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Abstract

Nef, an accessory protein of the Human Immunodeficiency Virus type 1 (HIV-1), is dispensable for viral replication in
cell culture, but promotes virus replication and pathogenesis in the infected host. Acting as protein-interaction
adaptor, HIV-1 Nef modulates numerous target cell activities including cell surface receptor expression, cytoskeletal
remodeling, vesicular transport, and signal transduction. In infected T-lymphocytes, altering T-cell antigen receptor
(TCR) signaling has long been recognized as one key function of the viral protein. However, reported effects of Nef
range from inhibition to activation of this cascade. Recent advances in the field begin to explain these seemingly
contradictory observations and suggest that Nef alters intracellular trafficking of TCR proximal machinery to disrupt
plasma membrane bound TCR signaling while at the same time, the viral protein induces localized signal
transduction at the trans-Golgi network. This review summarizes these new findings on how HIV-1 Nef reprograms
TCR signalling output from a broad response to selective activation of the RAS-Erk pathway. We also discuss the
implications of these alterations in the context of HIV-1 infection and in light of current concepts of TCR signal
transduction.
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Background
T-cell receptor signaling
Development, proliferation and immune functions of T-
lymphocytes are regulated by their activation state [1].
In concert with co-stimulatory signals, T-cell activation
is primarily governed by engagement of surface exposed
T-Cell Antigen Receptor (TCR) complexes with Major
Histocompatibility Complex (MHC) bound peptides on
antigen-presenting cells (APC). These interactions occur
physiologically in the context of stable cell-cell contacts
referred to as immunological synapse (IS) and trigger a
broad range of downstream signaling events including
sequential tyrosine phosphorylation cascades, rapid ele-
vation of intracellular calcium flux and dynamic F-actin
remodeling [2-11]. These plasma membrane–associated
and cytoplasmic events are transmitted to the nucleus
by activation and/or import of transcription factors that
launch specific transcriptional profiles characteristic
for activated T-cells, including induced expression of the
T-cell survival cytokine interleukin 2 (IL-2).

TCR signaling in CD4+ T-cells is initiated by the inter-
action of the TCR α,β subunits with peptide-loaded
MHC-II causing spatial rearrangements of the multi-
subunit TCR complex. As one result of peptide loading,
the cytoplasmic TCR zeta chain undergoes conform-
ational changes to expose immunoreceptor tyrosine-based
activation motifs (ITAMs), which become subsequently
phosphorylated by the Src family kinase Lck (lymphocyte-
specific protein tyrosine kinase) [12]. Phospho-ITAMs
recruit the downstream kinase ZAP-70 (zeta chain asso-
ciated protein of 70 kDa), which is also phosphorylated
and activated by Lck [10,13,14]. Active ZAP-70 now initi-
ates a cascade of phosphorylation events, with the most
important ZAP-70 phosphorylation substrates being the
trans-membrane adapter protein LAT (linker for the acti-
vation of T-cells) and the cytosolic adapter protein SLP-
76 (Src homology 2 (SH2) domain–containing leukocyte
phosphoprotein of 76 kD) [11,13,15-18]. These two adap-
ters form the backbone of a signaling complex that orga-
nizes an array of effector molecules in the correct
spatiotemporal manner to allow for the activation of mul-
tiple downstream signaling pathways. These include
PLCγ1 (phospholipase Cγ1) that controls intracellular Ca
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(2+) flux, F-actin remodeling, cell adhesion and activation
of the MAPK pathway, that all together synergize to opti-
mal production of IL-2 by activation of transcription fac-
tors such as NFAT (nuclear factor of activated T-cells)
and AP-1 (activator protein-1) [11,13,17,18]. Thus, signals
emanating from Lck trigger TCR proximal signal trans-
duction and are diversified and channeled to multiple
downstream signaling pathways by LAT-SLP-76 adaptor
scaffolds that act as mirco-signalosomes (Figure 1)
[17,18]. In this scenario, individual signal transduction
steps are spatially separated: TCR engagement triggers

the segregation of initial signaling modules including
TCR, Lck and ZAP-70 (‘primary signaling domains’) from
LAT-SLP-76 signaling scaffolds that are considered ‘sec-
ondary signaling domains’ or ‘signal diversification and
regulation modules’ [13,19,20]. Subsequent TCR distal
events are compartmentalized due to the localization of
RAS signaling to Golgi membranes [21-28].

Organization of TCR proximal signaling microclusters
This physical segregation of key TCR proximal signaling
molecules can be visualized at the IS by virtue of their
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Figure 1 Schematic overview of TCR signaling. Simplified scheme of TCR signal transduction and effector functions. Following TCR ligation
with peptide-loaded MHC-class II molecules, F-actin is polymerized at plasma membrane sites of TCR engagement. ITAMs of TCR zeta chains are
phosphorylated by the SRC family kinases Lck and Fyn to recruit the downstream kinase ZAP-70. ZAP-70 is activated by phosphorylation, primarily
by Lck but also by Fyn, and active ZAP-70 phosphorylates the membrane adaptor LAT at multiple residues. Phospho-LAT serves as scaffold for
macromolecular signaling assemblies, via multiple interactions including with PLCγ1, SLP-76 via GADS, and SOS via GRB2. The cytoplasmic
adaptor SLP-76 binds to multiple proteins including VAV, NCK, ITK, PLCγ1 and ADAP to regulate signaling pathways necessary for F-actin
rearrangement and cell adhesion. PLCγ1 catalyzes formation of IP3 and DAG from PIP2 (not shown). The soluble secondary messenger IP3 binds
to IP3R to induce calcium release from intracellular stores and trigger NFAT activation. Active LAT also activates RAS in membrane microdomains
via GRB2-SOS which triggers MAPK signaling, culminating in phosphorylation and activation of Erk. Nuclear translocation of activated NFAT/Erk
induces gene transcription and IL2 production, hallmarked by T-cell proliferation and differentiation. GRB2: Growth factor receptor-bound protein
2, SOS: son of sevenless, Erk: extracellular-signal-regulated kinase, AP1: Activator protein-1, IP3: Inositol 1,4,5-trisphosphate, CDC42: cell division
cycle 42, WAVE2: WASP-family verprolin-homologous protein-2, WASP: Wiskott Aldrich syndrome protein, PAK: p21 activated protein kinase, PM:
plasma membrane, NM: nuclear membrane. ‘+p’ and yellow circles with ‘P’ indicate phosphorylation events and phosphorylation, respectively.
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organization in distinct supra molecular activation clus-
ters (SMAC) that, depending on their position relative
to the IS, are referred to as central, peripheral and distal
SMAC [2,5,29,30]. Providing T-lymphocytes with planar
surface-bound TCR stimulation in the form of lipid
bilayers or coated glass surfaces allows to detect the for-
mation of proximal TCR signal transduction units re-
ferred to as microclusters (MCs) [31]. MCs are formed
within seconds after initial TCR engagement by cluster-
ing of the TCR complex itself and various TCR proximal
signaling molecules, range from 30-300nm in size [32],
and are considered ‘signaling hotspots’ essential for T-
cell activation [29,32-35]. The most widely studied MCs
are those nucleated around the TCR itself (TCR MCs)
and around the adaptor proteins LAT and SLP-76 (LAT/
SLP-76 MCs). It is well established that activation of T-
cell requires the formation of these structures [31,36,37].
Both actin dynamics and microtubule-mediated vesicular
transport play important roles in orchestrating the in-
duction and dynamic movement of signaling MCs
[5,10,11,30,38-40], subsequently leading to downstream
signaling and expression of target genes. Proximal TCR
signaling can thus be viewed as a consequence of highly
coordinated interactions of individual signaling modules
with specific composition and spatio-temporal regulation.

Coupling of HIV-1 replication to T-cell activation
HIV-1, the causative agent of the Acquired Immunodefi-
ciency Syndrome, AIDS, infects target cells that present
the entry receptors and co-receptors CD4 and CXCR4/
CCR5 on their surface. This receptor specificity deter-
mines the tropism of HIV-1 for CD4+ T-lymphocytes
and monocytes/macrophages that constitute the main
target cells of the virus in its human host. In particular
in CD4+ T-lymphocytes, the efficacy of HIV-1 replica-
tion is tightly coupled to the activation state of these tar-
get cells: while HIV-1 readily undergoes multiple rounds
of replication in activated memory CD4+ T-cells, rest-
ing helper T-cells are refractory to productive infec-
tion [41-46]. Blocks to HIV-1 infection in resting CD4+

T-lymphocytes include the entry step, completion of re-
verse transcription (RT) of incoming viral RNA genomes
into DNA, nuclear import and integration of the viral
genome, as well as transcription of viral genes [45-49].
The barrier to viral entry is posed by the rigid cortical
actin layer and HIV-1 triggers specific signaling cascades
to bypass this obstacle, explaining why HIV-1 entry is
readily observed in resting CD4+ T-lymphocytes [50].
The block to reverse transcription is controlled by the
recently identified host cell restriction factor Samhd1
[51-53]. This Samhd1 dependent restriction might re-
flect the ability of this enzyme to reduce the pool of
available dNTPs required for RT in resting but not

activated T-lymphocytes, the latter of which display sig-
nificantly higher dNTP levels. Inefficient transcription of
viral genes in resting T-cells finally mirrors the low
abundance/activity of host cell transcription factors such
as nuclear factor-κB (NF-κB) and NFAT required for ini-
tial rounds of viral transcription prior to synthesis of the
viral transcription factor Tat [49,54-57]. Together, this
implies that the activation state of target CD4+ T-
lymphocytes not only dictates the success rate of HIV-1
infection of previously uninfected target cells, but also
determines how efficiently integrated proviral genes are
transcribed, and thus new virus particles are synthesized
in latently infected resting cells upon encounter with T-
cell stimuli. Of note, activation of full rounds of HIV-1
replication in resting T-cells can be achieved by inducing
yet ill-defined, intermediate levels of T-cell activation
[58]. This preference of HIV-1 for target T-lymphocytes
with intermediate activation states may reflect that po-
tent activation through TCR ligation can trigger activa-
tion induced cell death (AICD) [59,60] which would
significantly reduce the life span of productively infected
CD4+ T-cells and may thus self-limit spread of HIV-1 in-
fection. It is thus plausible that HIV-1 applies strategies
to fine tune T-cell activation in infected cells in order to
optimize its replication. The viral protein Nef emerges
as a central viral player in this scenario and this review
will summarize recent advances in our understanding on
the mechanisms employed by Nef.

The Nef protein and its effects on TCR signaling
Nef is a small 27 – 35 kDa myristoylated protein
encoded the primate lentiviruses (HIV-1, HIV-2 and
SIV) that localizes to the cytoplasm of infected cells and
is partially recruited to cellular membranes. Nef is dis-
pensable for HIV-1 replication in cell culture, however
in the infected host, the viral protein markedly elevates
virus titers and is required for rapid disease progression
[61-63]. Nef is therefore considered a key factor in AIDS
pathogenesis [44,64]. It is generally assumed that Nef
exerts this role in AIDS pathogenesis via several inde-
pendent activities that (i) directly promote HIV-1 repli-
cation and (ii) facilitate evasion of infected cells from
recognition by the host immune system (see [64,65] for
reviews). These activities are mediated by a plethora of
suggested interactions with host cell proteins, by which
Nef manipulates various aspects of host cell vesicular
transport, cytoskeleton dynamics and cell motility, as
well as signal transduction [44,64,66,67]. In the context
of CD4+ T lymphocytes, most studies since the early
days of Nef characterization focused on effects of Nef on
T-cell receptor signaling.
The most impressive evidence supporting a direct im-

pact of Nef on T-lymphocyte activation was obtained in
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macaques infected with the acutely lethal SIV variant
pbj14, in which T-lymphocyte hyperactivation and sub-
sequent depletion was observed [68]. This effect
reflected the ability of this particular Nef variant to trig-
ger T-cell receptor signaling and IL-2 production by
virtue of an ITAM motif not present in any other Nef
protein [68-70]. Even though significantly milder than
Nef from SIVpbj14, HIV-1 Nef was also demonstrated to
bear the capacity to enhance basal levels of T-cell activa-
tion, especially when physically tethered to the plasma
membrane (PM) [71]. These initial observation initiated
numerous studies to address extend, mechanism and
functional consequence of alterations of TCR signaling
by HIV-1 Nef. Presumably due to the use of varying ex-
perimental strategies that often involved the use of
immortalized cell lines rather than primary cells and
marked overexpression of individual proteins, these
efforts yielded sometimes contradicting results but gen-
erally concluded that HIV-1 Nef inhibits T-cell activa-
tion [72-75]. More recent work, including studies based
on viral infection of primary target T-cells, revealed that
HIV-1 Nef moderately enhances distal responses to ex-
ogenous TCR stimulation by mitogens or anti-TCR Abs
including enhanced induction of NFAT, NFκB, AP-1
transcriptional activity, the release of calcium, and IL-2
production [50,76-88]. Taken together these studies pro-
vided evidence that HIV-1 Nef can lower the threshold
for activation of CD4+ T-lymphocytes, but is not sufficient
to cause activation in the absence of exogenous stimuli.
Many aspects of HIV-1 Nef induced TCR signaling

dysfunction are also observed with Nef proteins from
simian immunodeficiency viruses (SIV) [89-92] which, in
contrast to HIV-1, are largely non-pathogenic in their
natural host. In addition to the effects exerted by HIV-1
Nef, SIV Nef proteins also efficiently downregulate CD3-
TCR complexes from the surface of infected T lympho-
cytes and thus more potently inhibit TCR signaling
[83,92-95]. This differential regulation of TCR signaling
by HIV-1 and SIV Nef proteins has been suggested as
one determinant of the pathogenic outcome of HIV-1
infection in humans [83,92]. Since molecular and func-
tional differences between SIV and HIV-1 Nef proteins
in this context were already discussed extensively (see
reviews [44,64,96,97]), this review focuses on recent
developments that enhance our understanding of how
HIV-1 Nef modulates TCR signaling in infected CD4+

T-lymphocytes.
The concept that HIV-1 Nef slightly enhances TCR

signaling was at odds with another series of studies dem-
onstrating rather pronounced inhibitory effects of Nef
on formation and organization of the IS and thus early
events following TCR engagement. One prominent con-
sequence of HIV-1 infection or isolated expression of
Nef is pronounced accumulation of the TCR itself and

the proximal kinase Lck in an intracellular compartment
[89,90,98,99]. Based on these findings, Nef interferes
with essential hallmarks of TCR signal initiation, leaving
the field with the paradoxal situation that Nef facilitates
some aspects of distal TCR signaling while early events
in the TCR cascade are potently inhibited by the viral
protein. Recent studies now started to provide more
detailed insight into the mechanisms underlying these
seemingly contradictory effects of Nef, allowing depic-
tion of an integrative view on how Nef rewires TCR sig-
naling by affecting both, TCR proximal and distal events.

Decompartmentalization of TCR signaling by HIV-1 Nef
The finding that Nef retargets Lck, the master switch
kinase of early TCR signaling, away from the plasma
membrane to early and recycling endosomes (RE) as well
as the trans-Golgi network (TGN) provided a first im-
portant clue [98,100]. Since TCR signaling is initiated
and sustained at the PM and Lck is essential to this
process, this finding was entirely consistent with the dis-
ruption of early TCR signaling observed in Nef expres-
sing CD4+ T-lymphocytes. However, only with the
recent determination of the subcellular localization of
kinase-active Lck, it became evident that this retargeting
might also be linked to the ability of Nef to enhance dis-
tal aspects of TCR signaling [100]. The use of phospho-
specific antibodies revealed that RE/TGN associated Lck
subpopulations in Nef expressing cells are in the catalyt-
ically active conformation and thus signaling competent.
Of note, this intracellular enrichment of active Lck kin-
ase was observed already in the absence of exogenous
TCR stimulation, indicating that Nef may generate con-
stitutive intracellular signals. While the majority of early
TCR signaling occurs at the plasma membrane,
compartmentalization of the pathway has been described
in the activation of the RAS GTPase, which takes place
at intracellular membranes, including the Golgi appar-
atus [21-28]. Similar to activation of the phospho-
tyrosine cascade at the PM, also RAS activation depends
on prior induction of Lck [27]. Consistently, the enrich-
ment of active Lck at RE/TGN compartments induced
by Nef resulted in an increase of localized RAS activity
and enhanced activation of Erk kinase as well as IL-2
production downstream of RAS in response to exogen-
ous stimulation [100] (see Figure 2). This effect may
synergize to potentiate transcriptional activation of
downstream target genes with the ability of Nef to (i)
promote, via interactions with the IP3 receptor, the re-
lease of calcium from intracellular stores [81] and (ii)
trigger Erk activity via association with the Nef-
associated kinase complex NAKC [101-103].
Together, these findings provide an explanation for the

observed Nef-mediated disruption of early TCR signal-
ing and selective, stimulus-independent sensitization of

Abraham and Fackler Cell Communication and Signaling 2012, 10:39 Page 4 of 11
http://www.biosignaling.com/content/10/1/39



the RAS pathway: by aggregating a specific set of
signaling competent TCR effectors away from the PM
to the TGN, Nef tailors TCR responses from a typic-
ally broad cascade of effectors to a specific activation
of the RAS pathway. However, the effect of Nef on
signaling downstream of RAS becomes only apparent
following TCR engagement, raising the question how
such signal transmission might occur in the absence of
Lck from the PM. It has long been noted that the
pivotal role of Lck in proximal TCR signaling can be

substituted by the closely related Src kinase Fyn,
however, breadth and magnitude of this functional
redundancy has remained controversial [12,104-108].
Interestingly and in sharp contrast to Lck, the localization
of active Fyn was unaltered in Nef expressing cells
prior and following TCR stimulation [100]. Selective
interference of Nef with PM localization of Lck but
not of Fyn may account for the residual responsiveness
of Nef-expressing or HIV-1 infected cells to TCR
stimulation.

IP3 
receptor

Figure 2 Model of the effects of HIV-1 Nef on TCR signaling. Schematic representation of TCR signaling in presence of HIV-1 Nef. Expression
of Nef down regulates cell surface exposure of the CD4 receptor. In addition, Nef strongly reduces the availability of Lck, LAT and active RAS at
the plasma membrane as these components are retargeted to an intracellular compartment in their active form. This compartment represents
the TGN for Lck and RAS and it is assumed here that LAT is recruited to the same compartment. Nef also localizes to these membranes; however,
whether its physical presence is required for TCR rewiring remains unclear. Upon TCR stimulation, triggered F-actin remodeling is inhibited by Nef
by virtue of its interaction with PAK2 (not shown). The SRC kinase Fyn, whose plasma membrane localization is unaffected by Nef, phosphorylates
TCR zeta and ZAP-70, however ZAP-70 mediated phosphorylation of LAT and subsequent SLP-76 microcluster formation is potently disrupted by
Nef. Presumably again through the activity of Fyn (indicated by the dotted arrow and question mark), TCR engagement also stimulates Lck-RAS
at intracellular membranes, generating MAPK signaling resulting in the activation of Erk. In addition, Nef binds to IP3 receptor to induce calcium
release and NFAT activation. By inducing a constitutively active intracellular Lck-RAS signaling module that is partially uncoupled from the plasma
membrane, Nef tailors a narrow TCR downstream response that likely optimizes HIV-1 spread in the infected host.
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Disruption of proximal TCR events
Recent studies also provided surprising insights into the
complexity of mechanisms employed by HIV-1 Nef to
disrupt early TCR signaling events. Earlier work had
already established that Nef interferes with actin remod-
eling and cell spreading triggered by TCR engagement
[89,90,99]. On the molecular level, Nef controls actin dy-
namics by virtue of its association with the cellular kin-
ase PAK2, which is turned by Nef to phosphorylate and
thus inactivate the actin severing factor cofilin to reduce
actin remodeling [91,109]. It however became increas-
ingly clear that this actin-mediated mechanism may be
necessary but not sufficient for the observed disruption
of early TCR signaling. Taking advantage of the TCR
microcluster concept for visualization and quantification
of effects of Nef on early TCR signaling allowed the
identification of the specific steps affected by Nef. Again
possibly reflecting the action of Fyn and in line with
earlier reports [89,92], Nef had no effect on the extend
of ZAP-70 activation or its organization in signaling
microclusters [110]. ZAP-70 activation therefore does
not require cell spreading and dynamic actin remodel-
ing. Pronounced defects, however, were observed in the
presence of Nef for the organization of the adaptor pro-
tein SLP-76 in microcluster. As a consequence, physical
association between SLP-76 and LAT, a key event in
TCR signal transmission, was drastically reduced by the
viral protein. Interestingly, further mechanistic analysis
revealed this effect to be mediated by Nef via simultan-
eous interference with actin remodeling/cell spreading
and disruption of the subcellular localization of LAT.
Very similar to the effect on Lck, Nef induced the accu-
mulation of LAT in intracellular compartments [110].
Nef mediated retargeting of both proteins can be over-
come by coexpression of the anterograde transport
adaptor Unc119 [100,110]. How Unc119, which is
physiologically involved in the anterograde transport of
Lck by virtue of its interaction with the GTPase Rab11
[111], acts to overwrite the Nef-mediated block and
whether this reflects the involvement of endogenous
Unc119 in the inhibitory action of Nef remains to be
determined.

Functional consequences of Nef-mediated alterations of
TCR signaling
The fact that evolution selected for several mechanisms
by which HIV-1 Nef synergistically tunes TCR signaling
suggests that this provides HIV with a decisive advan-
tage in the infected host. It is well established that
effects of Nef on HIV-1 replication in T-lymphocyte
cultures are most pronounced when unstimulated cells
are infected and only subsequently subjected to TCR
stimulation [112,113]. This positive effect on HIV-1

replication appears to correlate with the ability of Nef to
induce RE/TGN-associated signaling [100]. This may re-
flect e.g. that activation induced cell death of Nef-
expressing cells following TCR stimulation is slightly
reduced relative to non-Nef expressing control cells and
that Nef-tailored TCR signaling could promote HIV-1
transcription [83,114]. However, the Nef effect on virus
replication in this cell system is modest and in magni-
tude significantly lower than that observed in e.g. SIV
infected rhesus macaques [63]. Its relevance in the con-
text of an immunocompetent host is hence unclear. It
appears thus plausible that Nef-tailored TCR responses
bear consequences that affect HIV-1 spread and patho-
genesis beyond its direct replicative capacity. Nef has
been reported to trigger the release of exosome microve-
sicles that are massively secreted to bystander cells upon
T-cell activation [115,116]. Enhanced exosome release
was directly linked to activation of Erk signaling via the
association of Nef with a large cellular kinase complex
referred to as NAKC [101,103,117]. Mechanisms of
decompartmentalization of TCR signaling and Erk acti-
vation may thus integrate to modulate exosome release
in response to TCR activation, with the Erk-RAS path-
way emerging as the central target of Nef action. De-
pending on their composition and cargo, such exosomes
could possibly render non-infected bystander cells more
susceptible for infection or undermine potent immune
recognition of already infected cells. On the other hand,
Nef has been implicated as a major determinant of kill-
ing of non-infected CD4+ T-lymphocytes in HIV-1 infec-
tion of tonsil histocultures [118-120] and, much more
prominently, in humanized mice [121]. Since Nef-
induced exosomes are able to induce such bystander T-
cell killing [116], triggering exosome release from HIV-1
infected cells may represent a major pathogenic deter-
minant of this viral protein. With the enhanced under-
standing of the molecular mechanisms by which Nef
alters T-lymphocyte responses to TCR stimulation,
future investigations will undoubtedly focus on defining
the patho-physiological role of these mechanisms.

HIV-1 Nef in context of the sub-synaptic LAT concept
Studying the effects of HIV-1 Nef on TCR signaling not
only provides insight into the patho-physiological mech-
anism of the viral protein but also contributes to our
understanding of the general principles of TCR signal
transduction. According to an emerging concept of TCR
signaling, most of the LAT clusters at the plasma mem-
brane are inactive at steady state and do not contribute
significantly to signaling upon T-cell activation. Rather,
sub-synaptic vesicles containing LAT are recruited to the
plasma membrane upon TCR engagement to facilitate
microcluster-dependent signaling [30,122,123]. These

Abraham and Fackler Cell Communication and Signaling 2012, 10:39 Page 6 of 11
http://www.biosignaling.com/content/10/1/39



LAT positive vesicles move rapidly in a random manner,
making transient visits at both TCR–ZAP-70 and SLP-76
clusters. Notably, colocalization of LAT containing vesi-
cles with TCR–ZAP-70 microclusters correlates with
phosphorylation of LAT [122] suggesting that LAT posi-
tive vesicles interact closely with the PM and are phos-
phorylated by kinases associated with triggered TCRs
[30,123]. This model provides an attractive concept for
the spatio-temporal regulation of LAT’s interactions with
the TCR machinery [30] but has remained controversial.
The recent mechanistic studies on how HIV-1 Nef
usurps TCR signaling are in line with an important role
of sub-synaptic LAT in TCR signaling [100,110]. Notably,
Nef-expressing cells fail to generate functional p-LAT
microclusters despite the presence of LAT containing
microcluster at the IS. Conceivably, the pronounced
intracellular accumulation of LAT induced by the viral
protein prevents recruitment of LAT to the PM and thus
functionalization of LAT microclusters post TCR stimu-
lation [110]. This intracellularly accumulated LAT popu-
lation in Nef expressing cells likely represents a
sub-synaptic LAT vesicle pool that is prevented from
translocating to TCR activation sites. In this scenario,
interference with translocation of sub-synaptic LAT
would be one mechanism by which Nef disrupts TCR
signaling downstream of LAT. However, this disruption
does not only depend on Nef ’s ability to target LAT con-
taining vesicles to this yet to be defined intracellular
compartment, but also requires Nef to interfere with
TCR-induced actin dynamics. This predicts that also in
physiological T-cell signaling, dynamic actin remodeling
may be critical for translocation of LAT positive vesicles
to TCR activation sites, allowing phosphorylation of the
adaptor protein and subsequent downstream signaling
events.

The LAT-SLP-76 module as target for pathogens other
than HIV-1
Emphasizing the central role of TCR signaling for
pathogen-host interactions, targeted modulation of LAT-
SLP-76 adaptors is also employed by other proteins
encoded by viral and non-viral pathogens. One example
is the p12 protein of human T-cell leukemia/lymphoma
virus type 1 (HTLV-1) that inhibits the phosphorylation
of LAT post TCR stimulation [124]. It is believed that by
decreasing T-cell responsiveness to TCR stimulation,
p12 selectively curtails viral expression to minimize im-
mune recognition of infected CD4+ T-cells and impair
the function of infected cytotoxic CD8+ T-cells, thereby
providing a favorable environment for viral persistence
in the infected host. Similar strategies were also identi-
fied for the gram-negative bacterium Yersinia, whose
virulence factor YopH specifically limits phosphorylation
of LAT and SLP-76 to inhibit T-cell activation and thus

alter T-cell mediated immune responses [125]. Finally,
the T-lymphotropic tumor virus herpesvirus saimiri
encodes for a “viral version” of LAT that triggers T-cell
activation in infected cells by partially substituting for
functions of cellular LAT [126]. Taken together, modula-
tion of LAT-SLP-76 adaptors thus emerges as a strategy
frequently used by various pathogens to adapt T-cell
responses to their specific needs.

Model of Nef action in TCR signaling
Together a scenario emerges in which Nef tailors TCR
responses by relocalizing TCR proximal signaling from
the PM to the RE/TGN (Figure 2). This is achieved by
modulating vesicular transport routes that govern the
transport of essential TCR proximal machinery such as
Lck and LAT to the PM and by disrupting TCR-induced
actin remodeling events critical for the spatio-temporal
coordination of TCR proximal signaling machinery. Be-
sides reducing the concentration of these components at
plasma membrane sites of TCR engagement, these
alterations also result in an enrichment of signaling
competent TCR machinery at the RE/TGN. Still respon-
sive to TCR engagement at the PM via the activity of
Fyn, this intracellular pool triggers selective downstream
pathways including activation of Erk. Presumably, many
other TCR downstream effectors will not be induced in
this configuration, suggesting that Nef tailors the re-
sponse to TCR stimulation from a broad cascade to a
specific and targeted activation of the RAS-Erk pathway.
Consistent with the large body of existing literature, Nef
thus can both activate and inhibit select aspects of TCR
signaling and which effect predominates is likely dictated
by the precise activation state of the T-lymphocyte used
[88].

Concluding remarks
Which effects HIV-1 Nef exerts on TCR signaling has
remained a controversial issue with many reports de-
scribing either activating or inhibitory effects of the viral
protein on select aspects of TCR signaling. Emerging
evidence allows integrating these seemingly contradict-
ory findings into a unifying model. In this scenario, Nef
disrupts important TCR proximal events and simultan-
eously sensitizes specific downstream aspects of com-
partmentalized TCR signaling. This strategy allows Nef
to optimize HIV-1 replication in CD4+ T-lymphocytes,
but may also facilitate additional processes such as cell-
cell communication that exert indirect effects on virus
spread and/or pathogenesis. The fact that important
human pathogens such as HIV-1 or HTLV-I target TCR
signaling underscores the central role of this pathway for
host cell interactions of T-cell tropic pathogens. The re-
sponsible pathogen factors represent valuable tools for
dissecting the molecular basis of TCR signaling.
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