that GalnrFν̃ := Gal(F nr
ν̃ |Fν̃) ∼= Ẑ and the corresponding

framed deformation ring R�(ρf,λ|GalnrFν̃ ) = R�,nr(ρf,λ|GalFν̃ ) is formally smooth of dimension dnr = n2

(cf. Remark 4.18 and Lemma 4.23). By Assumption (6.15), also the unrestricted deformation ring is
formally smooth of dimension d = Z1(GalFν̃ , ad(ρf,λ)). Therefore, we are good as soon as we can show
that d = dnr (cf. Lemma 2.18). For this, we remark that the coboundaries

B1 = ad(ρf,λ)/ ad(ρf,λ)
GalnrFν̃ = ad(ρf,λ)/ ad(ρf,λ)GalFν̃

are the same in the unrami�ed and in the unrestricted situation (because ρf,λ was assumed to be
unrami�ed at ν). Thus we have the following diagram

0 // B1 // Z1(Ẑ, ad(ρf,λ)) //

��

H1(Ẑ, ad(ρf,λ)) //
� _

��

0

0 // B1 // Z1(GalFν̃ , ad(ρf,λ)) // H1(GalFν̃ , ad(ρf,λ)) // 0

where the vertical maps are the in�ation maps along GalFν̃ → GalFν̃ /GalFnr
ν̃
∼= GalnrFν̃ . But, by the

local Euler-Poincare formula, we know that

• dimH1(GalnrFν̃ , ad(ρf,λ)) = dimH0(GalFnr
ν̃
, ad(ρf,λ)) = dimH0(GalFν̃ , ad(ρf,λ));

• dimH1(GalFν̃ , ad(ρf,λ)) = dimH0(GalFν̃ , ad(ρf,λ)) + dimH2(GalFν̃ , ad(ρf,λ))
by (6.15)

= dimH0(GalFν̃ , ad(ρf,λ)).

Thus, the outer vertical maps are both isomorphisms, hence the middle map must be an isomorphism
as well and we have d = dnr.
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Now, let f ∈ Sλ(U0) for U0 = UΣram,∅. For a �nite collection Φ of (f, `)-auxiliary places, denote

UΦ = UΣram,Φ. For any place λ of E(UΦ)λ with `(λ) = ` and any extension Ẽ|E(UΦ)λ we have an
embedding

O
ẼTT`ωλ(U0) ↪→ O

ẼTT`ωλ(UΦ).

Let mf,0 (resp. mf,Φ) be the maximal ideal of OẼTT`ωλ(U0) (resp. of OẼTT`ωλ(UΦ)) containing the kernel
of ϕf .

Proposition 6.46.
O
ẼTT`ωλ(U0)mf,0

∼= O
ẼTT`ωλ(UΦ)mf,Φ .

Proof. We claim that the canonical injection

O
ẼTT`ωλ(U0)mf,0 ↪→

O
ẼTT`ωλ(UΦ)mf,Φ

is surjective: Any counter-example to this claim would lead to the existence of an eigenform

g ∈ Sω(UΦ)− Sω(U0)

such that mf,Φ = mg,Φ. But then (cf. Proposition 6.33), the `-adic Galois representation ρg,` lifts ρf,`.
Then Proposition 6.45 tells us that ρg,` is unrami�ed at each ν ∈ Φ. Using the local-global compatibility
of the Langlands correspondence, this implies that the local parts Πν must be unrami�ed for ν ∈ Φ,
where Π denotes the cuspidal automorphic representation generated by g, i.e. we get that g ∈ Sω(U0).
This yields a contradiction as desired.

Corollary 6.47. Assume that ` > C ′, where C ′ is the constant from Corollary 6.43 for U = U0. Then

O
ẼTT`ωλ(UΦ)mf,Φ

∼= OẼ .

Let us subsume our observations so far (translated to the Gn-valued family using Proposition 6.22):

Theorem 6.48. Let U0 = UΣram,∅ be a congruence subgroup and f ∈ Sω(U0) be an automorphic form
such that Π = 〈f〉 is a RACSDC automorphic representation which is unrami�ed outside Σram and
unipotently rami�ed at the places in Σram. Let us assume Conjecture 6.37 and �x for each place λ of
E(U0) the following data:

• An (f, `)-auxiliary place νλ,1 such that [F (ζ`(νλ,1)) : F ] > n;

• a �nite �eld extension Kλ of E(U0)λ which is F -big enough.

Write Uλ = UΣram,{νλ,1} and denote by mf,λ ⊂ OKλTT`ωλ(Uλ) the maximal ideal which contains the kernel
of ϕf . Then there exists a constant K, depending on f, U0 and ω, such that

`(λ) > K ⇒ Rmin,crys(rmf,λ) ∼= OKλ ,

where Rmin,crys(rmf,λ) is the universal deformation ring of rmf,λ corresponding to the deformation con-
dition

Smin,crysλ := (F |F+, T`, T̃`,OKλ , rm, ε
1−nδµm

F |F+ , {Dν})

considered in Section 6.4.1 (with T = Σram ∪ {νλ,1}).

Proof. This is a combination of Conjecture 6.37, Corollary 6.47 and Observation 6.32.
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6.4.4 Congruences between automorphic forms and minimal rami�cation

Consider two eigenforms f1, f2 ∈ Sω(U), where U is a level subgroup of the form UΣram,Σaux (and, as
before, we write T = Σram t Σaux).

De�nition 6.49. Let λ be a place of E(U) and set ` = `(λ). For i = 1, 2 consider the maps

ψfi : ZTT`ωλ(U) −→ OE(U)λ −→ F`

assigning to a Hecke operator T the mod-λ reduction of the eigenvalue of T acting on the `-adic model
f̃i of fi. We say that f1 and f2 are congruent modulo λ (in symbols: f1 ≡λ f2) if ψf1 = ψf2 .

Remark 6.50. It seems most natural that one uses the same embedding OE(U)λ ↪→ OE(U)λ in the
de�nition of ψf1 and ψf2 . If one allows di�erent embeddings, then ψf1 = ψσf2

for some σ ∈ GalQ. But
then ψf1 = ψfσ2 where fσ2 is a form conjugate to f2. If fσ2 was then equal to f1, this would simply
describe a trivial congruence of f with itself, which is not interesting. If fσ2 6= f1, then fσ2 is congruent
to f1 modulo λ in the above sense, i.e. there is an interesting congruence in the sense of De�nition 6.49.

We prove the following lemma under the condition ` � 0 (or, more precisely, ` > C, where C is a
Sturm-like bound depending only on OE(U)T∅ω(U)):

Lemma 6.51. The existence of a congruence f1 ≡λ f2 with ` = `(λ) � 0 implies that there exists a
maximal ideal M in OE(U)TT

ω(U) which contains ` and both p1 = kerϕ′f1
and p2 = kerϕ′f2

, where

ϕ′fi : OE(U)TT
ω(U) −→ OE(U)

is de�ned by sending a Hecke operator T to the eigenvalue of T acting on fi

Proof. First, recall that OE(U)TTω(U) is �nitely generated as a Z-module. Hence there exists a constant C

such that OE(U)TTω(U) is already generated by the Hecke operators T (j)
Fw

with j ≤ C. In particular, we get
isomorphisms OE(U)TT`ω (U) ∼= OE(U)TTω(U) for all primes ` > C. (Recall that we de�ned T` = T ∪ΩF

` .)

The claim now follows from the commutative diagram

OE(U)λTT`ωλ(U) // OE(U)λ
// F`

OE(U)TT`ω (U)

OO

ϕ′fi // OE(U)

?�

OO

OE(U)TTω(U)
ηfi

JJ ,

where the concatenation of the two upper horizontal maps is the obvious continuation of ψfi to
OE(U)λTT`ωλ(U). The assumption f1 ≡λ f2 implies ηf1 = ηf2 . So we see that the congruence condi-
tion implies that p1 and p2 are both contained in the maximal ideal ker ηf1 = ker ηf2 .

Lemma 6.52. Let A be an algebra that is �nite �at over Z and let p1, p2 be two distinct minimal primes
of A. Then there are only �nitely many maximal ideals of A that contain both p1 and p2.
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Proof. By the going up and down theorems for A/Z (using �niteness and �atness), one can easily check
that the ring A has dimension 1, and that the minimal primes of A are in bijection to the maximal
ideals of the Artinian ring A⊗ZQ. We need to show that B := A/(p1 + p2) contains only �nitely many
maximal ideals. It su�ces to show that B is �nite. Since B is �nitely generated over Z, we need to
show that B ⊗Z Q is zero. However, A ⊗Z Q is an algebra that is �nite over Q, and hence a �nite
product of local Artinian rings. In particular, the sum of any two distinct prime ideals of A⊗Z Q is all
of A⊗Z Q, i.e. such ideals are relatively prime. It follows that B ⊗Z Q is zero, as was to be shown.

Corollary 6.53. Presume Assumption 6.6 and Conjecture 6.37. Then Assumption 4.45 holds for the
compatible system RΠ = (ρf,λ)λ∈Λ1

E(U)
attached to Π = 〈f〉.

Proof. By Conjecture 6.37, we know that for almost all λ ∈ Λ1
E(U) we can �nd an automorphic form

g(λ) such that ρg(λ),λ is a minimal lift of ρf,λ. Denote the �nite failure set by X
′ ⊂ Pl�nE(U). We enlarge

X ′ to
X := X ′ ∪ {λ | `(λ) ≤ C},

where C is the constant from (the proof of) Lemma 6.51. Then, any place λ /∈ X at which ρf,λ is not
a minimal lift of ρf,λ gives rise to a non-trivial congruence in Sω(U), i.e. to a triple

(f, g(λ), λ) ∈ Sω(U)× Sω(U)× Pl�nE(U) ful�lling f 6= g(λ) and f ≡λ g(λ). (6.16)

By Lemma 6.51, this implies the existence of a maximal ideal OE(U)TTω(U) containing `, p1 = kerϕ′f1

and p2 = kerϕ′f2
, as long as ` is not contained in the �nite failure set X = {`(λ)|λ ∈ X} ⊂ Pl�nQ . As

there are only �nitely many eigenspaces in Sω(U), Lemma 6.52 with A = OE(U)TTω(U) implies that
there are only �nitely many triples as in (6.16). (Here, we tacitly identify triples of the form (f, g, λ) and
(z.f, z′.g, λ) with z, z′ ∈ C×, as they represent the same congruence condition.) The claim follows.

6.5 Unobstructedness of the minimal deformation rings

Finally, we are in a position to formulate and prove our main result. For this, recall the partial
compatible system RΠ = (ρλ)λ∈Λ1

E
associated to Π by (6.3) and the Gn-valued family (rλ)λ∈Λ1

E
. If T

is a set of places of F , we denote by T the set of places of F+ below T . First we make the following
technical assumption, which will be revoked later on:

Assumption 6.54. Each place ν ∈ SΠ,∞ = SΠtΩF+

∞ splits in F |F+ as, say, ν̃ν̃c. (For ΩF+

∞ , this splitting
is automatic, so we only put a constraint on SΠ here.)

For each λ ∈ Λ1
E , we consider the global deformation problem Dλ = {Dλ,ν}ν∈SΠ,∞

for rλ, where Dλ,ν

parametrizes

• arbitrary lifts of ρλ,ν̃ , if ν ∈ ΩF+

∞ ;

• minimally rami�ed lifts of ρλ,ν̃ in the sense of Section 4.4, if ν ∈ SΠ.

Write χ for the character ε1−nδn(mod 2)
F |F+ of GalF+ . We now compile the necessary assumptions for

Theorem 6.56:

112



6 UNOBSTRUCTEDNESS FOR RACSDC AUTOMORPHIC REPRESENTATIONS

Assumption 6.55. 1. (Irreducibility): Assumption 6.6 holds: The set of places ΛEΠ where our
residual compatible system is absolutely irreducible has Dirichlet density 1;

2. (Availability of a minimal R=T-theorem): Conjecture 6.37 holds;

3. (No consecutive weights): The sets of Hodge-Tate weights HTτ of the system RΠ ful�ll (for
all embeddings τ) the condition from Theorem 4.7: If two numbers a, b occur in HTτ , then either
a = b or |a− b| ≥ 2;

4. (Disjoint q-orbits): For ν ∈ SΠ, let (rν , Nν) be the Weil-Deligne representation associated to
Πν via the local Langlands correspondence. Write

rν(Frobν) ∼


Hνlν1 (αν1)

Hνlν2 (αν2)

. . .
Hνlνkν (ανkν )

 with Hνm(α) =


α

αqν
. . .

αqm−1
ν

 .

Then, for all ν ∈ SΠ and for all 0 ≤ i 6= j ≤ kν , the q-orbits

qZνα
ν
i = {qaν .ανi | a ∈ Z} and qZνα

ν
j = {qaν .ανj | a ∈ Z}

are disjoint. (This is Assumption 4.37).

(Observe that the �rst two parts can be understood as general conjectures, while the last two parts put
a constraint on our choice of Π. Observe also that the �rst part implies that Λ1

EΠ has Dirichlet density 1

by Lemma 6.7.) For the next theorem, we set SΠ,` = SΠ ∪ ΩF+

` ∪ ΩF+

∞ .

Theorem 6.56. Presuming Assumptions 6.54 and 6.55, there exists a subset Λ0
EΠ ⊂ Λ1

EΠ of Dirichlet

density 1 such that the functor D
�SΠ,`

,χ,Dλ

SΠ,`,W (kλ)
(rλ) is globally unobstructed if λ ∈ Λ0

EΠ.

As a �rst step towards the proof, consider the following assumption and the following alternative version
of Theorem 6.56:

Assumption 6.57 (Unipotent rami�cation). For all ν ∈ SΠ, the Weil-Deligne representation (rν , Nν)
associated to Π at ν has trivial restriction to the inertia subgroup. In particular, for any choice
λ ∈ Λ1

EΠ , ν ∈ SΠ with `(λ) 6= `(ν), the representation ρλ|GalFν is unipotently rami�ed.

Theorem 6.58. Presume (in addition to Assumptions 6.54 and 6.55) that Assumptions 6.26 and 6.57
hold. Then there exists a subset Λ0

EΠ ⊂ Λ1
EΠ of Dirichlet density 1 such that for all λ ∈ Λ0

EΠ the following
holds:

• D
�SΠ,`

,χ,Dλ

SΠ,`,W (kλ)
(rλ) has vanishing dual Selmer group;

• for all ν ∈ ΩF+

` the local deformation ring R�,χν
W (kλ)(rλ,ν) is relatively smooth.

Before we come to the proof, let us introduce a new notation:

De�nition 6.59. Let Λ be the valuation ring of a �nite extension of Quot(W (kλ)) and let L+ be a
�nite, totally real extension of F+. Fix two �nite sets of places Σ ⊂ S ⊂ PlF+ , a residual Gn(kλ)-valued
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representation r of GalF+ and a global deformation condition D = (Dν)ν∈Σ, where each Dν is either the
minimally rami�ed, the FL-crystalline or the unconditioned local deformation condition. We denote by

L+
R

[�Σ],(χ),D
S,Λ (r) := R

[�Σ′ ],(χ|GalL+ ),D′
S′,Λ (r|GalL+)

the deformation ring of ρ|GalL+ , where S′,Σ′ denote the sets of places of L+ above S,Σ, and where
D′ := (D′ν′)ν′∈Σ′ with D′ν′ parametrizing arbitrary (resp. minimally rami�ed, resp. FL-crystalline) lifts
of r|GalL+

ν′
if Dν parametrizes arbitrary (resp. minimally rami�ed, resp. FL-crystalline) lifts (for ν

the place of F+ below ν ′). We use an analogous notational convention for the deformation functor (�D
instead of R�) and for the associated GLn-valued representation (�ρ instead of r and L = F.L+ instead
of L+�).

Proof of Theorem 6.56 assuming Theorem 6.58. The key observation is that we can always attain the
situation of Theorem 6.58 by a �nite solvable base change by using Lemma 6.15 and Corollary 6.17:
There exists a totally real �eld F+

1 which is a �nite extension of F+ such that Assumptions 6.26, 6.54
and 6.57 are ful�lled for the compatible system associated to the base change ΠF1 of Π to F1 := F+

1 .F .
Now we use the unobstructedness framework from Section 3.2 applied to the following functors:

• D
�SΠ,`

,χ,Dλ

SΠ,`,W (kλ)
(rλ);

• D
�SΠ,`

,χ,D∅λ
SΠ,`,W (kλ)

(rλ) := D
�SΠ,`

,χ

SΠ,`,W (kλ)
(rλ), i.e. D∅λ denotes the unconditioned deformation condition

for rλ;

• D
�
S
′
Π,`

,χ|Gal
F+

1
,Dλ(F1)

S
′
Π,`,W (kλ)

(rλ|GalF+
1

) = F+
1 D

�SΠ,`
,χ,Dλ

SΠ,`,W (kλ)
(rλ), where S′Π denotes the places of F1 above

SΠ and where Dλ(F1) = (D′λ,ν)
ν∈S′Π,∞

denotes the deformation condition de�ned analogously

to Dλ, i.e. parametrizing deformations of rλ|GalF+
1

which are minimally rami�ed at S
′
Π and

unconditioned at the in�nite places;

• D
�
S
′
Π,`

,χ|Gal
F+

1
,D∅λ(F1)

S
′
Π,`,W (kλ)

(rλ|GalF+
1

) = F+
1 D

�SΠ,`
,χ,D∅λ

SΠ,`,W (kλ)
(rλ) i.e. D∅λ(F1) is the unconditioned deforma-

tion condition for rλ|GalF+
1
.

Now by Corollary 6.53, Assumption 4.45 holds. Let X ⊂ Pl�nEΠ be the �nite failure set from Assumption
4.45, then by our local R = Rmin-result Corollary 4.47 we have isomorphisms

D
�SΠ,`

,χ,Dλ

SΠ,`,W (kλ)
(rλ) ∼= D

�SΠ,`
,χ,D∅λ

SΠ,`,W (kλ)
(rλ), (6.17)

F+
1 D

�SΠ,`
,χ,Dλ(F1)

SΠ,`,W (kλ)
(rλ) ∼= F+

1 D
�SΠ,`

,χ,D∅λ(F1)

SΠ,`,W (kλ)
(rλ), (6.18)

for all λ ∈ Λ1
EΠ −X. It is clear from the de�nition that D∅λ is a pre-dual-D

∅
λ(F1)-condition, so it follows

that for λ ∈ Λ1
EΠ −X also Dλ is a pre-dual-Dλ(F1)-condition.

Therefore, after eliminating the �nitely many places which are not coprime to [F+
1 : F+] or which are

contained in the failure set X, we can use the potential unobstructedness framework from Section 3.2:
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D
�SΠ,`

,χ,Dλ

SΠ,`,W (kλ)
(rλ) has vanishing dual Selmer group if F1D

�SΠ,`
,χ,Dλ(F1)

SΠ,`,W (kλ)
(rλ) has vanishing dual Selmer

group. This implies that there is no loss of generality if we presume Assumptions 6.26 and 6.57 (in
addition to Assumption 6.55) when proving the �has vanishing dual Selmer group�-part of Theorem
6.56.

The local parts of the �globally unobstructed� notion (cf. De�nition 3.7), i.e. the relative smoothness
of the local deformation rings

R
�,χν ,Dλ,ν
W (kλ) (rλ,ν̃) =

{
R�
W (kλ)(ρλ,ν) if ν ∈ ΩF+

∞ ,

R�,min
W (kλ)(ρλ,ν) if ν ∈ SΠ,

(6.19)

and
R

�,χν ,Dλ,ν
W (kλ) (rλ,ν̃) = R�,χν

W (kλ)(rλ,ν̃) if ν ∈ ΩF+

` ,

follow (for ΩF+

∞ ) from Proposition 2.70, (for SΠ) from Lemma 4.23 and (for ΩF+

` ) from the second
bullet point in the statement of Theorem 6.58. This �nishes the proof.

We remark that, for ΩF+

` , we cannot simply cite Lemma 4.11 on the level of F+ because we don't know
if all ν ∈ ΩF+

` are split in the extension F |F+: If ν is not split, then we cannot work with ρλ,ν instead
of rλ,ν̃ as we cannot apply Proposition 6.22. This is also the reason why we included the second bullet
point in the statement of Theorem 6.58. We also remark that the min-condition in the second entry of
6.19 is redundant, i.e. we have

R�,χν
W (kλ)(rλ,ν̃) = R�,min

W (kλ)(ρλ,ν) = R�
W (kλ)(ρλ,ν) (6.20)

for ν ∈ SΠ, as long as `� 0.

We give another (stronger) version of Theorem 6.56:

Theorem 6.60. Presuming Assumption 6.55, there exists a subset Λ0
EΠ ⊂ Λ1

EΠ of Dirichlet density 1

such that the functor D
�SΠ,`

,χ

SΠ,`,W (kλ)
(rλ) is globally unobstructed if λ ∈ Λ0

EΠ .

Remark that we do not impose Assumption 6.54 here. Remark, moreover, that the deformation con-
dition Dλ does not show up in the claim. This has two reasons: Firstly, Dλ is already dispensable
in Theorem 6.56 (i.e. Dλ coincides with the unconditioned deformation condition) for ` � 0 by the
local R = Rmin result Corollary 4.47. Secondly, condition Dλ cannot be imposed on the functor

D
�SΠ,`

,χ

SΠ,`,W (kλ)
(rλ) in Theorem 6.60 because there might be places in SΠ which are not split in F |F+, and

we have no notion of minimally rami�ed deformations valued in other groups than GLn. Before we
come to a proof, consider the following adapted version of Theorem 6.58:

Theorem 6.61. Presume (in addition to Assumption and 6.55) that Assumptions 6.26 and 6.57 hold.
Then there exists a subset Λ0

EΠ ⊂ Λ1
EΠ of Dirichlet density 1 such that for all λ ∈ Λ0

EΠ the following
holds:

• D
�SΠ,`

,χ

SΠ,`,W (kλ)
(rλ) has vanishing dual Selmer group;

• for all ν ∈ ΩF+

` the local deformation ring R�,χν
W (kλ)(rλ,ν) is relatively smooth.
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• for all ν ∈ SΠ the local deformation ring R�,χν
W (kλ)(rλ,ν) is relatively smooth.

Proof of Theorem 6.60 assuming Theorem 6.61. The �Proof of Theorem 6.56 assuming Theorem 6.58�
carries over verbatim, except for the local condition that R�,χν

W (kλ)(rλ,ν̃) shall be relatively smooth for

ν ∈ SΠ (because we don't have an isomorphism as in (6.20), as we allow ν to stay inert in F |F+). But
this condition is precisely the one added as the third bullet point of Theorem 6.61.

The remainder of this section will be devoted to the proof of Theorem 6.58 (and Theorem 6.61). Before
we come to this proof, let us �rst record a potential version of Theorem 6.56:

Corollary 6.62. Let F,E be number �elds and

R =
(
ρλ : GalF → GLn(Eλ)

)
λ∈Pl�nE

a compatible system which is potentially automorphic: There exists a �nite solvable extension L|F such
that the base change LR = (ρλ|GalL)

λ∈Pl�nE
is of the form LR = RΠ for a RAESDC automorphic form

Π of GLn(AL). Assume that Π ful�lls the conditions of Assumption 6.55 and that the rami�cation set SΠ

contains only places which are split in L|L+. Let (rλ)
λ∈Pl�nE −T

denote the Gn-valued family associated to

R, where T ⊂ Pl�nE is the failure set where ρλ is not absolutely irreducible. Let D
�SΠ,`

,χ

SΠ,`,W (kλ)
(rλ) denote

the functor parametrizing �xed-determinant S`-framed deformations of rλ which are unrami�ed outside

S`. Then there exists a subset ΛE ⊂ Pl�nE of Dirichlet density 1 such that R
�S` ,χ

S`,W (kλ)
(rλ) is globally

unobstructed if λ ∈ ΛE − T .

Proof. This follows immediately from Theorem 6.56 applied to LR and the potential unobstructedness
descent from L to F applied verbatim as in the proof of Theorem 6.56 assuming Theorem 6.58.

We remark that the assumption in Corollary 6.62 on the splitting of the places in SΠ can be avoided
by referring to Theorem 6.62 instead of Theorem 6.56.

6.5.1 Auxiliary primes in extensions

Recall, that RΠ = (ρλ)λ∈Λ1
E
de�nes a pure (of some weight w) and strictly compatible E-rational system

of GalF -representations for any �nite extension E of EΠ. Let S = SΠ. We want to check that we have
a su�cient supply of auxiliary primes as demanded by condition R.11 in Section 6.4.1: We say that a
prime ν ∈ Pl�n

F+ −ΩF+

`(λ) is λ-auxiliary, if

• ν splits in F |F+ as ν̃ν̃c,

• ρλ is unrami�ed at ν̃,

• H0(Fν̃ , ad(ρλ)(1)) or, equivalently, HomFν̃ (ρλ, ρλ(1)) vanishes.

We say that λ admits auxiliary primes if there exist (at least) two places in Pl�n
F+ −ΩF+

`(λ) which are
λ-auxiliary. As a �rst step, we have the following:
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Theorem 6.63. 1. The set

ΛE(aux, F
+) := {λ ∈ Pl�nE |λ admits auxiliary primes } ⊂ Pl�nE

is co�nite;

2. The set

Λ1
E(aux, F

+) := {λ ∈ Λ1
E |λ′ admits auxiliary primes for all λ′ ∈ ΩE`(λ) } ⊂ Λ1

E

has Dirichlet density 1.

Proof. It is clear that 1. implies 2., so we only prove 1. Let ν1 be a place of F+ away from S which
splits in F |F+ as ν̃1ν̃

c
1 and for which we want to determine those λ for which ν1 is λ-auxiliary. By the

pureness of the system R we know that the eigenvalues of ρλ(Frobν̃1) are qν1-Weil numbers of some
weight w, i.e. algebraic numbers ful�lling condition (3.4). Denote the set of these eigenvalues by X.
Then the set of eigenvalues of ρλ(1)(Frobν̃) is given by X ′ = {x.qν1 |x ∈ X}. Hence, if ν1 is not
λ-auxiliary, the condition HomFν̃1

(ρλ, ρλ(1)) 6= 0 implies

x ≡ x′.qν1 mod `(λ) (6.21)

for (at least one) suitable choice of elements x, x′ ∈ X. Clearly, a congruence as in (6.21) can hold only
for �nitely many λ. Let Y1 denote the (co�nite) complement of those λ in Pl�nE .

The same procedure with respect to another place ν2 of F+ away from S which splits in F |F+ leads
to a set Y2. Therefore, we see that

Y1 ∩ Y2 ⊂ ΛE(aux, F
+) ⊂ Pl�nE

and the claim follows as Y1 ∩ Y2 is co�nite in Pl�nE .

Now for a �nite, totally real extension L+|F+ we write Λ1
E(aux, L

+) for the set of those λ ∈ Λ1
E which

admit auxiliary primes with respect to the compatible system associated to the base change RL, i.e.
for those λ ∈ Λ1

E for which there exist two places ν1, ν2 in Pl�n
L+ −ΩL+

`(λ) such that

• νi splits in L|L+ (with L := F.L+) as ν̃iν̃ci ,

• ρλ|ILν̃i is trivial,

• H0(Lν̃i , ad(ρλ)(1)) = 0,

where i = 1, 2. Then we have

Theorem 6.64. 1. The set

ΛE(aux, L
+|F+) :=

⋂
M+

ΛE(aux,M
+) ⊂ Pl�n ΛE

is co�nite, where M+ runs through all intermediate extension �elds of L+|F+.
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2. The set
Λ1
E(aux, L

+|F+) :=
⋂
M+

Λ1
E(aux,M

+) ⊂ Λ1
E

has Dirichlet density 1, where M+ runs through all intermediate extension �elds of L+|F+.

Proof. We easily see that the proof of Theorem 6.63 carries over: Let ν1, ν2 be places of L+ away from
S (Attention: not �away from the the rami�cation set of RL�, which is a possibly weaker condition)
which are completely split in L|L+ and L+|F+. (There are in�nitely many such places we can choose
from, by applying Chebotarev's density theorem to the Galois closure of L.)

Let Yi denote the sets of places as in the proof of Theorem 6.63, applied to L+ instead of F+. For an
intermediate �eld M+ we let νM

+

i denote the place of M+ below νi. It is obvious that for any such
M+ and for any λ ∈ Yi we have

• νM+

i splits in M |M+ (with M := F.M+) as ν̃M
+

i ν̃M
+,c

i ;

• ρλ|IM
ν̃M

+
i

is trivial;

• H0(M
ν̃M

+
i

, ad(ρλ)(1)) = 0.

The claim now follows as in the proof of Theorem 6.63.

We can even get a stronger version of this: Denote

Z(L+|F+) :=
⋂
M+

Z(M+) with Z(M+) = {ν ∈ Plfin
L+ | ∀w ∈ PlM+ below ν : [M(ζ`(ν)) : M ] > n}

and write Λ1
E(aux, L

+|F+)� for the set of those λ ∈ Λ1
E(aux, L

+|F+) for which the following holds: Any
λ′ ∈ ΩE`(λ) admits two auxiliary primes which lie in Z(L+|F+). We make the following easy observation:

Proposition 6.65. Z(L+|F+) is co�nite in PlL+.

Proof. As there are only �nitely many intermediate extensions, it su�ces to show that each Z(M+)
has a �nite complement in PlL+ . For this, consider the diagram

M(ζ`)

M Q(ζ`)

Q

for a rational prime `. We are done if we can show that [M(ζ`) : M ] > n holds for almost all `.
Denote by d the degree [M : Q] and recall [Q(ζ`) : Q] = ` − 1. It follows that for all ` > dn we have
[M(ζ`) : M ] > n.

Theorem 6.66. The set
Λ1
E(aux, L

+|F+)� ⊂ Λ1
E

has Dirichlet density 1.
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Proof. The proof of Theorem 6.64 carries over, if we replace the sentence

Let ν1, ν2 be places of L+ away from S [..]

by

Let ν1, ν2 be places of L+ away from S ∪
(
Plfin
L+ −Z(L+|F+)

)
[..].

6.5.2 Proof of Theorem 6.58

Let L+ be a totally real, �nite extension of F+. We say that L+ is pre-admissible, if the following
conditions are met:

P.1) L := F.L+ is unrami�ed over L+ at every �nite place;

P.2) The extension L+|F+ is Galois and solvable.

These conditions are designed to capture the following:

Observation: If L+ is pre-admissible, then there exists a unitary group H over L+ (as considered
in Section 6.2) and a unitary avatar 〈f〉 = πL of H(AL+) of the base change ΠL of Π to L. (Here,
f ∈ Sω(U0) denotes a suitable automorphic form on H of level U0 := U(∆,∅) and suitable weight ω
which generates ΠL, where ∆ := {ν ∈ PlL+ |ν lies above SΠ }.)

De�nition 6.67. We say that a prime λ ∈ ΛE1 is L+-procurable if the following two conditions are
ful�lled:

1. The restriction of ρλ to GalL remains absolutely irreducible;

2. There exists an L-big enough extension �eld Kλ of Eλ such that there is an isomorphism

L+
R
λ,crys
OKλ

∼= OKλ , (6.22)

where L
+
R
λ,crys
OKλ

:= L+
R
χ,Dλ(crys)

S
′
Π,`,OKλ

(rλ) denotes the universal deformation ring parametrizing crys-

talline (above `), minimally rami�ed (at SΠ) deformations of rλ|GalL+ to coe�cient OKλ-algebras
which are unrami�ed outside the set S

′
Π,` ⊂ PlL+ of places which lie above SΠ,` ⊂ PlF+ and with

�xed determinant χ.

We remark that the �rst condition is rather harmless: As we presume Assumption 6.6 (also for the
restricted system RΠ|GalL), this can only fail for �nitely many λ ∈ Λ1

E . We furthermore remark that
in the second condition we have to consider the residual representation with values in the residue �eld
kOKλ instead of kλ: If ι : kλ ↪→ kOKλ denotes the inclusion induced by the embedding Eλ ↪→ Kλ, we are
in fact considering

L+
R
χ,Dλ(crys)

S
′
Π,`,OKλ

(Gn(ι) ◦ rλ).
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In order to keep the notation simple, we will continue to abbreviate rλ for Gn(ι) ◦ rλ. (This is also
justi�ed by De�nition 2.20.)

For a pre-admissible L+, we de�ne the following set:

Proc(L+) = {λ ∈ Λ1
E | λ is L+-procurable }

Theorem 6.68. There exists a nested sequence F+ = L+
0 ⊂ L+

1 ⊂ . . . of pre-admissible extensions of
F+ such that

limi→∞ δ
( i⋃
j=1

Proc(L+
j )
)

= 1,

where δ(Y ) denotes the density of those rational primes q for which each λ ∈ PlE above q ful�lls λ ∈ Y .

Proof. Let us �rst introduce another new notation: Let L+ be pre-admissible, then we say that λ ∈ Λ1
E

is L+-?-procurable, if the following list of conditions is met (with ` = `(λ)):

S.1) ` is not divisibe by any element of SΠ;

S.2) ` is unrami�ed in the extension L|Q;

S.3) All places of L above SΠ,` are split over L+;

S.4) The base change ΠL of Π to L is cuspidal;

S.5) There exists a place λ′ ∈ PlE(U0) above λ such that λ′ ∈ Λ1
E(U0)(aux, L

+|F+)�;

S.6) If ν is a place of L above SΠ, then ΠL admits a non-trivial �xed vector for the Iwahori subgroup
Iw(ν) ⊂ GLn(Lν).

The set of all L+-?-procurable λ is denoted by Proc?(L+). (Observe that condition S.4 does not depend
on λ, but we intentionally include it in the list. So, if ΠL fails to be cuspidal, we have Proc?(L+) = ∅.)
Claim 1: Proc?(L+)− Proc(L+) is �nite.

Proof of Claim 1. We continue to denote by ΠL the base change of Π to L. By condition S.4, this is
again a RACSDC representation. By the pre-conditions (P.1 and P.2), there exists a unitary group H
and an avatar πL of H over L.

Now, for λ ∈ Proc?(L+) we pick an L-big enough �eld extension Kλ of E(U0)λ′ and auxiliary places
ν1, ν2 ∈ PlL+ as provided by condition S.5. Recall the set ∆ = {ν ∈ PlL+ |ν lies above SΠ } and take
Σaux := {ν1} and

Σram :=

{
∆ t {ν2} if n is even and #∆ is odd,

∆ otherwise,
(6.23)

and denote T := Σaux ∪ Σram ⊂ PlL+ , U := U(Σram,Σram). The �rst case in (6.23) is designed to ensure
that condition R.4 of Section 6.4.1 is ful�lled. Adding an auxiliary place to the set where we allow our
lifts to ramify is harmless (i.e. does not change the deformation problem) as shown in Proposition 6.45.
Note that we also have E(U0) = E(U). We consider now the complex Hecke algebra OE(U)TTω(U) and
the `-adic model T := OKλTT`ωλ(U).

Recall that we wrote πL = 〈f〉 for the unitary avatar of the base change of Π to L and for a suitable
choice f ∈ Sω(U0). We see that ρλ|GalL (understood as a representation with values in GLn(kOKλ ))
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equals the reduction of the representation attached to the maximal ideal m := ker(ϕf (λ)) ⊂ T by

Proposition 6.33, where f (λ) is the `-adic model of f .

We can now check the preconditions for Conjecture 6.37 for this choice of L+, `,Σaux,Σram,ω, U, E(U),Kλ
and m:

• If ` > max(2, n), conditions R.1-R.6, R.8-R.9 and R.11-R.12 are either ful�lled by our choices
above or are mere notational remarks which cannot fail;

• By condition S.6, ΠL admits Iwahori �x vectors for all ν ∈ Σram, as demanded by the choice of
the level subgroup for Conjecture 6.37, i.e. the subgroup U in condition R.7 is the right one;

• Adequateness condition R.10: Presuming Assumption 6.6, this cannot fail if ` ≥ 2(n + 1), see
[GHTT12].

Thus, the desired isomorphism (6.22) follows from Theorem 6.48 as long as ` is bigger than the constant
K from there. We subsume:

Proc?(L+)− Proc(L+) ⊂ {λ | `(λ) ≤ max(2, n, 2(n+ 1),K)}.

End of proof of Claim 1. ♣

Therefore, it su�ces to show that there exists a nested sequence F+ = L+
0 ⊂ L

+
1 ⊂ . . . of pre-admissible

extensions of F+ such that

limi→∞ δ
( i⋃
j=1

Proc?(L+
j )
)

= 1.

For the construction of the extensions, de�ne the set

ΩF := { d ∈ N |
√
d /∈ F, base change Π ; ΠF (

√
d) remains cuspidal }.

By Lemma 6.12, ΩF is not empty, so we choose a d1 ∈ ΩF and take L+
1 = L+(

√
d1).

Claim 2: L+
1 is pre-admissible.

Proof of Claim 2. Condition P.2 is automatically ful�lled because [L+
1 : F+] = 2. Considering condition

P.1, we have to check that L1|L+
1 is unrami�ed everywhere. For this, we observe that we have an identity

of the discriminants
∆L1|F+ = ∆L+

1 |F+∆F |F+ = ∆L+
1 |F+ .

(This follows e.g. from [Jan96, Exercise 3 on p. 51].) Consider the following diagram:

L1

(4)

L+
1

(3)

(1)

F

F+

(2)

(6.24)

Assuming there is a prime w of L+
1 that rami�es in (3), the prime v of F+ which lies below w must

ramify in the extension L1|F+. But then v divides ∆L+
1 |F+ = ∆L1|F+ , i.e. v rami�es in (1). This
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would imply that v has rami�cation index 4 in the extension L1|F+. But in (2), v is unrami�ed by
the prerequisites, so it can at most ramify in (4), yielding a rami�cation index of 2 in L1|F+. This
contradicts the assumption that w rami�es in (3).

End of proof of Claim 2. ♣

Claim 3: δ
(
Proc?(F+

1 )
)
≥ 1

2 .

Proof of Claim 3. We check which λ fail the list S.1-S.6:

• Concerning S.1 and S.2, we have to exclude the �nitely many λ for which `(λ) is not coprime to
S or rami�es in L+

1 |Q;

• Condition S.4 is universally ful�lled by our choice of L+
1 ;

• Condition S.5 excludes a set of places λ of Dirichlet density 0, cf. Theorem 6.66.

• Concerning condition S.6, we remark that by local-global compatibility (cf. [CH13, Theorem 1.4]
and the references therein) ΠL admits an Iw(ν)-�xed vector if ρ|GalL has unipotent rami�cation
at ν [Wed08, (4.3.6) Proposition]. Thus condition S.6 follows immediately from our Assumption
6.57.

• We �rst explain why the �S-part� of condition S.3 is not destroyed, i.e. why each place w of L+
1

above S splits in L1|L+
1 . For this, let v be the prime of F+ below w and consider again diagram

(6.24). We know that v splits in (2). If v stays inert in (1), then necessarily w must split in (3)
because v is split in L1|F+. If v splits as w.w′ in (1), we can use [Neu99, Exercise 3 on p. 52]
to see that v splits completely in L1|F+. This again implies that w splits in (3). (Remark that,
by the same reasoning, we see that for λ ∈ Proc?(L+

0 ) we have that any prime of L+
1 above `(λ)

splits in L1|L+
1 . Loosely speaking, we don't loose ?-procuration when base changing from F to

L1. Also remark that we used an analogous argument before, cf. the proof of Corollary 6.17.)

• It remains to count those ` which ful�ll the condition that all primes of L+
1 above ` are split in

the extension L1|L+
1 . By Lemma 6.10, their density is at least 1

2 .

End of proof of Claim 3. ♣

For the next tower step we take F+
2 := F+

1 (
√
d2) for a d2 ∈ ΩF+

1
. It is checked as before that ΩF+

1
6= ∅

and that F+
2 is pre-admissible. Writing F+

2 = F+(
√
d1,
√
d2) we see that the extension F+

2 |F+ is Galois.

Claim 4: δ
(
Proc?(F+

2 )
)
≥ 3

4 .

Proof of Claim 4. This follows as in the proof of Claim 3, the main points being:

• Remark that by Theorem 6.66, we can assume that the auxiliary primes chosen at the F+
1 -level

are exactly the primes lying below the auxiliary primes chosen at the F+
2 -level. In other words,

the (density-0) set of rational primes removed to guarantee condition S.5 during the proof of
Claim 3 is the same as the one during the proof of Claim 4;

• Analogously as in the proof of Claim 3 we use that we don't loose ?-procuration when base
changing from L1 to L2;

• The quantity 3
4 follows again from Lemma 6.10.

122



6 UNOBSTRUCTEDNESS FOR RACSDC AUTOMORPHIC REPRESENTATIONS

End of proof of Claim 4. ♣

Iterating this construction of quadratic extensions we get a nested sequence of pre-admissible �elds F+
j

such that

δ
( i⋃
j=1

Proc?(F+
j )
)
≥ δ(Proc?(F+

i ) ≥ 1− 1

2i
−→
i→∞

1.

Together with Claim 1, this concludes the proof of Theorem 6.68.

We now give a slight variation of De�nition 6.67 and Theorem 6.68:

De�nition 6.69. With regard to a pre-admissible extension L+ of F+, we say that a prime λ ∈ PlfinE
is L+-Á-procurable if the restriction of ρλ to GalL (with L = F.L+) remains absolutely irreducible and
if there is an isomorphism

L+
R

�,λ,crys
W (kλ)

∼= W (kλ)[[x1, . . . , xu]], (6.25)

where L+
R

�,λ,crys
W (kλ)

:= L+
R

�,χ,Dλ(crys)

SΠ,`,W (kλ)
(rλ) and u = dim(gdern ) = n2.

The set of all L+-Á-procurable λ is denoted by ProcÁ(L+).

Theorem 6.70. There exists a nested sequence F+ = L+
0 ⊂ L+

1 ⊂ . . . of pre-admissible extensions of
F+ such that

limi→∞ δ
( i⋃
j=1

ProcÁ(L+
j )
)

= 1.

Proof. For i ∈ N denote

∆i =
i⋃

j=1

Proc(L+
j ).

Also �x for each λ ∈ ∆i a j ≤ i such that λ ∈ Proc(L+
j ). Denote the corresponding �eld extension

from the proof of Theorem 6.68 by L(λ) = L+
(λ).F . By Theorem 6.68, for such a λ ∈ ∆i we have

L+
(λ)R

λ,crys
OKλ

∼= OKλ

for a suitable extension OKλ of W (kλ). Proposition 2.62 then yields

L+
(λ)R

�,λ,crys
OKλ

∼= OKλ [[x1, . . . , xu]].

Now we can use Corollary 2.35 to deduce the isomorphism (6.25).

Corollary 6.71. There exists a subset Λ2
E ⊂ Λ1

E of Dirichlet density 1 such that for each λ ∈ Λ2
E there

exists a �nite, totally real extension L+
(λ) of F and an isomorphism

L+
(λ)R

�SΠ,`
,χ,Dλ(crys)

SΠ,`,W (kλ)
(rλ) ∼= W (kλ)[[x1, . . . , xw(λ)]]

with w(λ) = n2.#S
′
Π,` − 1 and where S

′
Π,` denotes the places of L+

(λ) above SΠ.
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Proof. This follows from another application of Proposition 2.62.

Next, we will apply the framework of Section 3.1 to the attained λ. We remind the reader that Dλ
denotes the deformation condition parametrizing lifts of rλ which are minimally rami�ed at SΠ.

Theorem 6.72. There exists a co�nite subset Λ3
E ⊂ Λ2

E such that the following holds: Let λ ∈ Λ3
E and

L+
(λ) the corresponding extension from Corollary 6.71. Then the deformation functor

L+
(λ)D

�SΠ,`
,χ,Dλ

SΠ,`,W (kλ)
(rλ) = D

�
S
′
Π,`χ|Gal

L+
(λ)

,D′λ

S
′
Π,`,W (kλ)

(rλ|GalL+
(λ)

)

has vanishing dual Selmer group (i.e. H1
L⊥λ

(GalL+
(λ)
, gder,∨) = 0, where Lλ is the system of local conditions

corresponding to the deformation condition Dλ).

Proof. When applying the framework, we take

• sm as the condition parametrizing all deformations;

• crys as the condition parametrizing all crystalline deformations (see Section 4.3);

• min as the condition parametrizing all minimally rami�ed lifts (see Section 4.4);

• χ = ε1−n` δ
n(mod 2)
F |F+ .

We �rst check the following list of conditions (and we abbreviate L+ = L+
(λ) as we check this for a �xed

λ ∈ Λ2
E):

1. (Representability): The S′`.∞-framed deformation functor

L+
D

�S′
`
,χ

S′`,W (kλ)
(rλ)

is representable (by an object L+
R

�S′
`
,χ

S′`,W (kλ)
(rλ)).

Answer: This follows from our Proposition 2.61.

2. (sm/k): As we took for sm the unrestricted deformation condition, we have to check that for each
ν ∈ Ω` the functor

L+
ν D�,χν

W (kλ)(rλ,ν) = D�,χν
W (kλ)(rλ|GalL+

ν
)

is representable and that the representing object Rχ,�,smν is formally smooth of relative dimension

d�,sm
ν = dim(gdern )([Lν̃ : Q`] + 1) = n2([Lν̃ : Q`] + 1) = n2([L+

ν : Q`] + 1).

(This also amounts to the vanishing of the error terms δν in Theorem 3.12.2.)

Answer: Representability follows from the �rst part of Theorem 2.22. For the remaining claim,
we �rst refer to Proposition 6.22 in order to get an isomorphism

L+
ν R�,χν

W (kλ)(rλ,ν) ∼= Lν̃R�
W (kλ)(ρλ,ν̃).

Now everything follows from Lemma 4.11.
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3. (crys): For each ν ∈ Ω`, the subfunctor

L+
ν D

�,χν ,crys
W (kλ) (rλ,ν) ↪→ L+

ν D�,χν
W (kλ)(rλ,ν)

is relatively representable and the representing object is formally smooth of relative dimension

d�,crys
ν = dim(gdern ) + (dim(gdern )− dim(bdern ))[L+

ν : Q`],

where bn denotes the Lie algebra of a Borel subgroup of Gn.
Answer: By de�nition,

L+
ν R

�,χν ,crys
W (kλ) (rλ,ν) ∼= Lν̃R

�,crys
W (kλ) (ρλ,ν̃).

Thus, the condition is ful�lled by Lemma 4.14.

4. (min): For each ν ∈ S, the subfunctor

L+
ν D�,χν ,min

W (kλ) (rλ,ν) ↪→ L+
ν D�,χν

W (kλ)(rλ,ν)

is relatively representable and the representing object is formally smooth of relative dimension

d�,min
ν = dim(gdern ).

Answer: Again, by de�nition,

L+
ν R�,χν ,min

W (kλ) (rλ,ν) ∼= Lν̃R�,min
W (kλ)(ρλ,ν̃).

Thus, the condition is ful�lled by Lemma 4.23.

5. (∞): For each ν ∈ Ω∞, the local deformation ring L+
ν R�,χν

W (kλ)(rλ,ν) is formally smooth of relative

dimension d�
ν = dim(bdern ).

Answer: We get from Proposition 2.70 that L
+
ν R�,χν

W (kλ)(rλ,ν) is formally smooth of relative dimen-

sion dim
(
(gdern )cν=−1

)
= dim(glcν=−1

n ), where cν is the non-trivial element of the decomposition
group at ν. By construction (see Lemma 2.1.4 and Proposition 3.4.4 of [CHT08]), the image of
rλ(cν) is not contained in GLn×GL1. Moreover,

m ◦ rλ(cν) = ε1−n` (cν)δµm(cν) =

{
(−1).(−1)µm if n is even;

(−1)µm if n is odd.

Here, ε` denotes the cyclotomic character (which sends cν to −1), δ denotes the non-trivial
character of Gal(F |F+) and µm is a suitable element of Z/2Z. It follows from our R = T -theorem
(Conjecture 6.37) that µm ≡ n (mod 2), so we have m ◦ r(cν) = −1, independent from the parity
of n. Using [CHT08, Lemma 2.1.3], this implies dim(glcν=−1

n ) = n(n+1)
2 = dim(bdern ).

6. (Presentability): Consider the ring

L+
Rloc :=

⊗̂
ν∈S′Π,`

L+
R̃ν with L+

R̃ν =

{
L+
ν D�,χν ,min

W (kλ) (rλ,ν) if ν ∈ S;
L+
ν D�,χν

W (kλ)(rλ,ν) if ν ∈ Ω` t Ω∞.
(6.26)

Then there exists a presentation

L+
R

�SΠ,`
,χ

SΠ,`,W (kλ)
(rλ) ∼= L+

Rloc[[x1, . . . , xa]]/(f1,...,fb)

125



6 UNOBSTRUCTEDNESS FOR RACSDC AUTOMORPHIC REPRESENTATIONS

with a− b = (#S
′
Π,` − 1).dim(gabn ).

Answer: This is the content of Corollary 2.68, but we have to check Assumption 2.63. As
gder = gln (Proposition 6.19), this condition holds by Corollary 2.73 for almost all λ.

7. (R=T): The ring L+
(λ)R

�SΠ,`
,χ,Dλ(min,crys)

SΠ,`,W (kλ)
(rλ) is formally smooth of relative dimension

r0 = dim(g).#S
′
Π,` − dim(gab).

Answer: This follows from Corollary 6.71.

We see that the requirements of Theorem 3.12.2 are met. So we can conclude the proof if we verify the
three requirements of Corollary 3.16:

8. ` must be big enough so that gn = gdern ⊕ gabn .

Answer: This can be achieved by excluding �nitely many λ.

9. H0(GalL+ , gder,∨n ) = 0.

Answer: This can be proved analogously as in Section 2.6. First, remark that

H0(GalL+ , gder,∨n ) ⊂ H0(GalL, g
der,∨
n ) ∼= H0(GalL, gl

∨
n),

for which we have to recall

• rλ|GalL equals ρλ (via the embedding GLn ⊂ Gn) by construction, see Lemma 6.21;

• gdern
∼= gln, see Proposition 6.19;

• the adjoint representation of GalL on gdern (via rλ) corresponds to the adjoint representation
of GalL on gln (via ρλ) with respect to the identi�cations from the above two bullet points
(see [CHT08, Section 2.1]).

Thus we are good if we can show that H0(GalL, gl
∨
n) vanishes for almost all λ, which follows from

Corollary 2.73.

10. For ν ∈ S′Π, dim(Lλ,ν) = h0(GalL+
ν
, gdern ).

Answer: As ν is split, we can use Proposition 6.22 to get

h0(GalL+
ν
, gdern ) = h0(GalLν̃ , gln),

where the action on gln is via ρλ,ν̃ . The claim now follows from [CHT08, Corollary 2.4.21].

The �nitely many exclusions as required in parts 6., 8. and 9. are now the places we exclude from Λ2
E

to get Λ3
E .

Now we can �nally complete the desired proof:
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Proof of Theorem 6.58. First remark that Theorem 6.72 is not far from the �has vanishing dual Selmer
group�-part of Theorem 6.58, the main di�erence is that we have introduced �eld extensions L+

(λ)|F
+

which we can eliminate with the potential unobstructedness methods of Section 3.2. As each index
[L+

(λ) : F+] is a power of 2 (and kλ has odd characteristic for all λ ∈ Λ3
E), the �of degree coprime

to `�-part of Lemma 3.21 is universally ful�lled. For each extension L+
(λ)|F

+ we can now argue exactly
as in the proof of Theorem 6.56 assuming Theorem 6.58, but we have to take care of the (�nite) failure
sets X = X(L+

(λ)) for which the local R = Rmin-result Corollary 4.47 fails at the L+
(λ)-level. For this,

recall that the L+
(λ) show up in the tower F+ = L+

0 ⊂ L
+
1 ⊂ . . . and that we have

limi→∞ δ
{
λ
∣∣∣ L+

(λ)D
�S′

`
,χ,Dλ(min)

S′`,W (kλ)
(rλ) has vanishing dual Selmer group, L+

(λ) ⊂ L
+
i

}
= 1,

by Corollary 6.71 and Corollary 6.72. Hence,

limi→∞ δ
{
λ
∣∣∣ L+

(λ)D
�SΠ,`

,χ,Dλ

SΠ,`,W (kλ)
(rλ) has vanishing dual Selmer group, L+

(λ) ⊂ L
+
i , λ /∈ X(L+

(λ))
}

= 1.

The �rst bullet point of Theorem 6.58 follows.

It remains to show that the local deformation ring R�,χν
W (kλ)(rλ,ν) is relatively smooth for ν ∈ ΩF+

` . By
Corollary 4.7 we know that

limi→∞ δ
{
λ
∣∣∣ D�,χν

W (kλ)(rλ|GalL+
(λ),ν′

) is unobstructed for all ν ′ ∈ Ω
L+

(λ)

`(λ) , L
+
(λ) ⊂ L

+
i

}
= limi→∞ δ

{
λ
∣∣∣ any ν ′ ∈ Ω

L+
(λ)

`(λ) is split in the extension L(λ)|L+
(λ), L

+
(λ) ⊂ L

+
i

}
= 1.

Using Lemma 3.18.2 and Proposition 3.2, the second bullet point of Theorem 6.58 follows.

Proof of Theorem 6.61. The claim of Theorem 6.61 follows by performing a base change towards a �nite
solvable extension F ′ of F (which needs to be a CM �eld) such that the restricted system RΠ|GalF ′+
ful�lls the preconditions for Theorem 6.58, i.e. such that all places above SΠ are split in the extension
F ′|F ′+, where F ′+ is the maximal totally real sub�eld of F ′. This is possible by Corollary 6.17. Using
Lemma 3.18 and Proposition 3.2, the �rst two bullet points of Theorem 6.61 then follow directly from
Theorem 6.58 (for all λ such that `(λ) does not divide [F ′ : F ]). It remains to show the third bullet point
in Theorem 6.61: From Lemma 4.23 it follows that for all ν ∈ PlF ′+ above SΠ the local deformation
functor D�,χν

W (kλ)(rλ,ν |GalF ′ν ) is unobstructed. Using Lemma 3.18.2 and Proposition 3.2, the third bullet
point follows.

We repeat that this also completes the proof of Theorem 6.56 (using the �Proof of Theorem 6.56
assuming Theorem 6.58� following the statement of Theorem 6.58 at the beginning of Section 6.5).
Likewise, this also completes the proof of Theorem 6.60.
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