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Abstract

Logistic regression is usually applied to investigate the association between inherited genetic variants and a binary
disease phenotype. A limitation of standard methods used to estimate the parameters of logistic regression models
is their strong dependence on a few observations deviating from the majority of the data.
We used data from the Genetic Analysis Workshop 18 to explore the possible benefit of robust logistic regression
to estimate the genetic risk of hypertension. The comparison between standard and robust methods relied on the
influence of departing hypertension profiles (outliers) on the estimated odds ratios, areas under the receiver
operating characteristic curves, and clinical net benefit.
Our results confirmed that single outliers may substantially affect the estimated genotype relative risks. The ranking
of variants by probability values was different in standard and in robust logistic regression. For cutoff probabilities
between 0.2 and 0.6, the clinical net benefit estimated by leave-one-out cross-validation in the investigated sample
was slightly larger under robust regression, but the overall area under the receiver operating characteristic curve
was larger for standard logistic regression. The potential advantage of robust statistics in the context of genetic
association studies should be investigated in future analyses based on real and simulated data.

Background
Hypertension is a common chronic medical condition
characterized by elevated arterial blood pressure. High
blood pressure is associated with an increased risk of
stroke, heart attack, and other serious diseases. Age, gen-
der, tobacco smoking, alcohol consumption, and high
body mass index constitute established risk factors for
hypertension [1]. A genetic component has also been pos-
tulated. It has been shown that individuals with a family
history of hypertension have on average a higher blood
pressure than individuals without a family history. Yanek
et al found a 44% higher prevalence of hypertension in sib-
lings of affected persons than in the general reference
population [2]. In a Canadian study, standardized risk

ratios of hypertension were higher for first-degree relatives
than for spouses of probands with hypertension [3]. In
genetic studies, a large number of polymorphisms has
been associated with hypertension and validated in inde-
pendent collectives; 14 loci have been identified (as
of 2010) and many genetic studies are currently in
progress [4-8].
The relationship between inherited genetic polymorph-

isms and a binary response variable (with/without hyper-
tension) can be investigated using logistic regression
models that simultaneously consider the effects of multi-
ple risk factors. Standard methods used to estimate the
parameters of logistic regression models–for example,
iteratively reweighted least squares–are limited by their
dependence on a few observations departing from the
majority of the data. This contrasts with the purpose of
genetic risk models that aim to predict a particular health
outcome that holds for the bulk of individuals, and to
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identify persons with a deviating high risk of disease. We
use data from the Genetic Analysis Workshop (GAW18)
to explore the possible benefit of robust parameter esti-
mates in logistic regression models for the genetic pre-
diction of hypertension risk.

Methods
The analysed data (real phenotypes) were derived from
142 unrelated individuals who participated in the San
Antonio Family Heart or Family Diabetes/Gallbladder
studies. Longitudinal information on hypertension, age,
gender, and current tobacco smoking was measured up
to 4 times per individual; the present analyses relied on
the first available measurement. Further information is
provided in several articles [9-12].
The original data was filtered according to the following

criteria: (a) at least 1 measurement with complete informa-
tion on hypertension and age, (b) monomorphisms were
excluded and each polymorphism had to be represented
by at least 2 individuals, (c) individuals with more than 5%
missing genotypes were excluded, and, finally, (d) variants
with missing data in any individual were removed.
The relationship between hypertension and age, gender,

and current tobacco smoking was first investigated by c2

tests. Covariates significantly associated at the 5% confi-
dence level entered the intercept-only model to build the
baseline model. Subsequently, standard logistic regression
(iteratively reweighted least squares) was used to identify
possible hypertension-associated single-nucleotide poly-
morphisms (SNPs) with minimal deviance, taking into
account associated covariates. The deviance is defined as
minus twice the logarithm of the likelihood. Genotypes
were coded according to an additive penetrance model;
that is, 0, 1, and 2. Departing observations (outliers)
according to standard logistic regression were identified
based on the Cook’s distance in the baseline model. The
Cook’s distance for observation i is defined as

Di =

∑n
j=1

(
ŷj − ŷj(i)

)2

q MSE

where ŷl denotes the full regression model prediction
for observation j, ŷj(i) represents the regression model
prediction for observation j estimated omitting observa-
tion i, and MSE indicates the mean square error of the
regression model with q explanatory variables.
To investigate the possible benefit of robust parameter

estimates in logistic regression, model coefficients were
also estimated by solving
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This estimator is based on a quasi-likelihood, asymptoti-
cally normally distributed and Fisher consistent [13]. The
objective of the Huber function is to downweight the
influence of outliers and to assign inliers the usual weight.
Variable selection under robust logistic regression relied
on the minimal quasideviance as described by Cantoni
and Ronchetti, which is a robust test statistic for model
selection [13]. The quasideviance between 2 nested models
is defined as
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with s̃ such that v
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= 0 and t̃ such that

E
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= 0 and the estimated linear predictor μ̂ is

associated to the estimate β̂ of β and μ̇ is associated to

β̇ which is the estimate of (β(1), 0). Linkage disequili-
brium was not accounted for during variant selection
neither for standard logistic regression nor for robust
logistic regression.
Our comparison of the performance of standard and

robust logistic regression was based on different statis-
tics. First, standard and robust estimates of age effects
were used to exemplify the potential influence of depart-
ing observations. Because of a different handling of out-
liers, it was expected that different age-genotype models
were selected under standard and robust logistic regres-
sion. Consequently, the areas under the receiver operat-
ing characteristic curves (AUCs) were subsequently
compared in order to investigate the discriminative per-
formance of the selected models. Comparisons were
conducted for the complete data set and after exclusion
of potential outliers.
In addition, concordance, sensitivity, specificity, clini-

cal net benefit, and AUCs were estimated for age-
genotype models using a leave-one-out cross-validation
approach [14]. Concordance was defined as the propor-
tion of correctly estimated hypertension statuses using
several cutoff values for the predicted affection probabil-
ity. The clinical net benefit (NB) was defined by

NB (c) =
True − positive counts

Sample size
− False− positive counts

Sample size
· c

1− c

= Sensitivity · (% Hypertensive
)− (

1− Specificity
) · (% Normotensive) · c

1− c
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where c is the chosen threshold for allocating an indi-
vidual to the cases based on the logistic regression prob-
ability estimate. Note that the net benefit depends on
the hypertension prevalence in the study population.
The standard and robust logistic regression models were
also compared based on the integrated discrimination
index (IDI) estimated by cross-validation

IDI =

⎛⎝ 1
ncases

ncases∑
i=1

p̂rob, i −
1

ncontr

ncontr∑
j=1
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⎞⎠
−

⎛⎝ 1
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ncases∑
i=1

p̂stand, i −
1

ncontr

ncontr∑
j=1

p̂stand, j
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where p̂rob, i, p̂rob, j, p̂stand, i, and p̂stand, j denote the

probability estimates from the robust and standard
logistic regression models for cases and controls [15].
This index represents the difference in the discrimina-
tion slopes of the 2 compared models. A positive IDI
indicates that the robust model discriminates better
between hypertensive and normotensive individuals than
the standard model. Statistical analyses were carried out
using the statistical language R, version 2.15.1 [16].

Results
c2 tests revealed no influence of gender (p = 0.95) and
tobacco smoking (p = 1.00) on hypertension risk.
Hence, only age was included in the logistic regression
models as covariate. Filter criteria resulted in 130 indivi-
duals (43 cases and 87 controls) with complete genotype
and phenotype information. The age of the individuals
ranged between 20 and 95 years with a median age of
52 years. The total number of measured SNPs on chro-
mosome 3 in the investigated GAW18 data set was
35,045.
A plot of Cook’s distances under the age-only stan-

dard logistic regression model revealed several observa-
tions (Figure 1) that departed from the majority of the
sample. Considering a threshold of 0.05 for the Cook’s
distance, 4 observations could be defined as outliers.
Information on disease status and age of deviating indi-
viduals is shown in Table 1. Individuals 62, 58, and 24
were older than 80 years and normotensive. Individual
number 60 was affected by the condition early in life, at
38 years of age. Table 1 shows the influence of the 4
identified outliers on standard and robust parameter
estimates of age effects. For example, the exclusion of
individual 62 resulted in an 11.2% increase of the excess
risk of hypertension per year according to standard
logistic regression, compared to a 7.8% increase for
robust logistic regression. Table 2 shows the odds of
hypertension by age interval.

Standard logistic regression identified SNP rs3934103
located in the ULK4 gene as the variant that most
improved the model fit. Robust logistic regression iden-
tified SNP rs11918360 in RP11-408H1.3 as the variant
with the strongest association signal. Under both stan-
dard and robust regression, model selection clearly
favored the 2 identified SNPs as represented in Figure 2.
The pairwise r2 between SNP rs3934103 and SNP
rs11918360 was 0.003.
Table 3 shows the influence of the 4 outliers on the

AUCs from the standard and robust logistic regression
models. Robust and standard AUCs for the age-only
models were identical. For the age-genotype models, the
AUCs were slightly smaller and also slightly less outlier-
dependent for robust logistic regression than for stan-
dard logistic regression.
Table 4 summarizes the results from the leave-one-out

cross-validation. The concordance was better for the
robust logistic regression model at every cutoff probabil-
ity. Both models allocated best at probability 0.5 and
almost identically at probability 0.3 (the investigated
population included 43 cases and 87 controls; that is
33% hypertension prevalence). At a probability of 0.3,
sensitivities were identical and the specificity was slightly
higher under robust regression. Standard and robust
estimates showed similar discriminative performances
supported by an IDI of −0.07 at every cutoff probability.
AUCs were also almost identical. The clinical net benefit
was slightly larger for the robust logistic regression
model in the probability range between 0.2 and 0.6.

Figure 1 Cook’s distances from the age-only standard logistic
regression model. The 4 most prominent outliers are indicated by
their observation number.
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Discussion
Present results confirmed that single individuals (1/130
= 0.8% of the observations) with a departing risk of
hypertension may substantially affect the overall risk
estimates in the baseline model, causing up to an 11.2%

change in the estimated excess risk of hypertension per
year according to standard logistic regression in the pre-
sent exercise.
The identification of outliers is relatively straightforward

using routine diagnostic plots, but outlier management is

Table 1 Estimated odds ratios per year of age

Excluded
individuals

HTN Age Standard logistic regression Robust logistic regression

OR-Age (95% CI) % Change OR-Age (95% CI) % Change

None 1.085 (1.050, 1.121) ref. 1.084 (1.048, 1.122) ref.

62 0 90.23 1.095 (1.057, 1.133) +11.2% 1.091 (1.052, 1.131) +7.8%

58 0 87.66 1.094 (1.056, 1.132) +10.0% 1.091 (1.052, 1.131) +7.9%

60 1 38.44 1.091 (1.054, 1.128) +6.5% 1.089 (1.051, 1.128) +5.1%

24 0 80.27 1.091 (1.054, 1.128) +6.6% 1.091 (1.052, 1.131) +7.6%

Odds ratios (ORs) were estimated based on standard and robust logistic regression models for the complete set of individuals and after exclusion of the 4 most
remarkable outliers.

HTN: Hypertension.

Table 2 Overall odds of hypertension per age interval

Age interval (number of cases-to-controls)

<39.0 (1:22) [39.0, 46.0) (2:20) [46.0, 56.2) (9:23) ≥56.2 (31:22)

0.05 0.10 0.39 1.41

Age intervals were defined by the age quartiles in controls.

Figure 2 Quantile-quantile plots from the age-genotype standard and robust logistic regression models. The 2 selected SNPs are
indicated by their reference SNP ID number.
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extremely challenging. For example, the specification of
thresholds for outlier definition is often arbitrary. Robust
statistics aim to generate estimates that hold for the
majority of the population using complete data. The
unequal weighting of outliers by standard and robust
regression resulted in prediction models that included dif-
ferent genetic variants.
Although robust estimates of age effects and AUCs for

age-genotype models were less sensitive to outliers than
standard estimates in the investigated sample, cross-vali-
dation AUCs based on standard and robust logistic
regression, as well as IDI, were almost identical. The
other investigated performance characteristics (concor-
dance, sensitivity, specificity, and clinical net benefit)
were equal or better for robust logistic regression
around the probability that reflects the case-control
ratio.
The standard logistic regression model selected 1 var-

iant in the ULK4 gene. It was previously shown that var-
iants in this gene are associated with hypertension
[4,17]. Among others, 4 variants (rs2272007, rs3774372,
rs1716975, rs1052501) mentioned in the 2 publications

were also genotyped in the GAW18 collective, and we
found them to be in linkage disequilibrium (r2 values
0.83, 0.73, 0.83, and 0.83, respectively) with the asso-
ciated SNP rs3934103.

Conclusions
Preliminary findings suggest some advantage of robust
statistics in the context of genetic association studies.
However, present results were limited to a given sample
size, as well as to particular genetic effect sizes and pro-
portions of outliers. Additional analyses based on both
real data and more general simulated scenarios should
be conducted to validate initial findings.
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None 0.811 (ref.) 0.852 (ref.) 0.811 (ref.) 0.843 (ref.)

62 0.820 +1.1% 0.861 +1.1% 0.820 +1.1% 0.852 +1.0%
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24 0.819 +1.0% 0.859 +0.9% 0.819 +1.0% 0.844 +0.0%

AUCs were calculated for the complete set of individuals and after exclusion of the 4 most remarkable outliers. The relative contributions of the variables age
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Table 4 Concordance, sensitivity, specificity, clinical net benefit, and overall AUCs.

Probability cutoff Standard logistic regression Robust logistic regression

Concordance
N (%)

Sensitivity Specificity Clinical net benefit Concordance
N (%)

Sensitivity Specificity Clinical net benefit

0.0 43 (33.1) 1.00 0.00 0.33 43 (33.1) 1.00 0.00 0.33

0.1 79 (60.8) 0.95 0.44 0.27 82 (63.1) 0.88 0.51 0.26

0.2 90 (69.2) 0.86 0.61 0.22 97 (74.6) 0.86 0.69 0.23

0.3 98 (75.4) 0.81 0.72 0.19 99 (76.2) 0.81 0.74 0.19

0.4 98 (75.4) 0.70 0.78 0.13 102 (78.5) 0.72 0.82 0.16

0.5 101 (77.7) 0.60 0.86 0.11 107 (82.3) 0.67 0.90 0.15

0.6 97 (74.6) 0.40 0.92 0.05 102 (78.5) 0.51 0.92 0.09

0.7 99 (76.2) 0.35 0.97 0.06 100 (76.9) 0.42 0.94 0.05
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0.9 91 (70.0) 0.12 0.99 −0.03 93 (71.5) 0.19 0.98 −0.08

1.0 87 (66.9) 0.00 1.00 - 87 (66.9) 0.00 1.00 -

AUC 0.835 0.830

These characteristics rely on the age-genotype models for standard and robust logistic regression estimated based on leave-one-out cross-validation.
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