
21st Computer Vision Winter Workshop
Luka Čehovin, Rok Mandeljc, Vitomir Štruc (eds.)
Rimske Toplice, Slovenia, February 3–5, 2016

Cuneiform Detection in Vectorized Raster Images

Judith Massa1, Bartosz Bogacz1, Susanne Krömker2 and Hubert Mara1

Interdisciplinary Center for Scientific Computing (IWR)
1Forensic Computational Geometry Laboratory (FCGL)

2Visualization and Numerical Geometry (NGG)
Heidelberg University, Germany

{judith.massa|bartosz.bogacz|susanne.kroemker|hubert.mara}@iwr.uni-heidelberg.de

Abstract. Documents written in cuneiform script
are one of the largest sources about ancient history.
The script is written by imprinting wedges (Latin:
cunei) into clay tablets and was used for almost
four millennia. This three-dimensional script is typi-
cally transcribed by hand with ink on paper. These
transcriptions are available in large quantities as
raster graphics by online sources like the Cuneiform
Database Library Initative (CDLI). Within this arti-
cle we present an approach to extract Scalable Vec-
tor Graphics (SVG) in 2D from raster images as we
previously did from 3D models. This enlarges our
basis of data sets for tasks like word-spotting. In the
first step of vectorizing the raster images we extract
smooth outlines and a minimal graph representation
of sets of wedges, i.e., main components of cuneiform
characters. Then we discretize these outlines fol-
lowed by a Delaunay triangulation to extract skele-
tons of sets of connected wedges. To separate the
sets into single wedges we experimented with differ-
ent conflict resolution strategies and candidate prun-
ing. A thorough evaluation of our methods and its
parameters on real word data shows that the wedges
are extracted with a true positive rate of 0.98. At
the same time the false positive rate is 0.2, which re-
quires future extension by using statistics about geo-
metric configurations of wedge sets.

1. Introduction

Documents were written in cuneiform script for
more than three millenia in the ancient Middle
East [26]. Cuneiform characters were typically writ-
ten on clay tablets by imprinting a rectangular sty-
lus and leaving a wedge (cuneus in Latin) shaped
trace, i.e., triangular markings. As clay was always
cheaply and easily available, everybody capable of

Figure 1: A tracing of the tablet VAT6546 [23]

writing could produce robust documents. Therefore,
the content of cuneiform tablets ranges from simple
shopping lists to treaties between empires. The num-
ber of known tablets is assumed to be in the hundreds
of thousands, which is constantly increasing as new
tablets are excavated by archaeologists on a regular
basis. By roughly estimating the number of words
on those tablets, we can assume that the total amount
of text in cuneiform script is comparable to those in
Latin or Ancient Greek.

Since 1999, a number of projects have been
launched to facilitate the work of Assyriologists. The
Digital Hammurabi Project is concerned with the
digitization of cuneiform tablets [27]. Achievements
of the project include the creation of high-resolution
3D models [17] as well as 3D and 2D visualiza-
tion techniques for the models. Similarly, projects
in Leuven deal with the efficient production of 3D
models of tablets [28] and techniques to visualize the
models [13]. The Cuneiform Digital Library Initia-
tive [15] incorporates a number of projects aimed at
cataloging cuneiform documents and making them
available online as transliteration, tracing and 2D im-
age. In [11], the software framework CuneiformAna-
lyzer is introduced. It assists the researchers in script

(a) (b)

Figure 2: (a) Paths described by four distinct wedge
shapes and (b) the path described by the compound
shape formed by them.

analysis by detecting and segmenting wedge impres-
sions of 3D models [10]. Furthermore, the program
simplifies collation of fragments and reconstruction
of tablets with methods from 3D computer graphics.
The GigaMesh project contributes with visualization
methods and extraction of cuneiform characters from
tablets [21, 20].

Our method extracts wedge-shaped impressions
from raster images. These images are hand-drawn
transcriptions of cuneiform tablets of varying quality
and two different styles of marking wedges. We vec-
torize images of the transcriptions and match patterns
and shapes to detect these constellations of wedges in
the vectorized transcriptions.

2. Related Work

In [7] the problem of content-based image re-
trieval of Scalable Vector Graphics (SVG) docu-
ments is tackled. Their approach uses a description
language to simplify comparisons between shapes. It
represents an object by a basic shape, like a unit cir-
cle, and a transformation entailing its scale and trans-
lation from the origin. The resulting framework han-
dles composites of simple SVG shapes, but no SVG
path elements, which are able to represent arbitrary
shapes. The similarity measure chosen is a weighted
sum of shape, color, transformation, spatial and po-
sition similarity.

In [18] the problem of hierarchically clustering
shapes described as vector graphics is addressed.
Based on [29], Kuntz uses Fourier descriptors [6] to
describe and compare single basic SVG shapes. The
descriptors serve as feature vectors which then are
clustered using state-of-the-art clustering algorithms.

We cannot apply Kuntz’ method since it does not
deal with shapes that are part of a compound de-
scribed as one object. Yet, our input consists of SVG
path elements that usually describe such compound
shapes (Figure 2).

3. Implementation

Our implementation proceeds in five distinct
steps. The first three steps transform raster image
transcriptions into a set of skeletonized wedge con-
stellations. The final two steps extract and prune
wedge candidates from these constellations.

3.1. Vectorization

For the vectorization step, Selinger’s potrace algo-
rithm 1 is used. A directed graph G1 is constructed
by traveling along the edges between black and white
pixels. Thereby, each vertex v in the graph corre-
sponds to a pixel corner, which is adjacent to four
pixels in the bitmap image of which at least one
has to be black and one has to be white. An edge
(vi, vi+1) between two vertices is created if the cor-
responding corners are neighbors in the bitmap im-
age and the edge separates a black and a white pixel.
Then, a path p = {v0, . . . , vn} is a sequence of ver-
tices, where there is an edge between each pair of
consecutive vertices vi and vi+1 for i = 0, . . . , n−1.
A path is called closed if v0 = vn. Whenever a
closed path is found, the color of the pixels enclosed
by it is inverted. The algorithm is applied recursively
to the new image until there are no black pixels left.

For each of the resulting paths a polygon is calcu-
lated. Therefore another directed graph G2 is con-
structed, where each edge represents a straight path
and the set of vertices of Graph G2 is a subset of
the vertices of Graph G1 reduced to the endpoints
of the straight paths. A path p = {v0, . . . , vn} is
called straight if for all index triples (i, j, k) with
0 ≤ i < j < k ≤ n there exists a point w on the
straight line through vi and vk such that d(vj , w) ≤
1. The function d denotes the Euclidean norm. Fur-
thermore, not all four possible vertex-to-vertex direc-
tions v(i+1) − vi may occur in the path (Figure 3).

Each edge then is assigned a penalty Pi,j for us-
ing the corresponding straight path for the resulting
polygon. The penalty is the product of the Euclidean
length and the standard deviation of vertex distances.

Di,j =

j∑
k=i

dist(vk, vivj)
2 (1)

Pi,j = |vi − vj | ·
√

1

j 	 i+ 1
·Di,j (2)

1http://potrace.sourceforge.net. Project page of potrace. Last
visited on 4/11/15.

Figure 3: Shows how potrace checks if paths are
straight. The dots represent the vertices of the paths
and the squares the 1/2-neighborhoods of the ver-
tices. Paths in (a), (b) and (d) are straight and (c)
and (e) are not.

with j	i = j−i if i ≤ j and j	i = j−i+n if j ≤ i
and dist(a,

−→
cd) the Euclidean distance of a point to

a straight segment. Finding an optimal polygon then
is the equivalent to finding an optimal cycle in graph
G2, with the quality measured by the tuple (k, P),
where k is the number of straight paths that make up
the cycle and P is the sum of respective penalties.
With that, a polygon with a smaller penalty but more
segments is considered worse than a polygon with
less segments but higher penalty.

After choosing a polygon, Bézier curves are cal-
culated and by doing this, a smoothing of the corners
is achieved where it seems reasonable. Optionally,
consecutive curves are joined if the segments agree
in convexity and the total direction change does not
exceed 89 degrees.

3.2. Discretization

We tested minimizing the maximum distance be-
tween the polygon line segments and the contour seg-
ments, but found that even if a polygon approximates
an arbitrary shape well, it is still not assured that the
resulting Voronoi skeleton will be a good approxima-
tion to the skeleton of the wedge constellation. The
key for a good discrete skeleton turned out to be the
limitation of the distance of two sample points along
the shape outline. However, calculating the distance
along a Bézier curve B(t) is a complex task [12]
since the length s of the complete curve is

s =

∫ 1

0

√
B′x(t)

2 +B′y(t)
2dt, (3)

which has no closed-form solution. Yet, we know
that the curve length s of a Bézier of degree 3 has the
sum of the distances of consecutive control points Ci

as upper bound:

s ≤
2∑

i=0

‖Ci+1 − Ci‖. (4)

Since smaller distances along the path can only
improve the quality of the resulting skeleton, this up-
per bound is used for discretizing the silhouette.

3.3. Skeletonization

In order to deal with occluding wedge marks in
the detection step, shape skeletons are used as in-
termediate representations. Different definitions for
shape skeletons have been stated since [2, 22, 25, 19].
Based on [25], we define a shape skeleton as the in-
finite set of points within the shape boundaries that
have more than one closest point on the shape out-
line. The skeleton can be computed efficiently with
time complexity O(n log n) by using Voronoi dia-
grams [16]. The Voronoi diagram for a set of sites S
divides a space into |S| partitions called the Voronoi
regions. In R2 a Voronoi region is the interior of
a convex polygon, whose boundaries, the Voronoi
edges, are equidistant to two of the input sites. As
input sites, the polygon vertices obtained in the pre-
vious discretization step are used.

The Voronoi diagram (Figure 4b) is computed by
solving the dual problem first: the Delaunay trian-
gulation (Figure 4a). Each Voronoi vertex represents
the circumcenter of a Delaunay facet and a Voronoi
ridge connects two such points of neighboring facets.
An implementation of the quickhull algorithm [1] is
used to calculate the 2-dimensional Delaunay trian-
gulation from a 3-dimensional convex hull.

The Voronoi ridges with end points outside the
original shape boundaries and ridges crossing the
contour are removed. The skeleton, represented as
an undirected graph (Figure 4c), consists of more
and in general shorter segments. These, in turn, are
made up of longer segments the more vertices form
the approximated polygon. Since the short segments
are rarely meaningful, considering their directions, a
new skeleton (Figure 4d) is constructed. The com-
putation is done by a graph traversal algorithm. It
follows a series of consecutive edges until an end
node is incident to more than two edges in the origi-
nal skeleton.

3.4. Extraction

The basic shape of a wedge impression can be de-
scribed by a Y- or T-junction. We call this junction

(a) (b)

(c) (d)

Figure 4: Visualization of important steps of the
skeleton computation and simplification process: (a)
the Delaunay triangulation, (b) the Voronoi diagram,
(c) the inner elements of the Voronoi diagram and (d)
the resulting skeleton.

the wedge-head and the ridges extending from the
junction the wedge-arms.

After having computed a shape skeleton, the de-
tection of the wedge-heads of the impressions can be
approached. There are two different ways a wedge
impression can be drawn: as contour lines or shapes
filled with ink. For a single wedge impression, the
filled shape results in a single closed curve after
bitmap tracing and the shape contour is represented
as two closed curves, where only the area between
both curves is filled with color. Usually, the repre-
sentation as unfilled shape contour is intended, but
for small wedges, the thickness of the pencil used
for the original ink tracing sometimes leads to solid
shapes. The two representations result in two differ-
ent skeletons as shown in Figure 5. These two cases
are considered separately and certainty values wloc

are calculated for locations in the skeleton graph that
seem likely to contain a wedge-head. In both cases,
wloc ranges from zero to one with values close to one
indicating a high probability of a wedge-head at the
considered location. The result of this step is a set of
wedge-heads for which the certainty value exceeds
the threshold tcontourloc for contour wedges or tsolidloc for
solid wedges.

Wedge-Head Detection of Shape Contours Hav-
ing a wedge impression represented as a contour, the
respective skeleton graph shows a cycle resembling
a triangle at the position of the wedge-head (Fig-

(a) (b)

Figure 5: Two different ways of representing a wedge
impression in ink tracings: a) as unfilled contour and
b) as filled shape. The result of the bitmap trace is
drawn in red, the simplified Voronoi skeleton in blue.

ure 5a). This fact is used to locate the wedge-head
of a wedge contour. A cycle in an undirected graph
is an ordered set of vertices

C = (v0, v1, . . . , vn) (5)

where circular consecutive vertices are adjacent and
no vertex appears twice.

To avoid outliers to be taken into consideration as
wedge-heads, we only look for short cycles. Two
concepts of length are possible: the number of edges
forming the cycle

ledge(C) = |C| ≤ tedge (6)

and the accumulated distances ldist along the cycle
path, using Pv as the coordinate of a node v, that can
be formally defined by

ldist(C) =
|C|−1∑
i=0

|Pvi − Pvj | ≤ tdist (7)

with vi, vj ∈ C and j = (i + 1) mod |C| thresholds
tedge and tdist.

Using ledge as the cycle length, this results in a
time complexity of O(|E| · tedge), using ldist, the

complexity will be O(|E| ·
⌊

tdist
min{‖Pu−Pv‖:(u,v)∈E}

⌋
in the worst case. These concepts are used next to
each other in the algorithm.

The cycle extraction proceeds as follows: A
depth-first search tree is built and the back-edges are
extracted. For each back-edge (u, v) a depth-limited
search for node v is conducted with u as root node;
paths from v to u represent cycles when joined with
{(u, v)}, except the direct path {(v, u)}. At last, the
set of cycles is reduced to contain only unique cycles.

A set of unique cycles contains no two cycles that
are equivalent, i.e., if they are induced by the same

set of graph edges. This is tested by:

C1 ≡ C2 ⇐⇒ EC1 \ EC2 = ∅, (8)

where EC denotes the edge set of a cycle C.
The depth-limited search stops following a search

branch when either ledge or ldist exceed their respec-
tive thresholds, tedge or tdist, or when a target node
is discovered. It returns a list of paths from the root
to the target node.

Triangle Similarity Once all unique cycles of a
skeleton graph have been extracted, their resem-
blance to a triangle can be analyzed. This can be
achieved by comparing the triangle with the small-
est error that can be created with the cycle’s vertices
with the original cycle (Figure 6). With

AC,(i0,i1,i2)
err =

2∑
j=0

A(cij ,cij+1 mod |C|,...,cij+1
) (9)

being the sum of error areas between triangle and
polygon, we have

wcontour
loc (C) = 1− min

i0,i1,i2;

{
A
C,(i0,i1,i2)
err

AC +A
C,(i0,i1,i2)
err

}
(10)

for 0 ≤ i0 < i1 < i2 ≤ |C| − 1, C = (c0, . . . , cn)
and n ≥ 2.

The advantage of this similarity measure is that the
three vertices of the triangle are also vertices of the
skeleton graph, thus providing us with feasible start-
ing points for the wedge-arm tracing. Since the cy-
cles form simple polygons, the enclosed areas can be
calculated with the shoelace or surveyor’s area for-
mula [4].

Wedge-Head Detection of Solid Shapes Solid im-
prints have their centers at junctions v of a skeleton S
with a particularly long distance from the shape con-
tour. This distance is approximated by the distance
of the coordinate Pv of the vertex v to all sites s with
s ∈ S(v), where S is the site set of the underlying
Voronoi diagram and

S(v) = {s ∈ S|Pv is vertex of V (s)} (11)

is the set of sites with Pv being a vertex of their
Voronoi region V (s). The equation

d(Pv, s1) = d(Pv, s2) ∀s1, s2 ∈ S(v) (12)

Figure 6: The triangle with area A∆ shows the best
triangle for the blue polygon. Since the sum of the
error areas Aerr = A1+A2+A3 is almost equal to the
triangle area A∆, the polygon with area A∆+Aerris
not one of the polygons chosen for wedge-head posi-
tions.

always holds by definition of the Voronoi diagram.
Therefore, any random s ∈ S(v) can be chosen to
get a measure for the distance to the contour and use
it as hint for plausible locations of heads of solid
wedges (Figure 7). Percentiles of the site-to-vertex
distances

D = {d(Pv, s)|v ∈ S ∧ s ∈ S(v)} (13)

are used instead of the minimum and maximum to ac-
count for outliers. In order to arrive at a range from
zero to one with values close to one for long distances
d(pv, s) and close to zero for short distances, the first
percentile is used as minimum dlower, the 99th per-
centile of these distances as maximum dupper and the
position within this range is used as certainty value.

wsolid
loc (v) =

0 if d(Pv, s) ≤ dlower

1 if d(Pv, s) ≥ dupper
d∗(Pv, s) else

(14)

d∗(Pv, s) =
d(Pv, s)− dlower

dupper − dlower
(15)

For a junction, where n edges meet,
(
n
3

)
wedge-

heads are retrieved.
After locating the position of a wedge-head, the

extents of the impression are calculated. For a
wedge-head, multiple wedges are proposed. Vertices
{vi}i=1,2,3 must fulfill two conditions:

1. The line segment between the coordinates of a
wedge vertex vi and tracing start point S may
not intersect with the shape boundary.

Figure 7: Possible locations of solid wedges are
found by looking at skeleton junctions: if their dis-
tance to the closest discretization points is above a
threshold, it is likely that the center of a wedge im-
pression is located here. Due to the definition of the
Voronoi skeleton, the equation d1 = d2 = d3 holds
at every skeleton junction.

2. A vertex of a wedge must be located within the
infinite area between the lines through the co-
ordinates of S and the wedge-head vertices vHj
and vHk as shown in Figure 8. The condition can
be checked by testing if

](
−−−→
PSPvi , ~v) ≤

α

2
(16)

with
α =](

−−−−→
PvHj

PS ,
−−−−→
PvHk

PS) (17)

and ~v being the angle bisector of
−−−−→
PvHj

PS and
−−−−→
PvHk

PS .

For contour wedges, the tracing start node for a
wedge vertex vi is the respective wedge-head ver-
tex vHi and for a solid wedge, the start node is the
wedge center. The reason why for the contour ver-
tex, the line checked for the conditions above starts
at the head vertex instead of the wedge center is that
the center in this case is not a part of the shape skele-
ton and is typically located inside a hole in the shape.

From the respective start node the algorithm fol-
lows all paths within the area of valid nodes shown in
Figure 8. A path may have sections of a certain num-
ber of nodes that are inadmissible as wedge vertices.
The algorithm returns multiple arms for one direction
resulting in multiple wedge suggestions for a wedge-
head. If narm 1, narm 2 and narm 3 are the number of
arms returned for the respective wedge-head vertex,
the number of wedges is narm 1 · narm 2 · narm 3.

3.5. Wedge Set Reduction

The certainty measures for wedge-head locations
wloc can only be used as first hints to possible loca-
tions. After wedge-arm tracing, we still get wedge

(a)

(b)

Figure 8: The pink area shows the place where wedge
vertices may be located given the wedge-head of (a)
a contour wedge and (b) a solid wedge. The marked
junctions are valid as wedge vertex since the straight
line to N does not cross the shape boundary. The
dotted line in (b) shows that if we had chosen N for
solid wedges as for contour wedges, we would not be
able to find the correct wedge vertex.

candidates that can be easily identified as improba-
ble by computing the angles between the arms. We
want the arms to be evenly spread, so we punish an-
gles that deviate from 120 degrees. Having α1, α2

and α3 as internal wedge angles, we use

wangle(α1, α2, α3) = p(α1) · p(α2) · p(α3) (18)

with

p(α) =
120

120 + |120− α|
(19)

as measure for the angle quality of wedges. This
measure is used in a preliminary reduction step to
eliminate all wedges whose angle quality exceed a
given threshold.

The simplest strategy using a threshold takes the
remaining wedges and removes those that share
heads with other wedges having higher angle qual-
ity. All of the other strategies proceed by iteratively
testing wedges against the set of chosen wedges and
adding them to the result set if no conflicts arise.
Wedges are not added if the number of wedge-head
edges, that are not used by any other wedge as head
or arm edge, goes below a threshold. Furthermore,
contour wedges may not share a head edge with an-
other wedge.

Balanced Strategies For documents where the
number of solid wedges is greater or equal to the
number of contour wedges, we implemented bal-
anced strategies. There are six different strate-
gies of this kind: Balanced-loc, balanced-angle
and balanced-size sort the wedges by wloc, wangle

and size respectively. Balanced-sides-loc, balanced-
sides-angle and balanced-sides-size sort the wedges
first by the number of arms that contain at least one
edge that is not already used by a chosen wedge. The
second kind of balanced strategies recalculates the
number of free arms after each iteration. As mea-
sure for the size of a wedge, the average length of the
lines from the center to the three edges is taken.

Contour-Fill Strategies Most documents contain
more contour wedges than solid wedges. For these
documents, the contour-fill strategies have been
implemented. The strategies are contour-fill-loc,
contour-fill-angle and contour-fill-size, contour-fill-
sides-loc, contour-fill-sides-angle and contour-fill-
sides-size. They proceed as their respective balanced
counterpart but consider the set of contour wedges
first before adding solid wedges to the set of cho-
sen wedges. The candidate set of solid wedges only
calculated after the set of chosen contour wedges is
computed and vertices that are incident to a wedge-
head edge are excluded.

4. Results

The algorithm has been tested on 94 tracings
from [23] and [14]. The groundtruth is determined by
manually deciding for each cycle and skeleton junc-
tion if they are valid positions of wedge-heads. Since
a tracing rarely contains less than 500 wedge-marks,
two typical tracings have been chosen for the evalua-
tion. They differ in the representation of fractures, in
size and in the percentage of solid wedges. As result
we have 1252 annotated cycles and 3792 annotated
junctions serving as groundtruth.

For the evaluation of the discrimination capabili-
ties of wloc and wangle, the Receiver Operating Char-
acteristic (ROC) [9] will be used. The ROC shows
the quality of a detector by assigning it a point in
the ROC space, with the false positive rate (FPR) as
x-coordinate and the true positive rate (TPR) as y-
coordinate. Therefore, the point assigned to an opti-
mal detector has the coordinates (0,1). As measure
for the overall performance of a discriminator func-
tion, the F-score is given [24].

(a) (b)

Figure 9: ROC curves of the measures used for the
detector of (a) contour wedges and (b) solid wedges

Contour Wedges Candidates for contour wedges
are found by searching for cycles in the skeleton
graph. The similarity of the cycle to a triangle is
then used as quality measure for the detector for early
rejection of improbable locations for wedge heads.
Figure 9a shows that early rejection is reasonable,
since the chosen function for the location proves to
be a good estimator. However, the green curve shows
that the chosen measure for the angles between the
arms of a reconstructed wedge is less optimal as dis-
criminator.

Figure 10a shows the F-score for the contour
wedge detector using thresholding only. It shows
high scores of about 0.8 to 0.9 for thresholds for the
location quality of about 0.7 to 0.9. The threshold for
the angle quality should not be chosen too high, but
0.7 at most. The maximum score of 0.90 is achieved
for tcontourloc = 0.79 and the threshold tangle = 0.45.

Solid Wedges Candidates for solid wedges are
found by searching for skeleton junctions with great
distance to the shape contour. Figure 9b shows that
weight is a worse discriminator for solid wedges
than for contour wedges. The discrimination qual-
ity for the angle quality measure for solid wedges
looks very similar to the respective curve for contour
wedges.

Figure 10b shows the F-scores for the solid wedge
detector. For solid wedges, this detector achieves a
score of about 0.62 at maximum. In contrast to the
F-scores for the contour wedge detector this score
is quite low. The reason for this can be found in
the fact, that there are a lot more locations to check
since every skeleton junction is considered. Espe-
cially when junctions are located next to each other,
false hits occur frequently. The best score is achieved
for tsolidloc = 0.68 and tangle = 0.56.

(a) (b)

Figure 10: F-scores for detector of (a) contour
wedges and (b) solid wedges.

Figure 11: F-scores of reduction strategies for test
case VAT6546. The strategies are sorted in descend-
ing order by their performance.

Figure 12: The extracted wedge marks of test case
VAT6546.

4.1. Wedge Set Reduction

The reduction strategies serve to overcome the
shortcomings of pure thresholding. We demon-
strate their differences with a tracing of the tablet
VAT6546 [23]. It represents fractures with lines and
shows 215 contour and 120 solid wedges. Figure 11
shows the F-scores for this case. The best F-score
is achieved by the contour-fill-sides-loc method with
86% (Figures 12 and 11).

Figure 13 compares the strategies concerning TPR
and FPR. It shows a clear ordering between simi-
lar methods that differ merely in the measure for the
sorting of the wedges.

(a) (b)

(c)

Figure 13: Receiver Operating Characteristic (ROC)
space showing performance of wedge set reduc-
tion strategies for test case VAT6546 (a) for con-
tour wedges and (b) for solid wedges and (c) for all
wedges.

5. Summary and Outlook

In this work we presented an algorithm that uses
bitmap tracing and skeletonization as intermediate
steps to detect wedge impressions in raster graphics
of cuneiform documents. We have shown the weak-
nesses of the measures used to construct an initial
wedge set and have shown how we can use conflict
set reduction strategies to improve the results signif-
icantly.

This work is part of ongoing research on opti-
cal character recognition for cuneiform characters [3]
and used as one of many sources of wedge constella-
tions. The presented method will allow us to perform
word spotting on raster image databases as the CDLI.
We will also examine if statistic approaches as in [5]
or [8] can be used to enhance the detection results.

References
[1] C. Barber, D. Dobkin, and H. Huhdanpaa. The

Quickhull Algorithm for Convex Hulls. ACM
Transaction on Mathematical Software (TOMS),
22(4):469–483, 1996. 3

[2] H. Blum. A Transformation of Extracting New De-
scriptors of Shape. In Models for the Perception of
Speech and Visual Form, pages 362–380. MIT Press,
1967. 3

[3] B. Bogacz, J. Massa, and H. Mara. Homogeniza-
tion of 2D & 3D Document Formats for Cuneiform

Script Analysis. In Proc. of the 3rd International
Workshop on Historical Document Imaging and
Processing (HIP15), 2015. 8

[4] B. Braden. The Surveyor’s Area Formula. The Col-
lege Mathematics Journal, 17(4):326–337, 1986. 5

[5] M. Cammarosano, G. Müller, D. Fisseler, and F. We-
ichert. Schriftmetrologie des Keils: Dreidimension-
ale Analyse von Keileindrücken und Handschriften.
Die Welt des Orients, 44(1):2–36, 2014. 8

[6] R. Cosgriff. Identification of Shape. ASTIA AD 254
792 820-11, Ohio State University Research Foun-
dation, 1960. 2

[7] E. Di Sciascio, F. Donini, and M. Mongiello. A
Knowledge Based System for Content-based Re-
trieval of Scalable Vector Graphics Documents. In
Proceedings of the 2004 ACM Symposium on Ap-
plied Computing, pages 1040–1044, 2004. 2

[8] D. Edzard. Keilschrift. In Ĭa... - Kizzuwata, volume 5
of Reallexikon der Assyriologie und vorderasiatis-
chen Archäologie, pages 545–567. de Gruyter, 1980.
8

[9] T. Fawcett. An Introduction to ROC Analysis. Pat-
tern Recognition Letters, 27(8):861–874, 2006. 7

[10] D. Fisseler, F. Weichert, G. Müller, and M. Cam-
marosano. Towards an interactive and automated
script feature analysis of 3D scanned cuneiform
tablets. In The 4th Conference on Scientific Com-
puting and Cultural Heritage (SCCH), pages 1–10,
2013. 2

[11] D. Fisseler, F. Weichert, G. Müller, and M. Cam-
marosano. Extending Philological Research with
Methods of 3D Computer Graphics Applied to Anal-
ysis of Cultural Heritage. In 12th Eurograph-
ics Workshop on Graphics and Cultural Heritage
(GCH), pages 165–172, 2014. 1

[12] J. Gravesen. Adaptive Subdivision and the Length
and Energy of Bézier Curves. Computational Ge-
ometry, 8(1):13–31, 1997. 3

[13] H. Hameeuw and G. Willems. New Visualiza-
tion Techniques for Cuneiform Texts and Sealings.
Akkadica, 132(2):163–178, 2011. 1

[14] S. Jakob. Die mittelassyrischen Texte aus Tell
Chuēra in Nordost-Syrien, volume 3 of Ausgrabun-
gen in Tell Chuēra in Nordost-Syrien. Harrassowitz,
2009. 7

[15] J. Kantel, P. Damerow, S. Köhler, and
C. Tsouparopoulou. 3D-Scans von Keilschrifttafeln
– ein Werkstattbericht. In 26. DV-Treffen der
Max-Planck-Institute, pages 41–62. Gesellschaft für
wissenschaftliche Datenverarbeitung, 2010. 1

[16] D. Kirkpatrick. Efficient Computation of Continu-
ous Skeletons. In Proceedings of the 20th Annual
IEEE Symposium on Foundations of Computer Sci-
ence, pages 18–27, 1979. 3

[17] S. Kumar, D. Snyder, D. Duncan, J. Cohen,
and J. Cooper. Digital Preservation of Ancient
Cuneiform Tablets Using 3D-Scanning. In Proceed-
ings of Fourth International Conference on 3-D Dig-
ital Imaging and Modeling, pages 326–333, 2003. 1

[18] M. Kuntz. Clustering SVG Shape. In 8th Inter-
national Conference on Scalable Vector Graphics,
2010. 2

[19] D. Lee. Medial Axis Transformation of a Planar
Shape. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 4(4):363–369, 1982.
3

[20] H. Mara and S. Krömker. Vectorization of 3D-
Characters by Integral Invariant Filtering of High-
Resolution Triangular Meshes. In 12th International
Conference on Document Analysis and Recognition
(ICDAR), pages 62–66, 2013. 2

[21] H. Mara, S. Krömker, S. Jakob, and B. Breuckmann.
GigaMesh and Gilgamesh – 3D Multiscale Integral
InvariantCuneiform Character Extraction. In Pro-
ceedings of the 11th International Symposium on
Virtual Reality, Archaeology and Cultural Heritage
(VAST), 2010. 2

[22] U. Montanari. Continuous Skeletons from Digitized
Images. Journal of the ACM (JACM), 16(4):534–
549, 1969. 3

[23] O. Neugebauer, editor. Register, Glossar, Nachträge,
Tafeln, volume 2 of Mathematische Keilschrift-
Texte. Springer, 1935. 1, 7, 8

[24] D. Powers. Evaluation: From precision, recall and
f-measure to roc, informedness, markedness & cor-
relation. Journal of Machine Learning Technologies,
2(1):37–63, 2011. 7

[25] F. Preparata. The Medial Axis of a Simple Polygon.
In Mathematical Foundations of Computer Science
1977, pages 443–450. Springer, 1977. 3

[26] W. von Soden. The ancient Orient: an introduction
to the study of the ancient Near East. Wm. B. Eerd-
mans Publishing Co., 1994. 1

[27] L. Watkins and D. Snyder. The Digital Hammurabi
Project. In Proceedings of Museums and the Web
(MW), 2003. 1

[28] G. Willems, F. Verbiest, W. Moreau, H. Hameeuw,
K. Van Lerberghe, and L. Van Gool. Easy and Cost-
Effective Cuneiform Digitizing. In The 6th Inter-
national Symposium on Virtual Reality, Archaeology
and Cultural Heritage (VAST), pages 73–80, 2005.
1

[29] C. Zahn and R. Roskies. Fourier Descriptors for
Plane Closed Curves. IEEE Transactions on Com-
puters (TC), 21(3):269–281, 1972. 2

