
 

 

Dissertation  

submitted to the  

Combined Faculties for the Natural Sciences and for Mathematics 

of the Ruperto-Carola University Heidelberg, Germany 

for the degree of 

Doctor of Natural Science  

 

 

 

 

 

 

 

 

 

 

Presented by: 

Master of Science Sabrina Schröder 

Born in: Bochum 

Oral-examination: 

……………………… 



 

 
 

 

 

 

 

 

 

 

Functional Analysis of Sam68 during Forebrain and 

Oligodendrocyte Development 

 

 

 

 

 

 

 

 

Referees: Prof. Dr. Ulrike Müller 

                 PD Alexander von Holst 

 



                                                                                                                                                      Content 

I 
 

Content 

LIST OF FIGURES ...............................................................................................................III 

ABBREVIATIONS ...............................................................................................................IV 

ABSTRACT ......................................................................................................................... VII 

ZUSAMMENFASSUNG ..................................................................................................... IX 

1. INTRODUCTION .............................................................................................................. 1 

1.1. Development of the Central Nervous System ........................................................................................ 1 

1.1.1. Glial stem and progenitor cells in development .................................................................................... 3 

1.2. Oligodendrocyte Development and Differentiation ............................................................................. 4 

1.2.1. MBP Synthesis and myelin sheet formation ........................................................................................... 5 
1.2.2. Regulation of OPC differentiation ........................................................................................................... 8 

1.3. The STAR-Family proteins Sam68, Slm-1 and Slm-2 ............................................................................ 9 

1.3.1. Functional motifs of STAR-Family proteins ........................................................................................... 9 
1.3.2. Functional roles of Sam68 motifs ........................................................................................................... 10 
1.3.3. Role of Sam68 during development ...................................................................................................... 11 
1.3.4. Role of Sam68 in alternative splicing ..................................................................................................... 12 

1.4. hnRNPA1 ..................................................................................................................................................... 14 

AIM OF STUDY ................................................................................................................... 16 

2. MATERIAL ........................................................................................................................ 17 

2.1. Equipment ................................................................................................................................................... 17 

2.1.1. Companies ................................................................................................................................................. 17 
2.1.2. Chemicals .................................................................................................................................................. 18 
2.1.3. Plastic Ware ............................................................................................................................................... 19 
2.1. Antibodies .................................................................................................................................................... 20 
2.1. siRNA ............................................................................................................................................................ 21 
2.1. Oligonucleotide Primer .............................................................................................................................. 22 
2.1. Plasmids ....................................................................................................................................................... 22 
2.1. Kits ................................................................................................................................................................ 23 
2.6. Animals ......................................................................................................................................................... 23 

2.2. Buffer ............................................................................................................................................................ 24 

2.2.1. Cell Culture Media / Supplements ....................................................................................................... 24 
2.2.2. Buffer for Immunocyto- and Immunohistochemistry ......................................................................... 25 



                                                                                                                                                      Content 

II 
 

2.2.3. Molecular Biology .................................................................................................................................... 26 
2.2.4. Proteinbiochemistry ................................................................................................................................. 26 

3. METHODS ........................................................................................................................ 27 

3.1. Cell culture .................................................................................................................................................. 27 

3.1. Cultivation of HEK293T Cells ................................................................................................................... 27 
3.1.1. Preparation and setting up mouse neural stem cell cultures ............................................................. 27 
3.1.2. Isolation of Oligodendrocyte precursor cells ....................................................................................... 28 
3.1.3. Transfection of oligodendrocyte precursor cells .................................................................................. 29 
3.1.3.1. Transfection of OPCs with hnRNPA1 siRNA ................................................................................... 30 
3.1.4. Detection of antigens in single cells and on tissue sections ................................................................ 30 

3.1.4.1. Immunocytochemistry ................................................................................................................. 30 

3.1.4.2. Immunohistochemistry ................................................................................................................ 30 

3.1.5. Image Acquisition and Statistical Analysis .......................................................................................... 31 

3.2. Proteinbiochemistry .................................................................................................................................. 32 

3.2.1. Cell Lysis and protein quantification .................................................................................................... 32 
3.2.2. SDS-PAGE ................................................................................................................................................. 32 
3.2.3. Immunoblotting ....................................................................................................................................... 33 

3.3. Molecular Biology ...................................................................................................................................... 33 

3.3.1. RNA-Isolation and cDNA synthesis ...................................................................................................... 33 
3.3.2. Reverse Transcriptase polymerase chain reaction (RT-PCR) ............................................................. 34 
3.3.3. Isolation of plasmid DNA ....................................................................................................................... 34 

4. RESULTS ........................................................................................................................... 35 

4.1. Identity of Sam68 expressing cells in the forebrain ............................................................................ 35 

4.1.1. Immunohistochemical analysis of Sam68 expression pattern ........................................................... 35 
4.1.2. Immunocytochemical analysis of Sam68 expression pattern ............................................................. 39 

4.2. High efficiency Transfection of Oligodendrocyte Precursor Cells ................................................... 42 

4.3. Functional Analysis of Sam68 during Oligodendrocyte Development ........................................... 46 

4.3.1. Role of Sam68 domains in oligodendrocyte differentiation ............................................................... 46 
4.3.2. Interplay of hnRNPA1 and Sam68 during OPC differentiation ........................................................ 55 

5. DISCUSSION ................................................................................................................... 64 

5.1. Cellular identity of Sam68 expressing cells ............................................................................................. 65 
5.2. High efficiency transfection of primary rat OPCs .................................................................................. 67 
5.3. Role of Sam68 and hnRNPA1 during oligodendrocyte development ................................................. 68 

6. REFERENCES ................................................................................................................... 78 

DANKSAGUNG .................................................................................................................. 90 



                                                                                                                                            List of figures   
 

III 
 

List of Figures 

FIGURE 1. DEVELOPMENT OF THE CEREBRAL CORTEX ........................................................................................... 3 

FIGURE 2. OLIGODENDROGLIA DEVELOPMENT AND DISTINCT MARKER PROFILE ................................................ 5 

FIGURE 3. SCHEMATIC DIAGRAM ILLUSTRATING THE STRUCTURAL AND FUNCTIONAL DOMAINS OF SAM68. . 11 

FIGURE 4. SCHEMATIC DIAGRAM ILLUSTRATING THE SAM68 CONSTRUCTS USED IN THIS THESIS. .................... 22 

FIGURE 5. ISOLATION OF OLIGODENDROCYTE PRECURSOR CELLS. ..................................................................... 28 

FIGURE 6. TRANSFECTION OF OLIGODENDROCYTE PRECURSOR CELLS. .............................................................. 29 

FIGURE 7. CO-EXPRESSION OF SAM68 AND PAX6 IN THE EYE AND THE CORTEX. ............................................... 36 

FIGURE 8. CO-EXPRESSION OF SAM68 AND NESTIN IN THE E13.5 MOUSE CORTEX. ........................................... 37 

FIGURE 9. CO-EXPRESSION OF SAM68 AND ΒIII-TUBULIN IN THE CORTEX AND THE EYE. .................................. 37 

FIGURE 10.  SAM68 AND GFAP ARE CO-EXPRESSED IN THE SVZ OF P10 MOUSE BRAIN. ................................... 38 

FIGURE 11. CO-EXPRESSION OF SAM68 WITH PAX6 AND NESTIN IN NEURAL STEM CELLS ................................ 40 

FIGURE 12. CO-EXPRESSION OF SAM68 WITH ΒIII-TUBULIN AND GFAP IN NEURAL STEM CELLS ..................... 40 

FIGURE 13. QUANTIFICATION OF NEURAL STEM CELLS CO-EXPRESSING SAM68 AND TYPICAL NEURAL STEM 

CELL MARKERS ............................................................................................................................................. 41 

FIGURE 14. TRANSFECTION RESULT WITH SUBOPTIMAL PULSE PROTOCOL DS-113. ........................................... 43 

FIGURE 15. CA-138 DISPLAYED THE BEST BALANCE OF VIABILITY AND TRANSFECTION EFFICIENCY ................ 44 

FIGURE 16. TRANSFECTED OPCS PERFORM A NORMAL MORPHOLOGICAL MATURATION ................................. 45 

FIGURE 17. PDGFRΑ-POSITIVE OPCS TRANSFECTED WITH SAM68_VF ARE SIGNIFICANTLY ELONGATED, 

WHEREAS NO SIGNIFICANT DIFFERENCES WERE OBSERVED IN THE PROPORTION OF TRANSFECTED MARKER 

POSITIVE OLIGODENDROCYTES. ................................................................................................................... 47 

FIGURE 18. O4 - POSITIVE CELLS TRANSFECTED WITH SAM68_WT AND SAM68_VF EXHIBITED A 

SIGNIFICANTLY LARGER SURFACE. .............................................................................................................. 50 

FIGURE 19. MBP-POSITIVE CELLS TRANSFECTED WITH SAM68_351-443 AND SAM68_NLS-KO DISPLAY A 

SIGNIFICANTLY SMALLER SURFACE IN COMPARISON TO SAM68_WT OVEREXPRESSION. .......................... 52 

FIGURE 20. SAM68_NLS-KO PREVENTS MYELIN SHEET FORMATION................................................................. 52 

FIGURE 21. TRANSFECTION WITH SAM68_VF SIGNIFICANTLY INCREASED MBP-PROTEIN LEVEL AND 

REDUCED MBP-MRNA LEVEL .................................................................................................................... 54 

FIGURE 22. IMMUNOBLOTTING CONFIRMS THE SUCCESSFUL KNOCKDOWN OF HNRNPA1 IN OPCS. .............. 56 

FIGURE 23. HNRNPA1 KNOCKDOWN IN COMBINATION WITH EITHER SAM68_351-443 OR SAM68_NLS-KO 

TRANSFECTION INCREASES THE SURFACE OF O4-POSITIVE CELLS .............................................................. 59 

FIGURE 24.  SAM68 AND HNRNPA1 REGULATE MYELIN SHEET FORMATION AND MBP EXPRESSION .............. 60 

FIGURE 25. CELL SIZE COMPARISON OF MBP-POSITIVE OPCS SINGLE AND DOUBLE TRANSFECTED WITH SAM68 

PLASMIDS AND HNRNPA1 SIRNA. ............................................................................................................ 62 

FIGURE 26. INFLUENCE OF SAM68 PLASMIDS ON MBP-EXPRESSION. ................................................................. 72 

FIGURE 27. PROPOSED MODEL FOR THE REGULATION OF MBP-EXPRESSION THROUGH SAM68 AND HNRNPA1.

 ...................................................................................................................................................................... 76 



                                                                                                                                            Abbrevations   
 

IV 
 

Abbreviations 

 

BMP Bone Morphogenic Protein 

bp Base pairs 

BSA Bovine Serum Albumine 

CDM Chemically Defined Medium 

CDM_Diff. CDM Differentiation Medium 

CDM_Prol. CDM Proliferation Medium 

cDNA Copy DNA 

CGE Caudal Ganglionic Eminence 

CNS Central Nervous System 

CP Cortical Plate 

Cy2 Carbocyanine 

Cy3 Indocarbocyanine 

DMEM Dulbeccos Modified MEM 

dNTP Deoxyribonucleotide-triphosphate 

ECL Enhanced Chemiluminescence 

ECM Extracellular Matrix 

EDTA Ethylenediaminetetraacetic acid 

EGFP Enhanced GFP 

FCS Fetal Calf Serum 

FITC Fluorescein Isothiocyanate 

FGF Fibroblast Growth Factor 

GCL Ganglion Cell Layer 

GE Ganglionic Eminence 

GFAP Glial Fibrillary Acidic Protein 

GFP Green Fluorescent Protein 

Gly Glycin 

h Hour 

HEK293 Human Embryonic Kidney Cells 

HEPES 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid 



                                                                                                                                            Abbrevations   
 

V 
 

hnRNP Heterogenous Nuclear Protein 

HRP Horseraddish peroxydase 

Golli Genes of oligodendrocyte lineage 

Ig Immunglobulin 

IGF-1 Insulin like Growth Factor 1 

IP Intermediate Progenitor Cells 

IR Insulin Receptor 

IRS-1 Insulin Receptor Substrate 1 

KRH Krebs-Ringer-HEPES 

KRH/A KRH with BSA 

kDa Kilodalton 

LB Lysogeny Broth 

LGE Lateral Ganglionic Eminence 

MAG Myelin-associated Glycoprotein 

MBP Myelin Basic Protein 

MEM Minimal Essential Medium 

MGC Mixed Glial Culture Medium 

MGE Medial Ganglionic Eminence 

mRNA Messenger RNA 

NSC Neural Stem Cell 

OPC Oligodendrocyte Precursor Cell 

ONL Outer Nuclear Layer 

P Postnatal Day 

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate-buffered saline 

PBS/A PBS with BSA 

PBT1 PBS with TritonX100 

PBT01 PBT with L-lysine 

PBT/IM PBT with Serum 

PCR Polymerase Chain Reaction 

PDGF-AA Plateled-derived Growth Factor 

PDGFRα PDGF receptor alpha  

PDL Poly-D-Lysin 



                                                                                                                                            Abbrevations   
 

VI 
 

PFA Paraformaldehyd 

PLP Proteolipid Protein 

PORN Poly-Ornithin 

P/S Penicillin/Streptavidin 

PVDF Polyvinylidenfluoride 

RNP Ribonucleoprotein 

ROI Region of Interest 

rpm Rounds per minute 

RT Room temperature 

RT-PCR Reverse Transcriptase PCR 

Sam68 Src-associated substrate in mitosis of 68kDa 

SD Standard deviation 

SDS Sodium Dodecyl Sulfate 

SHH Sonic Hedgehog Protein 

siRNA Small interfering RNA 

Slm-1 Sam68 like mammalian Protein-1 

Slm-2 Sam68 like mammalian Protein-2 

STAR Signal transduction and activation of RNA 

T3 Triiodothyronin 

T4 Thyroxin 

TAE Tris-acetate-EDTA 

TBS Tris-buffered saline 

TBST TBS with Tween20 

TE Trypsin-EDTA 

TEMED N,N,N‘,N‘-Tetramethylethylendiamine  

Tris 2-Amino-2-(hydroxymethyl)-propane-1,3-

diol 

TE Trypsin EDTA 

Tnc Tenascin-C 

Tnr Tenascin-R 

U Unit 

ZNS Zentrales Nervensystem 



                                                                                                                                                     Abstract   
 

VII 
 

Abstract 

 

During the development of the central nervous sytem (CNS) the maturation of 

oligodendrocytes occurs through the tightly regulated activity of diverse intrinsic and 

extrinsic signalling factors. Our group identified the STAR-family protein Sam68 as one of 

those intrinsic cues involved in oligodendrocyte differentiation. The level of Sam68 increases 

with ongoing maturation and it regulates the expression of Myelin Basic Protein (MBP). 

Despite its role in OPC (oligodendrocyte precursor cells) maturation, previous studies 

already identified Sam68 as a promotor of neural stem cell (NSC) differentiation and as a 

Tenascin-C- regulated target gene. However, the mechanism(s) how Sam68 regulates NSC 

and particularly oligodendrocyte development remained incompletely understood. This 

thesis provides completely new insights into the role of Sam68 during forebrain and 

particularly, oligodendrocyte development. Furthermore, my results exhibit hnRNPA1 as a 

new interaction partner of Sam68 in oligodendrocyte development and provide a basic 

concept for the regulation of MBP-expression through both proteins. 

Our group already investigated the general expression pattern of the three STAR-family 

members, Sam68, Slm-1 and Slm-2 and showed a specific expression of all three proteins 

during forebrain development. The present thesis characterised for the first time the identity 

of Sam68 expressing cells during forebrain development. Neuroepithelial, radial glia cells 

and their derivative cell types were exhibited to express Sam68. Furthermore, time-

dependent cell culture experiments revealed a significant shift in the expression pattern 

towards differentiating cells. These findings supported earlier studies of our group 

indicating a promotive role of Sam68 in cell differentiation.  

The second part describes a successfully established method for the high efficiency 

transfection of non-adherent primary rat OPCs. This new transfection protocol enables for 

the first time the reproducible transfection of non-adherent OPCs with a high viability, a 

regular maturation pattern and an acceptable transfection efficiency. Regarding the time-

consuming and low yield isolation of OPCs, this method represents a big advantage and 

provides the basis for the main goal of this thesis, which displays the determination of the 

role of Sam68 during oligodendrocyte development. Although oligodendrocytes count to the 

best characterised cell types within the CNS, many intracellular signalling pathways 

regulating their development and differentiation remained elusive. Here, I discovered the 



                                                                                                                                                     Abstract   
 

VIII 
 

respective Sam68 domains which modulates cell growth, MBP-expression and myelin-sheet 

formation. The complete RNA-binding domain and the NLS-sequence were shown to be 

relevant for the regulation of MBP-expression as well as for the formation of myelin-sheets. 

The relevance of the NLS-sequence and the knowledge about Sam68 as a regulator of 

alternative splicing events led to the assumption that Sam68 may regulate MBP-expression 

through modulating its splicing. The well-studied splicing regulator hnRNPA1 was already 

shown to regulate the alternative splicing of myelin-associated glycoprotein in cooperation 

with the STAR-family member Quaking I. Thus, I assumed a similar interaction of Sam68 

and hnRNPA1 in the regulation of MBP expression. Indeed, MBP-level was downregulated 

after an hnRNPA1 knockdown and this effect was intensified after an additional 

overexpression of Sam68. These results provide a good basis to unravel the very complex 

regulation between Sam68 and hnRNPA1 in oligodendrocyte development. 
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Zusammenfassung 

 

Während der Entwicklung des zentralen Nervensystems (ZNS) wird die Reifung von 

Oligodendrozyten durch die Aktivität diverser intrinsischer und extrinsischer 

Signalmoleküle gesteuert. Unserer Arbeitsgruppe gelang es, das STAR-Family Protein Sam68 

als einen solchen intrinsischen Faktor, im Rahmen der Oligodendrozyten Differenzierung zu 

identifizieren. Mit voranschreitender Reifung steigt das Sam68-Level in Oligodendrozyten 

an und die MBP-Expression wird gesteigert. Neben dieser Funktion während der 

Oligodendrozyten Entwicklung, konnten vorherige Studien auch zeigen, dass Sam68 die 

neurale Stammzell (NSC)- Differenzierung fördert und durch Tenascin-C reguliert wird. Die 

exakten Mechanismen, wie Sam68 die NSC und besonders die Oligodendrozyten 

Entwicklung reguliert, sind allerdings noch unverstanden. Die in dieser Arbeit präsentierten 

Ergebnisse liefern komplett neue Erkenntnisse über die Funktion von Sam68 während der 

Vorderhirn- und besonders der Oligodendrozytenentwicklung. Weitergehend wurde 

hnRNPA1 als Interaktionspartner von Sam68 identifiziert und eine Hypothese zur 

Regulation der MBP-expression durch diese beiden Faktoren aufgestellt. 

Studien unserer Arbeitsgruppe zeigten bereits ein spezifisches Expressionsmuster der drei 

STAR-family Proteine Sam68, Slm-1 und Slm-2 während der Vorderhirn Entwicklung. In 

dieser Arbeit wurden zum ersten Mal Sam68 exprimierende Zellen im Vorderhirn im 

Hinblick auf ihre zelluläre Identität charakterisiert. Diese Ergebnisse zeigten eine Expression 

von Sam68 in neuroepithelialen und radialen glia Zellen und in aus diesen Vorläufern 

hervorgehenden Zelltypen. In weiterführenden Zell-Kultur Experimenten wurde im Rahmen 

einer zeitabhängigen Studie festgestellt, dass sich die Sam68-Expression in Vorläuferzellen 

zu differenzierenden Zellen hin verschiebt. Diese Ergebnisse unterstützen vorherige Studien 

unserer Arbeitsgruppe, die eine fördernde Funktion von Sam68 im Rahmen der 

Zelldifferenzierung vermuten lassen. 

Im zweiten Teil dieser Arbeit wird der Etablierungsprozess für die Methode der hoch 

effizienten Transfektion von nicht adherenten primären Oligodendrozyten Vorläuferzellen 

beschrieben. Diese neue Transfektionsmethode ermöglicht zum ersten Mal die 

reproduzierbare Elektroporation von geringen Zellzahlen und bietet daher im Hinblick auf 

die sehr zeitaufwändige und ertragsarme Isolierung von primären Oligodendrozyten aus 

Ratten einen enormen Vorteil.  
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Diese Methode bot die Grundlage für die Untersuchungen zur Rolle von Sam68 während der 

Oligodendrozytenentwicklung, welche den Hauptbestandteil dieser Arbeit darstellt. Obwohl 

Oligodendrozyten zu den am besten charakterisierten Zelltypen des ZNS zählen, sind viele 

intrazelluläre Signalwege, die ihre Entwicklung und Differenzierung regulieren, noch völlig 

unklar. In dieser Arbeit konnte ich die Sam68 Domänen ermitteln, die das Zellwachstum, die 

MBP-Expression und die Myelin-Membran Bildung modulieren. Die komplette RNA-

bindende Domäne und die Kern-Lokalisierungssequenz sind für diese Funktionen relevant.  

Sam68 ist ein bekannter Splicing Regulator und die Relevanz der Kern-

Lokalisierungssequenz führte zu der Vermutung, dass Sam68 die MBP-expression durch 

diesen Mechanismus steuert. Der Splicing Regulator hnRNPA1 kontrolliert zusammen mit 

dem STAR-family Protein Quaking I das alternative Splicen des Myelin-associated 

Glykoprotein. Eine ähnliche Wechselwirkung wurde zwischen Sam68 und hnRNPA1 

vermutet und untersucht. Tatsächlich konnte ich in dieser Arbeit eine Runterregulation des 

MBP-Levels nach einem hnRNPA1 knockdown zeigen. Dieser Effekt wurde durch die 

zusätzliche Überexpression von Sam68 verstärkt. Diese Ergebnisse liefern erste Rückschlüsse 

auf die vermutlich sehr komplexe Regulation zwischen Sam68 und hnRNPA1 während der 

Entwicklung von Oligodendrozyten. 
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1. Introduction 

1.1. Development of the Central Nervous System 

 

In the last not even 100 years the fundamental knowledge about the development of the 

central nervous system (CNS) increased drastically. Beginning in the 1930’ where neural 

induction was discovered by Spemann and Mangold showing that transplanted dorsal 

blastopore lip tissue can induce the host ventral ectoderm to form a complete secondary 

dorsal axis. These transplantation experiments with amphibians were performed during 

gastrulation, the early embryonic phase giving rise to the three germinal layers: ectoderm, 

endoderm and mesoderm. Meso -and endoderm develop into skeleton, heart and muscle 

tissues whereas the ectoderm gives rise to neural and epidermal tissue. The eye is almost 

entirely composed of the three ectodermal derivatives of the embryo, namely the 

neuroectoderm, the head surface ectoderm and the neural crest (Saha et al., 1989). The 

molecular mechanism of the Speemans organizer remained elusive until in the 1990’ the first 

biochemical pathways involved in this neural induction process were discovered. Noggin, 

chordin and follistatin were discovered as neural inducers (Lamb et al., 1993, Smith et al., 

1993, Hemmati-Brivanlou et al., 1994, Sasai et al., 1994) and as inhibitors of bone 

morphogenic protein (BMP) signalling pathway. This inhibition of BMP induces neural 

differentiation of the ectoderm leading to the formation of the neural tube. This process is 

called neurulation and leads to the formation of the entire CNS. The neural plate rolls up into 

a tube separating from the rest of the ectoderm. The notochord is formed by the involute 

cells concentrated underneath the neural plate and it is the origin of sonic hedgehog (SHH) 

proteins. The BMP signalling from ectoderm and SHH proteins synthesised by the notochord 

result in the dorso-ventral patterning of the neural tube. After the neural induction, the 

neuroectoderm consists of a homogenous layer of radially aligned neuroepithelial cells. 

These cells are the principle progenitor cells of all neural cell types and are characterised by 

the expression of distinct marker molecules for instance the intermediate filament protein 

Nestin (Hockfield and McKay, 1985, Lendahl et al., 1990). Most of the neural tube gives rise 

to the spinal cord, whereas the rostral end enlarges to form the three primary brain vesicles: 

prosencephalon (forebrain), mesencephalon (midbrain) and rhombencephalon (hindbrain). 

During embryonic forebrain development the symmetric division of neural progenitors leads 
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to a tissue expansion and is followed by the neurogenic phase. In this phase, around E9-10, 

neurons are generated directly from symmetric and asymmetric dividing neuroepithelial 

cells. As the developing brain epithelium thickens, neuroepithelial cells elongate and convert 

into radial glial cells expressing Pax6 (Gotz et al., 1998). In the eye, Pax6 is initially expressed 

throughout the whole ocular cup and is required for the differentiation of most retinal 

lineages. At E12.5, when retinogenesis is near completion, Pax6 becomes expressed in high 

levels in amacrine cells, radial ganglion cells and horizontal cells (Hsieh and Yang, 2009). 

This prominent role becomes clear regarding the severe effects in the pax6 knockout mouse 

where the eyes are completely absent (Stoykova et al., 1996). Pax6 expressing cells in the 

brain and the eye own a neuronal fate (Shaham et al., 2012, Manuel et al., 2015). In the brain 

the asymmetric division of radial glial cells generate neurons either directly or indirectly 

through intermediate progenitor cells (IP) (Noctor et al., 2001). Radial glial cells contain a 

regional specification and differ regarding the neuronal subtypes they generate in the 

telencephalon. With ongoing neurogenesis radial glial cells differentiate from neuroepithelial 

cells by acquiring glial hallmarks, such as e.g. expression of vimentin and glial fibrillary 

acidic protein (GFAP) (Dimou and Gotz, 2014). However, neurons migrate from their origin 

in the embryonic ventricular zone of the forebrain to their final place of destination in the 

different cortical layers. They do so by migrating along the processes of the radial glial cells 

(Nadarajah, 2003, Paridaen and Huttner, 2014) (Figure 1). In the dorsal telencephalon and the 

ganglionic eminence (GE) they generate glutamatergic pyramidal projection neurons 

identified by the transcription factor Pax6 (Dimou and Gotz, 2014). Finally, in the gliogenic 

phase around birth, macroglia arise from radial glial cells directly or through IP cells 

(Kriegstein and Alvarez-Buylla, 2009) (Figure 1). These are the star-shaped astrocytes, 

implicated in ion and metabolic brain homeostasis, microglia important in phagocytosis and 

defense and lastly the myelinating glial cells. Schwann cells are the myelinating cells of the 

peripheral nervous system, whereas oligodendrocytes fulfil this function in the CNS. 

Recently additionally NG2-glia were discovered identified by NG2 antibody recognizing the 

chondroitin sulfate proteoglycan 4 (Levine and Nishiyama, 1996, Dimou and Gotz, 2014). 
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synapses were discovered, such as NG2-glia (Butt et al., 2005, Rivers et al., 2008). The 

function of oligodendrocytes is also more complex than just isolating axons, the role initially 

suggested by Pedro Ramon y Cajal. They serve as metabolic supporters by supplying lactate 

to neurons through their myelin sheets (Lee et al., 2012).  

 

1.2. Oligodendrocyte Development and Differentiation 

 

As mentioned above, oligodendrocytes develop from oligodendrocyte precursor cells. These 

in turn are detectable only few days after the start of neurogenesis in the endopeduncular 

area, a subfield of the medial ganglionic eminence (MGE). This first wave of OPCs generates 

from Nkx2.1-expressing cells around E12.5 and they subsequently migrate into all parts of 

telencephalon and finally enter the cerebral cortex after E16. By postnatal day 10 the number 

of Nkx2.1 cells declines and is overtaken by OPCs derived from GSh2-precursors in the LGE 

and caudal ganglionic eminence (CGE). Finally in a third wave OPCs emerge from Emx1-

positive cells in the cortex itself. Those later born OPCs contribute to the total OPC number 

in the adult brain by replacing the earlier generated OPCs (Kessaris et al., 2006, Dimou and 

Gotz, 2014). The differentiation from a bipolar OPC to a complex branched shape in the 

mature, myelinating oligodendrocyte follows stepwise morphological changes accompanied 

with a highly specific marker profile. Biopolar progenitors express typical surface molecules, 

for instance the plated derived growth factor receptor α (PDGFRα) (Pringle and Richardson, 

1993), the NG2-proteoglykan (Levine and Stallcup, 1987, Stallcup and Beasley, 1987) and the 

tetrasialyganlioside recognized by the A2B5 antibody (Eisenbarth et al., 1979). The 

differentiation to a pre-oligodendrocyte is accompanied with formation of complex branches 

and a change in the antigen profile. Progenitor molecules like PDGFRα and A2B5 are 

downregulated and instead the glycolipid sulfatide is expressed, which is recognized by the 

O4-antibody (Sommer and Schachner, 1981). With the formation of axon wrapping 

membranes, the expression of galactocerebroside (GalC), the major glycolipid in myelin, 

starts and can be followed with the monoclonal antibody O1 (Sommer and Schachner, 1981) 

and GalC (Ranscht et al., 1982). Finally, the expression of major myelin proteins such as 

myelin associated glycoprotein (MAG) (Poltorak et al., 1987) and myelin basic protein (MBP) 

(Barbarese and Pfeiffer, 1981) characterise mature oligodendrocytes. 
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Figure 2. Oligodendroglia development and distinct marker profile 

(A) The cartoon illustrates the stepwise morphological transformation from bipolar progenitors to 
myelinating oligodendrocytes accompanied with a change in the sequential expression of molecular 
markers. Adopted from (Zhang, 2001). (B) This scheme shows a coronal view of an embryonic 
forebrain demonstrating the time-dependent migration of OPCs from the three ganglionic eminences. 
The green, blue and red shaded areas illustrate the pre-optic area, medial/lateral GE and neocortex. 
The first wave arises from Nkx2.1-expressing precursors in the MGE at E12.5. Around E15.5 Gsx2 
precursors in the LGE and MGE gives rise to the second wave. The last OPCs arise from Emx1 
expressing cells in the cortex, starting around birth. Adopted from (Rowitch and Kriegstein, 2010). 
 

 

1.2.1. MBP Synthesis and myelin sheet formation 

 

The mechanism by which oligodendrocytes extend their plasma membrane to wrap axons 

and generate multi-layered compact myelin sheath is still unresolved. Recent studies 

revealed new insights into this complex process. In principal, myelin is an insulating 

membrane formed by oligodendrocytes wrapping their plasma membrane multiple times 

around an axon resulting in a multi-layered stack of compacted membranes (Bunge, 1968, 

Remahl and Hildebrand, 1982). Only few proteins reside within compacted myelin, MBP 

(Myelin Basic Protein) is one of these two abundant proteins. Hence, MBP needs to be 

transported to myelin. During development this occurs by the transport of its messenger 

RNA (mRNA) within cytoplasmic granules (Colman et al., 1983, Ainger et al., 1993). Already 

30 years ago, the transport of MBP mRNA in RNA granules to the myelin compartments and 

a local translation was postulated by microinjection experiments (Colman et al., 1983). The 

transport depends on two regions within the 3’UTR. The 21-nucleotide RNA trafficking 

sequence (RTS), being important for the cell body to oligodendrocyte branches transport and 

the RNA localisation element (RLR), which is important for the final transport into the 
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myelin sheet (Ainger et al., 1997). Oligodendrocytes form myelin-like membranes in the 

absence of neurons, thus the capacity to differentiate into mature oligodendrocytes is 

intrinsic and furthermore depends on interactions between OPCs (Sarlieve et al., 1983, Yang 

et al., 2011). Nevertheless, coculture-experiments with neurons increase myelin gene 

expression, such as PLP, MBP, and MAG indicating the importance of axon-glia 

communication (Macklin et al., 1986, Kidd et al., 1990). The axon-glia communication is not 

only necessary for myelin production but also for axon survival. Exosome mediated 

neurotransmitter release from oligodendrocytes to neurons for instance is crucial for axon 

survival (Fruhbeis et al., 2013). However, the amount of myelin at axonal segments varies. 

Therefore oligodendrocytes need to regulate the production of myelin responsive to local 

axonal requirements. Regarding OPC differentiation, the general idea is that neuronal 

contact and signals control the morphological transformation to myelin-forming 

oligodendrocytes (Hardy and Friedrich, 1996). In the peripheral system, neuregulin-1 

controls the myelination of schwann-cells (Grigoryan and Birchmeier, 2015). Such a single 

key player is currently not known in the CNS. Moreover, signals from inhibitory neurons are 

important for OPCs to exit a repressed state (Bergles et al., 2000, Emery, 2010). These 

inhibitory signals (e.g. Jagged, PSA-NCAM, and LINGO-1) activate transcriptional 

regulators, like Sox5/6, Hes5 and Id2/4. These in turn prevent OPCs from entering their 

terminal differentiation (Piaton et al., 2010, Taveggia et al., 2010, Simons and Nave, 2015). 

Besides the axonal influence on OPCs, extrinsic signalling mechanisms also control 

oligodendrocyte differentiation and myelination. Fyn kinase, as a member of the Src-family 

kinases, is an important regulator of myelination. It causes the phosphorylation of hnRNPA2 

and the release of hnRNPA2 and hnRNP-E1 from mRNA-transport granules (White et al., 

2008). Both proteins are crucial trans-acting factors regulating the transport and the 

translation of MBP-mRNA (Torvund-Jensen et al., 2014). Subsequently, the local transition of 

MBP is initiated at the tip of the oligodendrocyte branches (White et al., 2008, Laursen et al., 

2011, Wake et al., 2011). The classic multifunctional MBP protein expressed by myelinating 

oligodendrocytes arises from a gene complex called Golli (genes of oligodendrocyte lineage), 

which also gives rise to Golli(-MBP) family of proteins. The Golli gene contains three 

different transcriptional start sites enabling the expression of the two distinct subfamilies of 

proteins, classic MBP proteins and Golli(-MBP) proteins (Campagnoni et al., 1993, Muller et 

al., 2013). The existence of classical MBP-proteins is restricted to myelinating cells, whereas 

Golli(-MBP) proteins were also found in other neural and non-neural cells (Givogri et al., 

2001, Marty et al., 2002). Classic MBP-isoforms are encoded by exons I, III, IV and VII, 
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whereas exon II, V and VI are only found in specific splice variants. The different sizes of 

MBP-isoforms in the mouse have a molecular weight of 14, 17.22, 17.24, 18.5, 20.2 and 21.5 

kDa, whereas the biggest predicted MBP-isoform of a rat is supposed to have a molecular 

weight of 35.86 kDa. The relative abundance of isoforms containing exon II is higher during 

myelinogenesis, whereas the presence of isoforms lacking this exon is increased in compact 

myelin sheets (Ozgen et al., 2014). In the first case, MBP as a positively charged protein is 

proposed to function in the compaction of myelin membranes by associating with the 

negatively charged oligodendroglial phospholipids (Nawaz et al., 2009) and bringing the 

opposing cytoplasmic surfaces of the myelin membrane closely together (Roach et al., 1983). 

Therefore, most soluble and membrane proteins must be depleted from the membrane. MBP 

is regulating this depletion process by the formation of a mesh-like network of MBP-

molecules acting as a diffusion barrier. Larger proteins are extruded or bound to MBP, 

whereas small molecules diffuse through the pores (Aggarwal et al., 2013). Consequentially, 

compact myelin becomes a protein-poor membrane lacking major glycoproteins at the 

extracellular leaflet promoting the association of two bilayers (Bakhti et al., 2013, Simons and 

Nave, 2015).  

The compacted myelin provides the high electrical resistance and low capacitance essential 

for saltatory impulse propagation. Most oligodendrocytes generate between 20-60 

myelinating processes with intermodal lengths of 20-200 µm and up to 100 membrane turns 

(Matthews and Duncan, 1971, Hildebrand et al., 1993). The surface area of one 

oligodendrocyte can reach up to 5-50x103 µm2, making them unique in their size compared to 

all other cell types of our body (Pfeiffer et al., 1993, Baron and Hoekstra, 2010). In zebrafish 

oligodendrocytes wrap single axonal segments and produce all myelin sheaths in only five 

hours (Czopka and Lyons, 2011, Czopka et al., 2013). 
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1.2.2. Regulation of OPC differentiation 

 

In vitro oligodendrocytes produce myelin-like membranes in the absence of axons and in the 

absence of neighbouring cells and mitogens. Although OPCs divide in the presence of 

mitogens, the number of cell divisions is limited (Temple and Raff, 1985, 1986). One 

regulator of this limitation is the cyclin-dependent kinase inhibitor p27Kipl. With ongoing 

OPC proliferation, p27Kipl accumulates, resulting in cell cycle exit (Durand et al., 1997). A 

combination of distinct mitogens enables the unlimited proliferation of OPCs in vitro (Tang 

et al., 2001). Beside PDGF-AA, FGF-2 (Bogler et al., 1990, McKinnon et al., 1990, Chen et al., 

2015), insulin-like growth factor 1 (McMorris and Dubois-Dalcq, 1988, Hu et al., 2012) and 

Neuregulins (Canoll et al., 1996, Ortega et al., 2012) are among some of these factors. 

Anyhow, in vivo, the production of myelin is upon axonal request and therefore of course 

much more complex and regulated by an orchestra of intrinsic and extrinsic signals. Before 

OPCs start to myelinate axons, they migrate and proliferate to their final point of destination. 

PDGF-AA is an essential mitogen produced by both neurons and astrocytes and regulates 

OPC proliferation and survival (Yeh et al., 1991, Mudhar et al., 1993). In PDGF-AA knockout 

mice, a severe hypomyelination occurs due to reduced OPCs (Pringle et al., 1989, Fruttiger et 

al., 1999). In addition to polypeptide growth factors, the thyroid hormones Triiodothyronin 

(T3) and Thyroxin (T4) are as well regulators of oligodendrocyte differentiation (Barres et al., 

1994, Rodriguez-Pena, 1999). A delayed onset of myelination in hypothyroid rats (Balazs et 

al., 1969, Walters and Morell, 1981) and an accelerated myelination in hyperthyroid rats 

(Marta et al., 1998) emphasizes their role. The myelination process starts when several 

oligodendrocyte processes interact with the axonal membrane (Watkins et al., 2008). Indeed, 

many signals and molecular interactions regulate the onset of myelination, but how these 

processes are orchestrated is still elusive. Hence, besides the already described soluble 

molecules, also adhesive key players regulating the myelination process were discovered, for 

instance the axonal adhesive protein L1 and the extracellular matrix (ECM) molecule 

laminin-2 (Colognato et al., 2002). In general, the ECM and its secreted factors own an 

important role in the development of the CNS (Discher et al., 2009). Laminin-2 interferes 

with the lateral distribution of integrins. This allows for the integration of integrin and 

growth factor signalling to direct oligodendrocyte behaviour regarding survival and 

myelination (Baron et al., 2005, Baron and Hoekstra, 2010, Relucio et al., 2012). Integrins 

belong to the heterodimeric transmembrane receptor family and are often involved in 

cellular interactions with the ECM. In oligodendrocytes, of the known 20 integrin species 
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only a limited subset of the integrin receptors is expressed and associated in the regulation of 

one aspect of oligodendrocyte development (Benninger et al., 2006, Barros et al., 2009, 

Camara et al., 2009). The Tenascin-C dependent proliferation of OPCs for instance depends 

on αvβ3 integrin (Garcion et al., 2001). The related ECM glycoproteins Tenascin-C (Tnc) and 

Tenascin-R (Tnr) are synthesized by astroglia at early postnatal stages (Bartsch et al., 1992, 

Gotz et al., 1997) and are known to regulate OPC development. The loss of Tnc in Tnc-

deficient mice causes severe effects on the development of oligodendrocytes regarding 

proliferation, migration and survival (Garcion et al., 2001, Garwood et al., 2004). Our group 

showed that both proteins inhibit the formation of myelin membranes and regulate 

antagonistically the expression of MBP. Tnc reduces MBP expression via Contactin-1 and 

with the Fyn and Akt pathway (Czopka et al., 2009, Czopka et al., 2010). Additionally, the 

expression of Sam68 (Src-associated substrate of mitosis of 68 kda) is downregulated in 

response to Tnc (Czopka et al., 2010). It was the first time that Sam68 was proposed to have a 

role in oligodendrocyte differentiation and this finding is in line with previous studies of our 

group showing a similar interplay of Sam68 and Tnc signalling in neural stem cells (Moritz 

et al., 2008b). 

 

1.3. The STAR-Family proteins Sam68, Slm-1 and Slm-2 

 

1.3.1. Functional motifs of STAR-Family proteins 

 

Sam68, Slm-1 and Slm-2 are multifunctional members of the STAR (Signal transducer and 

Activator of RNA Metabolism)-family proteins. The structure of all seven STAR-family 

members is conserved from yeast to plants and mammals and in the case of Slm-1 and Slm-2 

(sam-like mammalian protein 1 and 2) even declared by their names. Members of this 

protein family are characterised by a single heteronuclear ribonucleoprotein particle K 

(hnRNP K) domain (Vernet and Artzt, 1997). This KH domain is flanked by N-and C- 

terminal sequences, which are important for RNA binding (Chen et al., 1997, Lin et al., 1997). 

In turn the N- and C-terminal sequences are flanking the entire structural RNA-binding 

domain GRP33/SAM68/GLD-1 (GSG), containing about 200 amino acids (Burd and 

Dreyfuss, 1994). Additionally Sam68, Slm-1 and 2 contain several proline-rich sequences that 

are sites of protein-protein interactions with SH3 and WW domain-containing proteins 



                                                                                                                                           Introduction   
 

10 
 

(Wong et al., 1992). Furthermore, they own arginine-glycine-rich regions methylated by 

protein arginine methytransferases (Burd and Dreyfuss, 1994). The tyrosine-rich C-terminus, 

as a target site of phosphorylation by tyrosine kinases and bound by SH2 domains, is 

underlining their multifunctional character (Wong et al., 1992). The amino acid sequences in 

human, mouse, rat and chicken are highly conserved within the functional domains (Lukong 

and Richard, 2003, Sanchez-Jimenez and Sanchez-Margalet, 2013).  

 

1.3.2. Functional roles of Sam68 motifs 

 

This thesis focuses on the function of Sam68. The human Sam68 gene is located on 

chromosome1 p32 and contains 9 exons (Lukong and Richard, 2003). The first functions 

identified for Sam68 were the participation in cell cycle regulation and mitosis. It was the 

first substrate for Src in the cytoplasm during mitosis, explaining likewise its name. 

Misleading data suggested a relation of Sam68 and GAP associated protein p62, however 

later studies showed different roles for Sam68 and p62 during mitosis (Courtneidge and 

Fumagalli, 1994, Fumagalli et al., 1994, Lock et al., 1996). The human genome organisation 

(HUGO) renamed Sam68, Slm-1 and 2 as Khdrbs-1, 2 and 3 (kh Domain containing RNA 

binding signal transduction associated -1,-2,-3). Anyhow, the old names are more commonly 

used to prevent confusion. Sam68 regulates through its KH domain cell proliferation by 

promoting S phase entry in NIH3T3 cells (Barlat et al., 1997). The KH domain allows for the 

binding of distinct RNA sequences. Initially, Sam68 was shown to bind non-specifically to 

poly(U) and poly(A) RNA, and additionally to the high affinity binding sequences UAAA or 

UUAA in vitro (Taylor and Shalloway, 1994, Lin et al., 1997, Sanchez-Jimenez and Sanchez-

Margalet, 2013). Further on, Sam68 was shown to bind some mRNA targets in vivo, for 

instance hnRNPA2/B1 and beta-actin mRNA (Itoh et al., 2002). Another interaction partner 

of Sam68 is hnRNPA1. Both proteins form a complex and modulate the alternative splicing 

of Bcl-x (Paronetto et al., 2007). In the last years many more functions were found and 

confirmed its multifunctional character. The argine-glycine-rich methylation sites (RGG 

boxes) for instance are important for the localisation of Sam68. Hypomethylated Sam68 is 

located in the cytoplasm, whereas methylated Sam68 is located in the nucleus (Cote et al., 

2003). Later, also an involvement of Sam68 in cell growth, alternative splicing and in the 

export of unspliced viral RNAs was described.  
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Figure 3. Schematic diagram illustrating the structural and functional domains of Sam68.  

Sam68 consists of the KH-domain flanked by the N-and C-terminal segment, building together the 
GSG-domain responsible for RNA-binding activity. Furthermore, it contains six proline rich segments 
(P0-P5), RGG boxes, the C-terminal tyrosine-rich domain (YY) and the nuclear localisation signal 
(NLS). 
 

 

1.3.3. Role of Sam68 during development 

 

Beside its role in spermatogenesis, tumourigenesis and cell cycle regulation, recently explicit 

roles for Sam68 were described during CNS development. In P19 cells, Sam68 was described 

as a promoter of neuronal differentiation by identifying a set of alternative exons whose 

splicing is dependent on Sam68 (Chawla et al., 2009). An analysis of Sam68-null mice 

revealed clear motor coordination defects, demonstrating also in vivo the effects of Sam68 in 

CNS development. Although, regarding the severe effects of altered Sam68 gene, these 

observed effects on the CNS in Sam68 deficient mice were rather light (Lukong and Richard, 

2008, Sette et al., 2010). Sam68 -/- pups either directly die at birth or they live a normal life 

span. Strong effects of Sam68 ablation were observed regarding reproduction. Sam68 -/- 

females have defects of mammary gland and uterine development, whereas males are 

infertile (Richard et al., 2008). Besides the motor coordination defects, little is known about 

Sam68 effects on the CNS. Our group demonstrated a distinct role of Sam68 in neural stem 

cell development by its identification as a Tnc regulated target gene. An overexpression of 

Sam68 causes a clear reduction of NSC proliferation and furthermore an increase of the 

larger Tnc isoforms (Moritz et al., 2008a). Further studies of our group support these 

findings. An overexpression of Sam68 and Slm-1 increased NSC differentiation to a neuronal 

fate, accompanied with a reduction of neurosphere formation and an increased cell-cycle 

exit. Slm-2 showed opposing effects by promoting NSCs maintenance in a proliferative state. 

Those effects of all three STAR-family members were regulated by MAP kinase pathway. 

Overexpression of STAR-family proteins decreased ERK1/2 phosphorylation in response to 
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EGF, whereas increased Slm-2 level sustained MAP kinase signalling in response to FGF-2 

(Bertram, 2013). Our identified role for Sam68 and Slm-1 in neuronal development is in line 

with the identification of both proteins as regulators of neuronal alternative splicing. A 

specific interaction of Sam68 and the activity-dependent biosynthesis of the elongation factor 

eEF1A was shown. The translation of eEF1A mRNA is strongly induced by neuronal 

depolarisation and correlates with enhanced association of Sam68 with polysomal mRNAs 

(Grange et al., 2009). A specific function of Sam68 and Slm-1 in neuronal alternative splicing 

clarifies the role of both proteins in neuronal development. Sam68 regulates the neuronal-

activity dependent alternative splicing of Neurexin-1 in cooperation with Slm-1. In contrast, 

the alternative splicing of Neurexin-2 reporters is specifically regulated by SLM-1 (Iijima et 

al., 2011, Iijima et al., 2014). Furthermore, Sam68 was shown to regulate hippocampal 

synapse number by promoting the association of actb mRNA with synaptic polyribosomes 

(sites of local translation at synapses) (Klein et al., 2013). 

As the effect of Sam68 in the CNS is not limited to neuronal cells, our group already showed 

a distinct regulation of OPC differentiation. A knockdown of endogenously expressed Sam68 

in rat oligodendrocytes leads to a reduced MBP-level. Hence, Sam68 was identified as a 

promoter of oligodendrocyte maturation. The mechanism of this regulation is still elusive, 

but it was demonstrated, that the expression of Sam68 is Tnc dependent by repressing Sam68 

levels in oligodendrocytes (Czopka et al., 2010). Additionally, only the overexpression of 

Sam68 in neural stem cells causes a higher amount of myelin-forming oligodendrocytes. The 

overexpression of Slm-1 and Slm-2 had no effect on the maturation state of oligodendrocytes 

(Bertram, 2013). Those observed effects of Sam68 on OPC differentiation are coherent, given 

that the isoforms QK-6 and QK-7 of the related STAR-family member quaking regulates 

oligodendrocyte maturation (Larocque et al., 2005). However, so far these are the only 

findings for Sam68 functioning in oligodendrocytes, giving the fundament for my thesis. 

 

1.3.4. Role of Sam68 in alternative splicing 

 

Alternative splicing describes the production of different RNAs from the same gene by the 

optional use of alternative splice sites within a pre-mRNA. It allows genes to encode for 

multiple protein isoforms, which can fulfil different biological functions (Maniatis and Tasic, 

2002). The sequential assembly of the spliceosome, a multicomponent ribonucleoprotein 
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complex, onto the pre-mRNA leads to the removal of intron sequences. Its function is 

dependent on several splicing factors, binding additionally to this complex (Moore and 

Sharp, 1993). A study, revealing completely new insights into splicing events during cerebral 

cortex development and offering a splicing database was recently published. This 

transcriptome database enables the detection of alternative splicing events in each analysed 

cell type (e.g. neurons, astrocytes and oligodendrocytes) and demonstrated already how 

neurons and astrocytes differ in their ability to regulate glycolytic influx (Zhang et al., 2014). 

As described earlier, Sam68 is a known regulator of alternative splicing events in the CNS 

(Iijima et al., 2011). Sam68 was firstly described as an interaction partner of the tyrosine-

phosphorylated nuclear protein YT521-B in a yeast two-hybrid screen. This interaction of 

both proteins was mediated through the glutamic acid/arginine-rich region of YT521-B and 

negatively regulated by tyrosine phosphorylation of Sam68 (Hartmann et al., 1999). Other 

studies confirmed the role of Sam68 in splicing events. Sam68 crosslinks to an intronic 

regulatory RNA-sequence of tropomyosin pre-mRNA (Grossman et al., 1998) and binds to 

the spliceosome-associated protein FBP21 (Bedford et al., 1997). A direct function of Sam68 in 

alternative splicing was shown by demonstrating a binding of Sam68 to the exon splice-

regulatory elements of exon v5 of CD44. This in turn is regulated by the Ras signalling 

pathway. Higher Sam68 levels enhanced ERK-mediated inclusion of v5-exon sequence in 

mRNA (Matter et al., 2002). Besides ERK- dependent phosphorylation, Fyn-dependent 

tyrosin-phosphorylation of Sam68 was demonstrated as well to play a role in alternative 

splicing. Moreover, this study showed that a specific mutation in the RNA-binding domain 

affects Bcl-x splicing. This amino acid exchange of valine against phenylalanine at the 

position 276 (Sam68_VF) hindered Sam68 to favour the selection of Bcl-x splice site. 

Furthermore, Sam68_VF was unable to favour the expression of endogenous Bcl-x mRNA. 

As alternative splicing is regulated by several splicing regulators, in the regulation of Bcl-x 

splicing hnRNPA1 was identified as well as an interaction partner of Sam68. The last 93 

amino acids of Sam68 (351-443) were identified as the hnRNPA1 binding site. Although a 

weak binding was also observed in the N-terminal (1-277) region indicating a weak 

interaction through a common RNA (Paronetto et al., 2007).  
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1.4. hnRNPA1 

 

hnRNPA1 belongs to the A/B subfamily of ubiquitously expressed heterogeneous nuclear 

ribonucleoproteins. In general, the hnRNP family is composed of at least 20 members named 

from A through U with a molecular weight range from 34 kDa to 120 kDa (Pinol-Roma et al., 

1988, Dreyfuss et al., 1993). As the name indicates, a key function is the complexing with 

heterogeneous nuclear RNA (hnRNA) and its processing into mature messenger RNA. In 

fact, it is one of the most abundant expressed nuclear proteins and plays a crucial role in the 

transcription, splicing, stability, export through nuclear pores and translation of cellular and 

viral transcripts (Jean-Philippe et al., 2013). Furthermore, besides its regulation of mRNA 

biogenesis, it owns functions in processing of microRNAs, telomere maintenance and the 

regulation of transcription factor activity (Jean-Philippe et al., 2013). The activation of 

hnRNPs is regulated by several posttranslational modifications, including phosphorylation, 

SUMOylation, ubiquitination and methylation.  These modulations may alter hnRNP activity 

by controlling their localisation, RNA binding specifity and interaction with other cellular 

factors (Dreyfuss et al., 2002, Jean-Philippe et al., 2013). The complex formed by hnRNPAs 

and nascent transcripts is remodelled through the loss or acquisition of hnRNPs with other 

proteins and is termed “mRNP code” (Singh and Valcarcel, 2005).  So far, only two isoforms 

of hnRNPA1 were identified, A1-B and A1-A. The main localisation is in the nucleus, but in 

response to specific stimuli it can relocate to the cytoplasm und shuttle between nucleus and 

cytoplasm. The direct interaction of the 38-amino acid long M9 nucleo-cytoplasmic shuttling 

sequence (Siomi and Dreyfuss, 1995) with two receptors of the karyopherin-β family 

(Transportin 1 and 2) mediates the nuclear import of hnRNPA1 (Pinol-Roma and Dreyfuss, 

1992, Allemand et al., 2005). The major functions of hnRNPA1 depend on its ability to 

recognize distinct nucleic acid sequences. Two RNA-Recognition motifs (RRMs) are located 

on the N-terminus and are closely related to each other. The C-terminal region is 

characterised by a highly flexible glycine-rich composition (RGG-boxes) and has both, 

protein and RNA-binding properties. It is interspersed with aromatic acids and KH domains 

(Burd and Dreyfuss, 1994, He and Smith, 2009). The Gly-rich domain is required for the 

interaction with other hnRNPs and RNA-binding proteins (Cartegni et al., 1996). The RNA 

recognition motifs (RRMs) are the most common RBDs, about 90 amino acids-long and 

highly conserved (Dreyfuss et al., 1988). Besides its functions in RNA-binding, hnRNPA1 is 

also a known regulator of transcriptional events, although precise mechanisms of this 

regulation are unresolved. The association of hnRNPA1 with the promoters of genes coding 
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for the vitamin D receptor (Chen et al., 2003), γ-fibrinogen (Xia, 2005) and the thymidine 

kinase (Lau et al., 2000) induces for instance the transcriptional repression. Whereas the 

binding onto ApoE leads to an activation (Campillos et al., 2003, Jean-Philippe et al., 2013).  

A key function of hnRNPA1 is the alternative splicing of nascent transcripts through the 

participation in all steps of spliceosome assembly, proofed by the assembly with the splicing 

factor U2AF.  (Jurica et al., 2002, Zhou et al., 2002, Tavanez et al., 2012). Not only the splicing 

of pre-mRNA is regulated by hnRNPA1, it modulates the translation of fully processed 

mRNAs as well, for instance of interleukin 2 (Henics et al., 1994). 

Due to its multifunctional character mutated hnRNPA1 is involved in several severe human 

neurodegenerative diseases, for instance Alzheimer’s disease (Berson et al., 2012), 

amyotrophic lateral sclerosis and multiple sclerosis (Bekenstein and Soreq, 2013). The 

mechanisms behind hnRNPA1 role in these diseases remain unclear. Only some regulatory 

pathways were identified, e.g. the interaction with the STAR-family protein Quaking. 

Quaking was shown to have an important role in myelin formation and contains a binding 

site for hnRNPA1. Quaking regulates the level of hnRNPA1 by stabilising its mRNA and 

hnRNPA1 in turn binds MAG pre-mRNA and modulates its alternative splicing (Zearfoss et 

al., 2011). As mentioned earlier, also Sam68 contains a binding site for hnRNPA1 and an 

interaction of both proteins in the regulation of Bcl-x splicing was demonstrated. Therefore, 

an interplay of both proteins in the regulation of myelin formation is most likely and was 

investigated in this thesis. 
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Aim of Study 

 

During CNS development oligodendrocyte precursor cells (OPCs) generate 

oligodendrocytes in a controlled and regulated process through the activity of diverse 

intrinsic and extrinsic factors. The STAR-family protein Sam68 is among one of the intrinsic 

factors involved in oligodendrocyte differentiation. Our group already demonstrated an 

increasing Sam68- level during oligodendrocyte maturation and a promotion of MBP-

expression. In further studies Sam68 was identified as a promoter of neural stem cell (NSC) 

differentiation. However, the mechanism(s) how Sam68 control neural stem cell and 

oligodendrocyte development in detail are still unresolved.  

In regard to NSC development the first approach of this thesis is the determination of the 

cellular identity of cells expressing Sam68. Immunhistochemical investigations with 

characteristic stem cell markers will elucidate its expression profile. Further cell culture 

experiments allow for the identification of the fate of Sam68 expressing cells.  

The main goal of this thesis is the investigation of the role of Sam68 during 

oligodendrogenesis. Therefore, I assess several Sam68 constructs, which contain mutations in 

the RNA-binding site or the nuclear localisation signal to characterize the relevant domains 

of Sam68 that control oligodendrocyte development by transfection of primary rat OPCs. 

Particularly, the effect on OPC maturation and MBP-expression is of special interest. 

Considering the interaction of Quaking I, a member of the STAR-family proteins, and 

hnRNPA1 during Myelin-associated glycoprotein splicing, raised the question of a similar 

interaction pathway of Sam68 and hnRNPA1 in regulating MBP-expression. hnRNPA1 is a 

well-known splicing regulator and modulates together with Sam68 the splicing of Bcl-x. 

Thus, besides the identification of the Sam68 domains, the role of hnNRNPA1 during 

oligodendrogenesis and a possible interaction with Sam68 will be investigated. To follow this 

aim a new protocol for the transfection of non-adherent OPCs is required, due to the 

sensitive properties of OPCs towards the electroporation process. This optimized protocol 

will be established and enable for the first time the high efficiency transfection of non-

adherent OPCs.  
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2. Material 

2.1. Equipment 

2.1.1. Companies 

 

American National Cam, Chicago, USA 

AnalaR Normapur, VWR, Fontenais sous Bois, 

France 

AppliChem GmbH, Darmstadt,  Germany 

Beckman Coulter, Inc. Fullerton CA, USA 

BD Biosciences, New Jersey, USA 

Biometra, Göttingen, Germany 

Brand GmbH, Wertheim, Germany 

Charles River, Sulzfeld, Germany 

Dianova, Hamburg, Germany 

Eppendorf AG, Hamburg, Germany 

Fermentas, St. Leon-Rot, Germany  

Greiner bio one, Frickenhausen, Germany 

Heraeus, Hanau, Germany 

Heidolph, Schwabach, Germany  

Ibidi, Martinsried, Germany 

Invitrogen, Karlsruhe, Germany 

J.T. Baker, Deventer, Niederlande 

Leica, Wetzlar, Germany 

Lonza, Cologne, Germany 

Menzel GmbH, Braunschweig, Germany 

Merck, Darmstadt, Germany 

Mettler Toledo, Gießen, Germany 

Millipore, Eschborn, Germany 

New England Biolabs, Frankfurt, Germany 

Nunc, Wiesbaden, Germany 

Preprotech, Rocky Hill, USA 

Promega, Madison, USA 

Qiagen, Hilden, Germany  

Roche, Mannheim, Germany 

Satorius, Göttingen, Germany 

Seromed, Berlin, Germany 

Starlab Learning Technologies, Inc., 

Massachusetts, USA 

Sigma-Aldrich Chemie GmbH, München, 

Germany 

The Baker Company, Sanford, USA 

Thermo Fischer, Darmstadt, Germany 

Zeiss, Jena, Germany 
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2.1.2. Chemicals 

 

Acrylamide Merck 

Agar Invitrogen 

Agarose Applichem 

Ampicillin Invitrogen 

Aprotinin Sigma 

APS J.T. Baker 

B27 supplement Invitrogen 

Bactotryptone BD 

BSA Sigma 

Bromine-phenol-blue Serva 

CaCl2× 2 H2O Sigma 

Coomassie blue Serva 

L-Cystein Sigma 

DMEM Sigma 

DMSO Sigma 

EDTA Merck 

EGTA AppliChem 

Ethanol Sigma 

F12 Sigma 

FCS Biochrom 

FGF-2 PreProTech 

Formaldehyde J.T. Baker 

L-Glutamin Sigma 

Glycerol J.T.Baker 

Glycine Roth 

Heparin sodium salt Sigma 

HEPES Roth 

Hoechst 33258 Sigma 

Immumount Thermo-scientific 

Kanamycin Invitrogen 

KCl Sigma 

 

KH2PO4  Applichem 

Laminin Invitrogen 

L15 Sigma 

MEM Sigma 

Methanol Sigma 

MgCl2 J.T. Baker 

MgSO4× 7 H2O J.T. Baker 

Milk powder Roth 

N2 supplement Gibco 

NaCl Sigma 

Na-citrate AppliChem 

Na-carbonate AppliChem 

Na-deoxycholate AppliChem 

NaHCO3 AppliChem 

Na2HPO4 × 2 H2O AppliChem 

NaH2PO4 AppliChem 

Paraformaldehyde J.T. Baker 

Poly-D-Lysin Sigma 

Polyornithin Sigma 

Polyvinylalcohol Serva 

PDGF PreProTech 

PMSF Sigma 

P/S Gibco  

SDS Serva 

Sucrose Roth 

T3 Sigma-Aldrich 

TEMED Roth 

Tris Sigma 

Triton X100 AppliChem 

Trypsin-EDTA Invitrogen 

Tween20 AppliChem 

Yeast Extract Roth 
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2.1.3. Plastic Ware 

 

5 ml tubes Greiner 

15 ml tubes Greiner 

50 ml tubes Greiner 

100 mm petri dishes Sarstedt 

96-well microtest plate Roth 

6-well plates Greiner 

35 mm culture dishes Nunc 

60 mm culture dishes Nunc 

100 mm culture dishes Nunc 

4-well multiwell dishes Nunc 

25 cm2 culture flask Nunc 

75 cm2 culture flask Nunc 

100 cm2 culture flask Nunc 

Serological pipettes Sarstedt 
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2.1. Antibodies 

 

Table 1 Primary Antibodies 
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Table 2 Secondary Antibodies 

 

2.1. siRNA 

 

SignalSilence Control siRNA, Cell Signaling, #6201 

SignalSilence hnRNPA1 siRNA, Cell Signaling, #7668 
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2.1. Oligonucleotide Primer 

 

Table 3 Primer 

Primer name Sequence Annealing 

GAPDH for 5'-CAAGGTCATCCATGACAACTTTG-3‘ 60°C 
GAPDH rev 5'-GTCCACCACCCTGTTGCTGTAG-3' 60°C 

GFP for 5‘-ATGGTGAGCAAGGGCGAGG-3‘ 60°C 
GFP rev 5‘-TTACTTGTACAGCTCGTCCATGCC-3‘ 60°C 
MBP for 5’-GGACTGCAGGAGTTCTCTGG-3’ 60°C 
MBP rev 5’-GTGCCAGTGTGGGTCTCTTT-3’ 60°C 
SLM1 for 5’-ATGGGAGAAGAGAAATACTTG-3’ 60°C 
SLM1 rev 5’-ATATCTACCATAGGGGTGCTC-3’ 60°C 
SLM2 for 5’-ATGGAGGAGAAGTACCTGC-3’ 60°C 
SLM2 rev 5’-GTATCTGCCATATGGCTGG-3’ 60°C 

 

2.1. Plasmids 

 

 

Figure 4. Schematic diagram illustrating the Sam68 constructs used in this thesis.  

Constructs 1 (VF) and 2 (GE) contain an amino acid exchange in the RNA-binding domain, 
preventing RNA binding by steric interference and electrostatic repulsion. Construct 3 (351-443) is a 
truncated nuclear form of Sam68 containing the hnRNPA1 binding site but lacking the 
homodimerization domain and the RNA-binding domain, acting as a dominant negative control. 
Construct 4 (NLS-KO) contains an amino acid exchange in the NLS, inhibiting the transport of bound 
proteins and RNA into the nucleus.   
 



                                                                                                                                                      Material   
 

23 
 

All used plasmids were kindly provided by Claudio Settes’ lab and are described 

subsequently (Paronetto et al., 2007, Pedrotti et al., 2010). All mutant forms of Sam68 were 

cloned into the pEGFP-C1 vector, whereas the wild type form of Sam68 was cloned into the 

pcDNA3 vector.  

 

2.1. Kits 

 

Nucleobond Xtra Maxi Machery-Nagel 

First strand cDNA Synthesis Kit Thermo Scientific 

QIAprep Spin Miniprep Qiagen 

RNeasy Mini Qiagen 

BCA Protein quantification Biorad 

P3 Primary Cell 4D-Nucleofection Kit Lonza 

 

2.6. Animals 

 

For the experiments timed pregnancies of the inbred NMRI mice from Charles River and SD 

Rats from Janvier were used. The rats were kept in the local animal facility in a 12h 

light/dark cycle until the pups reached an age of P2. 
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2.2. Buffer 

2.2.1. Cell Culture Media / Supplements 

 

Mixed Glial Culture Medium (MGC) 

DMEM 

10% FCS 

100 U/ml Penicillin 

100 µg/ml Streptomycin 

 

Oligodendrocyte Culture Medium, 

Chemically-Defined Medium (CDM) 

DMEM 

1% N2-Supplement 

100 µg/ml BSA V 

0,2 mg/ml L-Glutamin 

100 U/ml Penicillin 

100 µg/ml Streptomycin 

 

Oligodendrocyte Proliferation  

Culture Medium (CDM_Prol.) 

DMEM 

1% N2-Supplement 

100 µg/ml BSA V 

0,2 mg/ml L-Glutamin 

100 U/ml Penicillin 

100 µg/ml Streptomycin 

10 ng/ml FGF 

500 mU/ml Heparin 

10 ng/ml PDGF-AA 

 

 

 

 

Neurosphere Medium 

DMEM/F12 (1:1) 

0,2 mg/ml L-Glutamin 

2% (v/v) B27 

100 U/ml Penicillin 

100 µg/ml Streptomycin 

 

Neurosphere Differentiation Medium 

DMEM/F12 (1:1) 

0,2 mg/ml L-Glutamin 

2% (v/v) B27 

100 U/ml Penicillin 

100 µg/ml Streptomycin 

1% FCS 

 

Neurosphere Growth Medium 

DMEM/F12 (1:1) 

0,2 mg/ml L-Glutamin 

2% (v/v) B27 

100 U/ml Penicillin 

100 µg/ml Streptomycin 

10 ng/ml EGF 

10 ng/ml FGF-2 

500 mU/ml Heparin 

  

HEK-Cell Medium 

10% (v/v) FCS 

DMEM 

100 U/ml Penicillin 

100 µg/ml Streptomycin 
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Oligodendrocyte Differentiation Culture 

Medium (CDM_Diff.) 

DMEM 

1% N2-Supplement 

100 µg/ml BSA V 

0,2 mg/ml L-Glutamin 

100 U/ml Penicillin 

100 µg/ml Streptomycin 

1% FCS 

400 ng/ml T3 

 

Ovomucoid 

L15 

1 mg/ml soybean trypsin inhibitor 

50 µg/ml BSA V 

40 µg/ml DNaseI 

 

2.2.2. Buffer for Immunocyto- and Immunohistochemistry 

 

Citrate buffer 2 mM Citrate acid 
8 mM Sodium citrate 

 

KRH 

 
125 mM NaCl 
4.8 mM KCl 
1.3 mM CaCl2 

1.2 mM MgSO4 

1.2 mM KH2PO4 

5.6 mM D-glucose 
25 mM HEPES 

KRH/A KRH containing 0.1% (v/w) BSA 

PBS 137 mM NaCl 
3.0 mM KCl 
6.5 mM Na2HPO4 

1.5 mM KH2PO4 

PBS/A PBS with 0.1% (w/v) BSA 

PBT1 PBS with 1% BSA and 0.1% (v/v) 
Triton X 100 

PBT01 PBS with 0,1% Triton X 100, 100 mM L-
Lysine 
 

PBT/ IM 

PFA 

PBS with 0.75% Triton, 10% Serum 

4% PFA (w/v) in PBS, pH 7.4 
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2.2.3. Molecular Biology 

 

LB-Medium 25 g LB-medium in 1L H2O 

LB-Medium with Agar 25 g LB-medium 
12.5 g Agar 
dissolved in 1L H2O 

TAE 30 mM Tris 
1 mM Na2EDTA × H2O 

Loading Buffer 6x 0.25 % Bromphenolblau, 
40 % (w/v) Sucrose 

 

2.2.4. Proteinbiochemistry 

 

Blocking Solution 5% Milkpowder in TBST 

Cell Lysis Buffer 50 mM Tris/HCL pH 7.5 
150 mM Nacl 
5 mM EDTA 
5 mM EGTA 
1%(v/v) Triton-X 100 
0.1%(v/v)  Na-deoxycholate 
0.1%(v/v)  SDS 

SDS-Sample Buffer Laemmli 4x 0.5 M Tris‐HCl, 10 % (w/v) SDS, 
0.5 % (w/v) Bromphenolblue, Glycerol, 
H2O; pH 8 
 

SDS-Running buffer 25 mM Tris, 192 mM Glycin, 0.1 % (v/v) 

SDS 

TBS 19 mM Tris‐Cl, 137 mM NaCl; pH 7.4 

TBST TBS, 0.05 % (v/v) Tween 20 

Transfer Buffer 25 mM Tris pH 8.2‐8.4, 0.1% (v/v) SDS, 
192 mM Glycin, 20% (v/v) Methanol 
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3. Methods 

3.1. Cell culture 

 

3.1. Cultivation of HEK293T Cells 

 

HEK293T cells were routinely cultured on uncoated 10 cm culture dishes in HEK-medium at 

37°C, 5% CO2. When they reached confluence, they were passaged in a 1:20 dilution by a 

trypsin digestion. 

 

3.1.1. Preparation and setting up mouse neural stem cell cultures 

 

For setting up neural stem cell cultures E13.5 embryos were extracted from the uterus, after 

killing the mother animal by cervical dislocation. The embryos were decapitated and the 

forebrains were exposed. After separating the hemispheres, the meninges were removed and 

cortex and GE were separately collected in MEM containing microtubes. The tissue was 

digested for 20’ in MEM containing 30 U/ml papain, 0.24 mg/ml L-cystein and 20 µg/ml 

DNaseI at 37°C in the waterbath. Before adding L-cystein and DNase, papain was 

preincubated for 10’ in MEM at 37°C. The tissue was triturated to a homogenous solution 

and the digestion was stopped by addition of an equal volume of ovomucoid. The single cell 

suspension was afterwards pelleted (120xg for 5’) and resuspended in neurosphere medium. 

For cultivation of free floating neurospheres 10 µg/ml FGF, 10 µg/ml EGF and 500 mU/ml 

heparin were added to the medium and 100,000 cells were plated in uncoated T25 culture 

flasks in 4ml medium. Cells were incubated at 37°C and 5% CO2. For immunoblotting, 

neurospheres were spun down after 7 days of cultivation.  For cell identity experiments, 

20,000 cells were directly plated in neurosphere medium without growth factors. After 2h 

and 24h of cultivation cells, were fixed in 4% PFA followed by an immunocytochemical 

staining. 
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3.1.2. Isolation of Oligodendrocyte precursor cells 

 

Rat pups from postnatal day 2 to 3 were decapitated and the forebrains were exposed. After 

separating the hemispheres, the meninges were removed and 4 cortices were collected in a 

microtube. The collected tissue was digested for 20’ in 2 ml 0.25% TE at 37°C in the 

waterbath. The digestion was stopped by the addition of 2 ml MGC medium containing 200 

µg DNaseI. The mechanical destruction of cell formations performed by gentle trituration led 

to a homogenous single cell suspension. The solution was filled up to 10 ml with MGC 

medium followed by a centrifugation step for 5’ at 220xg. After withdrawal of the cell debris 

containing supernatant, the cell pellet was resuspended with 10 ml MGC medium and plated 

on 10 µg/ml PDL-coated T75 cell culture flasks. The flasks were placed in an incubator for 7 

days at 37°C and 5% CO2.                  

 

Figure 5. Isolation of oligodendrocyte precursor cells.  

The cartoon illustrates the preparation of mixed glial cultures. Single cell suspension, obtained from 
postnatal rodent brains, is cultured for 7 days in the presence of 10% FCS. The separation of 
astrocytes, OPCs and microglia in two layers is exploited to remove the OPCs and the microglia from 
the bottom astrocyte layer by shaking on an orbital shaker overnight. The separation of microglia and 
OPCs was done by a pre-plating on a bacterial dish where microglia attach to the bottom and OPCs 
remain in the supernatant. The resulting cell suspension mainly consists of OPCs and immature 
oligodendrocytes, which can either be expanded in the presence of PDGF and FGF or differentiated by 
the addition of 1% FCS and T3. 
 

After 7 days of cultivation a two layered cell culture developed, with an astrocyte/fibroblast 

layer on the bottom and OPCs and microglia attached on top (Figure 5). The first removal of 

microglia was performed by a 2h pre-shake at 220 rpm on an orbital shaker in the incubator. 

The removal of resulting microglia and the OPCs was performed by a 24h shake. Residual 

contaminating microglia cells were removed by pre-plating the supernatant on a bacterial 

petri-dish for 20’ at 37°C. The supernatant was transferred to a microtube and cells were 
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spun down for 5’ at 220xg. The isolated OPCs were either expanded in CDM_Prol. with 10 

ng/ml PDGF-AA, 10 ng/ml FGF-2 and 30 U/ml heparin, or they were cultured under 

differentiating conditions in CDM_Diff. without growth factors, but with 400 ng/ml T3 and 

1% FCS.       

 

3.1.3. Transfection of oligodendrocyte precursor cells 

 

One aim of this thesis was the establishment of an innovative new transfection protocol 

enabling a high efficiency transfection of OPCs with the 4D Nucleofector of Lonza. The detailed 

protocol of the establishing process is described in chapter 4.2. High efficiency Transfection 

of Oligodendrocyte Precursor Cells, whereas a short protocol is depicted and described in 

Figure 6. 

 

 

Figure 6. Transfection of oligodendrocyte precursor cells.  

The scheme is illustrating the major steps of transfecting OPCs with the 4D Nucleofector of Lonza. 
First step in preparing the OPCs for the process of transfection is the centrifugation and the following 
determination of the cell number. 250,000 cells were collected in a fresh tube and spun down again. 
Afterwards, the cell pellet was resuspended with 20 µl of P3 solution containing 0.5 µg of plasmid 
(pEGFP-C1). Immediately, the resuspended cell solution was transferred to the transfection cuvette. 
Avoiding air bubbles, as it affects the electroporation of the cells, was very important. Several pulses 
were tested to identify an optimal ratio between viability and transfection. After transfection, fresh 
pre-warmed medium was added to the cells in the cuvette and the cell suspension was transferred to a 
clean tube. In the last step, cells were resuspended with medium covering the pellet and plated on 
PORN coated 4-well dishes. The cells were then cultured for 3-5 days in CDM_Diff. Afterwards, the 
transfection efficiency and morphology were analysed. 
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3.1.3.1. Transfection of OPCs with hnRNPA1 siRNA 

 

The transfection with hnRNPA1_siRNA was performed with the protocol described 

previously (3.1.3. Transfection of oligodendrocyte precursor cells). OPCs were double 

transfected with 100 mM of SignalSilence hnRNPA1 siRNA and additionally with 0.5 µg 

pEGFP-C1 or the Sam68 plasmids (2.1. Plasmids). For the control situation 100 mM of 

SignalSilence control siRNA were double transfected with 0.5 µg pEGFP-C1. Cells were 

cultured for 5 days and subsequently used for immunocytochemically stainings or 

immunoblotting. 

 

3.1.4. Detection of antigens in single cells and on tissue sections 

 

3.1.4.1. Immunocytochemistry 

 

For the detection of antigens in cultured cells, the medium was carefully removed and cells 

were washed with KRH/A. The incubation with the O4 antibody, used for a detection of the 

cell surface ceramide containing glycolipid sulfatide, was performed for 20’ in KRH/A 

buffer at RT. After washing twice with KRH buffer for removing unspecific bound antibody, 

cells were fixed for 10’ with PFA. Afterwards cells were washed and permeabilized with 

PBT/1 for 15’. The incubation with the primary antibody against intracellular epitopes also 

occurred in PBT/1 buffer for 30’. Again, the removal of unspecific bound antibody was done 

by two washes with PBS/A. The incubation with the appropriate secondary antibody was 

also done in PBS/A for 30’ at RT. The cells were mounted in PBS/Glycerin, after two final 

washing steps with PBS. 

 

3.1.4.2. Immunohistochemistry 

 

Brains from E13.5 mice were immersion fixed with 4% PFA. The fixation time depended on 

the intended antibody. For Pax6 staining, fixation durations of 2h were chosen, for all other 

antibodies the fixation occurred overnight at 4°C. Postnatal mice were perfused at the age of 

P10. After determining the body weight, the appropriate mixture of anaesthetics was 
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calculated (xylazine 10mg/kg and ketamin 200 mg/kg) and injected intraperitoneal. Once 

the mouse was anaesthetized, the limbs were fixed and the heart was uncovered by opening 

the rib cage. The perfusion needle was inserted into the left ventricle and subsequently the 

perfusion set up was opened allowing the 4% PFA to rinse through the vasculature. The 

rinsed blood escaped by a small incision in the atrium. After 6-8 minutes fixation, the brains 

were removed and washed in PBS. After fixation, they were cryoprotected in 30% sucrose for 

24h at 4°C. Finally the brains were embedded in tissue freezing medium on dry ice and were 

stored at -20°C until the sectioning with the cryostat into 14-16 µm sections was performed. 

The slides were again stored at -20°C until their usage. 

The cryosections were cooked for 5’ in citrate buffer for improving the presentation of the 

antigens followed by 10’ on ice. For removing the citrate buffer, the sections were washed 

with PBS. Depending on the intended antibody, different serums were used for blocking 

unspecific binding sites. The blocking was performed with 10% serum diluted in PBT/IM for 

1h. The primary antibody was diluted in PBT/IM and incubated at 4°C overnight. After 

washing with PBS, the sections were incubated with the appropriate secondary antibody, 

diluted in PBS/A for 1h at RT. Finally, after three washing steps with PBS, the sections were 

mounted with glass coverslips in ImmuMount.      

 

3.1.5. Image Acquisition and Statistical Analysis 

 

For measuring the optical density of immunoblots and PCR images, the ImageJ software 

(http://imagej.nih.gov/ij/) was used. After converting the image to grayscale and inverting 

it, the bands of interest were surrounded with equally sized rectangles. The relative density 

of each band was calculated by Image J. The mean density of the loading control or the 

empty vector was set to 100% and the mean densities of the samples were calculated in 

relation to this control. 

Analysis of cell size and cell proportion of single cell types was as well performed with the 

Image J software. For quantifying the proportion of immunopositive cells in relation to the 

total cell amount, the cell counting plug in was used. In order to measure the length of 

PDGFRα-positive OPCs, a line from the tip to the end of the cell was drawn. For measuring 

cell area, O4 or MBP positive cells were surrounded with freehand selection. Subsequently, 

the cell length and area was calculated with the ROI-Manager plug in. Only distinct 
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immunopositive and successfully transfected cells were analysed in at least 3 independent 

experiments. A minimum of 200 Hoechst positive- and 20 GFP-positive-cells was analysed 

for each antibody and experimental condition. Successfully transfected cells were identified 

either by a clear overexpression of the gene product or by GFP-stain. 

Statistical significance was estimated using the two-tailed students test for the comparison of 

two data sets (4.1.2. Immunocytochemical analysis of Sam68 expression pattern). The 

analysis of variance (Anova) and the Tukey’s multiple comparison test was used to analyse 

differences among group means after different treatments (4.3.1. Role of Sam68 domains in 

oligodendrocyte differentiation). The p-value is given as * P< 0.05, **P< 0.01 and ***P< 0.001 in 

the figures, text and/or figure legends. All data are expressed as mean + SD. 

 

3.2. Proteinbiochemistry 

 

3.2.1. Cell Lysis and protein quantification 

 

For protein lysis, cells were spun down and cell pellets were either directly lysed, or they 

were stored at -20°C until usage. Depending on the pellet size, the pellet was resuspended 

with 20-60 µl of protein lysis buffer containing 1% protease inhibitor.  The cells were lysed 

for 30’ on ice and subsequently centrifuged for 30’ at 16,000 rpm at 4°C. The resulting 

supernatant was transferred to a clean microtube on ice.  

Protein concentration was measured with the BioRad quantification assay kit according to the 

manufactures instructions. 

 

3.2.2. SDS-PAGE 

 

The separation of the before lysed proteins was performed with the Mini-PROTEAN Tetra 

Cell System (Biorad), after heating the samples in SDS-buffer for 5’ at 95°C. After loading the 

gels, the separation occurred by running the gels with a constant power of 200 V per gel for 

35-45 ‘. The separation gels had a concentration of 3.75%, the gradient gels of 10%. 



                                                                                                                                                     Methods  
 

33 
 

 

3.2.3. Immunoblotting  

 

The transfer of the separated proteins on a with methanol activated PVDF membrane was 

performed with the SD Semi-Dry Transfer Cell (Biorad). Three layers of Whatman paper, the 

PVDF membrane, the gel and again three layers of Whatman paper were layered from the 

anode to the cathode. The protein transfer occurred for 1.15h with approximately 

1.5mA/cm2. The membrane was blocked subsequently with 5% (w/v) low fat milk powder 

in TBST for 1h at RT. Primary antibodies were incubated overnight at 4°C. For removal of 

not bound antibody, the membrane was washed three times for at least 15’. Afterwards, the 

incubation with HRP-conjugated secondary antibody was done for 1h at RT. After three final 

washing steps (20’ each), the membrane was incubated with the ECL reagent. Finally, X-ray 

films of different exposure times were developed in a developing machine.    

 

3.3. Molecular Biology 

 

3.3.1. RNA-Isolation and cDNA synthesis 

 

From 2x105 oligodendrocytes, total RNA was isolated with the RNeasy Mini Kit from Qiagen 

including QiaShredder columns all according to manufacturer’s instructions. RNA was eluted 

in a total volume of 30 µl. The transcription of cDNA from isolated RNA was performed 

subsequently with the first strand cDNA synthesis kit according to the manufacturer’s 

instructions. Depending on the obtained RNA-concentration, the total reaction volume was 

changed, if neccessary to 30-40 µl, by adjusting the concentration of buffer, primers and 

dNTPs. The concentration of reverse transcriptase was kept constant. 
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3.3.2. Reverse Transcriptase polymerase chain reaction (RT-PCR) 

 

PCR set up: 

Template DNA 1 µl 

Forward Primer (10pmol) 0.5 µl 

Reverse Primer (10pmol) 0.5 µl 

dNTPs (5nmol) 0.5 µl 

10x Reaction Buffer 2.5 µl 

Taq Polymerase 1 µl 

H2O 19 µl 

  

 

PCR reaction 

 

 

 

3.3.3. Isolation of plasmid DNA    

 

Plasmid DNA was isolated from overnight bacterial cultures using the QIA prep Spin 

Miniprep Kit for 4 ml and the Nucleobond Xtra Maxi for 150 ml bacterial cultures. The 

isolation was performed according to the manufacturer’s instructions, by binding of DNA to 

silica columns and subsequent washing steps. The DNA was finally eluted in H2O and the 

concentration was determined via Nanodrop measurement.  

1. Denaturation 95°C 2’30’’  

2. Denaturation 95°C 30’’  

3. Annealing 60°C 30’’  

4. Elongation 72°C 1’05’’ Back to Step 2, 30 Cycles 

5. Elongation 72°C 5’  
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4. Results 

 

4.1. Identity of Sam68 expressing cells in the forebrain 

4.1.1. Immunohistochemical analysis of Sam68 expression pattern 

 

Our group identified Sam68 as a target and regulator of Tenascin C in the cortical niche 

(Moritz et al., 2008a). In ongoing studies, we examined the role of Sam68 and the related 

STAR-family proteins Slm-1, Slm-2 during forebrain development, beginning with an 

immunohistochemical analysis of their expression pattern in the mouse embryonic and 

postnatal brain (Bertram, 2013). Sam68 expression was observed throughout the whole CNS 

including hippocampus, striatum, olfactory bulb and cerebellum (Grange et al., 2004). We 

observed a widespread expression in the germinal layers of the dorsal forebrain as well as in 

the intermediate zone (IZ) and in the cortical plate (CP) of the developing cortex where early 

born neurons reside. Sam68 is also expressed throughout the LGE and MGE. Slm-1 and Slm-

2 are both expressed in the cortical plate of the developing cortex and the GE, but only Slm-2 

expression was detected in the ventricular zone (VZ) of the cortex and a strong expression 

was observed in the dorsolateral GE while Slm-1 was not detected in the VZ. The analysis of 

STAR-family members at P10 displayed parallels to embryonic expression. Sam68 is 

expressed throughout the 6 cortical layers with the strongest signal in cortical layer V 

(Bertram, 2013). 

However, the cellular identity of cells in the embryonic and postnatal brain expressing 

STAR-family proteins is unknown. So far, using cell culture experiments, our group revealed 

that Sam68 and Slm-1 enhance neuronal differentiation of cortical NSCs and in turn reduce 

their proliferation ability (Bertram, 2013). For underlining this finding, the co-expression of 

Sam68 with the characteristic cortical neural stem markers (Pax6 and Nestin) and some of 

their derivative cell types, i.e. neurons (βIII-Tubulin) and astrocytes (GFAP) was analysed in 

immunohistochemical stainings on frontal sections of E13.5 and P10 mouse brains. E13.5 was 

chosen given that at this particular time the five fundamental zones (VZ, subventricular zone 

(SVZ), IZ, CP and marginal zone (MZ)) are developed and neurogenesis peaks (Bystron et 

al., 2008). At P10, the 6 cortical layers and other structures like the hippocampus are 
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completely established (Tole et al., 1997). With Pax6 as a marker for dividing neuroepithelial 

precursor and radial glia cells (Gotz et al., 1998), a clear co-expression with Sam68 was 

observed in the VZ of the cortex and the ONL of the eye. A co-expression was also recorded 

in the ganglion cell layer (GCL) of the eye, where postmitotic RGCs reside (Figure 7).   

 

Figure 7. Co-expression of Sam68 and Pax6 in the eye and the cortex.  

Depicted are photographs of immunhistochemical double-stainings of E13.5 frontal mouse brain 
cryosections labelled with Sam68 (green) and Pax6 (red) antibodies. For orientation, in (A’) and (B’) 
the whole brain and eye regions are shown. (A) A higher magnification illustrates the clear co-
localisation of Sam68 and Pax6 in the VZ of the cortex and is confirmed by the depiction of the single 
channels. (B) A higher magnification of the retina in overlay and the illustration of the single channels 
demonstrates a co-expression of Sam68 and Pax6 in the ganglion cell layer (GCL). Note also few 
double positive cells in the outer nuclear layer (ONL). Nuclei are counterstained with Hoechst. Scale 
Bar 100 µm. 
 

Also, with Nestin, a marker for neural stem cells (Lendahl et al., 1990), a co-expression with 

Sam68 was seen in the VZ of the cortex and in the subpallium (Figure 8). 

So far, I demonstrated that Sam68 is expressed by neural stem cells and radial glia cells in the 

VZ of the cortex and the GCL of the eye. Furthermore, Sam68 is generally expressed by 

Nestin-positive neural stem cells in the VZ of the cortex and the hippocampal anlage. Next, 

coming back to the previous findings of Sam68 enhancing neuronal differentiation, a co-

expression with characteristic markers for differentiating cells was analysed. βIII-Tubulin, a 

typical marker for young neurons was used for this purpose. Also, this 

immunohistochemical staining revealed a clear co-localization of both proteins in the cortical 

plate (Figure 9A) and the GCL of the eye (Figure 9B). 
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Figure 8. Co-expression of Sam68 and Nestin in the E13.5 mouse cortex.  

Depicted are images of immunohistochemistry of frontal section through an E13.5 mouse brain 
stained with Sam68 (red) and Nestin (green) antibodies. (A) The illustration of the whole cortex with 
the cortical plate (CP) and subpallium (SP) (A-A’’) demonstrates a strong co-expression of Sam68 and 
Nestin in the SP but also in the ventricular zone (VZ) of the cortex. A higher magnification and the 
illustration of the single channels clearly exhibits single cells co-expressing both proteins (B-B’’). 
Nuclei are counterstained with Hoechst.  Scale Bar 50 µm.   
 

 

Figure 9. Co-expression of Sam68 and βIII-Tubulin in the cortex and the eye.  

The immunhistochemical analysis of E13.5 mouse brains with antibodies against Sam68 and βIII-
Tubulin revealed a clear co-expression of both proteins in the cortex and the eye. Brain and eye 
regions of interest are depicted for orientation in A’ and B’. A higher magnification of the cortex and 
the illustration of the single channels demonstrates a clear co-expression in the cortical plate (CP). 
Also note a co-labelling of Sam68 and βIII-Tubulin expressing cells in the GCL (Ganglion cell Layer) 
and the ONL (Outer Nuclear Layer) of the retina, underlined by the exhibition of the single channels 
(A). Nuclei are counterstained with Hoechst. Scale Bar 100 µm. VZ (Ventricular Zone). 
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Furthermore, a co-localisation of Sam68 and GFAP, mainly expressed in basic fibrous 

astrocytes and in specialised astrocytes in layer 1 of the murine cerebral cortex (Garcia-

Marques and Lopez-Mascaraque, 2013, Tabata, 2015), was investigated on P10 frontal 

cryosections, due to the later developmental appearance of astrocytes. Only in the SVZ, few 

astrocytes were found to be double-positive for both proteins, whereas cortical astrocytes did 

not express detectable levels of Sam68 (Figure 10). 

Sam68 has a wide spread expression pattern in the CNS, with a stronger expression in the CP 

and the GCL of the eye. Indeed, as shown in this thesis, Sam68 is clearly co-expressed with 

the region specific progenitor markers Pax6 and Nestin as well as with βIII-Tubulin. This 

observation supports the hypothesis that Sam68 is expressed by precursor cells leaving the 

cell cycle with a neurogenic fate (Bertram, 2013).  

 

Figure 10.  Sam68 and GFAP are co-expressed in the SVZ of P10 mouse brain.  

Shown are immunohistochemical analysis of P10 mouse brain displaying a co-expression of Sam68 
and GFAP in the subventricular zone (SVZ); clearly demonstrated in the magnification in A’ (white 
arrow). Note that no cells in the cortical plate (CP) were identified co-expressing both proteins (A’’). 
The overview in (A) revealed additionally a wide spread expression pattern of Sam68 in all cortical 
layers, but a stronger signal in the intermediate zone (IZ). Nuclei are counterstained with Hoechst. 
Scale Bar 50µm. 
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4.1.2. Immunocytochemical analysis of Sam68 expression pattern 

 

The immunohistochemical analysis already revealed a co-expression of Sam68 with markers 

for neural stem cells and their progenies in situ. These stainings are in line with the previous 

findings of Sam68 acting as a promoter for neuronal differentiation. To get a deeper insight 

into the complex regulation mechanisms controlled by Sam68, a detailed investigation with 

cells isolated from E13.5 cortical and GE tissue was performed. These investigations were 

aiming at the identification of a time-dependent change in the expression pattern of Sam68 

expressing cells and shall support the hypothesis of Sam68 promoting differentiation. After 

isolating and plating the cortical and GE derived cells, they were fixed after a culture 

duration of 2h and 24h. Indeed, a clear change in the expression pattern of Sam68-positive 

cells was noticed after 24h compared to the situation after 2h. The quantitative analysis 

revealed a distinct shift in the number of precursor cells towards differentiating cells. In 

cortical derived cells a decrease in the percentage of Pax6- and Sam68-double positive cells 

(from 54% to 39%) and a significant reduction of Nestin- and Sam68- double positive cells 

occurred (from 60% to 37%) (Figure 11 and Figure 13). In contrast, a significant increase of 

Sam68 expressing cells double positive either for βIII-Tubulin or GFAP was observed in 

cortical and GE-derived cells. The amount of cortical Sam68/βIII-Tubulin double positive 

cells increased from 43% to 63%, whereas the percentage of GE derived Sam68/βIII-Tubulin 

cells increased from 55% to 77% (Figure 12 and Figure 13).  

 

 



                                                                                                                                                        Results  
 

40 
 

 

Figure 11. Co-expression of Sam68 with Pax6 and Nestin in neural stem cells 

The photomicrographs show immunocytochemical stainings of neural stem cells (E13.5) isolated from 
cortical (A-B’) and GE (C-D’) tissue. The cells were fixed after 2h (A,A’ and C, C’) and 24h (B,B’ and 
D,D’) of cultivation. The double labelling with Pax6 and Nestin (both red) as markers for neural stem 
cells and radial glia cells revealed a co-expression with Sam68 (green) under all conditions. Cell nuclei 
are counterstained with Hoechst. Scale Bar: 50µm  
 

 

Figure 12. Co-expression of Sam68 with βIII-tubulin and GFAP in neural stem cells 

Depicted are immunocytochemical stainings of neural stem cells (E13.5) isolated from cortical (A-B’) 
and GE (C-D’) tissue. After a culture duration of 2h (A,A’ and C,C’) and 24h (B,B’ and D, D’), the cells 
were fixed and analysed for a co-expression of Sam68 (red) and βIII-Tubulin or GFAP (both in green). 
Note that Sam68 is co-expressed with either βIII-Tubulin or GFAP under all conditions. Cell nuclei are 
counterstained with Hoechst. Scale Bar: 50 µm 
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Figure 13. Quantification of neural stem cells co-expressing Sam68 and typical neural stem cell 
markers  

Depicted are bar charts illustrating quantifications of immunocytochemical stainings (Figure 11 and 
Figure 12). Double positive cortical (A) and GE (B) derived cells were counted and expressed in 
relation to the total amount of Sam68-positive cells. Double labellings were performed with the 
characteristic neural stem cell markers Pax6 and Nestin for precursor cells and βIII-Tubulin and GFAP 
for young neurons and astrocytes.  
Data are expressed as mean + SD. (n=3, ** indicates p < 0.01, *** indicates p< 0.001, n.s. indicates not 
significant,  Students t-test). 
 

These findings confirm the results obtained with the imunnhistochemical stainings showing 

that Sam68 is not only expressed by neural stem cells and radial glia cells, but also by cells 

already determined to a neuronal or glial fate, which is true for the developing cortex and 

eye. Particularly, the quantitative analysis delineates the distinct time-dependent shift in the 

Sam68 expression pattern towards specific neuronal and glial cell markers and gives an 

overview of the percentage distribution of precursor cells in comparison to lineage 

determined cells. Given that Sam68 is present in neural stem and progenitor cells as well as 

in their postmitotic progenies raises the question what differences in Sam68 function might 

be on the molecular level. It can be assumed to be different in dividing versus postmitotic 

differentiating cells.  

  



                                                                                                                                                        Results  
 

42 
 

4.2. High efficiency Transfection of Oligodendrocyte Precursor Cells 

 

Transfection is a widely used approach to assess the functional importance of proteins. 

Allowing for the overexpression or the knockdown of genes, selective information about the 

respective function can be obtained. The main goal of this thesis was to elucidate the role of 

Sam68 for OPC development, particularly with respect to their maturation behaviour. The 

transfection of OPCs with the earlier mentioned Sam68 plasmids (see 2.1. Plasmids) seemed 

to be a reasonable way to investigate in detail the function of Sam68 by analysing the 

importance of its single domains. Especially, given that our group recently established a new 

protocol for the high efficiency transfection of neural stem cells (Bertram et al., 2012). 

However, in particular rat OPCs turned out to be rather sensitive with respect to the 

transfection process. Although a transfection was feasible (Czopka et al., 2010), it was limited 

by the high amount of 5x106 cells needed for each transfection and a considerable loss of 

OPCs caused by cell death during the procedure. To overcome these two disadvantages, I 

established a completely new protocol for the 4D-Nucleofector of Lonza. In order to establish 

this protocol I used the pEGFP-C1 plasmid to transfect 2x105 OPCs. This plasmid was chosen 

for the establishing process given that the Sam68 constructs were cloned into this vector and 

the design of the protocol therefore incorporates my specific experimental conditions. Due to 

the low yield isolation of OPCs, 16-well Nucleocuvette Strips (20 µl) were used for the 

optimisation phase, as they allow for the transfection of lower cell numbers ranging between 

2x105-5x105 cells. During the establishing procedure, the best transfection results were 

obtained with an amount of 2-5x105. Several cell numbers were tested, ranging between 2.5 

to 9x105 (Table 4). The first step was a pulse screen in which 26 different pulses were tested. 

Initially, the cell viability was selected as the most critical parameter for the evaluation of the 

tested pulses. The first tested pulses showed a comparatively low viability and the surviving 

cells failed to differentiate into oligodendrocytes (Figure 14). Therefore, a meaningful 

quantification of the transfection efficiency was impossible. In contrast, weak pulses led to 

high cell viability, but produced at the same time only a low transfection efficiency. Finding 

a pulse striking a balance between these two aspects was the next step. Based on these 

results, the collaborating company Lonza provided more pulses, whereupon the viability 

increased dramatically (Figure 15A). Among many different pulses tested, the pulse protocol 

CA-138 produced the highest level of viable cell numbers, with a 90 + 21 % (n=10 + SD) of 

cells surviving post transfection and allowed for a quantification of the transfection 

efficiency.  
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Figure 14. Transfection result with suboptimal pulse protocol DS-113.  

Photomicrographs of immuncytochemical stainings of transfected OPCs with P3 solution and DS-113 
cultured for 3d are shown in (A). EGFP is visualised with the fluorochrome Cy2 (green). O4 labels 
immature oligodendrocytes and is visualised with Cy3 (red). Cell nuclei are Hoechst-stained. For 
pointing out the suboptimal transfection conditions, untransfected OPCs are depicted as well (B). 
Scale Bar: 30µm. 
 

The latter was determined by counting the number of O4- and EGFP-positive immature 

oligodendrocytes as determined by double-immunocytolabelings. By comparing CA-138 

with five other pulses with reasonable cell survival rates, CA-138 resulted in 17+7% (n=10, + 

SD) successfully transfected oligodendrocytes, which was the best obtained transfection rate 

(Figure 15B). Beside the identification of the optimal pulse protocol, culture conditions and 

transfection parameters before, during and post-transfection were improved as well. An 

overview about the changed parameters is given in Table 4. Transfected OPCs developed 

best on PORN coated 4-well dishes after a short recovery time of 15 min, extended recovery 

periods from 30 min to overnight recovery did not improve the cell survival rate. 

Furthermore, regarding transfection efficiency and viability, the direct plating of the 

transfected cells in P3 solution and CDM was more effective than the foregoing removal of 

P3 solution. The comparison of P1 and P3 solution revealed high cell mortality with P1 

solution, indicating that P3 solution is ideal for the transfection of OPCs. Determining an 

optimal plasmid concentration emerged as another crucial parameter. Low concentrations 

caused less transfected cells, whereas high amounts increased cell mortality. By testing 

different plasmid concentrations (Table 4), 0.5 µg plasmid afforded the best balance between 

transfection efficiency and cell survival. Next, it appeared necessary to show that this 

transfection protocol also allows for the differentiation and characteristic maturation of 

cultured OPCs.  
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Figure 15. CA-138 displayed the best balance of viability and transfection efficiency 

Depicted are bar charts delineating the quantification of the viability (A) and the transfection 
efficiency (B) after the pulse screening. OPCs were transfected with 0.5µg pEGFP-C1 (exception: CA-
138* with 1µg pEGFP-C1) using 26 different programs. OPC viability was determined directly after 
transfection. Using a set of pre-selected pulses, the transfection efficiency was determined 24h after 
transfection by counting EGFP and O4 double - positive cells. Data are expressed as mean + SD. Bars 
with SD represent at least 3-10 independent experiments. Those without error bars were performed 
once or twice, due to an extremely low viability. Counting low cell numbers with the Neubauer cell 
chamber (around 250,000 cells) can cause variation, explaining viability rates above 100%. 
 

 

Table 4 Transfection parameters changed during the establishing process 

Pre-Transfection Transfection Post-Transfection 

 
Coating of 4-Well dishes 
(poly-L-ornithine, poly-D-

lysine, 
pre-incubation with 

medium) 
 

Centrifugation steps 
(duration, RPM) 

 
Amount of cells per 

transfection 
(2.5-9x105 cells) 

 
Solutions (P1, P3) 

 
Amount of plasmid 

(0.1 µg, 0.25 µg, 0.5 µg, 1 µg) 
 

Different plasmids 
(pmaxGFP,pEGFP-C1, 

pEGFP-N1) 
 

26 pulses tested 

 
Recovery steps 

(e.g. recovery over night, or 
for max. 30 min at 37°C after 

transfection) 
 

Start of cell culture 
(either direct plating of cells 
with transfection solution, or 

previous resuspension of 
cells in fresh medium) 

 
Amount of plated cells 

(2-5x104 cells/Well) 
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Figure 16. Transfected OPCs perform a normal morphological maturation 

Shown are immunocytochemical stainings of OPCs 48h after transfection with the program CA-138. In 
the above photomicrographs, the signal of the transfected EGFP-positive cells is intensified with the 
fluorochrome Cy2 (green). A co-labeling of the transfected oligodendrocytes with the characteristic 
oligodendrocyte lineage markers revealed a regular maturation; (A) Co-staining against PDGFRα 
(red) a marker for OPCs, (B) against O4 (red), labelling immature oligodendrocytes and (C) against 
MBP (Cy3, red), which becomes expressed in mature oligodendrocytes. Cell nuclei are Hoechst-
stained. Scale Bar: 30µm. 
 

Since the morphological maturation of OPCs along the lineage toward mature 

oligodendrocytes is characterised by the expression of specific proteins (Zhang, 2001), I 

performed double-immunostainings against EGFP and defined lineage markers of OPCs, 

which were allowed to differentiate for 48h after the nucleofection with pulse CA-138. Under 

these conditions a normal pattern of differentiation and maturation was observed. I recorded 

transfected OPCs identified by the expression of the PDGFRα, O4 and mature 

oligodendrocytes expressing MBP (Figure 16). 

Taken together it was clearly shown that the transfection of non-adherent OPCs is now 

reproducibly possible with a high viability, normal differentiation and an acceptable 

transfection efficiency of up to 25%. In combination with the huge advantage that a low cell 

number of only 2x105 is needed for the single electroporation process, no further 

improvements were attempted. This improved electroporation protocol now allows to 

elucidate the role of Sam68 for oligodendrocyte development. 
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4.3. Functional Analysis of Sam68 during Oligodendrocyte Development 

4.3.1. Role of Sam68 domains in oligodendrocyte differentiation 

 

Oligodendrocytes are essential for the myelination of axons in the central nervous system. 

During development, oligodendrocyte precursor cells generate oligodendrocytes in a 

controlled and regulated process through the activity of diverse intrinsic and extrinsic 

factors. The members of the STAR-family proteins are among the intrinsic factors involved in 

oligodendrocyte differentiation (Czopka 2009, Bertram 2013). Due to the multifunctional 

character of Sam68 and its related family members Slm-1 and Slm-2, further studies were 

done, in which Sam68 and Slm-1 were identified as promoters of neural stem cell 

differentiation. Both proteins promote the differentiation of neural stem cells into a neuronal 

fate, but also enhance oligodendrocyte maturation (Bertram, 2013). However, the detailed 

mechanism(s) of how Sam68 controls oligodendrocyte development are still unknown. 

Therefore, I assess several Sam68 plasmids which contain mutations in the RNA-binding site 

or the nuclear localisation signal to characterise the Sam68 domains relevant for controlling 

oligodendrocyte development, by transfection of isolated OPCs (Figure 4).  

The Sam68_VF and Sam68_GE plasmids carry point mutations caused by amino acid 

exchanges (valine against phenylalanine and glycine against glutamic acid) in the RNA-

binding domain, ultimately hindering the RNA-binding by steric and electrostatic repulsion. 

The third construct, Sam68_351-443, is a truncated version of the protein, lacking the 

homodimerisation domain but still containing the hnRNPA1 binding site and the C-terminal 

tyrosine rich domain. Tyrosine residues are potential sites of phosphorylation and it is 

known that Sam68 is tyrosine phosphorylated by numerous soluble tyrosine kinases (Fusaki 

et al., 1997, Derry et al., 2000). The fourth construct, Sam68_NLS-KO, carries a mutation in 

the NLS-Region. This mutation is caused by an amino acid exchange at positions 436 and 

442, preventing its transport to the nucleus and therefore suppressing all Sam68 functions in 

the nucleus, i.e. its role in splicing (Paronetto et al., 2007). With this construct, the role of the 

nuclear localisation signal for the differentiation of oligodendrocytes can be elucidated.  

The newly established protocol for the transfection of OPCs allowed for a detailed analysis of 

Sam68 functions in OPCs. After electroporating OPCs with the Sam68 constructs, cells were 

cultured for 5d under differentiating conditions and were fixed subsequently. 
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Figure 17. PDGFRα-positive OPCs transfected with Sam68_VF are significantly elongated, 
whereas no significant differences were observed in the proportion of transfected marker positive 
oligodendrocytes. 

Isolated OPCs from P2 rat cortices were transfected with the denoted Sam68 constructs and cultured 
for 5d. In comparison to the control (pEGFP-C1), the immunocytochemical staining with PDGFRα 
(red) and GFP (green) exhibited significantly elongated cells after a transfection with Sam68_VF 
(A,C and G). (G) Bar chart plotting the cell length of transfected PDGFRα-positive cells. The 
quantification of transfected lineage marker positive cells (PDGFRα, O4 and MBP) in relation to the 
total GFP-cell  amount revealed no significant differences in the proportion of immature and mature 
oligodendrocytes (H). Cell nuclei are Hoechst-stained. Scale Bar: 50 µm. Data are expressed as mean + 
SD, n=3 (Oneway Anova followed by Tukey’s multiple comparison test). 
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The differentiation of oligodendrocytes from their progenitors follows a stepwise 

morphological transition. This morphological change is accompanied by the sequential 

expression of molecular markers, which consequently permits for a stepwise analysis of the 

differentiation process (Figure 2) (Zhang, 2001). Therefore, the transfected cells were 

immunocytochemically stained with PDGFRα for OPCs, O4 for immature and MBP for 

mature oligodendrocytes. At first, the number of transfected marker positive cells was 

analysed in relation to the total amount of GFP-positive cells and compared to the control 

situation (pEGFP-C1). No significant differences were observed regarding the relative 

numbers of PDGFRα, O4 or MBP positive cells in comparison to the control situation 

(pEGFP-C1), although a reduction of O4-positive cells transfected with Sam68_WT, 

Sam68_VF and Sam68_GE was noticed. In addition, a multiple comparison of all 

conditions with each other did not reveal any significant differences (Figure 17H). While 

counting the cells, morphological differences regarding the cell size of PDGFRα-, O4- and 

MBP - positive oligodendrocytes were noticed. The expression of myelin components and 

the formation of myelin membranes are the two properties defining differentiated 

oligodendrocytes from their specified precursors, which possess a bipolar morphology. 

Immature oligodendrocytes are characterised by complex branching, whereas mature cells 

develop large myelin membranes (Zhang, 2001). Therefore, in a further consideration, the 

cell morphologic maturation was investigated in detail by measuring the length of PDGFRα-

positive cells and the cell area of O4 and MBP-positive oligodendrocytes. Indeed, compared 

to the control (pEGFP-C1), a significant extension of OPCs transfected with Sam68_VF was 

recognized (Figure 17 C, G). PDGFRα-positive OPCs transfected with Sam68_GE were 

elongated as well, although this effect was not significant (Figure 17 D, G). Distinct 

differences were also observed, considering the area of transfected O4-positive cells. In 

comparison to the control (pEGFP-C1) OPCs transfected with Sam68_WT and Sam68_VF 

had a significantly larger surface (Figure 18 I). This effect emerged in all OPCs that were 

transfected with one of the constructs, albeit only the size difference between the control 

vector transfected with the Sam68_WT construct or the above mentioned vector was 

significant (Figure 18 I).  

Hence, the results of this cell size measurement were categorized in 8 steps ranging between 

0-10000 µm2. This categorisation delineated that cells transfected with Sam68_WT had the 

highest percentage (20%) of O4-positive cells larger than 10000 µm2. Cells transfected with 

pEGFP-C1 exhibited by far the highest percentage (20%) of small cells, in fact between 0 -

1000 µm2 (Figure 18 G and H). 
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Figure 18. O4 - positive cells transfected with Sam68_WT and Sam68_VF exhibited a significantly 
larger surface.  

(A-F) The photomicrographs show immunocytochemical stainings of isolated OPCs from P2 rat 
cortices transfected with the denoted Sam68 constructs and cultured for 5d. This immunocytochemical 
analysis with O4 (red) and GFP (green) revealed differences in the size of cells, depending on the 
transfected plasmid. OPCs transfected with Sam68_WT and Sam68_VF were significantly larger 
than the control situation transfected with pEGFP-C1; clearly demonstrated in the box plot (I). A 
detailed percentage subdivision of the cell sizes is shown in the graphs (G) and (H), with a range from 
0- 4000 µm2 (G) and 4000 to < 10000 µm2 in (H). Cell nuclei are Hoechst-stained. Scale Bar: 50µm. Data 
are expressed as mean + SD *p<0.05,** p<0.01, n=3 (Oneway Anova followed by Tukey’s multiple 
comparison test).    
 

Significant differences were also observed regarding the morphology of MBP-positive cells. 

The area of cells transfected with Sam68_WT was significantly larger in comparison to 

Sam68_351-443 and Sam68_NLS-KO. In general, cells transfected with Sam68_351-443 and 

Sam68_NLS-KO had the smallest surface in comparison to all other conditions (Figure 19I). 

Interestingly, while the surface of O4-positive cells transfected with Sam68_VF was 

comparable to the size of O4-positive cells transfected with Sam68_WT, MBP-positive cells 

transfected with Sam68_VF appeared smaller in comparison to Sam68_WT (Figure 19I). 

Additionally, analysis of Sam68_VF transfected OPCs revealed with 41% a high proportion 

of small cells (0-1000 µm2). Oppositely, by far the highest percentage of large cells (<10000 

µm2) was noticed when cells were transfected with Sam68_WT (17%). Cells transfected with 

Sam68_351-443 showed the highest proportion (47%) of small cells (0-1000 µm2) followed by 

cells transfected with Sam68_NLS-KO (39%). Underlining these findings, no cells larger than 

10000 µm2 where observed when the cells were transfected with Sam68_NLS-KO and only 

2% of the cells transfected with Sam68_351-443 emerged larger than 10000 µm2 (Figure 19 

G,H). Regarding the morphology of MBP-positive cells transfected with Sam68_VF in 

comparison to Sam68_WT a smaller surface was noticed, but these cells also exhibited a more 

mature stadium. More oligodendrocytes transfected with Sam68_VF (<17%) formed 

myelin membranes in comparison to Sam68_WT (<11%). This revealed a detailed analysis of 

the morphologic maturity by categorising the oligodendrocytes in four categories according 

to the complexity of their branches and membrane formation (Figure 20). In Figure 20 (A) the 

criteria of categorisation are specified by examples. This analysis supports findings described 

above. Cells transfected with Sam68_351-443 and Sam68_NLS-KO exhibited less mature 

oligodendrocytes of category 3+4 in comparison to all other conditions and in particular to 

Sam68_WT (Figure 20 B). A bar chart showing separately the oligodendrocytes of category 4 

illustrates the severe effect of Sam68_NLS-KO on membrane formation.  
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Figure 19. MBP-positive cells transfected with Sam68_351-443 and Sam68_NLS-KO display a 
significantly smaller surface in comparison to Sam68_WT overexpression. 

Shown are immunocytochemical stainings of transfected OPCs (with denoted Sam68 constructs) 
obtained from P2 rat cortices after a culture duration of 5d. These immunocytochemical stainings with 
MBP (red) and GFP (green) revealed significant differences in the surface of the cells, depending on 
the transfected plasmid. The box plot delineates that OPCs transfected with Sam68_WT were 
significantly larger in comparison to OPCs transfected with Sam68_351-443 and Sam68_NLS-KO (I). 
OPCs transfected with Sam68_351-443 and Sam68_NLS-KO showed the smallest size in comparison to 
all other conditions. A detailed percentage subdivision of the cell area is shown in the graphs (G) and 
(H), with a range from 0- 4000 µm2 (G) and 4000 to < 10000 µm2 in (H). Cell nuclei are Hoechst-stained. 
Scale Bar: 50µm. Data are expressed as mean + SD *p<0.05,** p<0.01, n=4 (Oneway Anova followed by 
Tukey’s multiple comparison test). 
 

 

 

Figure 20. Sam68_NLS-KO prevents myelin sheet formation 

(A) This panel illustrates the classification of oligodendrocytes according to their morphological 
appearance by showing immunofluorescence images of MBP-positive (red) cells at different 
maturation states, which are divided into four different categories (from 1: immature to 4: mature). 
The graph describes the proportion of transfected MBP-positive cells and reveals no myelin sheet 
forming oligodendrocytes under the condition of Sam68_NLS-KO and an decrease of maturation 
under the condition of Sam68_351-443. Additionally, the graph shows most mature oligodendrocytes 
(categorie 3+4) under the condition of Sam68_WT (B). The percentage of myelin forming 
oligodendrocytes of category 4 is additionally depicted in a bar chart (C). Data are expressed as mean 
+ SD, n=4 (Oneway Anova followed by Tukey’s multiple comparison test). 
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No membrane formation occurred when cells were transfected with this construct. Only few 

membrane forming cells were counted when the cells were transfected with Sam68_GE 

(>3%). Additionally, it illustrates that most membrane forming oligodendrocytes appear, 

when cells were transfected with Sam68_VF (Figure 20 C). This impression is supported by 

western blot analysis, demonstrating a higher amount of MBP in comparison to Sam68_WT 

transfected OPCs. Moreover, in comparison to Sam68_351-443 and Sam68_GE, a 

significantly higher amount of MBP was noted (Figure 21A and B). 

The western blot analysis supported the results of the immunocytochemical investigations, 

delineating a higher MBP level in cells transfected with the Sam68_WT overexpression 

plasmid in comparison to the control (pEGFP-C1). A higher MBP-level of Sam68_WT 

construct, Sam68_VF and pEGFP-C1 in comparison to Sam68_GE, Sam68_351-443 and 

Sam68_NLS-KO is additionally supporting the above findings of an impaired myelin sheet 

formation. In contrast, RT-PCR-analysis with MBP-primers binding in the 3’UTR recognizing 

all MBP-isoforms, revealed on mRNA-level a higher MBP-mRNA-level in the presence of 

overexpressed Sam68_GE, Sam68_351-443 and Sam68_NLS-KO in comparison to 

Sam68_VF and pEGFP-C1. Surprisingly, also in presence of overexpressed Sam68_WT a 

higher MBP-mRNA level was observed, similar to high amounts of Sam68_351-443 (Figure 

21C and D). 

Altogether one can summarize that overexpression of Sam68 in oligodendrocytes 

significantly accelerates their maturation and increases their size. Therefore, Sam68 is critical 

for oligodendrocyte development. In order to fulfil its function for OPC development, Sam68 

relies on its RNA-binding properties. OPCs overexpressing Sam68 with a dysfunctional 

mRNA binding domain or an absent NLS are neither able to promote OPC size expansion 

nor their maturation. 
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Figure 21. Transfection with Sam68_VF significantly increased MBP-protein level and reduced 
MBP-mRNA level  

(A) The radiograph shows a western blot analysis of protein lysates obtained from OPCs transfected 
with the denoted Sam68 constructs. Untransfected OPCs (OPCs diff.) cultured for 5 d and the empty 
vector (pEGFP-C1) served as controls. (B) This bar chart demonstrates the quantitative analysis of the 
western blot signals (expressed in arbitrary units) normalised to the associated GAPDH signals 
illustrating the significant decrease in the MBP density of Sam68_GE and Sam68_351-443 in 
comparison to Sam68_VF. Data are expressed as mean + SD *p<0.05,** p<0.01, ***p<0.001, n=3 
(Oneway Anova followed by Tukey’s multiple comparison test). 
(C) This image shows an RT-PCR-analysis of cDNA synthesized from mRNA isolated of transfected 
OPCs. It demonstrates differences on MBP-mRNA level depending on the transfected Sam68-plasmid. 
The successful transfection of OPCs is demonstrated with GFP-primers. (D) The bar chart 
demonstrates the quantitative analysis of the MBP signal normalised to the GAPDH loading control 
and reveals a decrease of the relative MBP-mRNA-level under the condition of pEGFP-C1 and 
Sam68_VF. n=2 
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4.3.2. Interplay of hnRNPA1 and Sam68 during OPC differentiation 

 

I already demonstrated a functional importance of the RNA binding site and the nuclear 

localisation signal for cell growth, myelin sheet formation and MBP-expression. Next, I 

wanted to decipher a possible mechanism how this influence on oligodendrocyte 

differentiation may be regulated. Sam68 is supposed to be a regulator of MBP splicing 

(Czopka, 2009) and it contains a binding site for hnRNPA1, a member of the hnRNP-family. 

Besides Sam68, also hnRNPA1 is a known repressor of alternative splicing, by regulating a 

set of transcripts and exons in oligodendrocytes important for the formation of myelin 

sheets. In detail, Quaking binds hnRNPA1 mRNA through its 3’UTR and enhances its 

stability. hnRNPA1 itself co-regulates MAG exon 12 alternative splicing (Zearfoss et al., 

2011). Both, Sam68 and Quaking belong to the highly conserved STAR-family proteins, thus 

a comparable interplay of Sam68 and hnRNPA1 is conceivable. Furthermore, the controlling 

of alternative splicing of Bcl-x by Sam68 and hnRNPA1 (Paronetto et al., 2007) supported the 

idea that hnRNPA1 could be a possible interaction partner of Sam68 during oligodendrocyte 

development. Most likely, Sam68 controls hnRNPA1 mRNA abundance and the translational 

efficiency. Furthermore, the binding of hnRNPA1 by Sam68 may repress the alternative 

splicing and the translation of MBP-mRNA. 

To test this hypothesis, the experiments described in this chapter elucidate whether there is a 

general role for hnRNPA1 in the differentiation of oligodendrocytes. In a first approach, 

hnRNPA1 was knocked down in OPCs using hnRNPA1_siRNA. A possible interplay of 

Sam68 and hnRNPA1 was investigated by double-transfections with the previously used 

Sam68 constructs and hnRNPA1_siRNA. The transfections were performed with the earlier 

described transfection protocol (4.2. High efficiency Transfection of Oligodendrocyte 

Precursor Cells). The analysis of immunocytochemical stainings exposed effects on the 

morphology, whereas the influence on MBP-expression was discovered by western blot 

analysis.  

At first, the functionality of hnRNPA1_siRNA was tested by its transfection in OPCs. After 

culturing the cells for 5 days under differentiating conditions, the successful knockdown was 

determined by western blot analysis (Figure 22A and B). Additionally, the transfection with 

hnRNPA1_siRNA in combination with a Sam68 overexpression was performed to elucidate 

the collective effect on hnRNPA1 expression. Interestingly, after the double transfection the 
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amount of hnRNPA1 protein was even lower compared to the simple knockdown with 

hnRNPA1_siRNA. Especially in comparison to not transfected oligodendrocytes, the effect is 

severe (Figure 22A and B).  

 

Figure 22. Immunoblotting confirms the successful knockdown of hnRNPA1 in OPCs. 

(A) The radiograph depicts a western blot analysis of protein lysates derived from P2 rat OPCs 
transfected with hnRNPA1_siRNA alone, or in combination with the Sam68_WT overexpression 
vector. The transfection with a nontargeting siRNA and untransfected OPCs (OPC Diff.) served as 
controls. (B) The bar chart shows the quantification of the western blot signals from one experiment. 
The relative density of a protein band within each sample was normalized to the intensity of the 
associated GAPDH protein signal and is expressed in arbitrary units. The quantification illustrates the 
successful knock-down of the hnRNPA1 protein in OPCs transfected with the respective siRNA. Note 
that the parallel overexpression of Sam68_WT causes an even more pronounced reduction in 
hnRNPA1 levels compared to the control. 
 

Thus, hnRNPA1 knockdown with hnRNPA1_siRNA is intensified through the forced 

expression of Sam68. This result provided strong evidence for a possible interplay between 

those two proteins in oligodendrocytes. A regulation of MBP-expression through both 

proteins appeared to be possible. Therefore, to answer this issue OPCs were double-

transfected with hnRNPA1_siRNA and the Sam68 constructs: Sam68_VF, Sam68_351-443 

and Sam68_NLS-KO, respectively. The reason for using these constructs based upon the fact 

that they executed the most severe effects on oligodendrocyte differentiation. Particularly, 

the possible effects on OPC maturation and MBP-expression were of interest. 

Therefore, after the transfection, the morphology of immature and mature oligodendrocytes 

was analysed by immunocytochemical stainings with the earlier introduced oligodendrocyte 

lineage markers PDGFRα, O4 and MBP (Figure 2) (Zhang, 2001). The measurements of cell 

size revealed that O4-positive cells transfected with control siRNA (Figure 23A, G) exhibited 

the smallest surface compared to all other conditions, whereas OPCs double transfected with 

hnRNPA1_siRNA and either Sam68_351-443 (Figure 23C and G) or Sam68_NLS-KO (Figure 
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23 F and G) showed the largest surface. Cells double transfected with hnRNPA1_siRNA 

(Figure 23D and G) and Sam68_WT (Figure 23B and G), revealed a size of about 16000-19000 

µm2. This was comparable to cells double transfected with hnRNPA1_siRNA and 

Sam68_VF (Figure 23D, E and G). Regarding the morphology of MBP positive cells no 

distinct differences regarding the cell size were observed. OPCs double transfected with 

hnRNPA1_siRNA and Sam68VF had the smallest surface. All other conditions showed a 

comparable cell size (Figure 23A’-F’ and H).  
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Figure 23. hnRNPA1 knockdown in combination with either Sam68_351-443 or Sam68_NLS-KO 
transfection increases the surface of O4-positive cells 

Depicted are immunocytochemical stainings of transfected OPCs obtained from P2-3 rat pups and 
cultured for 5d. The transfection was performed with non-targeting siRNA serving as control (A and 
A’), and  hnRNPA1_siRNA (D and D’). To investigate a possible interaction of Sam68 and hnRNPA1 
double-transfections were performed with the above introduced Sam68 plasmids, and 
hnRNPA1_siRNA (Figure 4). A morphologic analysis of the cell size revealed an enlargement of O4-
positve cells double-transfected with Sam68_351-443 or Sam68_NLS-KO (C, F) and is demonstrated in 
the bar chart (G). The quantitative analysis of MBP-positive cells revealed no severe differences (H). 
n=2, Data are expressed as mean + SD. Scale Bar: 50µm     
 

In order to discover a possible influence on the morphologic maturity, the transfected 

oligodendrocytes were categorized in four categories according to the complexity of their 

branches and membrane formation. The procedure was performed as described previously 

(Figure 20A). This morphologic analysis exposed distinct differences in the amount of 

category 3 oligodendrocytes, characterising cells with complex branches and partially 

formed membranes. A six fold lower amount of category 3 oligodendrocytes was noticed 

when OPCs were double transfected with Sam68_VF and hnRNPA1_siRNA in comparison 

to cells only transfected with hnRNPA1_siRNA. In addition, OPCs double transfected with 

Sam68_VF and hnRNPA1_siRNA exhibited by far the highest percentage of category 1 

oligodendrocytes, characterised by poorly branched processes. No severe differences were 

noticed when OPCs were double transfected with hnRNPA1_siRNA and each Sam68_WT, 

Sam68_351-443 or Sam68_NLS-KO (Figure 24 A-B). Most category 4 oligodendrocytes, which 

are characterised by prominent membrane formation, were recorded in the control situation. 

A bar chart plotting only the amount of category 4 oligodendrocytes illustrates this 

observation (Figure 24 B). Surprisingly, the second highest percentage of category 4 

oligodendrocytes was detected when cells were double-transfected with Sam68_VF and 

hnRNPA1_siRNA, although a 1.5 fold decrease in comparison to the control situation was 

noticed.  

Taken together, the knockdown of hnRNPA1 and the overexpression with the mutant Sam68 

forms revealed an influence on the cell size of oligodendrocytes. Next, it appeared necessary 

to study an effect of hnRNPA1 knockdown on MBP-expression. The overexpression with the 

mutated Sam68 constructs described in the previous chapter demonstrated their severe 

influence on MBP-expression. Here, western blot analysis examined, whether these 

constructs evoke an effect on MBP-expression in combination with a simultaneous hnRNPA1 

knockdown. 
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Figure 24.  Sam68 and hnRNPA1 regulate myelin sheet formation and MBP expression 

This panel illustrates a cell morphologic investigation of the cell maturity (A, B) and western transfer 
analysis (C, D) of OPCs transfected with the hnRNPA1_siRNA alone or in combination with the 
denoted Sam68 constructs in comparison to non-targeting si_RNA serving as control. 
(A) The graph illustrates the proportion of transfected MBP-positive cells regarding their morphologic 
maturity (from 1:immature, to 4: mature), carried out as described previously ( Figure 20 A). The 
proportion of only myelin forming oligodendrocytes of category 4 is additionally depicted in a bar 
chart, clarifying the decrease of membrane formation under all transfected conditions in comparison 
to the control situation (nontargeting siRNA) (B). n=2  
The western transfer analysis (C) and the associated quantitative analysis (D) revealed a decrease of 
MBP-expression after transfecting the cells with hnRNPA1_siRNA alone and in combination with the 
Sam68_WT overexpression vector. Oppositely, the hnRNPA1_siRNA double-transfection with 
Sam68_351-443 or Sam68_NLS-KO showed an increase of relative MBP level in comparison to 
hnRNPA1_siRNA. These results demonstrate the collective role of Sam68 and hnRNPA1 in the 
regulation of myelin sheet formation and MBP-expression. The relative density of a protein band 
within each sample is normalised to the intensity of the associated GAPDH protein band and is 
expressed in arbitrary units. 
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For this purpose, the protein lysates of OPCs transfected with hnRNPA1_siRNA and 

Sam68_WT, Sam68_351-443 or Sam68_NLS-KO, respectively, were analysed via 

immunoblotting. A distinct decrease of MBP expression in comparison to the control 

situation was recorded when OPCs were only transfected with hnRNPA1_si-RNA. A similar 

effect was observed when OPCs were double-transfected with Sam68_WT and 

hnRNPA1_siRNA. The MBP amount of OPCs double-transfected with hnRNPA1_siRNA 

and either Sam68_351-443 or Sam68_NLS-KO was comparable to the control situation. So far, 

the data exhibited that hnRNPA1 knockdown has no severe effect regarding the cell size of 

oligodendrocytes, but it decreases MBP-expression. Hence, a collective effect of an 

overexpression with the Sam68 constructs and the hnRNPA1 knockdown was observed on 

cell growth and MBP-expression, respectively. 

Taking in consideration the severe effects of the previously performed transfection 

experiments with the Sam68 constructs, it seemed reasonable to oppose the earlier obtained 

data of single transfected OPCs to the here described hnRNPA1_siRNA double transfections. 

For this purpose, the cell size of double-transfected MBP-positive cells was categorized in 8 

steps from 0-10000 µm2 as described previously. Then, the cell size of single transfected 

OPCs (Figure 19 G, H) was opposed to OPCs additionally transfected with 

hnRNPA1_siRNA.  
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Figure 25. Cell size comparison of MBP-positive OPCs single and double transfected with Sam68 
plasmids and hnRNPA1 siRNA. 

The depicted graphs compare the earlier described results from OPC transfections with the Sam68 
plasmids alone to the hnRNPA1 double-transfection results obtained in this chapter. The cell size is 
categorized in 8 Steps from 0 to >10000 µm2. This juxtaposition points out the severe enlargement of 
oligodendrocytes double-transfected with hnRNPA1_siRNA and each of the plasmids Sam68_351-443 
or Sam68_NLS-KO in comparison to OPCs transfected with Sam68_351-443 (C) and Sam68_NLS-KO 
(D) alone. The comparison of the size of MBP-positive cells of Sam68_WT and Sam68_VF single 
transfected OPCs and double transfection with additional hnRNPA1_siRNA did not reveal distinct 
differences (A and B).     
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This juxtaposition showed a severe difference comparing OPCs single transfected with 

Sam68_351-443 and Sam68_NLS-KO in comparison to double transfections of both 

constructs with hnRNPA1_siRNA. In both conditions a distinct increase of the cell size was 

noticed when OPCs were additionally transfected with hnRNPA1_siRNA (Figure 25 C and 

D). The double transfected OPCs (Sam68_351-443 and hnRNPA1_siRNA) showed a 4-5 fold 

increase in the percentage of cells larger than 4000 µm2 compared to OPCs only transfected 

with Sam68_351-443 (Figure 25 C). Comparing OPCs transfected with the Sam68_NLS-KO 

plasmid to the combined transfection with hnRNPA1_siRNA exhibited an even more drastic 

effect. A 7-12 fold increase in the percentage of cells larger than 8000 µm2 was noticed when 

cells were double transfected with hnRNPA1_siRNA in comparison to the single transfection 

condition with Sam68_NLS-KO alone (Figure 25D). The comparison of OPCs transfected 

with the Sam68_WT overexpression plasmid and double transfected cells (Sam68_WT and 

hnRNPA1_siRNA) showed a 2.5 fold decrease of cells larger than 10000 µm2 when 

hnRNPA1_siRNA was added. The juxtaposition of OPCs transfected with the Sam68_VF 

construct and the combined transfection with hnRNPA1_siRNA revealed the most striking 

differences regarding cells with a surface of 0-1000 µm2. The single transfection with 

Sam68_VF showed a 2.3 fold increase in comparison to double transfected OPCs 

(Sam68_VF and hnRNPA1_siRNA). 

Taken together, the data clearly demonstrate a role of hnRNPA1 in MBP expression and 

during OPC differentiation. Although the data must be validated by repeated measurements, 

they exposed a role of hnRNPA1 and an additional interplay of Sam68 and hnRNPA1 in 

regulating MBP expression. The functional mechanism of both proteins is contrary, as Sam68 

enhances and hnRNPA1 represses MBP expression. The RNA-binding properties and the 

NLS-region of Sam68 were necessary for this combined regulation shown by the accelerated 

MBP–level after an overexpression with the mutated Sam68 forms and hnRNPA1_siRNA. 
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5. Discussion 

 

The results presented in this thesis can be subdivided into three major parts. In the first part I 

analysed the identity of Sam68 expressing cells in vitro and in vivo. Here, I could demonstrate 

that albeit Sam68 is continuously expressed in NSCs as well as in its progeny during lineage 

progression, more Sam68-positive cells co-express differentiation markers. This indicates that 

Sam68 is upregulated during differentiation process of NSCs. 

The second part describes a successfully established method for the transfection of primary 

rat OPCs. This new protocol allows for the high efficiency transfection of non-adherent 

primary rat OPCs and provides big advantages especially with respect to the low-yield and 

time-consuming isolation of primary rat OPCs.  

This method represents the basis for the main part of this work which displays the functional 

analysis of Sam68 during oligodendrocyte development. Due to the multifunctional 

character of Sam68 given through several functional domains of this protein, an intensive 

study revealed a strong influence on oligodendrocyte maturation and identified the 

responsible domains. The RNA-binding domain and the NLS-sequence were demonstrated 

to be functional relevant for MBP expression and myelin sheet formation. Furthermore, I 

identified an interaction between the well-studied splicing regulator hnRNPA1 and Sam68. 

Sam68 regulates hnRNPA1 expression and both proteins regulate commonly the expression 

of MBP. 

Taken together, I studied the role of Sam68 in NSCs and oligodendrocytes and its functional 

role during oligodendrocyte maturation. Based on this new knowledge, a molecular model 

displaying the influence of Sam68 and hnRNPA1 on regulation of oligodendrocyte lineage 

progression was developed. 
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5.1. Cellular identity of Sam68 expressing cells 

 

A widespread expression pattern of Sam68 in the embryonic and postnatal brain was 

recently identified (Bertram, 2013). However, the identity and the fate of cells expressing 

Sam68 remained elusive. In this thesis, co-labellings with characteristic stem cell markers via 

immunhistochemistry and time-dependent cell culture experiments following the fate of 

Sam68 expressing cells closed this missing knowledge. 

I demonstrated that Sam68 is expressed by Nestin and Pax6-positive neuroepithelial and 

radial glial cells. Based upon earlier studies of our group, Sam68 was expected to be 

expressed by cells with a neurogenic fate (Bertram, 2013). This hypothesis was supported, 

since Sam68 colocolizes with the early neuron marker βIII-Tubulin not only in the VZ of the 

cortex but also in the GCL of the eye. Both are regions in which young neurons reside at 

E13.5 (Sharma and Netland, 2007, Paridaen and Huttner, 2014). Furthermore, Sam68 is 

expressed by postnatal GFAP-positive astrocytes in the SVZ. Although these 

immunohistochemical stainings revealed only few double positive cells, it is the first time 

that an expression of Sam68 by astrocytes was demonstrated. This co-expression was not 

surprising, due to studies delineating an expression of Sam68 by the astroglial cell line U87 

(Li et al., 2002). As mentioned above, Sam68 was suggested to be expressed by precursor 

cells which are about to leave the cell cycle to differentiate into neurons. In order to support 

this hypothesis, cell culture experiments with cortical and GE derived cells were performed. 

Here, the immunocytochemical analysis of the cultivated cells at different culture times 

allowed to follow the cell fate of Sam68 expressing cells. 

The hypothesis of Sam68-positive progenitor cells leaving the cell cycle to differentiate into 

neurons or astrocyte was confirmed with these experiments. The quantitative analysis of 

marker positive cell numbers in relation to the total amount of Sam68-positve cells revealed a 

significant change in the expression pattern. As expected, a clear reduction of Sam68-positive 

cells co-expressing either Pax6 or Nestin ocurred in cortex derived cells with progressing 

culture time. In turn, the significant increase of Sam68-positive cells co-labelled either with 

βIII-Tubulin or GFAP illustrates the shift towards differentiating cells. The local precursor 

cells in the cortex divide from E9 onward partly asymmetrically and differentiate into 

neurons at first and later to glia cells. Therefore the observed shift is in harmony with current 

knowledge. Also in GE derived cells the reduction of Sam68 and Pax6 double-positive cells 

and, on the other hand, the significant increase in the cell number of Sam68 and βIII-Tubulin 
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or GFAP double-positive cells after 24h, support the above mentioned hypothesis. The 

primary role of the GE is the production of several cell types migrating to their final point of 

destination, either to the bulbus olfactorius or to the cortex (Corbin and Butt, 2011). The 

major function of the MGE for instance is the production of neurons and glia of the basal 

ganglia and it generates a subpopulation of cortical neurons, namely the stellate-shaped 

GABA+ neurons. This population migrates after their appearance in the MGE towards the 

cerebral cortex (Corbin et al., 2001, Nakajima, 2007). In the LGE, Pax6 is important for the 

pallial/subpallial boundary formation (Carney et al., 2009, Cocas et al., 2011) and is therefore 

expressed only by few dorsal cells. Due to the fact, that the whole GE tissue was dissected, 

the counted Sam68/Pax6-positive cells were presumably from the dorsal part. The relation of 

Nestin and Sam68 double-positive cells remained similar after 24h. This could be explained 

by slowly dividing embryonic neural progenitors in the GE, indicating Nestin enhancer and 

promoter activity, which maintain their undifferentiated state at E13.5 and later become 

adult NSCs of the subependymal zone (SEZ) (Furutachi et al., 2015). A simple way to 

confirm this hypothesis is to co-label GE cells isolated from the Rosa-rtTA;TRE-mCMV-H2B-

GFP;Nestin-NLS-mCherry mice used by the Furutachi lab. With these mice, an activity of the 

Nestin enhancer and promoter in slowly dividing NSCs can be identified, and an expression 

of Sam68 in these cells would be easy to discover. Another population of Nestin-positive 

cells residing in the GE migrating towards the cortex are OPCs (Gallo and Armstrong, 1995). 

The ventral most-precursors are produced from about E12.5, whereas the production of 

lateral ganglionic eminence precursor starts two days later (Spassky et al., 1998, Richardson 

et al., 2006). Thus, considering the early time-point of analysis, an amount of Nestin-positive 

precursor cells maintaining their undifferentiated state was not surprising.   

Taken together, these experiments demonstrate a clear shift of Sam68 expressing cells 

towards differentiating cells and confirm the hypothesis that Sam68 is expressed by 

progenitor cells differentiating to their derivative cell types. Despite these findings, there are 

also strong evidences that Sam68 becomes expressed by a subpopulation of slowly dividing 

neural progenitors which maintain their undifferentiated state and compose a population of 

adult NSC of the SEZ, although this hypothesis needs to be verified.  
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5.2. High efficiency transfection of primary rat OPCs 

 

The transfection of cells, regardless of which type, is a widely used approach to gain 

information about gene functioning. Allowing for the overexpression or knockdown of 

genes, selective information about respective gene functioning can be obtained. In particular, 

primary rat OPCs turned out to be even more sensitive with regard to the transfection 

process than NSCs. Although the Nucleofector Technology made the transfection of OPCs 

feasible (Czopka et al., 2010) it was limited by the high amount of 5x106 cells needed for each 

transfection and a considerable loss of OPCs caused by cell death during the procedure.  

The protocol established in this thesis enables for the first time the high efficiency 

transfection of non-adherent primary rat OPCs. During the intensive and complex 

establishing process several parameters were tested and improved. The first aim was to find 

a pulse protocol striking a balance between viability and transfection efficiency. The 

principal of electroporation is a short electrical pulse leading to DNA intake by the cell. The 

common opinion about how electroporation works is that the given electric pulse leads to 

nm-scale water-filled pores in the cell membrane allowing thereupon for the intake of 

foreign DNA (Neumann et al., 1982, Weaver, 1995, Joshi and Schoenbach, 2000). Due to the 

intern business secret of Lonza, the composition of the P3-solution and the voltage and 

duration of the provided pulse protocols were unknown. Therefore, the identification of the 

optimal pulse protocol resulted from the collaboration with the company. The first provided 

pulses were affecting the cells too strong leading to cell death. The electrical intensity of 

those pulses was presumably too high causing oversized waterfilled pores, which could not 

be recovered by the cells. In general, weak pulses led to high viability but low transfection 

efficiency, whereas strong pulses led to high transfection efficiency but to a low viability. As 

a result of a large and complex screening, the pulse protocol CA-138 was demonstrated to 

enable reproducibly the transfection of non-adherent OPCs with a high viability and an 

acceptable transfection efficiency of up to 25%. Despite the pulse screen, also various cell 

culture parameters were improved. For instance, different amounts of cells transfected and 

plated were tested considering that cell-cell interaction are crucial for the survival of cells. 

Based upon the knowledge that cell death can be induced by neighbouring cells (Brancolini 

et al., 1997), an optimal number of cells for the transfection (2-5x105cells) and seeding (4x104 

cells/well) was determined. Additionally, it was demonstrated, that the transfected OPCs 

pass through the characteristic morphological maturation. Since the morphological 
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maturation of OPCs along the lineage towards mature oligodendrocytes is characterised by 

the expression of the specific proteins PDGFRα, O4 and MBP (Zhang, 2001) double-

immunolabelings against GFP and one of the mentioned markers proved a normal 

differentiation pattern of transfected OPCs. In combination with the huge advantage that a 

low cell number of only 2x105 cells is needed for the single electroporation process no further 

improvements were attempted. This established protocol provided a very good basis for the 

investigations regarding the main approach of this thesis which was the identification of the 

role and the function of Sam68 during oligdendrogenesis. 

 

5.3. Role of Sam68 and hnRNPA1 during oligodendrocyte development 

 

Sam68 was already identified as a regulator of oligodendrocyte differentiation by promoting 

OPC maturation (Czopka et al., 2010). The results presented in this thesis provide completely 

new insights into the role of Sam68 during oligodendrogenesis. Furthermore, these functions 

were linked to specific Sam68 domains by transfecting OPCs with several mutated Sam68 

constructs. The knockdown of hnRNPA1 revealed a new interaction partner of Sam68 in the 

regulation of oligodendrocyte maturation and MBP-expression. 

I identified for the first time the Sam68 domains involved in the regulation of cell growth 

and myelin sheet formation. In addition, the earlier mentioned effect of Sam68 on MBP-

expression was confirmed in this thesis and connected to its RNA-binding domain and the 

NLS-sequence. In detail, the overexpression with the Sam68_WT construct enlarged 

significantly the surface of O4-positive cells in comparison to the control situation. None of 

the mutations in the specific Sam68 domains hindered the surface enlargement remarkably; 

in all transfected conditions the O4-positive cells were larger in comparison to the control. 

This is also true for the length of PDGFRα-positive cells. The overexpression with all 

constructs led to an elongation of the cells.  

The process of oligodendrocyte cell growth is regulated by growth factors. Therefore an 

interaction or regulatory influence of Sam68 might be possible. The morphological 

transformation from a bipolar progenitor to a multi branched pre-oligodendrocyte is 

accompanied with the blockage of the intracellular signalling pathways from the PDGFRα to 

the nucleus (Hart et al., 1989). At the O4-positive stage, OPCs lose their mitogenic 

responsiveness to PDGF (Baumann and Pham-Dinh, 2001) and with ongoing morphologic 
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maturation PDGF receptors disappear (Ellison and de Vellis, 1994). Thus, Sam68 might be 

involved in the blockage of this signalling cascade, most likely by acting as an adapter 

protein. Quantifying the distribution of PDGFRα-positive cells did not reveal relevant 

differences. This result was not surprising, considering that the maturation is not related to 

the loss of PDGFRα (Hart et al., 1989), but to the blockage of the intracellular signalling 

cascade. Therefore, the length of PDGRα-positive OPCs was measured, given that with the 

onset of morphologic maturation bipolar OPCs undergo a transformation and enlarge in 

their size (Nawaz et al., 2015). In this thesis, the analysed PDGFRα-positive cells already 

exhibited multiple thin processes and were cultured under differentiating conditions, 

indicating that they already exit the bipolar migration stadium (Gao et al., 1998). Thus, the 

measured length of PDGFRα-positive cells was taken as an indicator for maturation. A 

possible influence of Sam68 on OPC migration could be elucidated with live imaging 

analysis under proliferative conditions. A promotive, RNA-binding-independent function of 

Sam68 on migration and polarized movements in OPCs would be expected, due to studies 

revealing this effect in Sam68-deficient fibroblasts (Huot et al., 2009).  

However, an elongation of PDGFRα-positive OPCs was recorded, after the transfection with 

all mutant Sam68 constructs, respectively. Under the condition of Sam68_VF, this 

elongation was even significantly. This mutant form of Sam68 carries a point mutation in the 

RNA-binding domain at position 229, disturbing its RNA-binding ability (to poly-A motifs) 

but still homodimerizes with endogenous Sam68 (Pedrotti et al., 2010). Claudio Settes lab 

demonstrated that Sam68_VF was partially defective in binding Bcl-x mRNA and 

furthermore it affected Bcl-x alternative splicing. Moreover, this mutant form is localized to 

discrete nuclear foci, which are different from the regions where splicing factors like SC35 

and ASF/SF2 accumulate. This localisation is similar to that observed, when Sam68_WT was 

co-expressed with Fyn-kinase (Paronetto et al., 2007). Thus, the overexpression with this 

mutant form has a dominant negative effect on Sam68 function and allows elucidating if the 

binding and alternative splicing of putative mRNA binding partners of Sam68 and its 

location within the nucleus is necessary for its function in oligodendrocyte development. A 

comparable elongation of PDGFRα-cells, although not significant, was also recorded with the 

mutant form Sam68_GE. It carries as well a mutation in the RNA-binding domain, 

abolishing its binding to UAAA motifs. In contrast to Sam68_VF, this mutant form 

exhibited after overexpression a diffuse localisation in the nucleus of P19 cells, similar to that 

of wild-type Sam68 (Chawla et al., 2009). 
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In regard to the elongation of PDGFRα-positive cells, the effects of Sam68_VF and 

Sam68_GE overexpression can be neglected due to the fact that all of the mutant Sam68 

forms caused an elongation of PDGFRα-positive cells indicating that neither the defective 

RNA-binding domain, nor the mutated nuclear localisation signal seem to disturb the 

function of the still endogenously expressed Sam68. This provides strong evidence for a 

function of Sam68 as an adapter molecule in cell growth and in PDGFRα signalling. PDGF 

receptors are tyrosine kinases which phosphorylate both themselves and other target 

proteins (Schlessinger, 2000). Sam68 contains several tyrosine residues in the C-terminus, 

which are potential sites of phosphorylation (Wong et al., 1992) and it was demonstrated to 

be tyrosine-phosphorylated by numerous cell surface receptors (Lukong and Richard, 2003). 

This tyrosine phosphorylation decreases the RNA-binding ability of Sam68 and enhances its 

interaction with signalling proteins (Wang et al., 1995, Chen et al., 1997), supporting the 

hypothesis of its function as an adapter molecule. Hence, a phosphorylation by PDGFRα 

appears to be possible. The tyrosine phosphorylation of Sam68 enables the association with 

several SH2 domain proteins including src family kinases and PLC-γ1 (Richard et al., 1995), 

both known to bind to the phosphorylated PDGFRα-receptor (Ralston and Bishop, 1985, 

Coughlin et al., 1989). The binding of Sam68, either directly to the PDGFRα, or indirectly as 

an adapter protein may interrupt this signalling cascade. The binding of Sam68 with SH3 

domains for instance negatively regulates its RNA-binding ability (Najib et al., 2005), 

providing a possible interaction mechanism by interrupting the alternative splicing of 

mRNAs necessary for the PDGF-signalling cascade.  

Imaginable is a signalling cascade already identified for Sam68 and the insulin receptor (IR), 

which is also a receptor tyrosine kinase. The activation of the IR stimulates Sam68 

phosphorylation and promotes its association with p85-PI3K. IGF-I (Insulin like growth 

factor I) is a crucial growth factor which was shown to increase proliferation, inhibit 

apoptosis, and promote differentiation of oligodendrocytes (McMorris and Dubois-Dalcq, 

1988, Freude et al., 2008). Transgenic mice overexpressing IGFBP-1 exhibit a reduction of 

myelinated axons and a decreased myelin sheath thickness (Carson et al., 1993, Ye et al., 

2002). An interaction of Sam68 and IRS1 (Insulin receptor substrate 1) was already 

demonstrated in rat adipocytes, CHO- and hepatoma cells. The activation of the IR 

stimulates tyrosine-phosphorylation of Sam68 and its relocation from the nucleus to different 

insulin signalling complexes in the cytoplasm, such as Grb2-SOS (Najib and Sanchez-

Margalet, 2002), Ras-GAP (Guitard et al., 1998) and IRS1/PI3K (Sanchez-Margalet and Najib, 

1999). Furthermore, in CHO cells, an overexpression of IR leads to an increased Sam68 
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expression and relocated Sam68 to the cytoplasm (Sanchez-Margalet and Najib, 2001). The 

interaction of IRS-1 and Sam68 was mapped to proline-rich regions in the N-and C-terminus 

(Quintana-Portillo et al., 2012). The truncated form of Sam68 (Sam68_351-443) lacks the N-

terminal proline rich sequence. Nonetheless, the cell growth of PDGFRα- or O4-positve cells 

was not impaired, indicating that the N-terminus is not required for the role of Sam68 in cell 

growth. The fact that none of the mutated Sam68 forms caused an impaired cell growth 

strongly suggests that the C-terminal proline rich sequence (P3, P4 and P5) is important for 

the role of Sam68 in cell growth. Moreover, these results support the hypothesis that Sam68 

functions as an adapter protein in cell growth. P3 and P4 interact with the SH3-domain of 

PLC-γ-1 and with p85 PI3K (Lukong and Richard, 2003), suggesting a possible interaction 

mechanism of Sam68 and IR in oligodendrocyte cell growth. Thus, an interaction of Sam68 

and IGF-1 was already demonstrated, as well as a role of IGF-1 in oligodendrocyte 

development. But so far, a common interaction of IGF-1 and Sam68 in oligodendrocytes was 

not shown, although it seems probable and might be the most likely mechanism for Sam68 

regulation on oligodendrocyte cell growth. Due to the fact, that IGF-1 is a crucial factor in 

chemically defined media and that its depletion causes oligodendrocyte cell death (Barres et 

al., 1992), made an ease testing of IGF-1 and Sam68 interaction by simple IGF-1 depletion 

impossible. 

Sam68 executes multiple functions within the cell, thus besides the regulation of growth 

factor pathways, one can also speculate about a regulation of the cytoskeletal redistribution 

during oligodendrocyte cell growth. A direct connection between Sam68 and the cytoskeletal 

component β-actin was already demonstrated in dendritic spine formation. Sam68-KO mice 

have reduced levels of β-actin mRNA associated with synaptic polysomes and decreased 

levels of synaptic β-actin protein. This indicates that Sam68 promotes the translation of actb 

mRNA at synapses (Klein et al., 2013). In oligodendrocytes, the redistribution of F-actin is the 

driving force in myelin wrapping (Nawaz et al., 2015). A similar regulatory influence during 

oligodendrocyte growth is possible and could explain the increased cell size of O4-positive 

oligodendrocytes when cells are transfected with Sam68_WT and Sam68_VF.  
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Figure 26. Influence of Sam68 constructs on MBP-expression. 

The scheme pictures an oligodendrocyte and summarizes the effects of the overexpression of different 
Sam68 variants (green stars) on MBP mRNA splicing (yellow circle) and MBP-expression (red boxes). 
Inhibitory cues are illustrated with bars, whereas arrows delineate promotive functions. The specific 
mutations cause different localisations of the mutated Sam68 forms within the cell. Sam68_WT, 
Sam68_GE and Sam68_351-443 are located diffuse in the nucleoplasm, whereas Sam68_VF was 
reported to accumulate in discrete subnuclear foci (SF). Due to its mutated NLS-sequence, 
Sam68_NLS-KO is located in the cytoplasm, unable to enter the nucleus. Note that the overexpression 
with Sam68_WT and Sam68_VF resulted in an increased MBP-expression. In contrast, the forced 
expression of Sam68_GE, Sam68_351-443 and Sam68_NLS-KO decreased the MBP-level.    
 

Despite the severe effects in cell growth, Sam68 has an influential role in oligodendrocyte 

differentiation accompanied with the regulation of MBP-expression. Our group already 

demonstrated that Sam68 is expressed within all stages of oligodendrocyte development and 

total Sam68 levels increase with ongoing oligodendrocyte differentiation. With respect to 

MBP-expression, Tim Czopka proposed a possible mechanism for the regulation by Sam68. 

In this model, Tnc binds to Cntn1 within lipid rafts of oligodendrocyte membrane. The 

resulting complex increases the phosphorylation of the regulatory tyrosine 531 of Fyn 

causing reduced Fyn activity and impairs the phosphorylation of Akt. Tnc, impaired Fyn 

and/or Akt activation results in inhibited Sam68 expression. In addition, a direct promotion 

of MBP-expression by Sam68 was demonstrated (Czopka et al., 2010). The effect on MBP-

expression was confirmed in this thesis and furthermore the UAAA-binding motif within the 

RNA-binding domain and the localisation within the nucleus appear to be crucial for this 

effect. This revealed the comparison of the overexpression with the two Sam68 forms 

mutated in the RNA-binding domain. The overexpression with the Sam68_VF mutant 
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increased the MBP-level significantly compared to Sam68_GE. Moreover, an increased 

mRNA-level detected by RT-PCR analysis after Sam68_GE overexpression provides 

evidence for a disruption of the MBP-mRNA translation. In contrast, the overexpression with 

Sam68_VF caused an increased MBP-expression and a decrease of the mRNA–level, 

indicating a forced MBP-mRNA translation. A reduced MBP-level in presence of the 

truncated Sam68_351-443, lacking the RNA-binding domain, supports once more the 

importance of the RNA-binding during this process. Furthermore, the reduced MBP-level 

after overexpression with the mutant NLS-sequence form (Sam68_NLS-KO) indicates the 

importance of the transport and/or localisation of Sam68 during MBP-expression. My 

studies provide strong evidence for a role of Sam68 in splicing and transport of MBP-mRNA. 

Moreover, the reduced MBP-level after overexpression with the Sam68_NLS-KO mutant 

form suggests an additional cytoplasmic function in the translation process of MBP-mRNA. 

The transport of possible co-factors important for the splicing of MBP in the nucleus might 

be affected through the dominant negative effect resulting from the Sam68_NLS-KO 

overexpression.  

The promotive effect of Sam68_VF on MBP-expression is also reflected in the maturation 

behaviour of oligodendrocytes. Most myelin sheet forming cells were recorded in this 

condition. This supports once more, that for the splicing and translation of the MBP-isoform 

recognized by the here used antibody, the UAAA-motif within the RNA-binding domain is 

necessary. The overexpression with Sam68_GE reduced drastically myelin sheet 

formation. Moreover, in the presence of overexpressed Sam68_NLS-KO, myelin sheets were 

absent, which reflects once more the negative effect of both mutant forms on MBP-

expression. 

Figure 26 summarizes the effects of the Sam68 constructs on MBP-expression. These results 

provide evidence for a role of Sam68 in the translational regulation of MBP, which is in line 

with previous findings of Tim Czopka demonstrating a binding of MBP mRNA by Sam68. 

Several MBP mRNAs originate from a single gene by alternative splicing of the primary 

transcript (de Ferra et al., 1985, Boggs, 2006). The antibody used in this thesis recognizes 

several MBP-isoforms, which were indeed detected after the transfection of OPCs with the 

Sam68 constructs. The 33 kDa isoform was chosen for further analysis and the determination 

of MBP-level, due to a prominent signal in the western blot analysis. Despite the knowledge 

about its existence (Ulmer and Braun, 1986) its role in OL and myelin formation remains 

elusive. My data also suggest a role for Sam68 in MBP splicing similar to the mechanism by 
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which Quaking I regulates MAG mRNA splicing. The cytoplasmic isoform QKI-6 regulates 

the alternative splicing of MAG mRNA in CNS myelination through the translational 

suppression of the well-known splicing inhibitor hnRNPA1. Thus, I investigated a possible 

role of hnRNPA1 in MBP-expression and furthermore, a possible interaction of Sam68 and 

hnRNPA1. Indeed, also Sam68 seems to suppress directly or indirectly the expression of 

hnRNPA1. The knockdown of hnRNPA1 by siRNA was enhanced through the additional 

transfection with the Sam68_WT construct. Further PCR-analysis would be needed to test the 

effect on hnRNPA1 mRNA level, and in addition sucrose gradient fractionation could assess 

the translation efficiency of endogenous hnRNPA1 mRNAs after Sam68 overexpression by 

determining their ability to carry translating polyribosomes. hnRNPA1 often binds exon 

splicing silencers near the target exon hindering the access of the splicing machinery 

(Kashima et al., 2007), thus an inhibitory effect on MBP-expression was expected. My studies 

revealed a role of hnRNPA1 in MBP-expression, but other than expected, its function seems 

to be supportive. The knockdown of hnRNPA1 caused a severe reduction of the MBP-protein 

level in comparison to the control. This effect was slightly rescued by the additional 

overexpression of Sam68_WT, indicating an interplay of both proteins in the regulation of 

MBP-expression. A complete rescue of the MBP-level was obtained with the overexpression 

of the mutated Sam68 forms, Sam68_NLS-KO, lacking the NLS-sequence and the truncated 

form (Sam68_351-443). This truncated form lacks the RNA-binding and the 

homodimerization domain and was furthermore demonstrated to interfere with the 

association of hnRNPA1 and Sam68 (Pedrotti et al., 2010). Thus, since it still contains the 

hnRNPA1 binding domain, it presumably binds hnRNPA1, hindering a binding to 

endogenous Sam68. This dominant negative effect would also explain the rescue of the MBP-

level after Sam68_NLS-KO overexpression and furthermore indicates that the binding of 

hnRNPA1 occurs in the cytoplasm due to the mutated NLS-sequence. These results strongly 

support the hypothesis of an interaction between both proteins in regulating MBP-

expression. Most likely, Sam68 negatively regulates the alternative splicing and/or the 

shuttling of hnRNPA1 mRNA from the nucleus to the cytoplasm. Moreover a complex of 

hnRNPA1 and Sam68 seem to negatively regulate MBP-expression.These experiments need 

to be repeated and supported by further studies. Nevertheless, based on the current data, the 

presented mechanism (Figure 27) from splicing to MBP mRNA translation is quite possible. 

After the alternative splicing of the primary transcript, the mRNAs of the different MBP-

isoforms are transported to several compartments of the cell. The 14 and 18.5 kDa isoforms 

are located at the plasma membrane, whereas the exon-II-containing isoforms 17 and 21.5 
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kDa are distributed diffusely in the cytoplasm and in the nucleus (Pedraza et al., 1997). MBP 

mRNA is known to be transported into the branches of oligodendrocytes (Trapp et al., 1987, 

Ainger et al., 1993). The regulatory mechanisms behind the spatial control of MBP translation 

within the branches are rarely understood. Within the 3’UTR of the MBP mRNA novel 

regions were identified being responsible for the regulation of its translation. It was shown 

that the mRNA-binding proteins hnRNP-A2, hnRNP-K and hnRNP-E1 possess distinct 

functions in regulating localized MBP protein synthesis (Torvund-Jensen et al., 2014). 

hnRNPA1 and Sam68 are well-known regulators of mRNA transport and translation 

(Lukong and Richard, 2003, Jean-Philippe et al., 2013). Thus, they may also play a role in the 

transport mechanism of MBP mRNA into the nucleus and/or directly to the branches for a 

local translation in polysomes.  

Taken together, Sam68 promotes cell growth of PDGFRα-and O4-positive cells, most likely 

by acting as an adapter molecule. Its function in mature oligodendrocytes was demonstrated 

to be different. Sam68 promotes the expression of MBP and myelin sheet formation. The 

NLS-sequence and the RNA-binding domain were identified to be crucial for this function. 

In addition, hnRNPA1 was identified as a factor regulating together with Sam68 the 

expression of MBP. Sam68 suppresses the expression of hnRNPA1. This suppression seems 

to be dependent on the NLS-sequence and the RNA-binding domain of Sam68. This provides 

evidence for an impaired splicing ability of hnRNPA1 pre-mRNA, regulated by Sam68. 

Thus, Sam68 negatively regulates hnRNPA1 expression, and furthermore hnRNPA1 appears 

to be an important co-factor in regulating MBP-expression. The alternative splicing of Bcl-x is 

modulated by Sam68 and hnRNPA1 in which both proteins form a complex (Paronetto et al., 

2007). A similar mechanism might regulate the alternative splicing of MBP. Both proteins, 

Sam68 and hnRNPA1 are very multifunctional and display lots of regulative roles within the 

cell. Thus, it remains open, how exactly Sam68 and hnRNPA1 regulate MBP mRNA 

metabolism, although this thesis provides a completely new possible interaction mechanism. 
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Figure 27. Proposed model for the regulation of MBP-expression through Sam68 and hnRNPA1.  

Depicted is a schematic drawing of a mature oligodendrocyte, illustrating a possible interaction of 
Sam68 and hnRNPA1 in controlling the expression of MBP. Sam68 and hnRNPA1 may regulate the 
alternative splicing of MBP pre-mRNA and initiate its transport through the nuclear pore. Either the 
MBP-mRNA is released for the hnRNPA2 regulated transport to the branches or a further role in the 
mechanisms of transport/or translation of MBP-transcripts is imaginable. Several mechanisms are also 
possible regarding the regulation of hnRNPA1 expression through Sam68. Likely is the regulation of 
the transport of hnRNPA1 through the nuclear pore and/or the alternative splicing.  
  

In conclusion, the experiments presented in this thesis exhibit completely new insights into 

the role of Sam68 during CNS and particularly oligodendrocyte development and contribute 

well to already existing knowledge. Nonetheless, further studies for instance with the 

Sam68-KO mouse could help to elucidate remaining issues. In utero electroporation or 

simple cell transfection experiments for instance could demonstrate the importance of the 
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single domains of Sam68 after overexpression of the denoted Sam68 constructs without the 

endogenously expressed Sam68. With regard to oligodendrocyte development, further 

studies with the Sam68-KO mouse would be needed to confirm the interplay between Sam68 

and hnRNPA1. This interaction is of special interest with respect to the inflammatory 

autoimmune disease multiple sclerosis. Oligodendrocytes are affected by this disease leading 

to a demyelination of axons (Macchi et al., 2015), but so far, the mechanisms causing this 

malfunction are poorly understood. Some studies provided already evidence for a role of 

hnRNPA1 in this disease by identifying antibodies against it in cerebrospinal fluid of MS 

patients (Bekenstein and Soreq, 2013). Hence, the understanding of the complex mechanism 

between Sam68 and hnRNPA1 will also help to increase the knowledge about this disease.   
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