INAUGURAL-DISSERTATION

zur Erlangung der Doktorwiirde
der
Naturwissenschaftlich-Mathematischen Gesamtfakultat
der

Ruprecht-Karls-Universitat Heidelberg

vorgelegt von
Diplom-Meteorologin Teresa Beck
aus Stuttgart - Bad Cannstatt

Tag der miindlichen Priifung;:

In-Time Parallelization Of

Atmospheric Chemical Kinetics

Betreuer : Prof. Dr. Vincent Heuveline
Korreferent : Prof. Dr. Christoph Kottmeier

Abstract

This work investigates the potential of an in-time parallelization of atmospheric chemical ki-
netics. Its numerical calculation is one time-consuming step within the numerical prediction
of the air quality. The widely used parallelization strategies only allow a limited potential
level of parallelism. A higher level of parallelism within the codes will be necessary to enable
benefits from future exa-scale computing architectures. In air quality prediction codes, chem-
ical kinetics is typically considered to react in isolated boxes over short splitting intervals.
This allows their trivial parallelization in space, which however is limited by the number of
grid entities. This work pursues a parallelization beyond this trivial potential and investigates
a parallelization across time using the so called “parareal algorithm”. The latter is an iterative
prediction-correction scheme, whose efficiency strongly depends on the choice of the predic-
tor. For that purpose, different options are being investigate and compared: Time-stepping
schemes with fixed step size, adaptive time-stepping schemes and repro-models, functional
representations, that map a given state to a later state in time. Only the choice of repro-
models leads to a speed-up through parallelism, compared to the sequential reference for the
scenarios considered here.

Zusammenfassung

Diese Arbeit untersucht das Potential einer Parallelisierung in der Zeit der atmosphéri-
schen Reaktions-Kinetik. Deren Berechnung stellt einen der Rechenzeit-aufwéndigsten Schrit-
te bei der numerischen Vorhersage der Luftqualitit dar. Die hierzu iiblicherweise verwen-
deten Parallelisierungs-Ansétze ermoglichen nur ein beschranktes Potential an Parallelilitét.
Um von zukiinftigen exa-scale Rechnerarchitekturen profitieren zu kénnen, sind weitere Ebe-
nen an Parallelitit innerhalb der verwendeten Computer-Codes nétig. Ublicherweise wird die
chemische Reaktionskinetik innerhalb solcher Luftqualitits-Computerprogramme iiber kurze
Zeitintervalle auf isolierten Boxen betrachtet. Dies erlaubt deren triviale Parallelisierung im
Raum, die allerdings beschréankt ist durch die Anzahl der Gitter-Einheiten. Diese Arbeit strebt
eine dariiber hinausgehende Parallelisierung in der Zeit an unter Verwendung des sogenannten
“pararealen Algorithmus”. Letzterer beschreibt ein iteratives Prognose-Korrektur-Verfahren,
dessen Effizienz stark von der Wahl des Prognose-Verfahrens abhéngt. Zu diesem Zweck wer-
den verschiedene Optionen untersucht und miteinander verglichen: Zeitschrittverfahren mit
fester Schrittweite, adaptive Zeitschrittverfahren und Repro-Modelle, funktionale Darstellun-
gen, die einem gegebenen Zustand einen spéateren Zustand zuordnen. Fiir die hier betrachteten
Szenarien fithrt nur die Wahl von Repro-Modellen zu parallelen Simulationen, die schneller
sind als die sequentielle Referenz.

vii

Mathematical Contribution

In this work, the potential of an in-time parallelization for the numerical approximation of
stiff ordinary differential equations is being investigated. To this, the most prominent in-time
parallel algorithm is being focused, the parareal algorithm, which is an iterative predictor-
corrector scheme. Different options regarding the choice of the predictor and the decompo-
sition into sub-intervals are investigated and compared. Only the usage of so called repro-
models, functional representations of the input-output behavior of such chemical systems,
allow for speed-ups in comparison to the sequential scheme.

To the best of the authors knowledge, no detailed investigation and comparison of parareal
approaches for the approximation of stiff problems have been presented in literature yet. A
combined application of the parareal algorithm and repro-modeling has not been presented
in literature up to now and represents a novelty.

ix

Acknowledgments

First and foremost I want to thank my advisor. Dear Prof. Heuveline, it has been a great
honor for me to be your Ph.D. student at the Faculty of Mathematics and Computer Science
at Heidelberg University. I want to express my deepest thankfulness for your support, your
motivation and your patience. I have always appreciated your keen mind and your vision.

Great thanks are further dedicated to the IMK for funding and supporting me during
the first 3 years of this thesis. In particular I want to thank Bernhard Vogel and his working
group and my co-advisor Prof. Christoph Kottmeier for committed support and sound advice.
Thanks are also devoted to the Faculty of Mathematics and Computer Science and the Inter-
disciplinary Center for Scientific Computing at Heidelberg University for their infrastructural
and professional support. This work was partly funded by the Helmholtz project REKLIM
and partly by the EU project Exa2Green. I want to thank all the partners within the projects
for the collaboration. I enjoyed working in these interdisciplinary projects very much.

Tremendous credits go out to my colleagues. My dear fellows, your company made all the
exertions of the last years tolerable. You made it possible to grow from and not to be ruined
by the challenge Ph.D.. Countless times, I've been so thankful for your open ears, your good
ideas, your great sense of humor and in particular for your continuous supply with cookies.
Big thanks are further devoted to Mrs. Mehra for pulling the strings behind the scenes and
not getting tired of my laments.

Finally, let me express my special thanks to those who supported and motivated me
offstage: My family, my friends and in particular my partner. Super team.

Contents

Contents

1 Introduction

2 Atmospheric Chemical Kinetics

21

2.2

2.3

24

Air Quality Modelso
2.1.1 Meteorological Model
2.1.2 Chemical Transport Model

2.1.2.1 Numerical Solution and Operator-Splitting
The Chemical Mechanism
2.2.1 Mathematical Model
2.2.2 Example Six-Variable Tropospheric Mechanism
Chemical Kinetics Solvers
2.3.1 Convergence, Order and Stability
2.3.2 Requirements on a Chemical Kinetics Solver
2.3.3 Rosenbrock Methods,
Global Efficiency and Parallelization
2.4.1 Coarse-Grained Parallelization
2.4.2 Fine-Grained Parallelization

3 Parallel-in-Time Integration

3.1
3.2

3.3
3.4

Parallel Methods for the Solution of Ordinary Differential Equations
The Parareal Algorithm
3.2.1 Convergence i e
3.2.2 Stabilityo
3.2.3 Complexity, Speed-Up and Efficiency
3.2.4 Distribution of Parallel Work
3.2.5 Properties of the Parareal Algorithm
Application to Chemical Transport Models
Parareal for Stiff Problems L
3.4.1 Adaptive Parareal
3.4.2 Reduced Model Parareal,
3.4.3 Other Approaches

xi

xi

xii

4 Numerical Experiments - Six-Variable Mechanism

4.1 Classical Parareal (CP)
4.2 Adaptive Parareal I (AP-I)

4.3 Adaptive Parareal IT (AP-II)
4.4 Adaptive Parareal III (AP-IIT)
4.5 Conclusions

5 Model Reduction

5.1 Overview
5.2 Lumping Methods

5.2.1
5.2.2

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

5.4.1
5.4.2
5.4.3
5.4.4

5.5.1
5.5.2
5.5.3
5.5.4

5.6 Conclusions

Mathematical approach to linear lumping
Qualification as a Coarse Propagator
5.3 Quasi-Steady State Approximation (QSSA)
Singular Perturbation Theory
Model Reduction Procedure
Selection of QSS Species
Solving the Reduced Model
Qualification as a Coarse Propagator
5.4 Intrinsic Low Dimensional Manifold (ILDM) Method
Theory o
Model Reduction Procedure
Parametrization of the ILDM
Qualification as a Coarse Propagator
5.5 Repro-Modeling
Principles of Repro-Modeling

High Dimensional Model Representation (HDMR)

Construction of the HDMR model
Qualification as a Coarse Propagator

6 Numerical Experiments - RADM?2

6.1 Test Scenarios
6.2 Repro-Model Parareal (RM-P)

6.2.1
6.2.2
6.2.3

6.3 Summary and Concluding Remarks

Convergence
Parallel Wall Clock Time
Load Imbalances

7 Conclusions and Outlook

Appendix

Bibliography

CONTENTS

103

115

Chapter 1

Introduction

Atmospheric air quality models' (AQMs) are complex computer programs, that simulate
the physical and chemical processes of the reaction and dispersion of air pollutants in the
atmosphere. Such models are important tools for the quality management of the air. In
practice, they are typically employed to estimate the compliance of industrial facilities with
ambient air quality standards. They also serve political decision-making, since they can be
consulted for the identification of sources of air quality problems and for the determination
of respective control requirements. Subsequent to new regulatory programs, AQMs can also
be employed to forecast future pollutant concentrations.

The base of such AQMs is typically formed by chemical transport models (CTMs), that
describe the temporal evolvement of chemical species due to advection, diffusion, chemical re-
action and other processes. Mathematically, such models are described by sets of multi-scalar
partial differential equations. Their numerical simulation requires discretizations in time and
space. The resulting linear systems of equations comprise huge numbers of unknowns. Solv-
ing them is computationally demanding and requires the utilization of supercomputers. One
of the key principles of high performance computing (HPC) is the distribution of computa-
tionally intensive tasks over multiple processors. This requires special attention in the choice
and design of respective algorithms, since not all algorithms inhere parallelism by nature.
For the solution of partial differential equations, one popular parallelization strategy is the
so called domain decomposition: The original boundary value problem is decomposed into
smaller chunks, that are being approximated in parallel, with an iterative update of interacting
boundary values on neighboring chunks.

The domain decomposition method typically facilitates the first level of parallelization of
a CTM. A second level of parallelization comes about as a natural byproduct of an operator
splitting approach. Since CTMs inhere wide ranges of different time-scales, the individual
processes like advection, diffusion, and reaction are being decoupled from another and nu-

LA little confusion exists around the term “model”: In the field of Mathematics, a “model” is a description
of a system by means of mathematical concepts and in a mathematical language. In applied sciences, the term
“model” often constitutes a computer program, that numerically simulates chemical, physical or biological
phenomena, captured in mathematical models. In this work, the term “model” will primarily be allotted
with the Mathematical “model”. Since the term “air quality model” is established and convenient, we add an
exception here.

2 CHAPTER 1. INTRODUCTION

merically treated separately with individual time-stepping schemes. The consequence of the
operator splitting on the numerical treatment of the chemical reaction is, that one, individual
initial value problems is being solved per splitting interval and per grid entity. This allows
for a trivial parallelization, with potential performance speed-ups up to the number of grid
entities. If however more processors are available than grid entities, this potential can not be
exploited any further.

Still, the simulation of the chemical reaction kinetics, the study of the rates of chemical
processes, remains one computationally intensive and time-consuming subcomponent of an
AQM. The chemical mechanisms, that are incorporated in AQMSs describe processes on wide
ranges of time-scales. Radical species, such as the hydroxyl radical, react very quickly, while
others reveal atmospheric lifetimes of years (e.g. methane). Mathematically, atmospheric
chemical kinetics are described by means of ordinary differential equations. For their numerical
integration, adaptive techniques are inevitable, that quickly adapt the time-step size according
to the reaction progress. Those schemes are typically iterative and inhere a very limited
natural potential of parallelism. A further parallelization of these systems is far from obvious.
Current research mainly focuses on a parallelization of the chemistry on an instruction line
level [71]. Research has been done into an algorithmic reorganization by means of slight
modifications of the solvers [20, 99, 129, 130]. The approaches presented in literature all show
a limited parallelization potential.

Avowedly, the potential of a trivial parallelization is not yet fully realized at this point in
time. In practice, many AQMs still sequentially compute individual boxes one after another
on the same processor. A reason, may be a conservative code development policy, which
in turns guarantees a high level of resilience. For operational models, this is one crucial
characteristic. Climate, weather and air quality models are extensive code structures, which
have been developed over years to decades. Porting hundreds of thousands of lines of code
from Fortran 77 to the latest C++ standards is a challenging and time-consuming task. With
increasing complexity of the available hardware, further the demands on the software design
grew. A respective implementation requires trained man-power and a high degree of expertise.
Typically, the developers are experts in their own field of subject and primarily interested in
the results, their models produce. Interdisciplinary efforts are therefore necessary, to adapt
the codes to optimally benefit from current and future hardware.

Decades of enhancement has left scientists with super-sophisticated, high-resolution mod-
els. With growing complexity and resolution, also the computational effort grew, which
makes weather and climate prediction a time- and energy-consuming business. Especially
high-resolution and long-term simulations are expensive both in the sense of wall clock time
and energy consumption. Energy requirements of HPC systems are already and will be-
come even more prohibitive. Following an overall hardware trend, the community recently
investigates the porting of their codes to less energy-consumptive processors [24, 88]. Com-
putationally intensive calculations are relocated on more energy-efficient processors, such as
graphic processing units or advanced risk machines. Depending on the architecture, an ef-
ficient implementation will require higher levels of parallelism within the algorithms. In the
prospect of exa-scale computers, the community is confronted with a crucial challenge: The

currently used parallelization strategies inhere a limited level of parallelism and hence can
only support a parallelization up to some limit.

The development of new parallelization strategies is not only important in the context of
performance speed-ups and energy savings, but also in the context of the global balancing of
work. This is in particular true for the calculation of the atmospheric chemistry, for which
the computational effort strongly depends on the level of photolytic activity. Photolysis is
dominated by the intensity of the sunlight, which shows a diurnal variation. Especially during
transition times between night and day, the photolytic activity is high and the presence of
fast processes makes the numerical approximation computationally intensive. On a global
level, load-imbalances are the result: At one physical point in time, chemical boxes describing
chemistry at sunrise, as well as at daytime, sunset or nighttime will have to be calculated
simultaneously.

To pave the road towards exa-scale climate and weather prediction, scalable algorithms
must be designed, investigated and finally also implemented. We therefore investigate the
potential of an in-time parallelization of the numerical treatment of the atmospheric chemical
kinetics. The basic principle of such methods is a simultaneous approximation of subsequent
events.

Time-parallel algorithms for the solution of initial value problems look back at a long
history [35]. In fact, they are as old as the first supercomputers. Most parallel-in-time
methods catch up on the ideas of the domain decomposition method. Initial value problems
are split into individual time-slabs, and solved in parallel. Through an outer iteration, initial
values on each time-slab are updated and corrected by means of the final solutions on the
precedent time-slabs. One of the essential advantages over other parallelization strategies for
the solution of initial value problems is, that parallel-in-time algorithms allow for unlimited
parallelization levels. Among a wide range of related algorithms, one prominent algorithm is
the parareal algorithm.

The parareal algorithm is an iterative prediction-correctiom algorithm. Within the iter-
ation, a coarse and cheap, sequential prediction is corrected by means of a fine, but compu-
tationally costly correction. While the coarse prediction has to be propagated sequentially,
the costly computation of the correction can be parallelized. Independent of the choice of the
coarse propagator, the algorithm converges to the solution of the fine propagator. For the
latter, one chooses a respective numerical integrator with a desired step size or tolerance. For
the coarse prediction, any scheme can be used: The same numerical scheme with a coarser
time-step size, a different and less costly scheme or even a completely different model. The
better the coarse prediction, the less iterations will be necessary until convergence. The faster
the prediction, the higher the expected speed-up. To allow for an optimal speed-up, the choice
of a coarse propagator has to be guided by finding a trade-off between high accuracy and low
computational effort.

An application of the parareal algorithm to atmospheric chemical kinetics can be im-
plemented in different ways: Internally, within one operator splitting interval or externally,
across multiple operator splitting intervals. The latter case requires a consideration of ex-
ternal effects, such as advection, diffusion and changing photolysis rates at the interfaces

4 CHAPTER 1. INTRODUCTION

between two intervals. In both cases, the application of the parareal algorithm is hindered
by the multi-scale nature of the atmospheric chemical kinetics. The presence of wide ranges
of time-scales in such systems forces the usage of adaptive time-stepping schemes as a fine
propagator. Depending on the application, a decomposition of the simulation interval into
equidistant time-slabs will then lead to load-imbalances, which can be diminished by using an
adaptive decomposition. The multi-scale nature also affects the choice of a coarse propagator.
Adaptive coarse integrators using multiple steps are too costly, while single-step integrators
are not accurate enough. In that course, reduced models seem to be a promising alternative
to balance accuracy and computational effort.

Traditionally, model reduction has been a crucial research topic in atmospheric chemical
kinetics. The primary research purpose however is not to set up faster models, but to allow for
a better understanding of the inherent dynamics. A reduced model is therefore not necessarily
faster. Among a wide range of different approaches, we choose the class of repro-modeling
approaches for the construction of fast, coarse propagators, that still provide a sufficient level
of accuracy. Repro-models are functional representations, that map the solution from one
point in time to another point in time and only valid for a fixed distance. This again requires
a decomposition into equidistant time-slabs.

This thesis starts with an introduction into atmospheric chemical kinetics and its numer-
ical treatment within compound air quality models. Current parallelization strategies are
discussed. Chapter 3 outlines the principles of parallel-in-time integration techniques with
a focus on the parareal algorithm. Special emphasis will be put on parareal techniques for
the solution of multi-scale ordinary differential equations. Numerical results for first adaptive
parareal tests will then be shown in Chapter 4. The results from that Chapter will motivate
the search for reduced models to be applied as coarse propagators. An overview of model
reduction approaches for atmospheric chemistry is then given in Chapter 5. In Chapter 6, we
will thereupon present a new repro-model parareal approach, using functional representations
as coarse propagators. Numerical results will be shown for three realistic atmospheric chem-
istry scenarios, that showcase the calculation of the chemical kinetics as it is incorporated
in a real AQM by means of zero-dimensional box-models. Finally, Chapter 7 closes with
conclusions and outlook.

Chapter 2

Atmospheric Chemical Kinetics

Computer programs to simulate the decomposition of the atmospheric air, conventionally
denoted as air quality models (AQMs), base on chemical transport models (CTMs), that
describe the temporal evolvement of chemical species due to advection, diffusion, chemical
reaction and further atmospheric processes. For the numerical approximation of a CTM, one
typically chooses an operator splitting approach, such that the individual processes are decou-
pled and solved in succession. One very time-consuming part within is the numerical solution
of the chemical reaction kinetics. Due to the presence of a wide range of timescales within
such systems, special integration techniques are required. This Chapter first outlines the ba-
sic principles of chemical transport modeling along with a depiction of a numerical solution
approach. From then on, the focus will be put on chemical reaction kinetics. For illustration
purposes, an exemplary atmospheric chemical mechanism is introduced, which will serve as
a testbed throughout this work. Then, characteristics and challenges in solving chemical ki-
netics in atmospheric chemistry are focused, followed by a presentation of respective solvers.
Finally, the Chapter is closed by considerations on the parallelization of the calculation of
atmospheric chemical kinetics.

2.1 Air Quality Models

Atmospheric air quality models aspire a prediction of ambient concentrations of atmospheric
pollutants to facilitate a monitoring of the air quality. To this, they numerically simulate the
physical and chemical processes, ongoing in the atmosphere. Atmospheric pollutants may be
chemically transformed, transported, diffused, mixed, diluted, washed-out by precipitation
or removed through deposition. Chemical transport models (CTMs) provide the necessary
mathematical framework, that allows an assessment of the integrated effects of these processes
on the air quality.

Atmospheric chemistry is being affected by a wide range of processes, which all take place
simultaneously. Some of the processes are directly influenced by the ambient weather and
climate, such as wash-out by precipitation or chemical reaction by radiation. Vice versa, also
the composition of the air influences weather and climate, for example aerosols affecting the
radiation budget. Both meteorology and air quality are in fact linked.

6 CHAPTER 2. ATMOSPHERIC CHEMICAL KINETICS

Chemical Reaction

Precipitation

Radiation

Diffusion

Emission

Transformation

(o] ical Ti port Model
Numerical Prediction for
Species Concentration

Figure 2.1: Schematized overview of an atmospheric air quality model.

Chemical Transport Model“Meteorology
1

Since a CTM only describes the temporal evolvement of chemical species, meteorological
variables, however, are not modeled within the CTM itself. Typically, they enter the CTM
as fixed values. These can be provided either from measured data, statistical models or an
external meteorology model. Usually, an AQM is understood as a superordinate framework
for the numerical solution of a CTM, coupled to a meteorological model. Models of meteorol-
ogy, such as weather forecasting or climate models, describe the temporal evolvement of the
atmospheric dynamics by means of prognostic or diagnostic equations for wind, temperature,
pressure and density.

Historically, CTMs have been developed separately from meteorological models for decades
[8]. In the current numerical praxis within AQMSs, they therefore are only loosely coupled to
each other: In the so called offline coupled AQMs, the CTMs are driven by a-priori calculated
meteorological input data, calculated using a weather or climate forecasting model. Offline
coupled AQMs do not account for effects of the air composition on meteorology. Recent
developments adopt closer couplings of meteorological models and CTMs, by means of a
so called online coupling, that allows for an incorporation of two-way interactions. Different
than for aforementioned offline coupled models, data is exchanged in both directions at certain
coupling time intervals. An extensive overview over current state of the art approaches used
in regional European meteorology-chemistry models has been presented by Baklanov et al.
8].

An AQM typically represents each of the contributing processes by means of an individual
component. A schematized overview of the main components within an AQM is drafted in Fig.
2.1. For a comprehensive overview, we refer to Seinfeld and Pandis [111] or Baklanov et al.
[8]. Yellow boxes in Fig. 2.1 denote meteorological variables, which are not directly modeled
within the CTM, but typically enter the CTM as external parameters. Green boxes represent
the components, a CTM may be comprised of. These components describe the physical and
chemical processes, atmospheric chemical species are exposed to in the atmosphere. Blue

2.1. AIR QUALITY MODELS 7

boxes signify greater process categories.

A chemical species may be transformed through chemical reaction in the gas-phase or
the aqueous-phase of the atmosphere or through aerosol effects. It may further be influenced
by sinks, such as wash-out by means of precipitation or deposition. Emission in contrast
represents a source term. Species can further be transported by means of advection and
diffusion. Diffusion describes the spreading of chemical species from highly concentrated areas
to less concentrated areas. It is caused by a non-directional random movement of particles,
induced by the presence of thermal energy. Different than advection, it is not related to
a transporting medium, i.e. the wind field, but an autonomous movement. In fact, the
denotation “transport” in this context is misleading, but conventional. In contrast, advective
and turbulent transport relies on a transport of chemical species by means of the surrounding
wind field.

The formulation of a CTM,
as well as the formulation of a

meteorological model, depends Transport Transport

on the point of view of the mod-

eler: In a Lagrangian frame-
work one models a specific air vt 5'“"‘ T S

parcel, that is being advected vt

with the local wind. Respec-

tively, one moves with the air Figure 2.2: Lagrangian vs. Eulerian modeling framework.

parcel and its surroundings. Exchange of mass, momentum or energy across cells through
transport is not considered. In a Fulerian framework one describes the processes in fixed
grid cells. Mass, momentum or energy is allowed to enter and leave grid cells. A schematic
overview of the Lagrangian and the Eulerian approach is presented in Fig. 2.2. Since the Eu-
lerian approach is commonly used in practice within three-dimensional AQMs, the following
equations will be presented in a Eulerian view.

2.1.1 Meteorological Model

As it has been outlined in the previous section, AQMs usually represent a CTM, coupled
to a meteorological model. Potentially, the CTM could also be coupled to measurements
or statistical models. For the sake of completeness, we briefly discuss the meteorological
model here. The purpose of the meteorological model is to approximate the atmospheric
dynamics. A wide variety of different models exist, each tailored to the intended purpose of
usage. All of them base on the same basic sets of balance equations, which are known under
the term primitive equations. These equations have first been formulated already in 1922
by Richardson [103]. Even today, they still formulate the so called dynamical core of most
current atmospheric models.

Physically, the primitive equations can be derived from the principles of conservation
of mass, conservation of momentum and conservation of energy, amended with the ideal
gas equation. Two basic approximations are used: First, a hydrostatic approximation for
the vertical momentum equation. Second, the Coriolis force is affected by horizontal wind

8 CHAPTER 2. ATMOSPHERIC CHEMICAL KINETICS

components only. Their derivation can be found in most books on theoretical meteorology,
c.f. [48], and shall not be focused here.

Equation system 2.1.1 shows a standard formulation of the primitive equations in cartesian
coordinates. Since the equations are typically solved on a rotating sphere, it is common to
formulate them in spherical coordinates. For the sake of simplicity, they are formulated in
cartesian coordinates, here.

0 1
% +u-Vup + f(kxu)=—=Vpp horizontal momentum equation
p
10
9P _ —q hydrostatic equation
p Oz
op . .
5t +V-(pu)=0 continuity equation (2.1.1)
00 "
cp <E - V@) = <@> J thermodynamic energy equation
p
p = pRT ideal gas law

whereat u € R? denotes the three-dimensional wind field u = (uy, uy, u,) and uj, € R? the hor-
izontal components only up, = (uz, uy). Respectively V and V), denote the three-dimensional
and horizontal gradient operators V = (0, 0y, 0.) and Vj, = (0, dy). The variable f € R rep-
resents the Coriolis parameter, k € R3 denotes the unit vector in vertical direction. Further,
p € R is pressure, p € R density, g € R gravitational acceleration, ¢, € R the specific heat at
constant pressure, k = R/c, € R and R € R the gas constant for dry air. The term J € R
represents the diabatic heating per unit mass, such as radiation.

Above equation system is typically amended with further processes, that enter the equa-
tion system in a parametrized way. Typical parametrized processes are cloud micro-physics,
radiation, precipitation, turbulence or convection. For the application within an AQM, above
meteorological model system is further amended with a model for the chemical transport of
atmospheric chemical species. In practice, the resulting equation system is not solved in a
fully coupled fashion. Instead, the meteorological model is solved isolatedly from the CTM.
Data is exchanged only at certain coupling intervals.

2.1.2 Chemical Transport Model

Physically, CTMs can be derived from mass balance equa-

tions for each chemical species at each grid cell. The con-
| I i .Tr_anam servation of mass of one chemical species C' = C(z,t) € R
with t € R and 2 € R3 on some domain € C R may be
sink + * Source expressed in a differential form,
|6Clbt =Transport + Source - Sink + int. Transformation | 66_? + V . J — 57 (212)

Figure 2.3: Mass balance within a

fixed grid cell in the Eulerian view. whereat J € R? represents the vectorial mass flux into/out

of the volume, S represents a sink and source term plus the

2.1. AIR QUALITY MODELS 9

rate of the internal transformation within the volume. Figure 2.3 visualizes the key principle:
The rate of change of the concentration of a chemical species within one grid cell is defined
by the net flux into/out of the cell (by means of advection or diffusion), the production or
destruction rate within the cell through chemical or physical transformation processes and
the rate of sinks (wash-out, deposition) and sources (emission).

The mass flux combines both effects of advection and diffusion, J = Jp+J4. According to
[111] and [3], atmospheric diffusion is assumed to follow Fick’s law and hence can be modeled
as proportional to the concentration gradient,

Jp = —KVC,

with K € R3*3 representing the diffusion coefficient, a diagonal matrix holding turbulent
eddy diffusivities. The advective mass flux arises from linear advection and can be expressed
as

Ja = Cu,

whereat u = u(x,t) € R3 represents the three-dimensional wind velocity field. The total
mass flux is then defined as J = —KVC + Cu. Equating the latter in Eq. 2.1.2 yields a
three-dimensional advection-diffusion equation,

oC

LV (Cu) = V(KVCO) +S.
ot —_—— ——

advection diffusion

In the following, we consider a vector ¢ = ¢(x,t) € R® holding the concentrations of s
chemical species. The temporal evolvement of the concentration of the s chemical species in
a fixed air parcel can then be described by means of

dc
— =— V-(cu)+V(KVe)+S.
ot —_—— N—\
advection diffusion
Now let us specify the the source/sink and transformation term S. This term represents
emission E as a source, sinks by means of wash-out and deposition, further the internal

transformation processes caused by chemical reaction and aerosol,

e (5) o () (B)
B ot wash-out ot depos. ot chem. reaction ot aerosol.

Since we focus on atmospheric chemical kinetics in this work, we will only consider the trans-
formation due to chemical reaction in the gas-phase chemistry and neglect further effects from
now on. For details on the remaining terms, see for example Seinfeld and Pandis [111] or Arya
[3]. Chemical reaction is represented by an ordinary differential equation of the form

dc
— = k, t 2.1.
(ot) chem. reaction f (C’ ’), (3)

whereat f describes the temporal change of the species concentrations as a function of concen-
tration, reaction rates k and time. The reaction rates are a function of temperature, pressure

10 CHAPTER 2. ATMOSPHERIC CHEMICAL KINETICS

and photolysis and will be discussed in more detail later. The resulting mass balance equation

reads 5
& e V(W + V- (EVO)+ flekt) . (2.1.4)
ot —_—— —
advection diffusion chem. reaction

As it has been depicted in the previous Section, CTMs are typically coupled with a me-
teorological model, that provides meteorological parameters, such as wind, temperature or
pressure. For Eq. 2.1.4 this means, that the wind field u, the coefficient matrix K and the
reaction rates k are not calculated by the CTM itself, but provided by or derived from mete-
orological input data. The problem then is linear with respect to advection and diffusion. In
most cases, the reaction term f will be nonlinear.

2.1.2.1 Numerical Solution and Operator-Splitting

For the numerical solution of a CTM, as defined by Eq. (2.1.4), the problem typically is first
discretized on a three-dimensional spatial grid Q;, C Q C R3. This leads to a semi-discrete
system consisting of a huge number of ODEs. A survey over popular approaches to solve
those systems can be found in Verwer et al. [128]. One of the most popular approaches is
the so called operator splitting approach, cf. McRae, Goodin and Seinfeld, [87]. Since its
introduction in the early 1980s it has found widespread use in chemical transport modeling.
The basic idea is a decoupling of the different processes, to allow for using individual numerical
time-stepping schemes for each of the components. To this end, the individual processes are
solved in succession over split intervals [t,, tp41] with t, 41 = t, + Atgpre for n =0,1,2, ...
An analysis of operator splitting and insight into the splitting error for advection-diffusion-
reaction equations has for example been presented by Lanser and Verwer [61]. The key idea
shall be outlined in the following.

Assume, we can describe the impact of the different processes comprising Eq. 2.1.4 on
c(t + At) by means of individual operators:

A(c, At) = =V -(uc) advection operator
D(c, At) := V-(KVc) diffusion operator
G(e, At) = f(et) gas-phase chemistry

The concentration ¢ at the next time-step ¢ + At can then be described by
c(x, t+ At) = c(t) + [A+D+G] (c(z, t), At). (2.1.5)

We split up the difference Ac = c(z, t) — ¢(z, t + At) into contributions from an isolated
application of the individual processes, with Ac? representing the difference arising from an
isolated application of the advection operator, respectively AcP and AcC. A straight-forward,
but inaccurate approach would then be to approximate the new solution at time ¢ + At as

clx, t+At) = c(z, t) + At + AcP + AcC,

From a physical point of view, these processes take place at the same time and are not
isolated. Applying the operators isolatedly in parallel is therefore not a good approximation

2.2. THE CHEMICAL MECHANISM 11

to the real physical nature of Eq. 2.1.4. Other approaches base on a sequential application of
the operators. One popular approach for the solution of CTMs is a symmetric splitting for
advection and diffusion as proposed by McRae et al. [87],

Mo, t+At) = A(c(z, t), %)
Az, t+At) = D(c'(z, t), %)

Alx, t+At) = G(P(x, t), At)
£h

2
);

At
whereat advection and diffusion are applied twice during a splitting interval, while the chem-

Az, t+At) = D(E(z, t),

c(z, t+At) = A(ct(z, 1), 5

istry operator is applied only once.

Within such an approach, the most time consuming part to solve the mass balance equation
(2.1.4) within a splitting interval is the numerical integration of the chemical kinetics, cf. [142].
Given some spatial discretization Q5 C © C R3 and under the assumption of the splitting
of advection, diffusion and reaction, as introduced above, solving chemical kinetics means
solving

dc
ot

on each grid entity of Q. Typically, one further assumes an autonomous mode, i.e. f(c) #

= fle, k, t) (2.1.6)

f(e, k, t) during one splitting interval. Rate constants then are not updated during the
splitting interval itself, but at the end only. Chemistry thus is considered to take place in
a constant environment with fixed photolysis conditions, pressure and temperature. After
the integration time of Atgpi¢, the isolation is canceled and species are advected and diffused
and rate coefficients are updated to the current photolytic and thermodynamic state of the
system. Computationally this means, that one isolated ODE system is being solved per grid
entity, without any interaction between neighboring grid entities during [t,, t, + Atgpit).
Section 2.3 will outline the major challenges and requirements arising from the split approach
for the numerical treatment of the chemical kinetics. It further presents the most popular
solvers for atmospheric chemical kinetics. In Sec. 2.4, aspects related to the parallelization
of atmospheric chemical kinetics will be discussed. In advance of all that, the chemical
mechanisms, that will later define the set of ODEs given in Eq. (2.1.6), are taken into
account.

2.2 The Chemical Mechanism

The study of chemical kinetics in the atmosphere includes complex and sophisticated reac-
tions between trace gases, such as ozone, nitrogen oxides, methane and hydrocarbons. These
can’t be analyzed without proposed chemical mechanisms, that step-by-step describe the oc-
currences in chemical reactions on molecular level before equilibrium is reached.

12 CHAPTER 2. ATMOSPHERIC CHEMICAL KINETICS

As a testbed for this work, we choose the chemical mechanism Regional Acid Decompo-
sition Model version 2 (RADM?2), which has been developed by Stockwell et al. [119]. Since
its development in 1990, RADM2 has found wide usage in atmospheric AQMs to predict con-
centrations of air pollutants and oxidants. The RADM?2 mechanism represents tropospheric
chemistry by means of 63 species that interact in 158 reactions. Inorganic chemistry com-
prises 4 radical and 17 stable species, whereat No, Oo, HoO are abundantly stable. Organic
chemistry is represented by 26 stable and 16 radical species or species groups. For the numer-
ical treatment of the hundreds of volatile organic compounds (VOCs) in the atmosphere, the
RADM2 mechanism follows a molecular lumping approach proposed by Middleton [89]. De-
pending on their emission rates and their reactivity with the hydroxyl radical HO, VOCs are
aggregated into 15 species groups (e.g. HC3, HC5, HCg, HC3, OL2, OLT,...). For details on
the classification, see [89]. A comprehensive description of the RADM2 mechanism is given in
Stockwell et al. [119]. Lists of the chemical species, the elementary reactions and the reaction
rates are also presented in the Appendix.

2.2.1 Mathematical Model

In a homogeneous reactor, a chemical mechanism comprised of R elementary reactions of S
species Agcs can be denoted by

Z arvsAS ﬁ) Z B’I‘,SAS Vr e R,

ses ses

with the stoichiometrical coefficients «;.; and ,; and the rate coefficients k;. The reaction
system can then be described by a set of ODEs in terms of a vector of concentrations ¢, with
¢; holding the concentration of species A;,

) R
(8661:) - ;kr (BT,i - ar,i) H C(SIT’S’ for 7 = L., S’

seS

see for example Warnatz et al. [136].

2.2.2 Example Six-Variable Tropospheric Mechanism

For the sake of clearness, the methodology developed in this work will be depicted by means
of a much simpler, six-dimensional model problem, introduced by Tomlin et al. [121]. This
model is a small subset of the Master Chemical Mechanism (MCM), developed by Jenkins et
al. [51], containing 8 reactions and 6 variable species. The model assumes fixed photolysis
conditions with a clear sky at mid-day, a solar declination of 23.79° and a zenith angle of 16.2
at a latitude of 40°. Table 2.1 shows the reactions along with the rate coefficients. The initial
concentrations are presented in Tab. 2.2. For more details on the model, see Tomlin et al.
[121].

2.3. CHEMICAL KINETICS SOLVERS 13

Table 2.1: Reaction mechanism.

Reaction Reaction rate
1 oD o2, o3P 2.101 - 108 51
2 oD D2, o3p 5.060-108 s!
3 oD H°, 910 5.412-107 s!
4| HO+CO X HO, + products 2.384-10°8 L
5| HO,+NO X HO+NO, 8.941-107"12 L
6| HO+NO, 4% HNOj 1408 - 1071 s
7| HO,+HO, % HyOp+products — 2.67-10712 1
8 O3 ELN O'D + products 2.11-107° s—!

From the reactions presented in Tab. 2.1 we derive the following rate equations for the
reaction educts:

d[giD] = §1[0s] - K [0'D], (2.2.1)
d [ZO] = 2kn,0 [0'D| — k; [HO] + ks [HO,| [NO] — ky [HO][NO,], (22.2)
HO] ky [HOJ — k3 [HO5] [NO] — 2ks [HO,)?, (2.2.3)
dt

duz? 2l — 14 [HO:] [NO] ku [HO] [NO] (2.2.4)
d[io] — k3 [HO] [NOJ, (2.2.5)
dﬁg] = —010s]. (2.2.6)

Eqgs. (2.2.1 -2.2.6), represent a set of nonlinear, stiff ordinary differential equations (ODEs).
Initial conditions are given in Tab. 2.2.

2.3 Chemical Kinetics Solvers

Solving chemical kinetics accounts for most of the CPU time to solve the mass balance equa-
tions, Eq. (2.1.4): According to Zhang et al. [142] the percentage may account up to 95% of
the total CPU time. For an efficient solution of atmospheric gas-phase chemistry, special inte-
gration techniques are required. This section outlines the major challenges and requirements
such integrators have to cope with. For comprehensive discussions, see for example Zhang et
al. [142] or Verwer et al. [128]. We start with some basic definitions for one-step methods.

2.3.1 Convergence, Order and Stability

Solving chemical kinetics means solving an autonomous ODE system of the form

ou .
Frie f(u), with u(0) = up. (2.3.1)

14 CHAPTER 2. ATMOSPHERIC CHEMICAL KINETICS

Table 2.2: Initial concentrations.

Species Description Initial Value [molecules~cm_3]
1 O'D Excited state oxygen atom 3.060 - 105
2 | HO Hydroxy radical 5.660 - 106
3 | HOq Hydroperoxy radical 5.570 - 108
4 | Os Ozone 7.380 - 1011
5) NO Nitric oxide 1.000 - 106
6 NOq Nitrogen dioxide 5.000 - 106
fix | CO Carbon monoxide 2.458 - 102
fix | Oq Oxygen implicitly defined by kll
fix | Ny Nitrogen implicitly defined by k;
fix | H2O Water implicitly defined by k/1
Rate coefficients in condensed form
K} = ko, [Oag, + kn, [Nalg, + kiyo [HoOlg,, 7.70- 108
ky :=ko [COJ g, 5.87-1071

A numerical method approximates solutions U to Eq. (2.3.1) at discrete times t, with
U, ~ u(ty,) and t,, = to+nAt, where At is the time-step size of the method. Such a method can
either be a one- or a multi-step method. A one-step method calculates a solution using only
information from the precedent time-step, U,+1 = F(U,), while multi-step methods involve in-
formation from the previous s steps to calculate a solution Uy,+1 = F(Uy, Up—1, .oy Upt1—s)-
Further, one can distinguish between explicit and implicit methods. Explicit methods calcu-
late the state at time t,, explicitly from that at previous time, U,+; = F(U,,), while implicit
methods involve also the current state, G(U,, Up+1) = 0.

For a given numerical method, important properties from a mathematical point of view
are: Convergence, order and stability [26, 45, 46].

Definition (Convergence). A numerical method is convergent, if the numerical solution U,
at time ¢t = t,, to any ODE of the form Eq. (2.3.1) with a Lipschitz function f approaches
the exact solution u(t,) for At — 0, i.e.

li U, —u(ty)|| =0, Vr>0.
Amy _gmax NUn = ulta) T

Definition (Convergence Order). A numerical method is further convergent of order p, if for
any ODE of the form Eq. (2.3.1) with a Lipschitz function f there exists a C' € R, such that

U — u(ty)|] < CAPH
holds for all n.

For some stiff problems, standard numerical methods may exhibit instabilities in the
solution. The stability of a numerical method describes, in which way numerical errors,
that are generated during the solution are being magnified. In 1963, Dahlquist introduced a

2.3. CHEMICAL KINETICS SOLVERS 15

concept to rate the stability of a numerical method by means of its behavior when solving a
stiff test equation [27],

u' =My, ug=1 IeC. (2.3.2)

Given a numerical method, its corresponding numerical solution to Eq. (2.3.2) after one
time-step of size At defines the stability function R(z) with z := AAt¢. The set

S={z€C; |R(z)| <1}

is further called the method’s stability domain, cf. [46]. The test equation Eq. (2.3.2) has
an analytic solution, u(t) = exp(At), which approaches zero as t — oo for all A € C~ with
C™ : {A€eC; Re(\) <0}. A numerical method, that exhibits the same behavior, is said
to be stable. Various definitions of stability exist. We introduce the two most important
stability definitions for one-step methods. For a comprehensive overview of further stability
definitions, we refer to Hairer et al. [46].

Definition (A-Stability [46]). A numerical method is A-stable, if its stability domains satisfies
SOC .

An A-stable method will return a monotonic decreasing series U,, with n = 1,2, ...,00 of
approximations for all A € C~ and for any fixed time-step size At € R with At > 0. The
series U, obviously approaches zero as n — co. A-stable methods are therefore stable for any
z € C7, which exactly equates the stability domain of the analytic solution.

Definition (L-Stability [32]). A method is L-stable, if it is A-stable and if in addition
lim R(z)=0.
Z—>—00
The solution of an L-stable method also approaches zero, but already after one single
time-step with At — oo. L-stability implies, that the method is stable for any z € C.

2.3.2 Requirements on a Chemical Kinetics Solver

Accuracy The integration of chemical kinetics is typically embedded in a chemical trans-
port model or a bigger AQM. Such models inhere multiple sources of inaccuracies, such as
data and modeling errors, which are hard to quantify but always present. Demanding high ac-
curacy in the numerical integration of the chemical kinetics would be superfluous, as its basic
assumptions are inaccurate already: initial conditions, rate coefficients, incomplete chemical
or physical mechanisms, for example. The overall aim is to achieve extremely fast solutions
at low accuracies; Zhang et al. [142] demand relative errors below 0.1%, Verwer et al. [128]
claim relative errors below 1.0% to be sufficient. The numerical error in the final solution
is determined by the choice of the time-step sizes and by the order of accuracy of the nu-
merical algorithm. During integration time, one typically controls the error by adjusting the
time-step size. This requires a robust error control mechanism on the base of respective error
estimators.

16 CHAPTER 2. ATMOSPHERIC CHEMICAL KINETICS

Stiffness The term stiffness can be encountered in most literature on chemical kinetics
of the atmosphere. Stiffness is a vague concept. Curtiss and Hirschfelder first introduced
the term in 1951 to describe a type of differential equation, that is “exceedingly difficult to
solve by ordinary numerical procedures” [25]. Since then, various attempts towards a clear
mathematical definition have been made. For a detailed depiction, see Spijker [114]. The most
common definition found in literature (see e.g. [2, 28, 40, 60, 112]) defines the occurrence of
stiffness as a situation, when the largest step size to guarantee numerical stability is much
smaller than the largest step size for which the discretization error is still sufficiently small.
In search of a definition, characteristics and criteria have been formulated to at least describe
stiffness. Ome such characteristics is the requirement of implicit integration techniques to
solve stiff problems, cf. [25, 46]. According to Lambert [60], stiffness is present, if the solution
to the differential equations inheres some components, which decay much more rapidly than
others. Or in a formal way, if

max;—1 s [Re()\;)|
min;—1, s [Re(\;)|

> 1, (2.3.3)

with A; denoting the i — th eigenvalue of the Jacobian of the right hand side of Eq. (2.3.1).

The ODEs arising from atmospheric chemical kinetics certainly meet the stiffness criterion
introduced by Eq. (2.3.3): Atmospheric chemistry is a multi-scalar phenomenon, as the
involved species interact on scales from milliseconds (radicals such as the hydroxyl radical
HO) to years (e.g. methane CHy).

For reasons of accuracy and stability, very small time-steps are necessary, whenever stiff-
ness occurs. In the context of chemical transport models, this is especially true for the very
first milliseconds: Due to the splitting approach, transient (i.e. instable, short-lived) species
will be present at the beginning of every split interval. Thus very small time-steps are required
at initial time. After the transients have equilibrated, the time-step size can be increased re-
markably. Quickly adjusting time-step sizes therefore are crucial for the efficiency of a solver.
To solve stiff problems, unconditionally stable methods are preferable, i.e. the size of the time-
step size should not be controlled by stability reasons, but by accuracy considerations only.
Numerical methods for solving atmospheric chemical kinetics are desired to be L-stable, or at
least A-stable. Such methods are typically implicit. For a nonlinear right-hand-side function
f(w) implicit methods are computationally expensive, as in general, implicit equations are
solved by iteration.

Preserving natural solution properties The solution to Eq. (2.1.6) in general is required
to be mass conserving and positive. Integrators are requested to hand these properties down
to the numerical solution [104]. Not all integrators naturally cope with these requirements.

The conservation of mass is intrinsic to most chemistry solvers, as mass is a linear invariant
of the systems being solved. Some popular solvers, e.g. QSSA [47], do not take the analytic
Jacobian into account. This leads to an artificial production of mass, hence these solvers are
not mass-conserving.

The conservation of positivity is not a direct constraint of Eq. (2.1.6), but a constraint
of physical relevance. Most methods of order one preserve positivity unconditionally [15].

2.3. CHEMICAL KINETICS SOLVERS 17

Higher order schemes do not a priori maintain positivity, some higher order schemes preserve
positivity for very small time-steps only. For stability reasons, an artificial preservation of pos-
itivity is advantageous. The most simplest approach to force positivity bases on clipping, i.e.
setting negative concentration values to zero. However, this approach is not mass-conserving.
More elaborate techniques ensure positivity through additional post-processing steps, such
as a projection onto a non-negative simplex. Methods favoring positivity (as introduced by
Sandu [108]) present computationally less costly alternatives.

2.3.3 Rosenbrock Methods

As it has been depicted in the previous section, a numerical solver for Eq. (2.1.6) has to fulfill
certain requirements:

— low to modest accuracy (typically 0.1 — 1% is sufficient),
— stability in the presence of stiffness,
— preservation of mass and positivity.

Within the past decades, great efforts have been made to search for efficient stiff solvers
for atmospheric chemistry problems, that fulfill above mentioned criteria (cf. [109, 110, 127,
142]). The efficiency of a solver can thereby roughly be quantified by the ratio of a target
accuracy to wall clock time (WCT). An overview of suitable approaches (e.g. Quasi-Steady-
State-Approximation (QSSA) [47], Backward Differentiation Formulas (BDF) [46], implicit
Runge-Kutta [46] and Rosenbrock [46] methods) can be found in Zhang et al. [142]. With
its high efficiency at moderate accuracy requirements the class of Rosenbrock methods has
become very popular among them. Compared to most other implicit solvers, they present a
computationally light concept: They avoid nonlinear systems by replacing them by a sequence
of linear systems. It has to be emphasized though, that there is no universally good or bad
choice - it always depends on the specific problem and on the individual tuning of a solver.

Rosenbrock methods can be put down to Runge-Kutta methods: Instead of applying mul-
tiple Newton iterations at each stage, they can be interpreted to apply one Newton iteration
per step only. In literature, they therefore are often encountered as linearly implicit Runge-
Kutta methods (cf. [46]). A general s—stage Rosenbrock method [46, 105] applied to an
autonomous system with f = f(u) # f(u, t) can be given by

i—1 %
ki = hy, f U, + Z Oéijk‘j + At JZ%jk‘j, (2.3.4)
j=1 j=1
Unst = Un+ Y _bik; (2.3.5)
=1

for i = 1,....,0 and with the Jacobian J = 0, f(Uy), the determining coefficients «;;, b; and
7ij- Bach of the o stages consists of solving one system of linear equations with k; unknowns
and the matrix I — h, ~;J. For performance purposes, methods for which v1; = v92 =

18 CHAPTER 2. ATMOSPHERIC CHEMICAL KINETICS

... = Yy = 7 are advantageous, as then, the LU-factorization for (I — h, ~;J) has to be
solved once only. In this case, the total computational effort for one time-step consists of
one evaluation of the Jacobian, one real d x d LU-factorization (for u € R%), o forward and
backward substitutions and ¢ function evaluations.

To control the step size selection local error estimators are employed. Those are typically
constructed by means of a lower order solution Un+1, which can be obtained using the same
increment vectors k; but different weights Bj as in Eq. (2.3.5),

A

U1 = U+ bjk;.
j=1

The weights Bj are chosen, such that the order of consistency p of Un+1 is one below that
of U,,. Local error estimators incorporate the difference between U, 1 and U, in a scaled
norm, while considering user defined error tolerances,

Err = UnH*UnHH
g (O U, e

B d; RelTol; - max {|Uy, j|, |Un+1,;|} + AbsTol;
A step is accepted only if Err < 1. Rejected steps are repeated with smaller time-step sizes.
The new step size is predicted through an asymptotic formula,

hnew = howa - [min <¢maxa max (Cbmin, Gsafe - Err_l/(ﬁ—’—l)))})

with the upper and lower bounds ¢nax and ¢min for ¢ = hpew/hold, & safety factor ¢gf and
the limitation that hpin < hpew < hmax and A(t = tg) = hstart-

2.4 Global Efficiency and Parallelization

We define the efficiency of the adaptive Rosenbrock solver as the ratio of a target accuracy
to WCT per solver call. As a thumb-rule, the WCT for its serial execution can roughly be
approximated as a linear function of the number of accepted time-steps within a split interval,
multiplied with the computing time spent per step.! The number of time-steps is strongly
influenced by the time-stepping control mechanism. The control mechanism can be tuned
individually e.g. defining the smallest and largest step size, the size ratio between subsequent
steps or the maximum number of step sizes. The computing time per step can further be
reduced for example by using sparse linear algebra implementations.

In application within an AQM, the overall efficiency of the solver does not only depend
on the efficiency of a single solver call, but also on its global implementation into the AQM it

'For decreasing relative tolerances, the number of rejected time-steps increases nonlinearily, which leads
to an additional computational effort, that is not considered in this approximation. As the number of rejected
time-steps typically is very small compared to the number of accepted time-steps, the computational effort for
the rejected time-steps is neglected in the following.

2.4. GLOBAL EFFICIENCY AND PARALLELIZATION 19

s owl o

e
e ke~ ot

g
e [[

D

fotP eit) ,*/i

ol nd I

[Trj ¢ ‘ij

Figure 2.1: Simulation of chemical kinetics in the atmosphere at time ¢,,. The
atmosphere is discretized into a three-dimensional computing grid. Due to
the splitting of chemical reaction and other processes, one individual chemical
system (depicted as a box with reactions) has to be solved per grid entity. In
total, a plurality of solver calls have to be carried out for every splitting time-
step.

is embedded in. Due to the splitting of chemical reaction and other processes, one chemical
system has to be solved per grid entity and per splitting time-step. In total, a plurality
of solver calls have to be carried out for every splitting time-step, see Fig. 2.1. In this
context, we define a global efficiency, as the ratio of a target accuracy to the WCT for the
execution of the plurality of individual solver calls per splitting time-step [t,, t, + Atgpi]. In
an AQM one solver call has to be carried out per grid entity on §2; and per splitting time-
step [tn, tn + Atgpiit]. The key influence factor on the global efficiency is parallelization. We
identify two tiers of parallelization: A coarse-grained tier for the parallel execution of multiple
solver calls, and a fine-grained tier for the parallel execution of one single solver call, see Figs.
2.2a and 2.2b. Both tiers will be explained in the following.

2.4.1 Coarse-Grained Parallelization

The splitting approach outlined in Sec. 2.1 allows a trivial parallelization of the chemical
kinetics on each grid entity on 2. As chemical reaction is considered to be isolated during
one split interval, data level parallelism exists over the entire grid. On a discrete computing
mesh Qj € Q (e.g. a cubic mesh with mesh widths Az, Ay and Az, Qp, := {(z,y,2) € Q; x =
kEAx, y = lAy, z = mAz mit k,l,m € Z}), potentially P = k -1 -m independent initial
value problems can be solved over [t,, t, + Atgpie] in parallel, see also Fig. 2.2a.

On the coarsest level, data-level parallelism (DLP) can be utilized for a parallelization
across multiple processors. Typically, this level is supplied in current days AQMs. A coarse-
grained parallelization of the overall AQMs is achieved through domain decomposition, a

20 CHAPTER 2. ATMOSPHERIC CHEMICAL KINETICS

| proc. #0 | proc. #1 || proc. #2 || proc. #3]|| etc.... |

proc. #0

E

. 5

ke
K

i

@l | el | e

vy S oy P 4 v . 4 ol

3 e A s 3 laa, o 3

) . by ¢ ¥ * ¢ ,V
) |)

P S ® Y

°® °® °®

(a) The chemical system for each grid entity is associated with one pro- (b) The chemical kinetics on
cessor each. each grid entity is associated
with multiple processors.

Figure 2.2: Coarse-grained parallelization (left) vs. fine-grained parallelization (right).

decomposition of the discrete computing mesh €2, into smaller domains. Hence, the chemical
kinetics on each grid entity belonging to one domain are solved in succession by the same
processor. For most atmospheric AQMs there is still a high potential for a broader exploitation
of DLP across multiple processors.

DLP can also be exploited within an single-instruction-multiple-data (SIMD) style pro-
cessor, i.e. instruction lines within the chemical algorithm simultaneously act on different
data. Traditionally, this approach stems from the vector supercomputers of the 1980s and
early 1990s. Currently, the idea experiences a revival: Modern accelerator architectures such
as graphical processing units (GPUs) inhere SIMD features.

Both approaches towards a coarse-grained parallelization using DLP are promising on
current multi-core architectures. To optimally benefit from this potential, the implementation
has to be tailored to the computing architecture. Pioneering work into that direction has been
presented by Linford et al. [69-73], who a.o. implemented and tested a three-stage Rosenbrock
solver on different multi-core platforms [71]: a homogeneous multi-core CPU chipset Intel
Quad-Core Xeon, a NVIDIA GPU and a heterogeneous multi-core Cell Broadband Engine
Architecture (CBEA). On the Intel Quad-Core Xeon, a parallelization had been achieved
through a straightforward one cell-per thread decomposition, which was directly implemented
with OpenMP. An almost linear speed-up for up to eight cores was the result for both single
and double precision with a maximum of 7.5x. Also for the NVIDIA implementation, a one-
cell-per-thread approach was adopted. In a first tentative port, the entire Rosenbrock solver
had been implemented with CUDA as one single kernel. The authors then dismissed this
approach because of poor performance results. In a second approach, they only ported lower
level instructions to the GPU in form of one kernel per operation (e.g. function evaluation or
vector operations), while the more sophisticated time- and error-control logic was computed on
a CPU. This approach showed the major drawback, that all independent initial value problems
are forced to use the same time-step size and number of time-steps. To reduce the overall
computing effort, time-step size and errors were thereupon stored separately for each grid
entity, which allowed converged initial value problems to relinquish the GPU cores. Due to
memory limitations, the maximum speed-up was 8.5x in single precision. For the port on the
CBEA, a master-worker approach was chosen: The Power Processor Unit (PPU) as a master

2.4. GLOBAL EFFICIENCY AND PARALLELIZATION 21

prepares and manages data for its slaves, the Synergistic Processing Units (SPUs). The SPUs
operate on 128-bit vectors, which allows to benefit from a SIMD parallelization. On each
SPU data from two or four independent initial value problems (depending on the precision)
could be processed at the same time, resulting in a four-cell-per-thread decomposition in
single precision and a two-cell-per-thread decomposition in double precision. A maximum
speed-up of 41.1x was achieved. Building on the success of the implementations suggested
in [71], Linford et al. subsequently released a software tool, that automatically generates
code to simulate chemical kinetic system on multi-core platforms: the accelerated Kinetic
PreProcessor KPPA [72].

As chemical reaction is embarrassingly parallel on a fixed grid (due to its potential for
a parallelization over the grid entities) , a coarse-grained parallelization based on data-level
parallelism potentially allows a speed-up of a factor of P = k-1 -m - given the computing
architecture supports P independent, but concurrently working threads. Now assume @
threads are available with ¢ > P. No further benefit can then be achieved from coarse-
grained parallelism on a fixed mesh Q. By the time the number of threads exceeds the
number of individual initial value problems, further parallelization approaches therefore have
to be considered.

2.4.2 Fine-Grained Parallelization

As the potential of a coarse-grained parallelization is limited to the number of grid entities
in €, we examine the potential of a fine-grained parallelization within one solver call. The
starting point is, that each grid entity has its own /P > 1 threads available, as depicted in
Fig. 2.2b.

On a data level, the potential of a parallelization is limited and restricted to lower-level
linear algebra routines. This approach is mainly limited by the problem sizes within the
solver, or in other words, the number of chemical species involved in a reaction. For a typical
application in an atmospheric AQM, the number of chemical species ranges between 40 and
100. For the mechanism considered here, RADMZ2, 63 species are involved, leading to problem
sizes of 63. Using parallel linear algebra techniques is of course possible. The success however
is disputable, since the performance gains achieved from the parallelization of such small-sized
problems will possibly not even balance the parallelization overhead. As it will be pointed out
later (Chapter 5), the number of chemical species specified above, does not arise from chemical
or physical reasons, but from computational convenience. From a chemical point of view,
thousands of species may be involved. If they are explicitly incorporated into the mechanism,
parallel linear algebra techniques become highly promising. With the mechanisms considered
in popular atmospheric chemistry models, however, parallel linear algebra techniques do not
qualify for significant performance gains.

Within one solver call, the main availability of parallelism is on an instruction level. A
fine-grained tier of parallelization can therefore mainly be accomplished through a splitting
of the integration algorithm into independent instruction lines. These can be run in parallel
on different threads, but acting on the same data. Rosenbrock methods in their original form
have limited potential for a parallelization. To identify potential instruction level parallelism,

22 CHAPTER 2. ATMOSPHERIC CHEMICAL KINETICS

we consider the pseudo code for a three stage Rosenbrock scheme, as presented in Algorithm
2.1. Per each time-step, one d x d LU decomposition and each ¢ = 3 function evaluations,
forward and backward substitutions are necessary. In it’s classical form, a straightforward
parallelization of single instruction lines is very limited (e.g. a parallelization of lines 1 and 2,
also of line 4 and 5 in Alg. 2.1), since the calculation of one stage depends on the precedent
stages.

Algorithm 2.1 Pseudo code for a three-stage Rosenbrock solver with «;; = ~.

1: Initialize rate constants Roconsr(t, u) from species vector U and meteorology (p, ¢, p, t)
2: Initialize time variables: t = Ty, h = hyg
3: while t <T,,; do

4: Fy = f(t, u)

5: JACy = jac(t, u)

6: repeat

T: G = LU_DECOMP (g5 — JACo)
8: for c =1to 3 do

9: Compute stage K, from F' and stages K1, »—1
10: Implicitly solve for K, using G
11: Update F' from K o

12: end for

13: Compute new U from stages Ki . 4
14: Compute error Err

15: if Err> 1 then

16: Reduce time-step size h

17: end if

18: until Err<1

19: end while

Within the last 20 years, modifications to the original Rosenbrock scheme have been pro-
posed, that allow higher levels of a parallelization. In 1995, Lirong and Degui [75] presented
a modified parallel Rosenbrock method: Their basic idea was to parallelize the calculation
of the increment vectors k; with ¢ = 1,...,0 (line 9 in Algorithm 2.1) into o independent
operations. This can be achieved by using the stages from previous time-steps. The con-
struction of k;(t,) then does not depend on the preceding stages kj<; at time ¢, anymore,
but on the stages from the previous time-step ki.,(t,—1) (see Eq. 2.3.4), which allows their
parallel computation. The same idea was also adopted by Cao et al. [20], who introduced
slight modifications to the original algorithm proposed in [75] to improve convergence and
stability properties of the algorithm. Results were presented for p = 0 = 2 and p = 0 = 3.
Ponalagusamy and Ponnammal [99] also adopted the same approach and proposed a parallel
four-stage fourth-order Rosenbrock method, that has been shown to outperform the algorithm
proposed by Cao et al. [20] in terms of accuracy and performance. The authors claim, an
(approximately) perfect speed-up is achievable with p = o = 4 compared to a serial execution
of the algorithm. In principle, the method can be generalized for any p = 2" independent
threads with any n. However, this requires the existence of an adequate 2"-stage Rosenbrock

2.4. GLOBAL EFFICIENCY AND PARALLELIZATION 23

scheme, which may require further studies to find optimal parameters for such Rosenbrock
schemes.

Voss and Kahliq [129, 130] proposed modified Rosenbrock methods, with o external lin-
early implicit stages, which each contain p additional linearly implicit internal stages. The
internal stages can be computed in parallel. Communication is needed only after the comple-
tion of the o external stages. The results for numerical tests with p = 2 and a three-stage
fourth-order Rosenbrock scheme with a third order embedded error estimator indicate, that
the approach is competitive in terms of accuracy to a classic three-step fourth-order Rosen-
brock scheme for low relative tolerances. The authors conclude, that a parallelization with
p > 2 in general is possible, but will require further studies to find optimal parameters.

All of these attempts depicted very limited parallelization levels. In the best case [99],
a parallelization into p = 4 processes was possible, with an approximately perfect speed-up,
compared to a serial execution of the parallel algorithm. In the following section, a completely
different approach will be presented, that allows unlimited parallelization levels: Time-parallel
methods.

Chapter 3

Parallel-in-Time Integration

In the precedent Chapter, we have been discussing the potential of a parallelization of atmo-
spheric chemical kinetics both on a coarse- and a fine-grained level. A coarse-grained paral-
lelization could easily be realized, as the ODEs describing chemical kinetics in a compound
atmospheric AQM are embarrassingly parallel. We have seen the potential of a coarse-grained
parallelization being limited by the number of grid entities in the discrete computing mesh €2y,.
Beyond that limit, the parallelization level can be increased by exploiting fine-grained par-
allelism. The approaches presented so far - modified parallel Rosenbrock methods - however
allow only a limited level of parallelization (typically < 4). In the best case, perfect speed-up
could be achieved, compared to a serial execution. In principle, higher levels of parallelization
are possible for some of the approaches presented, but require further parameter studies. In
this Chapter, an algorithmic approach is presented, that allows additional parallelization po-
tential. First, an overview over parallel methods for the solution of ODEs is given. Following,
its most promising representative, the parareal algorithm, is discussed in Sec. 3.2, covering
also aspects related to convergence, stability, complexity and parallel efficiency. A discussion
of its applicability to chemical kinetics is given in Sec. 3.3, along with an overview of potential
solution strategies from literature in Sec. a3.4.

3.1 Parallel Methods for the Solution of Ordinary
Differential Equations

High performance computing has become an indispensable tool to many fields in science and
engineering. In fact, computer-based numerical simulation meanwhile is one of the standard
tools for many research areas. The use of HPC systems allows to solve problems, that formerly
had been too computationally challenging to solve. This technology enabled scientists to
conduct virtual instead of real experiments, that would be too costly or time-consuming, or
in some cases like weather prediction simply not possible.

One crucial role in this development played the rapid increase in computing power of
the fast hardware development within the last decades. The other essential role plays the
development of highly-parallel algorithms. Already in 1964, around the same time of the

25

26 CHAPTER 3. PARALLEL-IN-TIME INTEGRATION

emergence of the first “supercomputers”, Nievergelt had foreseen the need for parallelism
in numerical algorithms [97]: “For the last 20 years, one has tried to speed up numerical
computation mainly by providing ever faster computers. Today, as it appears that one is
getting closer to the maximal speed of electronic components, emphasis is put on allowing
operations to be performed in parallel. In the near future, much of numerical analysis will
have to be recast in a more parallel form.” In the following year, Moore objected Nievergelt’s
first observation with his well-known “Moore’s Law” [93]: The observation that the number of
transistors in a dense integrated circuit doubles approximately every two years. Even though,
Nievergelt was totally wrong with his first observation, the resulting considerations have been
highly relevant: The need for parallel algorithms.

Since then, the development of parallel algorithms has been one active research topic to
various communities in applied mathematics. In one of the typical applications, HPC sys-
tems are applied to solve huge systems of partial differential equations, as they appear for
example in computational fluid dynamics. One of the classical algorithmic approach for the
parallel solution of such equations adopts a parallelization in space, domain decomposition:
The boundary value problem is split up into a series of smaller boundary values. The inde-
pendency of the decomposed domains allows their parallel computation, interactions between
adjacent domains are accounted for through an outer iteration. One major problem within
this approach is the limitedness of the speed-up: The higher the granularity of the domain
decomposition, the more iterations are needed until convergence. Further, also the communi-
cation overhead grows with increasing granularity.

As the potential of a parallelization in space is limited, further parallelization strategies
have to be considered. A domain decomposition in the temporal domain is one obvious pos-
sibility, which is also highly relevant for the solution of initial value problems, where a spatial
decomposition is invalid. However, a straightforward parallelization in time of such problems
is counterintuitive: Such equation systems describe states of e.g. physical, chemical or bio-
logical systems with individual processes taking place one after another. Sequentially. The
system’s state at some time ¢ depends on all earlier, states u(o) with o < ¢. Standard numeri-
cal methods for the approximation of the solution u(t, x) for t > Ty (with given u, = u(Tp) for
the initial time Tj) approximate the solution at successive time-steps. If this procedure is to
be parallelized, the solution at some later time will have to be known in preface. Apparently,
such schemes need an iterative outer loop to correct the initial guesses on each sub-interval.

The first tentative example of such a parallel-in-time solution scheme for initial value
problems was proposed by Nievergelt in 1964 [97]. Nievergelt’s idea was to split the integration
period t = [Ty, Tend] into N subsequent intervals [tg = To, t1], [t1, to], ..y [EN—1, IN = Tend]-
Using a coarse prediction scheme, initial predicted values are found on each of the sub-
intervals. On the first interval, the real (approximate) solution at time x; = z(t = t;) is
calculated. On each of the following intervals, M, with n = 1,..., N — 1 different solution
branches are calculated with respective initial values yJ with j = 1,..., M, centered around
one coarsely predicted initial value per interval. These solution branches [xn, Xn+1] all can
be computed in parallel. Following, the branches are connected by an interpolation: The
end value of the first branch y; is interpolated with the M; solution branches of the second

3.1. PARALLEL METHODS FOR THE SOLUTION OF ORDINARY DIFFERENTIAL
EQUATIONS 27

interval [x1, x2]. The resulting solution xs is again interpolated with all the My solution
branches of the third interval [x2, x3], etc. until final time is reached. Later, the algorithm
was extended into a parallel multiple shooting technique by Khalaf and Hutchinson [54] and
Kiehl [55].

In 1967, Miranker and Lininger [92] proposed a completely different approach to paral-
lelize the numerical procedure for solving ODEs: A parallelization across the method using
a predictor-corrector scheme. Miranker and Lininger gave a general formulation of a class
of parallel integration methods of the linear multistep type and presented a comprehensive
investigation of different pairs of predictors and correctors. In the retrospective, their ideas
can also be interpreted as one very early representative of the class of multigrid methods, that
were introduced later in the middle of the 1980s by Hackbusch [44].

Parallel methods for ODEs are not restricted to a parallelization in time. Many different
approaches exist. According to Burrage [19], they can be classified into three categories:
parallelism across the method, parallelism across the system and parallelism in time.

1. Parallelism across the method: The principle of a parallelism across the method
is the parallelization of independent function evaluations of the solution scheme. This
is in general possible with multistage and multistep methods. Efficient methods of
this category are typically indirect methods, like prediction-correction techniques as
presented in Miranker and Liniger [92]. The authors further proposed parallel Runge-
Kutta methods. This can be achieved with individual stages computed on dedicated
processors, c.f. van der Houwen and Sommeijer [125]. One such example is the multi-
implicit Runge-Kutta solver ParSODES by Bendtsen [12], which yielded a speed-up
between 3 and 5 compared to a state-of-the-art sequential code. The potential level of
parallelism across the method is of course limited to the number of computing stages.
Unfortunately, the speed-up of the computing stages does not compare well with those
of Jacobian computing and the communication takes more time than the computing of
the stages, c.f. Guibert and Tromeur-Dervout [43].

2. Parallelism across the system: A parallelization across the system can be achieved
through a partitioning of the right-hand-side function itself. The problem is decomposed
into subproblems, that are solved by different step-size strategies in parallel. To allow
a synchronization between the decoupled computations, the largest step-size used must
be an integral multiple of all smaller step-sizes. The most popular schemes of this class
have been presented under the name waveform relazation. Those methods have been
invented for circuit simulation [63], where the right-hand-side function can easily be
split according to sub-circuits. Such methods in practice are difficult to use, since they
require a high level of knowledge of the system to reorder and split the equations.

3. Parallelism in time: Methods of this category all adopt a partitioning of the integra-
tion interval into consecutive sub-intervals, which are solved concurrently. One essential
issue within is to find respective seed values on each of the sub-intervals. Most of those
methods are related to multiple shooting techniques (e.g. [54, 55]) and multigrid ap-

28 CHAPTER 3. PARALLEL-IN-TIME INTEGRATION

proaches (c.f. Hackbusch [44]). Also, the waveform relaxation can be interpreted as a
parallelization across time, as time-parallelism is found in the quadrature method.

One crucial restriction in the applicability of the first two categories is the fact, that time-
stepping algorithms are fundamentally non-scalable [126]: For one moment in time, all pro-
cessors are active on the same time level. Using all possible ways of a parallelization across
the method and the system, the maximal speed-up through parallelization achievable during
an interval is limited. Truly scalable parallel algorithms therefore must also account for a
parallelization in time.

In 2001, Lions, Maday and Turinici proposed a new parallel-in-time algorithm for the
solution of partial differential equations (PDEs): The parareal algorithm (c.f. [7, 10, 74]).
The global time evolution problem is broken into a series of independent evolution problems
on smaller time-slabs nested in an outer loop. Initial inaccurate predictions serve as seeding
values on each time-slab. Iteratively, those initial values are update using a predictor-corrector
scheme with a fine, but parallel predictor and a sequential, but coarse predictor. The parareal
algorithm can both be interpreted as a multiple shooting technique and a kind of multigrid
approach (see Gander and Vandewalle [37]).

Within the last years, the algorithm has been tested to a wide range of problems: linear
and non-linear parabolic problems [117], non-differential equations [10], stochastic ODEs [9],
the hyperbolic acoustic-advection equation [107], the incompressible Navier-Stokes equations
[34], and many more. For an overview, see for example Nielsen [96]. Its stability and con-
vergence have been examined extensively for example by Bal and Maday [10], Gander and
Vandewalle [37, 38] and Maday et al. [84]. One of its advantages over most other parallel-
in-time algorithms is the straightforward implementation. Further, it enables a high level of
flexibility in the choice of the coarse and fine integration scheme. In the course of this work,
it allows to employ reduced models as coarse integration schemes.

3.2 The Parareal Algorithm

Consider a general time depending problem of the form

21: + Au=0 (3.2.1)
with an operator A from one Hilbert space to another and t € [Ty, Tena] and u(Tp) = up.
Assume a numerical operator Fa;, that operates on some given initial state and approximates
the solution to Eq. (3.2.1) at some later time ¢,,41 = ¢, + At. This operator could for example
be an Euler or a Runge-Kutta scheme, that internally may require smaller sub-time-steps of
size 0t < At for reasons of accuracy or stability. From now on, this operator will be denoted as
the fine propagator. In order to apply this fine propagator to solve Eq. (3.2.1), we decompose
the time interval [Tp, Tunq| into N sequential sub-intervals, that is

t0:T0<LL1<"'<tn:T0+nAt<tn+1<tN:Tend.

3.2. THE PARAREAL ALGORITHM 29

The numerical solution U, to Eq. (3.2.1) at time ¢,, using the fine propagator is then defined
as

ﬁn = Fae (tnfly ﬁnfl))

with Uy = ug. Analogically, we define a second, coarse propagator Ga;, that also maps a given
state of the solution at time ¢,, to the solution of Eq. (3.2.1) at some later time ¢,41, but uses
a coarser internal time-step 07" than Fay, i.e. 6t < 6T < At. The numerical solution U, at
time ¢,, using the coarse propagator hence is

Un = gAt(tnfly ﬁnfl)-

Applying the coarse propagator instead of the fine propagator to solve Eq. (3.2.1) over N
sequential sub-intervals will return a less accurate solution U, than U,, but at significantly
less computational efforts. Sequentially stepping through all N sub-intervals and solving

ﬁn - gAt(t'rLfla U'nfl)v

with Uy = ug will return a less accurate trajectory Un:():N than ﬁn:O:N- The key idea of
the parareal algorithm is to correct this coarse trajectory by means of a feedback mechanism,
which is defined as

Un - gAt(tn—la Un—l) + fAt(tn—la Un—l) - gAt(tn—la Un—l)-

Since the correction does not lead to an overall accurate solution trajectory, the feedback

process is repeated iteratively over k = 1,..., kynax. The resulting algorithm is the parareal
algorithm,
UF = Gaitn-1, UF_) + Far(tn-, UFZL) = Gar(ta—1, UFZY), (3.2.2)
sequential prediction parallel correction

with U = ug and U? = Gar(U2_,) and for all n = 1,..., N. The prediction step sequentially
steps through all time-slabs. Since both terms of the correction step do only depend on the
solution at the previous iteration stage, they can be performed in parallel. A short draft of
the parareal algorithm in its most simple form is presented in Algorithm 3.1.

One essential ingredient of the parareal algorithm is the fact, that the costly computations
of the fine propagator can be parallelized, as only the first term in Eq. (3.2.2), the prediction
step, has to be computed sequentially. The iteration is repeated until the solution U,’f has
converged to the solution of the fine propagator, as it would have resulted from a purely
sequential application. The stopping criterion can for example be chosen as that the difference
in the solution at final time T.,q between two consecutive iterations falls below a threshold
value. If one is interested in an accurate solution over the whole integration period, other
stopping criteria are of course preferable. Besides the choice of the stopping criterion, a
number of other parameters determine the efficiency of the parareal algorithm: the choice of
the fine and the coarse propagators and the number of time-steps IN. The fine propagator
defines the reference solution, to which the parareal solution finally converges to. Its choice

30 CHAPTER 3. PARALLEL-IN-TIME INTEGRATION

strongly depends on the scenario and is not universal. The choice of the coarse propagator
is considerably free and only limited by physical and stability considerations: It can be for
example be a different time-stepping scheme than F, the same time-stepping scheme, but
with different parameters, or even a completely different model. However, the choice strongly
affects convergence rates and stability, consequently also the number of iterations kpyax of the
algorithm. This issue will be substantial in the following sections. The number of time-steps
N defines the number of processes, that will be computed in parallel. The choice of this
parameter is on one hand limited by the number of processors available. Further, it is also
limited by the choice of the fine Fa; and coarse Ga; propagators, as their internally used
time-step sizes dt and 07 must satisfy 6t < 6T < At = (Tena — To) /N.

Algorithm 3.1 Pseudo code for the parareal algorithm.
for:=1to N do
U’ = Gat(U?_) > Initialization (sequential)
end for
k=1
repeat
fort=1to N do
D;i = Far(Un1%) = Gar(Un_1%) > Correction (parallel)
end for
Uok—i-l = g
fort=1to N do
Ut = Gay(Up_ 1" + Dy > Prediction (sequential)
end for
k=k+1

until convergence

Example For the sake of clarity, this section presents a short visualization of the parareal
algorithm, applied to solve the following initial value problem:

0

8—? = exp(2.5-1) - (2.5 — 10 - sin(10 - £)) =: f(¢) (3.2.3)
with w(0) = 1 and ¢ € [0, 1.0]. We decompose the time interval into N = 10 equidistant,
sequential time-slabs of size At = 0.1, i.e. ¢, = n-0.1 with n € {0,1,...,10}. For both
the fine and the coarse propagator a Crank-Nicolson-scheme is adopted, with internally used
time-step sizes dt = 0.01 for the fine and 6T = At = 0.1 for the coarse integrator.

Up =]:At (tnfla Unfl) = B

f(tnfl) + f(tnfl + (ST)
2)

9 .]
7=0

ﬁn = gAt (tn—la Un—l) = Un—l + 6T -

3.2. THE PARAREAL ALGORITHM 31

u(t) T T T
—— exact solution u O Gulw) * U]

®
~1 Initialization ® ®]
0.0 0.2 0.4 0.6 0.8 time ¢
u(t) : : ‘ .
1 — F U — G, (") O U K U]
O_
~1l [lteration #1
0.0 0.2 0.4 0.6 0.8

timet¢

~1 literation #2

0.0 0.2 0.4 0.6 0.8 time ¢

Figure 3.1: Parareal iterations in the solution of the initial value problem
Eq. (3.2.3). Circles denote the parareal solution of the previous iteration.
Stars denote the actual parareal solution at this iteration stage.

As an iteration breaking criterion we take the [os—mnorm of the absolute difference in the
solution trajectory between two subsequent iterations,

Err = Z (U,’f _ 71;—1)2 _ HU;.C _ k-1
n=1N

For simplicity, we will omit the explicitly written down time-dependency in the notation of
the fine and the coarse propagator and write Fa; (U,—1) instead of Fa; (t,—1, Up—1). Figure
3.1 shows the initialization process and two iterations of the parareal algorithm. For clarity,
the pure sequential solution has been added in gray in all pictures. The first figure shows
the initialization process, whereat only the coarse propagator is applied in a purely sequential
fashion from one to the next time-step t, for all n = 1,...,10. The solutions U(?:N = Gay(u)
define the initial values on each of the time slabs in the first iteration. The second plot
shows the parareal solution after the first iteration U', marked as gray stars. Starting from
its respective initial value ng ~» both a fine (marked blue) and a coarse (marked purple)

l2

32 CHAPTER 3. PARALLEL-IN-TIME INTEGRATION

propagation are performed on each of the time-slabs in parallel. The difference between fine
and coarse prediction, Fa;(U2) — Gar(UD), defines the parallel prediction. Following, the
predictions on each time-slab are corrected by means of a sequential coarse update, U} 11 =
GAr(UD) 4+ Far(U9) —Gar (UD) for all n € [1, N] . The resulting parareal solution after the first
iteration is marked as a gray star again. Notice, that the parareal solution at the end of the
first time-slab now equates the solution of the fine propagator, since UéC = u(0) for all k, hence
Ul = Gai(Ud) + Far(U) — Gas(US) = Far(UJ). The second iteration, depicted in the last
plot, starts with the initial values U(}; n on each time slab. Again, fine and coarse predictions
are performed, followed by a sequential coarse update. Now, the difference between the result
of the second iteration U? and the one after the first iteration is very small, the iteration
breaks and the parareal solution is found.

3.2.1 Convergence

The parareal algorithm is an iterative scheme, that converges towards the solution of a purely
sequential application of the fine propagator Fa;. After & = N iterations, the solution at
final time U]’f,:N equates the solution of a purely sequential application of Fa;. A proof can
be found in the Appendix .

A very first convergence analysis has been provided in the introductive parareal paper by
Lions et al. [74] in 2001. The authors analyzed the accuracy of the approximate solution U*
for a parareal scheme with an explicit Euler scheme as a coarse propagator Ga;, a sufficiently
fine propagator Fa; (i.e. the solution is a sufficiently accurate approximation of the exact
solution u), applied to a linear, scalar model problem

?;Z =Xu, u(0)=up, welR, tel0,T], IeC, (3.2.4)

in the k—th iteration with varying time-step sizes At.

Theorem 1. Let At = %, tp = nAt forn =0,1...,N. Let Fa,(UF) be the exact solution at
time t,, of the model problem (3.2.4) with X € R. Let Gay be a backward Euler approximation
with time-step size At. Then,

k k+1
— < .
ax, lu(tn) — Uy | < CpAt

For a proof, see Lions et al. [74].

Apparently, in the special case of using a backward Euler scheme as a coarse propagator,
the algorithm behaves like O(At*) for a fixed iteration step k and varying time-step sizes At.
This is remarkable, since the backward Euler scheme itself is only of first order.

Later, the estimate was extended to more general integration schemes with arbitrary coarse
propagators, e.g. by Bal and Maday [10]:

Theorem 2. Assume a bounded function u in t € [0, T], a coarse propagator Gas, which is
of order m and Lipschitz, and a fine propagator Fay, that is sufficiently accurate, so that we

3.2. THE PARAREAL ALGORITHM 33

can replace the fine propagator Fas by the analytic operator. Then, the order of accuracy of
the parareal algorithm applied to a linear model problem at iteration k is (m + 1)k,

[u(tn) — UF| < Crn®(AAE) IR
For a proof, we refer to Bal and Maday [10].

Again, the parareal algorithm turns any coarse propagator of order m into a higher order,
O(AtMm+DE=1) method. Notice, that the constant Cj both in Theorem 1 and 2 varies with
k. Both theorems therefore do not cover the convergence of the algorithm for an increasing
number of iterations and a fixed time-step size At. Gander and Vandewalle [39] later ex-
tended the convergence analysis of the linear scalar problem to fixed At and varying k. They
showed superlinear convergence in k& when using parareal on bounded time intervals and linear
convergence for unbounded intervals. Gander and Hairer [36] further carried out a nonlinear
convergence analysis, with the result, that the parareal algorithm converges superlinearly on
any bounded time interval for nonlinear problems.

3.2.2 Stability

We have met stability already in the context of ODE solvers, see Sec. 2.3.1. A stable,
numerical scheme does not magnify numerical errors, that are generated during the solution
process. In this section, we present results for a stability analysis of the parareal algorithm as
presented by Maday et al. [84] for an application to a linear system of ODEs with constant
coefficients. In the context of Sec. 2.3.1, we had defined the stability functions R(z) as the
numerical solution to Dahlquist’s test equation v’ = Ay, wyo = 1, 2 = At\ after one step.
We assume, the stability function of the fine propagator Fa; with internal step size t is
r:=r(\dt) and define 7 := T(Adt)%. The stability function of the coarse propagator scheme
Ga¢ with internal step size 6T is R := R(AST), further, we define R := R(/\(St)%.

Theorem 3 (Stability for A € C: The general case). The stability of the parareal algorithm
(3.2.2) applied to the autonomous ODE

— =y, y(0)=yo, withAeC

is guaranteed for a fived number of iterations as long as [F| <1 and |R| < 1.
For a proof, see Maday et al. [84].

This stability condition however is not very restrictive. The serial solution will be obtained
after a maximum number of iterations with k& = N, independent of instabilities arising in
the parareal algorithm. The limit £ = N of course is not interesting in practice, as then no
computational gain is possible. We adopt the concept of strong stability introduced by Maday
et al. [84] and introduce two more restrictive stability theorems: One for a real and negative
eigenvalue and one for a complex and negative eigenvalue. Proofs of both theorems can be
found in Maday et al. [84].

34 CHAPTER 3. PARALLEL-IN-TIME INTEGRATION

Definition. The parareal algorithm inheres strong stability, if it is stable for all possible N
and all numbers of iterations 1 < k < N.

Theorem 4 (Strong stability for real, negative eigenvalues). The stability of the parareal
algorithm (3.2.2) applied to the autonomous ODE

Er =Xy, y(0)=vyo, withA€R and A <0,

is guaranteed if —1 <7 , R < 1. The algorithm (3.2.2) further provides strong stability, if

71 T+
< R< .
2~ T2

For a proof, see Maday et al. [84].

From theorem 4 it can be seen, that given an exact fine propagator with 7 — 0, the
parareal scheme will be stable for any |R| < %, independent of the stiffness of the system. All
L-stable schemes fulfill this requirement.

Theorem 5 (Strong stability for complex eigenvalues with negative real parts). The strong
stability of the parareal algorithm (3.2.2) applied to the autonomous ODE

—= =)y, y(0)=uyo, with\e€C and Re(\) <0,

s guaranteed if

_ J2xF

TR < 1 1—e™r
= - bl
21— e* cose

with the complex stability functions R = e"rel0te) gnd T = e*rel? | with the real parts x7 and
rg and the imaginary part 0 with a phase difference € between T and R.

For a proof, see Maday et al. [84].

One important question in designing a parareal algorithm is the question, of how to
choose the fine and the coarse propagator in order to guarantee a stable scheme. A general
answer to this question can not be given. No parareal scheme has yet been found, that
guarantees stability for all possible eigenvalues, all possible number of time-slabs N and all
numbers of iterations k. Especially in the case of purely imaginary eigenvalues, stability is
hard to guarantee. The parareal solution of hyperbolic problems and convection-dominated
convection-diffusion problems, therefore is an ongoing challenge.

3.2. THE PARAREAL ALGORITHM 35

3.2.3 Complexity, Speed-Up and Efficiency

In this section, we will investigate the computational complexity of the parareal algorithm
with an implementation as proposed in Alg. 3.1. To this end, we will compare the summed
computing time over all processors and the absolute execution time of the parareal algorithm
to those of a sequential implementation. The parareal algorithm is an iterative approach, de-
signed in the attempt to parallelize parts of the solution procedure. The overall computational
effort is always higher than for a sequential algorithm. Its benefit over a purely sequential
algorithm is, that some parts of the code can be performed in parallel, leading to smaller
absolute WCTs.

Regardless of their implementation, the computational complexity for both the fine and
the coarse propagator depends on the number of time-steps N being used. We denote the
computing times CTx and CTg, as the times each of the integrator needs to perform one
single time-step with time-step size 0t or é7. The total computing time to propagate the
solution from time ¢, to t,41 =t + At using the fine propagator with time-steps dt therefore
is given by CT}-, respectively CTg for the coarse integrator. We assume, that kcony
iterations are necessary, until the parareal algorithm has converged. The computational time
for the sequential initialization using the coarse integrator is CTi = N %CTQ. As this
is a sequential step, the respective WCT equates the computing time, WCTiux = CTinit.
During each of the k =1, ..., kcony iterations first the parallel correction step with an overall
computing time of CT.,, = N(LCT £ + 5 CTg) has to be performed. This part can be
performed in parallel distributed over N processors. Hence the total WCT for this step
is WCT¢or = max(LCTx, 5 tCTg) Subsequently, a sequential prediction step using the
coarse propagator has to be calculated. Both the computing time and the WCT again are
CTprea = WCTpreq = N %CTQ. Finally, the accumulated computing time summed over all
Processor is,

CTpar - CTinit + kconv (CTcorr + CTpred)
At At

= N— (1 + 2kconv) CTg + kconvlN — St

5T CTF,

while the overall parallel execution time is

WCTpar = WCTinit + kconv (WCTcorr + WCTpred)

At At At A
= 6TCTg + keconv (max (5t CTg, 5TCTg> 5TCTg>
At At At
= N5T (1 + kCOnV) CTQ + Econy max (5t CT]—', 5TCTg> (325)

We assume the computing time of the fine propagation scheme during t, and t,4; to take
longer than the one for the coarse scheme, & 3r LCTF > ST 1tCTg Hence we can estimate the
parallel WCT as

At At
WCTpar = N— (1 + kconv) CTQ + kconv 5t

T CTx. (3.2.6)

36 CHAPTER 3. PARALLEL-IN-TIME INTEGRATION

In order to estimate the potential speed-up compared to a purely sequential algorithm,
we investigate the computing time using the fine propagator algorithm with time-step size 0t:
WCTgeq = N %WCT F = %WCT 7. Communication between processors is further assumed
to be negligible. The speed-up of the parallel algorithm over the sequential algorithm can
then be estimated by the ratio of the sequential WCT time to the parallel WCT,

g _ WOTy
 WCTpar
A
_ NZECTx
N% (1 + kconv) CTQ + kconv%CT}'
N

= —5or (3.2.7)

6T CTx (1 + kconv) + kconv .

From this relation, we see, that in the limit of %% — 0, i.e. the coarse propagator is a lot

faster than the fine one, we get a speed-up of

N

kCOl’lV

S =

The number of parallel processes N limit the maximum potential speed-up. Increasing num-
bers of iterations instead deteriorate speed-up. In the hypothetic case of N < keony, that
parareal algorithm will be slower than a sequential algorithm. In practice, this case is irrele-
vant, since the correct solution is found at the latest at N = k¢ony, as will be shown in Sec.
3.2.1. In case of keony = 1, the parallel algorithm distributed over N processors leads to a
perfect speed-up. Further, Eq. (3.2.7) shows, that the speed-up on one processor

1
Sy = <1
%% (1 + kconv) + Kconv

is always smaller equal one, since it must be kcony > 1. The parareal algorithm therefore
makes no sense, if applied sequentially.

The parallel efficiency can be estimated as the ratio of speed-up S, for p processors to the
number of processors, assuming N = p,

— Sp 1
S .
P pEhere (1+ keony) + keony

Again in the limit of %g% — 0, we see, that kcony poses an upper bound on the parallel

efficiency, as lim ;, crg, E = L
st o, 0

From the results of this section, we see, that given a fixed number of iterations kcony, the

kCOnV !

best speed-up can be achieved, when using a very fast coarse propagator compared to the fine
propagator. In the following, we will however see, that the choice of the coarse propagator
strongly affects convergence and stability. In terms, a fast and less accurate solution may
induce needs for higher numbers of iterations. Then of course, the speed-up decreases again.
Finding a suitable coarse propagator in practice turns out to be the most challenging task in
designing an efficient parareal scheme.

3.2. THE PARAREAL ALGORITHM 37

3.2.4 Distribution of Parallel Work

A potential gain in speed-up and efficiency can also be achieved from an asynchronous dis-
tribution of the parallel work. Figure 3.2 visualizes a simple implementation of the parareal
algorithm as proposed in the pseudo code Alg. 3.1. At initial time, a sequential coarse pre-
diction is calculated over all N time-slabs. Following, in each iteration N independent initial
value problems are solved in parallel, followed again by a sequential, coarse prediction over all
N time-slabs. As it can be seen in Fig. 3.2, some parts of the algorithm are purely sequential.
We therefore have a natural limit for the potential speed-up, that can be achieved, as it has
been depicted in the previous section.

It is obvious, that a fine propagation fAtUTIf can start, as soon as its respective initial
value, the parareal solution U,’f, has been found. This enables a simple work scheduling ap-
proach. Several authors recognized the potential of a distribution of work to improve the
performance of the parareal algorithm: Minion [90] presented a pipelined parareal method,
where a processor computes a step in the algorithm as soon as possible. A similar approach has
also been proposed by Berry et al. [13] under the name event-driven distribution. Aubanel
[6] further presented a detailed study of the scheduling of tasks in the parareal algorithm.
He proposed two implementations: One manager-worker paradigm with overlapping sequen-
tial and parallel phases and one task-based, completely distributed parareal implementation.
Both implementations resulted in a significant improvement of the potential speed-up. The
manager-worker paradigm however turned out to be extremely memory-consumptive when
using many parallel processes.

We briefly outline the fully distributed parareal implementation as proposed by Aubanel
[6]. A timing chart for the scheduling of work within the first three iterations can be seen
in Fig. 3.3. As soon as the coarse, sequential predictor Q(U,’f_l) has propagated the solution
over [ty,—_1, t,] an initial value for the succeeding time-slab at time [t,, t,41] is found and the
processor associated with this time-slab starts the calculation of the correction F(U¥) —G(UF)
over [tn, tpt+1]-

The speed-up for a distributed parareal implementation as proposed by Aubanel [6] can
be given as

Initialization Iteration 1 Iteration 2

proc. #0 | N NN HNININ NAN
proc. #1 \s: NN N

proc. #3 N N ¥

wall clock time

Figure 3.2: Timing chart for the first two iterations for a simple parareal implementation as
proposed in Alg. 3.1. The x-axis denotes the WCT. Blue bars indicate computing effort due
to sequential coarse prediction steps using G. Turquoise bars indicate computing effort due
to parallel correction steps using F — G. White space indicates idle time. Blue arrows mark
the communication of initial conditions for each fine propagator call.

38 CHAPTER 3. PARALLEL-IN-TIME INTEGRATION

N

. (3.2.8)
ot CT 5t CT
N3t ary + Feony (W ory + 1)

Sdist

whereat communication and correction time are neglected again. We recall the speed-up for
a simple parareal implementation as it has been introduced in Eq. (3.2.7),

N
N5 (1+ keonv) G2 + Keony

Ssimple (329)

We consider the limit of N — oo, for both speed-up estimates,

—_— T CTE 1

Novoo SRl T5 O (1 + Keony)
. 5T CT
I Sdist 3t CTg

It can easily be seen, that the speed-up of the distributed parareal is only limited by the
relation between the fine and the coarse propagator speed, whereas it is also limited by the
number of iterations in the simple parareal implementation. For an infinite number of parallel
processes IV, we can therefore expect a speed-up gain of a factor of 1/(1 + kcony)-

Iteration 1 Iteration 2 Iteration 3
Init.
proc. #0 I
proc. #1 \ ‘ 1
proc. #2 v L 1
proc. #3 ‘ ‘ \ ‘ ‘ wall clock time

P

Figure 3.3: Timing chart for the first three iterations for a task-based, fully distributed
parareal implementation as proposed by Aubanel [6]. The x-axis denotes the WCT. Blue bars
indicate computing effort due to sequential coarse prediction steps using G. Turquoise bars
indicate computing effort due to parallel correction steps using F — G. White space indicates
idle time. Blue arrows mark the communication of initial conditions for each fine propagator
call.

3.2. THE PARAREAL ALGORITHM 39

3.2.5 Properties of the Parareal Algorithm

In the previous sections, we have highlighted the parareal algorithm under the different aspects
of its computational complexity, speed-up, parallel efficiency, convergence and stability. We
have seen some fundamental properties:

1. Complexity, Speed-Up and Efficiency

— The overall complexity of the parareal algorithm is higher than for the sequential
algorithm, hence for the speed-up of a sequential execution holds 57 < 1.

— For a very fast coarse propagator, the parallel efficiency scales as ——. A perfect

kconv '

speed-up is then achieved for k¢ony = 1.
2. Convergence

— The parareal algorithm converges with the order m(k + 1), with k& the number of
iterations and m the order of the coarse propagator.

— The parareal solution converges towards the solution of the fine propagator.

— The solution of the parareal algorithm equates the solution of the fine propagator
at a maximum number of iterations, equal to the number of intervals N.

3. Stability

— No parareal scheme is known, that guarantees stability for all eigenvalues.
— Stability depends on the choice of the fine and the coarse propagator:
- For real eigenvalues, stability is guaranteed, for any choice of stable coarse and
fine propagators.

- For real, negative eigenvalues, stability is guaranteed, if both the coarse and
the fine propagator are L-stable.

- For complex, negative eigenvalues, stability is hard to guarantee.

For an efficient parareal implementation, the choices of the following parameters have to be
weighed up carefully:

— An iteration stopping criterion.
— The number of time-steps N, which defines the level of parallelization.
— The fine propagator F, which defines the solution the algorithm finally converges.

— The coarse propagator G, which affects convergence and stability, but not the accu-
racy of the end result. An ideal speed-up for a fixed number of iterations can be achieved
with a very fast coarse propagator compared to the fine propagator. A very fast, but
too coarse propagator will in terms result in an increase in the number of iterations,
which deteriorates speed-up. The coarse propagator therefore is the key ingredient
of an efficient parareal scheme.

40 CHAPTER 3. PARALLEL-IN-TIME INTEGRATION

3.3 Application to Chemical Transport Models

So far, we have not taken into account the different potential fields of application for a parallel-
in-time calculation of the atmospheric chemical kinetics within a CTM. We reconsider the
operator splitting approach, as introduced in Sec. 2.1.2.1. Its basic idea was a decoupling
of advection, diffusion, reaction and further processes. For the chemistry this means, that
during a splitting interval Atg,)i; chemistry is reacting in an isolated box, since no external
disturbances caused by advection, diffusion or other processes have to be taken into account.
Photolysis is typically updated only at the beginning of each splitting interval and then
considered to be constant. Consequently, we can implement a parallelization in time either
internally (within each splitting interval) or externally (across multiple splitting intervals). A
confrontation of both approaches is depicted in Fig. 3.1.

An internal parallelization equates a parallelization within one single splitting interval.
For this, a splitting interval [t,, t, + Atgit] is decomposed into N sub-intervals, that are
being solved in parallel. The choice of the number of parallel intervals N is hereby arbitrary.

An external parallelization equates a parallel solution of N subsequent initial value prob-
lems over [t,,, t,+Atgple] and n = 1,..., N in a parareal fashion. At the interfaces between two
splitting intervals, we need to consider external effects, such as changing photolysis, advection
and diffusion.

Now let us further consider a CTM, which is embedded in a compound AQM, that also
accounts for a meteorological model. Then, we also need to take into account the coupling
between CTM and meteorology. Typically, both are calculated independently from each
other over certain coupling time intervals At.,p1.. Data is exchanged only at the end of these
intervals. Depending on the level of coupling, data is either exchanged in both directions
(online coupling) or from meteorology to chemistry only (offline coupling). We assume, that
the size of the coupling intervals of the CTM and the meteorological model is a multiple of
the size of the operator splitting time interval, that is being used internally within the CTM:
Ateoupl. = M - Atgplir, whereat M again depends on the level of coupling between meteorology
and chemistry.

For both online and offline coupled AQMs, the internal parallelization allows for a straight-
forward application. The application of an external parallelization within an online coupled
AQM is hindered by the circumstance, that chemistry and meteorology show a two-way
interaction. An iterative approximation procedure for the chemistry across L subsequent
coupling intervals in fact also requires an iterative approximation of the meteorology. This in
turn means, that one would either have to parallelize the whole dynamics of the meteorological

)) i - - ~_\ e ‘
w4 I g 2 N 0 O ¥ A i
b g I e '?f‘#‘ ﬁm(i

(L, 43t (t, t+23t) (L, t+331) (t, t+At

split) (tn’ t0+AtspIil) (tl' tl+Atsplit) (tz’ t2+AtspI'n) (ts' t3+AtspIit)

Figure 3.1: Internal vs. external parallelization.

3.4. PARAREAL FOR STIFF PROBLEMS 41

model within the AQM in a parareal fashion or to decrease the level of couplings between
meteorology and chemistry. An alternative would be to restrict the in-time-parallelization to
a parallelization within one coupling interval Afq,p1. itself. Instead of sequentially solving
M splitting intervals of size Atgpi¢, one could solve them in parallel over bigger intervals of
size M - Atgpir. with M > 1, while adding an outer iteration. In this context, the degree of
coupling between meteorology and chemistry would be unaffected.

From the parareal perspective, the question is, if we parallelize one single stiff problem
in time or multiple subsequent stiff problems. In practice, this poses different requirements
and restrictions on the decomposition into time-slabs and the choice of a suitable coarse
propagator.

3.4 Parareal for Stiff Problems

Applying the parareal algorithm to chemical kinetics theoretically is straightforward: We
choose a fine and a coarse propagator which both are stable for the problem we want to solve,
decompose time into N time-slabs, define a stopping criterion and there we go. Unfortunately,
things are a lot more complicated in practice. The reason again is called: Stiffness. Over the
last years, different approaches have developed to facilitate parareal approaches to solve stiff
problems. The most popular ones will be outlined in this section.

In advance, we start with some naive considerations to highlight the key challenges. In
Sec. 3.2.2 we have seen, that a stable parareal scheme can be constructed even for very
stiff systems, as long as both the fine and the coarse propagator are L-stable. The original
parareal method has been designed to use classical single-step numerical methods with fixed
time-step sizes for both the fine and the coarse propagator. As described in Sec. 2.3, adaptive
time-stepping schemes should be used for stiff problems for reasons of stability. Now let
us consider a parareal implementation with a partitioning of the time domain [0, 77 into
N equidistant time-slabs, but using adaptive time-stepping schemes F and G. An adaptive
time-stepping scheme typically starts with an initial time-step size, say hg > 0. During the
solution procedure, its time-step size is being adapted on the base of local error estimators.
For many adaptive schemes, the adaptation process is restricted by upper and lower limits,
hmin < Bnew < Pmax, and/or a distinct step size increase ratio ¢min < hnew/Pold < Pmax,
see for example Sec. 2.3.3. Using an adaptive time-stepping scheme then poses two major
challenges:

1. Computational overhead in the sequential initialization: The sequential initial-
ization process consists of one coarse propagator call per time-slab, each starting with
an initial time-step size hg. In total, N coarse propagator starts are necessary on a time
domain [0, T'] decomposed into N equidistant time-slabs. A small initial time-step size
will be necessary on time-slabs where the solution is stiff. In non-stiff regions, the same
initial time-step size is unnecessarily small. This could be omitted when using different
time-step sizes on each interval. This requires an a priori knowledge of the solution’s
behavior, which is not available in general. To reach the end time on each interval
[tn, tnt1], the integrator will further have to perform additional adaptation steps. The

42 CHAPTER 3. PARALLEL-IN-TIME INTEGRATION

cumulative number of time-steps will therefore be higher, than when directly integrating
from [0, T] without restarting every ¢, with n =0, ..., N.

2. Load-Imbalances during the parallel prediction: During the parallel prediction
step, both the fine and the coarse integrator will automatically adapt their internally
used time-step size h to the solution’s behavior. If the problem has stiff characteristics,
the time-step size will decrease. On a time-slab, on which the problem is stiff, a lot
more time-steps will therefore be needed to approximate the solution, both using F and
G. This will lead to load-imbalances over all time-slabs during the parallel prediction
process. On a non-stiff time-slab, the integrator will start with the small initial time-
step size h = hg again. In the next few steps, the time-step size will iteratively be
increased until the step-size is just small enough to allow the time-stepping scheme to
give a good approximation to the solution. All the aforegoing iterations may have been
cut down on starting with a bigger initial time-step size. However, there may be cases
again, where the update step has disturbed the initial solution on one time-slab, so that
stiffness is really present. Then, small initial values will be inevitable again.

One possible solution to constrain the computational overhead in the sequential initialization is
a direct integration from [0, 77, followed by an interpolation of initial values on every time-slab
using the solution values at the internally adapted time-steps during the direct integration.
Especially for nonlinear problems, this is an additional source of error. A load-balancing
can potentially be achieved by a non-uniform decomposition of the time domain. If this
decomposition is further suggested by the coarse integrator, i.e. defined by the internally used
time-step sizes, the sequential coarse initialization can be performed directly. An interpolation
will then not be necessary anymore. This way, N — 1 integrator restarts can be omitted.

In the following section, we see further variants, that have been designed to cope with stiff
ODEs: reduced model and micro/macro parareal, hybrid parareal, extrapolated parareal and
IMEX parareal. It has to be noted, that up to now, no general consensus exists on efficient
parareal implementations for the solution of stiff ODEs.

3.4.1 Adaptive Parareal

In 2007, Guibert and Tromeur-Dervout [43] introduced an adaptive parareal approach, similar
to the one explained above, for the solution of stiff systems of ODEs and differential algebraic
equations (DAEs). The authors introduce adaptivity within the parareal algorithm for the
time-stepping, the number of time-slabs and the time decomposition. Both as a coarse and a
fine integrator, an adaptive Rosenbrock of order three with an embedded second order error
estimator, was chosen. For both integrators, different tolerances were used. The number of
time-slabs and the decomposition of the time interval was based on the time-steps chosen
by the coarse integrator at the sequential initialization process. Notice, that the time-slabs
now were not equidistant anymore. For the Lotka-Volterra problem, a pair of moderately
stiff nonlinear ODEs, their approach turned out to be promising: For a decomposition of the
total integration period [0, 7] into 1168 non-equidistant time-slabs, convergence was reached
after between 2 and 7 iterations, depending on the choice of the relative tolerances for F

3.4. PARAREAL FOR STIFF PROBLEMS 43

and G. However, for this number of time-slabs, a comparable convergence speed was also
achieved on a decomposition into 1168 equidistant time-slabs, again using adaptive F and G.
For this example, no benefit can be seen from an adaptation of the time decomposition into
non-equidistant time-slabs.

In 2012, Nielsen [96] further applied an adaptive parareal algorithm to another nonlinear,
stiff ODE system: The Van der Pol oscillator. On each of the N equidistant time-slabs of size
At, an adaptive time-stepping scheme was used as both the fine and the coarse propagator.
Both schemes are an ESDIRK23 scheme, a diagonally implicit Runge-Kutta scheme of order
two with an embedded error estimator of order three. The only difference between Fa,
and Ga; again existed in the choice of the relative tolerances. The results showed, that the
convergence behavior of the parareal solution for growing numbers of iterations is less smooth
than for non-stiff applications. For too coarse tolerances for G, the error in the final parareal
solution was even shown to grow with increasing numbers of iterations in some cases. Also
the predicted efficiency and speed-up follow a less smooth behavior. The author concluded
a speed-up to be limited to a factor of 4. This was blamed to the decrease of the size of
the time-slabs At with increasing number of time-slabs N. A decrease in At was assumed to
hinder the efficiency of the adaptive time-stepping control, whose time-stepping mechanism
then is forced to use an upper limit of At.

3.4.2 Reduced Model Parareal

The first combined approach of model reduction and parareal has been presented by Maday
in 2007 [83] for the solution of linear chemical kinetic systems. As a coarse propagator, Maday
chose a reduced model to the full kinetics, that governs the main features of the evolution
at equilibrium. The reduced model equates the full model, with fast timescales assumed
to be in a quasi-stationary state. Fast timescales are associated with very large, negative
eigenvalues. As they are assumed to equilibrate rapidly, they are not necessary to describe
the long-term behavior of the system. Instead, the full system is propagated over only a very
short interval to account for the fast timescales. Then, they are removed from the system
of ODEs and expressed through algebraic relations of the slow variables. This way, both the
system’s stiffness and its size decrease, which facilitates using bigger time-steps. Fast species
are recovered at the end of the integration period. For the application to a stiff and linear
kinetic system, he has shown his approach to maintain the convergence performance as for
a classical parareal approach, but with a significant reduction in the total CPU time. Its
success however strongly depends on the availability of a reduced model, which is on hand
close enough to the fine approximation of the solution, but on the other hand a lot faster than
the fine propagator.

A similar approach has later been adopted by Blouza et al. [14] and applied to a nonlinear
ozone production system. The authors utilized the well-known quasi-steady state method
(QSS), that will be described in more detail in Sec. 5.3. The basic idea again is a decoupling
of fast and slow timescales, whereat fast timescales are eliminated from the ODE system and
expressed through algebraic relations. The coarse solver again started with the full system.
After 2.75 h physical time, fast species were eliminated from the system, leading to a non-stiff

44 CHAPTER 3. PARALLEL-IN-TIME INTEGRATION

ODE. The parareal computation on 20 processors was 4 times faster than the sequential fine
integration. Again, fixed time-stepping methods are used for both the coarse and the fine
integrator.

Recently, a new approach for the parareal solution of singularly perturbed ODEs has been
proposed by Samaey et al. [62], a micro-macro parareal algorithm. Its key idea again is to use
different models on microscopic and macroscopic scales, with a reduced model constructed on
the base of an elimination of fast timescales. Different than in [83] and [14], the macroscopic
coarse model does not contain all degrees of freedom. As their dimensions do not coincide
anymore, special care has to be taken in the coupling of the macroscopic and the microscopic
model. To this end, the authors of [62] proposed two new algorithms and contrasted them
with the coupling of the microscopic and macroscopic levels in [83] and [14]. They showed
those differences to affect the computational complexity, their potential of a generalization
and the convergence behavior.

3.4.3 Other Approaches

Extrapolated Parareal For very stiff problems, such as the Oregonator problem, Guibert
and Tromeur-Dervout [43] showed their adaptive approach to fail. Thereupon, they proposed
an adaptive parallel extrapolation method: Assume a decomposition of [0, 7] into N time-
slabs. On the first time-slab, an extrapolation operator is constructed, with its coefficients
calculated from different grid levels on some control point values within the first time-slab. The
extrapolation operator then is broadcast to the other subdomains, where extrapolations are
performed. Following, on each time-slab the fine solvers are initialized with the extrapolated
solutions. In the subsequent k—th iteration with k = 2,..., knax, an improved extrapolation
operator is constructed using the results from the 1st until the (k—1)-th time-slabs, which are
now exact in the (k — 1)-th iteration. This approach has shown to reduce the computational
costs for the coarse initialization on the time-slabs. A similar approach has later also been
proposed by Wu and Huang [139] for the solution of (non-stiff) nonlinear ODEs and PDEs
under the name Parareal-Richardson algorithm and as a combination of the original parareal
algorithm with the Richardson extrapolation. The authors showed, that the accuracy of
the numerical solution of the new algorithm was higher than that of the original parareal
algorithm.

Hybrid Parareal Spectral Deferred Corrections Method In 2008, Minion and Williams
[91] proposed a parareal approach with decreased computational costs associated with the fine
propagator. They introduced a new class of iterative time parallel methods for the solution
of ODEs, based on a parallel variation of the method of Spectral Deferred Corrections (SDC,
c.f. [31]). Deferred correction methods iteratively construct high-order, stiffly-stable time
integrators for ODEs on the base of low-order time-stepping schemes. The basic principle is
to increase the accuracy of the low order scheme by performing a series of correction sweeps.
SDC methods use spectral integration on Gaussian quadrature nodes for the construction
of the corrections. Minion and Williams [91] showed, that SDC has strong similarities with
the parareal algorithm. Following, a hybrid strategy was constructed, that combines both

3.4. PARAREAL FOR STIFF PROBLEMS 45

features of parareal and the SDC method. Instead of the costly solving of the subproblems
on each time-slab during each iteration with the fine propagator, an iterative ODE method is
used based on deferred corrections. In a subsequent investigation by Minion [90], the hybrid
parareal spectral deffered corrections method, was examined in more detail. One benefit over
the classic parareal method is, that it makes use of previously computed solutions within each
interval. The computational cost associated with the fine propagator becomes much cheaper.
The hybrid parareal SDC approach has shown to significantly reduce the computational costs
for each iteration compared to the classic parareal approach. Further, it has been shown, that
the cost per iteration then is dominated by the sequential, coarse prediction. For the solution
of PDEs this offers the attractive opportunity to use coarser spatial discretization for the
coarse propagator. However, SDC methods applied to stiff ODEs have shown order reduction
phenomena for too big time-step sizes [49]. In 2014, Bu and Lee [17] proposed an enhanced
algorithm for stiff systems. Instead of SDC, the authors used Krylov Deferred Correction
(KDC) as a fine propagator. The algorithm was tested for the nonlinear, stiff ODE system of
the Van der Pol oscillator with increasing stiffness. Analysis and numerical results showed,
that the new algorithm converges in less iterations by increasing the order of the parareal
method.

Implicit-Explicit Parareal Another approach to decrease the computational costs asso-
ciated both with the fine and the coarse propagator was suggested by Wang and Wu [135] in
2014. They proposed an implicit-explicit version of the parareal algorithm, implemented with
different pairs of implicit-explicit Runge-Kutta methods (IMEX RK, c.f. [4]). Although not
exactly derived for stiff problems, the approach is especially suitable, when the right hand
side function f can be split into stiff and non-stiff parts f = fuig + faon—stif'- Then, the
stiff part is assigned with the costly implicit component of the IMEX RK method in order
to satisfy stability requirements, while the non-stiff part is assigned with its explicit, less
costly component. Different combinations of parareal IMEX RK pairs were tested by means
of the Gray-Scott reaction-diffusion model. Best results were achieved, when assigning a fully
implicit-explicit Euler scheme to the coarse integrator.

!Unfortunately, this is typically not given in atmospheric chemical kinetics. For the sake of completeness,
IMEX parareal is presented here though.

Chapter 4

Numerical Experiments -
Six-Variable Mechanism

In the precedent Chapter, we have been discussing two potential implementations of an in-
time parallelization of the chemical kinetics in compound air quality models: An internal
parallelization within one splitting interval or an external parallelization across multiple split-
ting intervals. We have further been discussing different techniques for the parareal solution
of stiff ODEs arising in chemical kinetics. In this Chapter, we will focus on an internal par-
allelization and showcase adaptive parareal approaches by means of the example six-variable
tropospheric mechanism, a stiff and nonlinear system of ODEs, as introduced in Sec. 2.2.2. In
all cases, the total integration interval is set to one full hour, Ty = 0 sec and Teng = 3600 sec.
We consider a simple parareal implementation as described by means of Alg. 3.1. Since the
parareal algorithm is an iterative scheme, we need to define a stopping criterion. For all ex-
periments presented in the following, we define the stopping criterion such that the parareal
scheme exits, as soon as the relative change in the approximated solution at final time T4,q,
Uy =~ u(Ty),

Mspec k k+1 2

k k—1 Uk, —U:

UN—(k]N _ i,N i,N (4 0 1)

— = E % | > .U.
Un L? i=1 Uin

falls below a threshold of tolsop = 1072.

4.1 Classical Parareal (CP)

In a first experiment, we investigate the classic parareal approach as introduced by Lions et al.
[74] using fixed time-steps for both the coarse and the fine integrator with different time-step
sizes. The time-step size for the coarse propagator is set to the maximum time-step size that
still guarantees stability, which is 67" = 1072 sec. For the fine propagator, we set 6t = 107>
sec.

In a sequential simulation of the stiff, nonlinear system (2.2.1-2.2.6) using a fixed time-
step implicit Euler scheme with 6t = 107> sec, N = 360 000 000 time-steps are necessary

47

48 CHAPTER 4. NUMERICAL EXPERIMENTS - SIX-VARIABLE MECHANISM

to propagate the solution from Ty = 0 sec to Tong = 3 600 sec. The total WCT needed is
WCT £ = 45 552.34 sec. For the following investigations, we assume, that the computing time
per time-step is constant and independent of the actual size of a time-step. Then, we can
approximate the computing time per step as one time-step CTgep =~ CTg =~ CTr = W%T R
0.135 - 1073 sec.

An estimate for the parallel WCT has already been presented by means of Eq. (3.2.6).

With above introduced constant effort per time-step, it is being simplified to

At At At
T ar — Ts e N — kconv N— iy
Ninit Ny,

= CTstep (Ninit + kconv : Nk)

3 600 3 600 3 600
B -3
— 0.135-10 (103 + kcony (10-3 + N 105)) sec

102
= 486 + keony | 486 + ~ (4.1.1)

From Eq. (4.1.1), that the parallel WCT for the classic parareal approach is below the
WCT of the serial integration WCT £ for all choices of N and for all iteration counts keony < 76
- in practice, typically 1 to 5 iterations are needed until convergence. The smallest parallel
WCT is then given for N — co. Let us assume, 5 iterations are necessary for N — oco. Then a
parareal scheme on p — 0o processors will find a solution in ~ 3 000 sec, that is approx. 6.6%
of the WCT needed for a sequential integration with F. Compared to a sequential integration
using an implicit Euler scheme, the parareal integration will be significantly faster. The
situation changes dramatically, when comparing the parareal approach to a sequential solver,
specialized for stiff ODEs, such as RODAS(3)4 [46], an L-stable, adaptive Rosenbrock-solver
of order 4 with a third order embedded local error estimator. A RODAS(3)4 solver initiated
with a relative tolerance of rtol = 10~* finds a solution in 102 adapted time-steps and a total
WCT of approx. 0.02 sec. For this scenario, the classic parareal scheme obviously is not
competitive with the specialized, adaptive time-stepping scheme!

4.2 Adaptive Parareal I (AP-I)

In a next experiment, we test the adaptive parareal approach, as presented by Nielsen [96].
For both F and G we use the same time-stepping scheme, RODAS(3)4, but with different
tolerances. The relative tolerance for the fine propagator is set to rtolx = 10, the tolerance
for the coarse solver is rtolg = 1072. The total integration period [To, Tena) is split into N
equidistant time-slabs of size At.

Figure 4.1 shows the adapted time-steps for a sequential integration over the full time
interval [Ty, Tena] decomposed into N equidistant sub-intervals with varying N. On each of
the sub-intervals [t,, t, + At], the coarse propagator G with rtolg = 1072 is re-initiated with
an initial time-step size of hg = 107 sec and the initial conditions U? equal to the solution at

4.2. ADAPTIVE PARAREAL I (AP-I) 49

final time of the previous time-slab, that is U = G(At, U?_,). The number of accumulated
time-steps over all sub-intervals grows with the number of time-slabs N. Figure 4.2 further
shows, that the accumulated number of time-steps in the sequential propagation over all N
sub-intervals using an adaptive coarse scheme G scales approx. exponentially with the number
of time-slabs. This is due to the fact that the time-step size is initialized with hg = 107 sec
on each of the time-slabs.

Within the parareal algorithm, a sequen-
Accumulated #Time-Steps for Full Interval [T;, T,,] . . .
tial coarse propagation over the full interval

|| © coarse solver (rtelg ~10%) is executed 1 + keony times: First of all, in
10°H ¥ reference solution (rtol=10"*) O I . .

" 0 the sequential initialization phase; in the fol-

§ O lowing once per iteration within the parareal

g 102} * o | correction step. From Fig. 4.2 it can be

& o © seen, that for more than four time-slabs, i.e.

O N > 4, the accumulated number of time-

10t l ‘ , ‘ l .1 steps over all sub-intervals already exceeds

¢ v > ® A & N the number of time-steps, that are necessary

Figure 4.2: Accumulated number of time-steps for a sequential integration from [Ty, Tend]
for the sequential prediction from [Tp, Tey,q) over N using the fine propagator F. Already in the
equidistant time-slabs of size At = (T.,q — To)/N initialization phase, the cost for a purely se-
using the coarse propagator G with rtolg = 10°. quential (non-parareal) integration using F

is smaller than in the adaptive parareal case.
An adaptive coarse propagator, that is being re-initiated with hg at every sub-interval, does
therefore not present a promising choice with regard to a potential speed-up and an increase
in efficiency.

In the following, we discuss the load balancing during the parallel correction step. Figure
4.4 shows the internally adapted time-step sizes of the fine propagator F on each time-slab for a

Accum. Time-Steps G (rtol;=10") on Full Interval for N = 1,2,4

ty =Tp t1 =Tona
N=1
22 steps
0 10 10° 107 10°® 10° 10* 10° 10 10! 10° 10! 10° 10° [sed]
to =T, t ty =T\nq
N=2
38 steps
0 10°® 10° 10 102 10° 10% [sec] 10°® 10° 10* 10 10° 10% [se]
ty =T§ ty ty l3 ty =Tina
N=4
71 steps
0 10° 10" 10° [sec] 10 10 10° [sec] 10°® 10 10° [sec] 108 104 100 [sec]

Figure 4.1: Adapted time-steps on the decomposed interval [Ty, Tend] into N equidistant sub-intervals
[to, t1], [t1, ta], -y [tn—1, tn] for N =1,2,4. On each of the N sub-intervals, the coarse propagator
G is started with rtolg = 10° and an initial time-step size of hg = 107 sec. The accumulated number
of time-steps on the full interval displayed on the very left increases with growing N.

50 CHAPTER 4. NUMERICAL EXPERIMENTS - SIX-VARIABLE MECHANISM

Adapted Time-Steps 7 (rtol,=10"*) for N = 4

t; =ty +AT

ty =Ty
proc. #0
73 steps

—
t, ty =t, +AT
proc. #1
25 steps
-
ty ty =ty + AT
proc. #2
25 steps
t3 ty :Tend
proc. #3
24 steps
0 10° 108 107 10°® 10° 10 103 102 10 10° 10* 102 10> AT [sed

Figure 4.4: Adapted time-step sizes for the parallel fine computation using F with rtolr =
10~ in the first iteration. The computational effort to be afforded by the first processor
equates approximately three times the effort of the other processors.

decomposition into 4 sub-intervals. Initial conditions for all sub-intervals have been computed

from a sequential, coarse initialization. The initial step size used by F is hg = 1077 sec on all

time-slabs.

Due to the fact, that the initial solution
at time T} is out of balance and leads to a
stiff initial value problem, the first proces-
sor (proc. #0) has to resolve very small
timescales, leading to a high number of to-
tal time-steps on this interval. All other
processors rapidly increase their internally
used time-step sizes h, leading to a compara-
bly small number of time-steps, as can also
be seen in Fig. 4.3. A decomposition into
equidistant time-slabs will therefore lead to
load imbalances between the processors dur-
ing the parallel prediction step: For a de-
composition into 4 sub-intervals, the compu-
tational effort to be required by the first pro-
cessor equates approximately three times the

Adapted Time-Steps F (rtol,=10 ') for N = 4

— 10°

3 — 73 steps

4 L 25 steps

810t 25 steps

) [

o

@

& 10?

) |

£ — proc. #0|

F e

=T — proc. #1]

g i — proc. #2|]

€ 10° proc. #3 ||
0 25 50 75 #Steps

Figure 4.3: Adapted time-step sizes for AP-I
and N = 4 during parallel correction using F with
rtoly = 10~% in the first iteration. The computa-
tional effort to be afforded by processor #0 equates
approximately three times the effort of the other

Processors.

effort of the other processors. A global imbalance of work is the result.

4.3 Adaptive Parareal IT (AP-II)

Now, we test the adaptive parareal approach, as presented in Guibert and Tromeur-Dervout

[43]. Different, than in the previous test, we now also introduce adaptivity in the decom-

4.3. ADAPTIVE PARAREAL II (AP-II) 51

position of the time interval and the number of time-slabs. Again for both F and G the
RODAS(3)4 solver with rtolx = 10~ and rtolg = 1072 is used during the iteration.

The decomposition of the time domain is now suggested by the coarse integration during
the initialization, using IV internally adapted time-steps. The result is a non-uniform temporal
mesh with N sub-intervals, whereat N can be controlled by changing rtolg, i.e. N = N(rtolg).

Figure 4.1 shows the quality of the initial solution, estimated by the relative error of the
parareal solution at final integration time T,,q compared to a fine sequential reference solution
U(Tena). The reference solution has been calculated a priori using a sequential RODAS(3)4
solver with rtol = 1076. The relative error at time Ty,q is calculated as

5 U; Ten - Uk 2
, = \IZ <(ui(dT)end) d > : (4.3.1)

i=1

U(Tend) - Ujlzf
U(Tend)

For AP-I, the quality of the initial solution improves with an increasing number of sub-
intervals IV, although the relative tolerance for the coarse propagator remains the same. In
terms, the internally used number of time-steps also increases with growing NV, as it had been
depicted in Fig. 4.2, leading to an actual quality, higher than defined in rtolg. For AP-II,
the number of sub-intervals N is not a parameter, but defined by the choice of the relative
tolerance. Respectively, also the quality of the solution depends on the choice of the relative
tolerance rtolg. As a result, the number of iterations needed until convergence is higher than
for AP-I with the same number of IV, as can be seen in Tab. 4.1.

In the following, we consider the parallel WCT of AP-II. The computational complexity
of F and G (the RODAS(3)4 solver) is defined by the number of internal function evaluations,
which depends on the number of accepted and rejected steps. For increasing tolerances,
the number of rejected time-steps increases nonlinearly. Typically, the number of rejected
time-steps is a lot smaller than the number of accepted time-steps, so rejected time-steps
are neglected in the following estimate. Again, we denote the computational time for one
time-step by CTgtep and assume it to be constant and equivalent for both F and G. We can
then define the computational complexity for an integration over IN internal time-steps as
CTstep-IN. Hence, the WCT for the initialization, using the coarse solver G is given by

WCTinit = CTstep : Ninit = CTstep - N.

The WCT per iteration is defined by

N-1
WCT), = CTyep- (i:%x 1<Ni"ff,Nng>+ > Nfg)v
) 7,:0

Ny

whereat Ni’ff denotes the number of internally adapted time-steps during the parallel cor-
rection step on the ¢ — th time-slab and in the k—th iteration using the fine propagator F.
Respectively, we define Nfg. Per design, we can assume the coarse propagator to require
less time-steps than the fine propagator, i.e. maXi:O,N—l(NZ-If;,Nng) = maxi:()’N_l(Ni’ff).
The variables Ni]fg denote the number of internally adapted time-steps during the sequential

52 CHAPTER 4. NUMERICAL EXPERIMENTS - SIX-VARIABLE MECHANISM

Relative Error of Initial Solution U}, att-T,
I I I I I I I
rtol, =10"
grtolg:IOO

—@— AP-|
—@— AP-Il

1 2 4 8 16 32 64
N

)
’LL(end)

Figure 4.1: Relative error of coarse, sequential initial solution at time ¢ = T}, to fine, sequential
reference solution y(7Tx). For AP-I, the quality of the initial solution improves with an
increasing number of sub-intervals N, while rtolg = 10° in all cases. For AP-II, the quality
of the reference solution only depends on the choice of the relative tolerance, independent of
the number of sub-intervals. The reference solution was calculated using a relative tolerance
of rtol = 1076,

parareal prediction step on the ¢ — th time-slab and in the k—th iteration using the coarse
propagator G. This leads to a parallel WCT of

kconv
WCTpar = WCTinis + Y k- WCTy
k=1
kconv
= CTsep- [N+ D k-Ny|. (4.3.2)
k=1
Npar

We define the number of non-parallelizable time-steps, Npar, that is the number of time-
steps, that have to be calculated consequently in the iterative parareal approach,

kconv k:COI]V N—l
Nowr =N+ > k-Ny=N+> k- (max (Nfz)+ Y Ni’fg> : (4.3.3)
k=1 k=1 =0N i=0

From Eqgs. (4.3.2) and (4.3.3) we can directly see, that the parallel WCT for a given
number N is dominated by three factors: a) the maximum number of internal time-steps over
all time-slabs during the parallel prediction per iteration, max;—g, N(Nikf), b) the summed
coarse update steps during the sequential correction per iteration, > ;* Ni’fg, and c) the
number of iterations k.ony until convergence, that we have already seen to be influenced by
the quality of the initial solution.

The first influencing factor, the maximum number of internal time-steps over all N time-
slabs, is given by max;—q, N_l(Ni’ff). From Sec. 4.2 and the experiments within we have
seen, that it is advisable, to target a decomposition in a way, that all IV; are balanced
over all time-slabs. In Fig. 4.2, we see the number of internally adapted time-steps per time-
slab/processor during the parallel fine propagation within the parallel correction using F with

4.3. ADAPTIVE PARAREAL II (AP-II) o3

#Time-Steps 1st Iteration F (rlol,~10 *), N = 22

b T T T T T T T T T T T T T T T

I I ! I I
HEE AP-| [AP-Il [

~ proc.
o

Figure 4.2: Internally adapted number of time-steps during the parallel correction by means of F
with rtolz = 10~* in the first iteration. For AP-I the decomposition is uniform, i.e. all 20 time-slabs
have the same size. For AP-II the decomposition was chosen as suggested by the sequential, coarse
integration using G with rtolg = 10°. The dotted horizontal line shows the average number of time-
steps both for AP-I and AP-II, the average values approx. coincide here. The maximal deviation from
the average is smaller for AP-II, hence the work-load is more balanced than for AP-I.

rtolr = 1074 in the first iteration. The dotted horizontal lines shows the average number of
time-steps for both AP-I and AP-II, whereat the averages approx. coincide. For AP-II the
decomposition is suggested by a coarse initialization, whereat varying the tolerance leads to
a different decomposition. For rtolg = 10°, a decomposition into N = 22 time-slabs is the
result. Respectively, we set up AP-I with a decomposition into 22 equidistant time-slabs. For
AP-I, 64 internally adapted time-steps are needed on the first time-slab, while 16-17 time-steps
are necessary on the following 21 time-slabs. The consequence again is, that the global work
during the parallel, fine prediction is not balanced over all processors, but mainly afforded by
processor #0. For AP-II, the maximal deviation from the average is smaller than for AP-I.

The computational effort per processor is equilibrated better amongst all processors.

The second factor of influence is the number of coarse update steps Zfif)l Ni’fg- Same as

for AP-I, we restart the coarse integrator with an initial time-step size of hg = 1079 also for
AP-II. In Sec. 4.2 we have already seen, that an adaptive coarse propagator restarted with
very small time-step sizes during the sequential prediction leads to an exponentially growing
accumulated number of steps for the coarse prediction, see Fig. 4.2. In practice, it turns
out, that both for AP-I and AP-II the number of coarse update steps dominates the overall
WCT, as can also be seen in Tab. 4.1. In principle, it is possible to lower that portion by re-
initiating G with bigger time-step sizes during the sequential prediction step. A consequence
will however be a loss of quality of the coarsely predicted solution. Then, higher numbers
of iterations will be needed until convergence. In the following Sec. 4.4, we will showcase
the influence of using a very coarse prediction (a one-step, non-adaptive integrator) on the
number of iterations until convergence and the parallel WCT.

Theoretically, it is also possible, to re-initiate fine and coarse propagators with bigger
step sizes during the parallel correction step. In practice, this approach turns out to be
trappy. The initial value problem initialized with the actual solution u(t,) at time ¢, may
already be balanced, so that no fast modes are present. Then, bigger time-step sizes can be

chosen. However, this is not necessarily true for the approximated solution UF, which may

n
still be disturbed by fast modes, that did not yet reach equilibrium in the iterative parareal

54 CHAPTER 4. NUMERICAL EXPERIMENTS - SIX-VARIABLE MECHANISM

approach. In this case, very small time-steps will be needed to approximate the next iterate
of the parareal solution at time t,. A reinitialization with bigger time-step sizes may then
lead to a sequence of decreasing time-steps and hence a higher number of rejected time-steps.

4.4 Adaptive Parareal ITI (AP-III)

As we have seen in the previous tests, using an adaptive solver as a coarse propagator during
the parareal iteration leads to an overhead in the sequential coarse prediction, since the
adaptive solver scales approximately exponentially with the number of time-slabs NV, see Fig.
4.2. Therefore, we now consider a coarse propagator, that uses one single time-step only.

Same as for AP-II, the initial decomposition of the time domain is suggested by a first,
coarse integration using the RODAS(3)4 solver. The number of time-slabs N is controlled
by changing tolerances. During the parareal iteration, the coarse solver is now forced to use
exactly one time-step, i.e. the solution is propagated from the beginning of one time-slab to
its end without any intermediate steps. The total computational cost for the sequential coarse
updates then scales linearly with the number of time-slabs.

Figure 4.1 shows the convergence rates of AP-I, AP-II and AP-III for different N =
10, 20, 30, 40. The x-axis denotes the number of iterations, whereat 0 equates the initializa-
tion and 1 the first parareal iteration. The logarithmic y-axis denotes the relative error in the
k — th iteration for the solution U* at final integration time T,,q, calculated from Eq. (4.3.1),

Relative Error at ¢t =T, , 2 Relative Error at ¢t =7,
109 T T T T T T T T T I I 10 T T T T T T T T T I I
N=10 o AP N =20 o APl
10’} -0~ AP-Il [10t} -0 AP-Il [
= 10°} -O- AP-lIH 10°F -Oo- AP-lIl{]
2| 10’ 1 10} y
kool | 3
g5 11(?‘1 107}]
= 107}] 10
105}] 107} .
10’7 L L L L 1 L L L L L L 10'5 1 L 1 1 1 1 1 1 L 1 L
0O 1 2 3 4 5 6 7 8 9 10 0O 1 2 3 4 5 6 7 8 9 10
Iteration Iteration
02— Relative Errorat (=7, 102 Relative Errorat i —1,, __
1pN=30 - APl |{ 1fN=40 - AP |]
100 o APl 100 - AP-II
n 107F o AP 5 107k o APl
o[107 1 2] 10t} 1
11z 107} {1 1107t 1
= 3 i . 3
<|F 107} {1 £f 107} 1
=10 TN o o o o ¢ o o o o — 10°f 1
107} : 107}]
10‘6 1 Il 1 L L L L L L L L 10’6 1 L 1 1 1 1 1 1 L 1 L
0O 1 2 3 4 5 6 7 8 9 10 0O 1 2 3 4 5 6 7 8 9 10
Iteration Iteration

Figure 4.1: Convergence of AP-I, AP-II and AP-III for a decomposition of the full interval [Ty, Tend]
into N = 10, 20, 30, 40 time-slabs. For AP-I the time-slabs are equidistant and of size (Ty) — Tend)/N.
For AP-II and AP-III the decompositions coincide. The size of their time-slabs has been suggested
by the initial coarse prediction using G, leading to non-uniform decompositions with varying time-slab

sizes.

4.4. ADAPTIVE PARAREAL III (AP-III) 95

Ny N

10° Estimated WCT per Iteration 104"”" Estimated Parallel WCT
[o- AP o APl - APl [AP o= APl —O- AP
10} .
10°} 1
102 sequential solution (rtol=10 ")
101 1 L L L 102 L L L 1
10 20 30 40 N 10 20 30 40 N

Figure 4.2: Estimated WCT per iteration (left) and estimated parallel WCT (right) for AP-I, AP-II
and AP-III. The x-axis denotes the number of time-slabs, i.e. the number of parallel processes. The
y-axis denotes the total number of sequentially executed time-steps Nj and Ny respectively. The
WCT is a linear function of the number of steps multiplied with the (approx.) constant computing
time per step CTgiep, WCT = CTggep - V.

with the reference solution as described in Sec. 4.3.

It can easily be seen, that AP-I starts with significantly smaller initial relative errors than
AP-II and AP-III for all choices of N. We have been discussing this behavior already by means
of Fig. 4.1. Since the initial solution for AP-I is already quite accurate, the convergence is
best for AP-I for all choices of N.

The initial decomposition into time-slabs are equivalent for AP-II and AP-III. Conse-
quently, AP-IT and AP-III start with the same relative error for all choices of N. In the
following iterations, the relative error decreases faster for AP-II. This can be blamed on the
quality of the coarse, sequential prediction: While AP-III uses only one time-step with a fixed
time-step size to propagate the solution from the beginning to the end of each time-slab,
AP-II uses an adaptive solver during the coarse correction step. It is therefore no surprise,
that AP-III converges slower than AP-II.

In Fig. 4.2 we see the estimated parallel WCT per iteration (left) and in total (right)
for AP-I, AP-II and AP-III. In both plots, the WCT is depicted not in terms of seconds but
in terms of the number of non-parallelizable time-steps Np,,. The parallel WCT is a linear
function of Npar multiplied with the (approximately) constant computing time per time-step
CTstep, WCTpar = CTstep - Npar- The respective numbers of iterations, the number of time-
steps in the initialization phase, the averaged number of time-steps per iteration and the total
number of non-parallelizable steps Ny, for varying IV are also given in table 4.1.

The number of steps per iteration is highest for AP-I. The small difference in steps per
iteration between AP-I and AP-II showcases the effect of the load-balancing achieved from a
decomposition into non-uniform time-slabs, see also column 4 and 5, Tab. 4.1. The values
for max;—o ny—1(N; 7) coincide for AP-II and AP-III, while the accumulated number of steps
for the sequential prediction Zf\i o NVig is significantly smaller for AP-III. In terms, we have
seen, that AP-III converges slower, than AP-I and AP-II. Still, the parallel WCT is lowest for
AP-III. The dashed line in this plot denotes the number of time-steps in a purely sequential
execution of F. Only for AP-III the number of non-parallelizable steps per iteration is below

56 CHAPTER 4. NUMERICAL EXPERIMENTS - SIX-VARIABLE MECHANISM

Ny averaged over kcony

N kconv Nini¢ || max;—o,n1(Ni,7) ZzJ'V:?Jl Nig Npar

AP-1 10 2 172 66 172 648
20 1 331 64 331 726

30 1 491 63 491 1045
40 1 612 63 612 1287

AP-II 10 4 10 51 155 834
20 3 20 49 297 1058

30 2 30 48 433 992

40 2 40 48 576 1288

AP-III 10 10 10 51 10 620
20 6 20 49 20 434

30 3 30 48 30 264

40 2 40 48 40 216

RODAS(3)4 | - | - - - - | 102

Table 4.1: Parallel computational effort until convergence, estimated by the total number of non-
parallelizable time-steps Np,,, i.e. the accumulated number of sequentially executed time-steps in the
parareal algorithm. The parallel WCT can be approximated as WCTp,r =Npar - CTpar.

the number of steps required for a purely sequential integration using F (102 steps). In
practice however, AP-III needs 2-10 iterations until convergence. The parallel WCT for AP-
III is therefore more than 100% higher than the WCT of a sequential integration with a
respectively set-up RODAS(3)4 solver. All parallel algorithms presented so far are therefore
slower than the purely sequential execution of the RODAS(3)4 solver.

4.5 Conclusions

In this Chapter, we showed numerical results for an internal parallelization of an example
six-variable tropospheric mechanism. The classical parareal [CP] algorithm was designed
for a decomposition in time with fixed, equidistant time-slab sizes. We showed, that even
for an infinite number of parallel processes, the classical parareal scheme is not competitive
in terms of WCT to a sequential, adaptive time-stepping scheme, such as the Rosenbrock
solver RODAS(3)4 [46]. When using an adaptive solver as the fine propagator in combination
with a decomposition into equidistant time-slabs [AP-I], global load-imbalances have shown
to result. Those imbalances are a direct result of the stiffness within the system, whose
presence forces the adaptive solver to use very small time-steps to guarantee stability. If the
problem is stiff, more time-steps will be required, leading to a higher computational demand.
A non-equidistant decomposition in time [AP-II] has been shown to improve the global load-
imbalances. As an initial suggestion for a non-equidistant decomposition, the same adaptive
solver can be utilized as during the iteration, but with a coarser tolerance. Different than
in the classical approach, the number of time-slabs and respectively the number of parallel
processes can’t be defined directly by the user, but only implicitly by tuning the tolerance of

4.5. CONCLUSIONS 57

the coarse initialization solver call. Special care has to be taken, when employing an adaptive
time-stepping scheme also as the coarse solver during the sequential prediction step within an
iteration. From a performance point of view, the sequential prediction should be very cheap,
since it is the only sequential part of the algorithm. When using an adaptive scheme, very
small time-step sizes are typically necessary at the beginning of each time-slab. This makes
the overall sequential prediction very costly. To decrease the computational cost, the coarse
solver was then forced to use only one time-step [AP-III]|. Since this restriction deteriorates
the quality of the approximated solution, more iterations were necessary until convergence.

All adaptive parareal approaches have shown to converge, but not to outperform the purely
sequential integrator in terms of WCT. In the following, we shall therefore consider alternative
candidates for cost-efficient, but still accurate coarse propagators: reduced models. In the next
Chapter, we focus on the derivation of reduced models for atmospheric chemical kinetics. We
examine the qualification of different reduced models for the application as a coarse propagator
within the parareal algorithm. A suitable reduced model should be significantly faster than
the full model, without a substantial degradation in accuracy.

Chapter 5

Model Reduction

In the previous Chapter, we had identified needs for a fast, but still relatively accurate prop-
agator to be applied as a coarse propagator within the parareal algorithm. In this section
we investigate the qualification of different reduced models for this purpose. To this end,
an overview of existing approaches and their application to atmospheric chemical kinetics is
presented. The two most popular approaches within (lumping methods and QSSA) will be
outlined first. Following, two in this context more promising approaches, ILDM and repro-
modeling, will then be discussed in more detail.

5.1 Overview

A detailed reaction mechanism for atmospheric gas-phase chemistry may include hundreds
of chemical species, that interact in hundreds to thousands of reactions. One such example
is the comprehensive Leeds Master Chemical Mechanism (MCM) [52], which - in its current
version MCMv3 - describes tropospheric chemistry by means of 5 900 species and 13 500
reactions. The numerical simulation of such systems is in general possible, but can lead to
considerable computational effort. In practice, chemistry calculations have to be carried out
repeatedly at millions of grid-points, as they typically are embedded in chemical transport
models, that may be part of large-scale AQMs. But both processor’s memory and computing
capacity are limited, so a direct numerical integration of the full system for each grid-point
is hardly feasible. Simplifications of the complex chemical systems are crucial towards their
efficient incorporation into a regional modeling framework.

A straightforward way to reduce both memory requirements and CPU-time is to decrease
the number of species and/or the number of reactions. This can be accomplished by a removal
of redundant species and /or reactions within the mechanism. The result is a “skeletal” scheme,
that is designed to comprise less species and reaction steps, but still captures the main features
of the full scheme. Many different methods to identify redundant species and/or reactions
exist, starting with heuristic approaches such as trial and error methods or comparing reaction
rates. More sophisticated methods base on timescale and sensitivity analysis, investigations
of reaction graphs, entropy production and optimization methods. For an overview of species
and reaction removal methods, see for example Turdnyi and Tomlin [123].

59

60 CHAPTER 5. MODEL REDUCTION

Reducing the number of species and /or reactions in a mechanism is not necessarily related
to a direct removal of species/reactions. Lumping approaches present an alternative approach,
that refrains from removing individual species or reactions. Instead, sets of chemical species
with similar characteristics are replaced by aggregated species, that can either be real or
surrogate species. Lumping approaches have been a very popular way to decrease the number
of unknowns for decades, see for example Atkinson [5], Li and Rabitz [65, 66], Middleton et
al. [89], Wang et al. [132] or Whitehouse et al. [137].

The CPU-time does not only depend on the number of unknowns, but also strongly on
the presence of a wide range of timescales within such a chemical system. In literature, such
multi-scale initial value problems are encountered under the term stiff problems. Stiffness has
been shown as the major constraint on the choice of the integration scheme and the size of
the time-steps for the numerical integration, see Section 2.3.2.

The operator splitting approach, as introduced in Sec. 2.1 and as it is typically applied to
solve the mass balance equations of chemical species Eq. (2.1.4), directly enforces the stiffness
of the initial value problems (2.1.6) to be solved for the chemical kinetics: As a result of the
splitting of advection, diffusion and reaction, and due to abrupt photolysis updates when
considering chemical kinetics in an autonomous mode, transient species will be present at the
beginning of every splitting interval. To resolve such fast processes, very small time-steps
are required during the numerical integration at initial time. This characteristics is being
addressed by a class of model reduction methods basing on a separation of timescales.

A famous approach for model reduction is the Quasi-Steady State Approximation (QSSA)
(c.f. Hesstvedt et al. [47]), where timescales are related to chemical species. Fast species are
assumed to react instantaneously and locally equilibrate with respect to slow species. Then,
their concentration can be determined as algebraic functions of the slow ones and the size of
the ODE system to be solved reduces to the number of slow species. From a theoretical point
of view, the QSS assumption has one severe drawback: not all species can sharply be classified
into either fast or slow, since some species interact both in fast and slow processes at the same
time. More sophisticated approaches, coming from the existence of slow invariant manifolds
(SIM) (c.f. Fenichel [33]), overcome this drawback, by associating timescales with the system’s
modes, i.e. the eigenvectors and eigenvalues. The modes, with large, negative eigenvalues are
assumed to equilibrate quickly. The solution then is said to have collapsed onto a lower-
dimensional manifold. One such example is the Intrinsic Low Dimensional Manifold (ILDM)
method (c.f. Maas and Pope [81]), in which fast modes are completely eliminated from the
system during integration time. This does not necessarily lead to a decrease in the number of
unknowns, but to a decrease in stiffness and hence to larger time-steps that can be used during
integration time. Finally, the fast modes are incorporated in a parametrized fashion depending
on the slow modes at final time. The outcome of such methods hence is not a reduced or
skeletal mechanism, but a completely new set of ODEs, defined in the state space of the slow
modes, along with some algebraic restrictions. However, such methods are tricky: Besides the
identification of a lower dimensional manifold, onto which the system collapses eventually,
and the selection of the parameterizing variables, one essential challenge is the calculation
of the parametrization itself. For a nonlinear ODE, the calculation of one parametrization

5.1. OVERVIEW 61

point equates solving one nonlinear problem, which can make the method computationally
demanding. Performance gains can be achieved by calculating the parametrization a priori
and storing them in look-up tables. Due to memory restrictions, such look-up tables are not
feasible for atmospheric chemistry, as shown by Lowe and Tomlin [77].

In many cases, above introduced model reduction methods do not yet lead to reduced
models, that can be incorporated in a satisfactory way as a coarse propagator, since their
numerical solution is either not accurate enough or not significantly faster than the solution
of the full model. A possible further step is the parametrization of the reaction mechanisms
itself, which is often encountered under the term repro-modeling (c.f. [121, 122]). The idea
behind such techniques is to describe chemical kinetics by means of explicit algebraic func-
tions, which can be obtained by numerical fitting. A number of approaches exist, among
them the parametrization via orthonormal polynomials as introduced by Turanyi [122] or us-
ing spline functions as proposed by Buki et al. [18]. Within the last years the method of High
Dimensional Model Representation (HDMR, c.f. Rabitz [102]), has found wide usage, e.g. by
Shorter et al. [113], Wang et al. [134], or Boutahar and Sportisse [16]. Hereby, chemical kinet-
ics is parametrized through an expansion of correlated functions. Successful applications of
the HDMR method for atmospheric chemistry have been presented by Wang et al. [131, 133].
Fully Equivalent Operational Models (FEOM) based on the HDMR method were constructed,
that were up to 1 000 times faster than the original box-model, while maintaining accuracy
comparable to the original model over wide ranges of initial concentrations.

A different class of methods is related to the statistical behavior of the system, the so
called class of Proper Orthogonal Decomposition methods (POD), as introduced by Kunisch
and Volkwein [57, 58]. A reduced model is obtained as a projection of the full model into
the reduced basis, with the reduced basis being constructed from preprocessed trajectories
(snapshot method). Investigations of the potential of POD for chemical kinetics have been
made by Sportisse and Djouad [116] and Boutahar and Sportisse [16]. The results for a box-
model theoretically show great potential, as Sportisse and Djouad [116] could identify reduced
models with 2 to 3 local degrees of freedom for a species such as ozone. The original model
contained 31 degrees of freedom. Due to the high numerical efforts to optimally choose,
calculate, store and evaluate the snapshots, those methods have not gained popularity in
atmospheric chemical kinetics in the three-dimensional practice. Those methods therefore are
not addressed in this work.

Typically, the chemistry models applied in operational air quality models are already
highly reduced models of more comprehensive mechanisms using various of the above men-
tioned model reduction methods. Starting from a comprehensive mechanism, the first step
towards a computationally feasible, smaller model is to eliminate redundant species from the
mechanism. Following, a further reduction is achieved by lumping approaches, which are
often applied in combination with QSS approximations for special species. One example of
a combined application of different model reduction techniques to MCMv2 (3 478 species
and 10 763 reactions) along with a detailed discussion has been presented by Whitehouse et
al. [137]. Combining timescale analysis, sensitivity analysis and a timescale aware lumping
approach led to a reduced mechanism, “that contains 35% of the number of species and 40%

62 CHAPTER 5. MODEL REDUCTION

of the number of reactions compared to the full mechanism.”

The chemical mechanism, that is being considered in this work, RADM2 [119] (see also
Sec. 2.2), is already a highly condensed mechanism. The mechanism builds up from a sim-
plified compound of various state-of-the-art mechanisms, such as the explicit mechanism of
Leone and Seinfeld [64], the mechanisms of Lurmann et al. [78], the carbon bond mechanism
of Whitten et al. [138] and the master mechanism of Kerr and Calvert [53]. According to
Stockwell et al., “The main source of complexity in the explicit mechanisms is the organic
chemistry. Treating the organic chemistry of the troposphere explicitly would require thou-
sands of chemical species. Instead, the hundreds of volatile organic compounds (VOCs), are
aggregated using a molecular lumping approach. The RADM2 mechanism is comprised of
only 63 chemical species and 158 reactions.

This section has been motivated by the search of a reduced model, that can be applied as a
coarse propagator within the parareal algorithm. Since RADM2 is already a highly condensed
mechanism, we in fact seek a reduced model of a reduced model. In the following, we discuss
the two most popular approaches (lumping methods and QSSA). Subsequently, two in this
context more promising approaches (ILDM and repro-modeling), will then be discussed in
more detail.

5.2 Lumping Methods

Traditionally, lumping methods have been the predominant model reduction approach in
atmospheric chemistry. The idea behind it is quite simple and straightforward: A group
of species is being substituted in the mechanism by a new model variable, denoted as a
lumped variable. The lumped variable can either be an actual or a hypothetical species, which
depends linearly or non-linearly on the original species. This way, the original set of equations
is reduced to a lower dimensional lumped set.

The motivation to use lumping in atmospheric chemical kinetics stems from the hundreds
of volatile organic compounds (VOCs) in the hydrocarbon chemistry of the troposphere.
Since the late 1970s, it has been common use to group VOCs into smaller numbers of lumped
species. One of the first applications was the Dodge mechanism from 1977, in which the total
reactive hydrocarbon concentration is represented by two surrogate species only: n-butene
and propene.

Within the last decades, several reduced chemical mechanisms have been developed for
use in urban and regional AQMs, among them the series of Regional Acid Decomposition
Mechanisms (RADM [119]), the Statewide Air Pollution Research Center mechanism family
(SAPRC [21, 22]) at University of California, and the Carbon Bond Mechanism series (CBM
[41]). Most mechanisms have been derived on base of the same data for reaction rates and
products. Besides varieties in the treatment of unknown parameters, an essential difference
exists, in how they aggregate organic chemistry into smaller sets of lumped species. Over the
years, a plurality of lumping methods have been developed. The most influential class is given
by molecular lumping: VOCs with similar chemical character (e.g. alkanes, alkanes, aro-
matics, etc.) are grouped together into lumped variables. A lumped variable then represents

5.2. LUMPING METHODS 63

the group of VOCs in the mechanism on a molecule-for-molecule basis. The reactivity and rate
constants for the lumped variable can be derived by analyzing kinetic and mechanistic data
under typical conditions, with the data taken either from literature or from smog chamber
experiments. Differences in parameter values can be accounted for by means of reactivity or
molar weighting, as it will be outlined later in this section. Molecular lumping has found wide
usage in AQM. Most of the chemical mechanisms currently being used in popular air quality
models, have been derived through this approach: RADM2 [119], RACM [118], SAPRC-99
[21, 22], SAPRC-07 [23]. An alternative to molecular lumping is presented by the approach
of structural lumping, where a lumped variable comprises species with similar structure,
reactivity and bond type. This concept has found application in the Carbon Bond Mechanism
CBM-Ex [41], where carbon atoms are grouped according to their bonding: single bonded,
fast doubly bonded, slow doubly bonded, etc..

Both above introduced methods are severely limited: They present frameworks, to derive
highly tailored reduced models, designed to fit the concentration profiles of certain species
of interest only, but not necessarily of all species. Even though lumping has been used
in atmospheric chemical kinetics for decades, criticizers have been despising it as a semi-
empirical method, especially as according to Li an Rabitz [65], “There is no known a priori
way to determine the lumping scheme.”. In response to this criticism, recent developments
adopt a kinetic lumping approach, whereat species are aggregated in a timescale aware
fashion. Representative methods are the DCAL method by Li and Rabitz [67, 68] and the
APLA algorithm by Djouad and Sportisse [29].

In the following, the mathematical approach to lumping is outlined briefly, along with the
principle of reactivity weighting. For a more detailed description, see Li and Rabitz [65, 66],
Wang et al. [132] or Whitehouse et al. [137].

5.2.1 Mathematical approach to linear lumping

Let the chemical kinetics of a reaction system with s species be described by

% = f(¢), ¢(0)=co, (5.2.1)
with the concentration vector ¢ = ¢(t) € R® and the vector function f(c) € R®. Suppose, the
s—dimensional system can be reduced to an §—dimensional lumped system with 0 < § < s.
Let the temporal evolvement of the lumped species be defined by a vector function f : R —
R®, with

% = f(e), (5.2.2)

whereat ¢ is the vector of lumped species, defined as a function of ¢, i.e.

¢ =m(c), (5.2.3)

with m : R® — R®. We restrict here to a linear function m(c), i.e. the lumped concentration
vector is a linear combination of the components of the original concentration vector, i.e.

64 CHAPTER 5. MODEL REDUCTION

¢ = a;101 + ajpca + ... +a;s¢s for i = 1,...,5. Then, a constant lumping matrix M € RS%s
exists and Eq. (5.2.3) can be simplified to ¢ = Mec. We insert this relation into Eq. (5.2.1).
Consequently, the temporal change for the lumped species ¢ is given by

oc¢
— = Mf(c). 5.2.4
= M) (52.4)
According to Li and Rabitz [65], the lumped system is ezact, if M f(c) can be expressed as a
function of ¢, i.e. ¢ = M¢ exists, with the generalized inverse M satisfying MM = I; and I
being the §—dimensional real identity matrix. Then, the residual between the lumped species
vector ¢, mapped onto the full variable space and the full vector ¢ vanishes, i.e.|c — Mé| = 0
and it is

7(6) = MF(Me) < f(c) = F(FMo).

Exact lumping hence equates a representation of ¢ in the basis V' = {v1, va, ..., vs}

3
C = Z @ﬂli,
i=1
with V spanned by the columns of M
J— T < . < A
V; (M>1:n,i V1l <4<a.

In the linear case (which is commonly practiced), the challenge in lumping means finding a
suitable transformation matrix M along with a unique inverse M. For decades, the invertible
(in a generalized sense) mapping M and M has been based on expert knowledge about the
chemical species’ character, structure or reactivity characteristics. Recently, more formal
methods have come up, that all adopt a kinetic approach and exploit the system’s timescales.
For a profound theory, we refer to Li and Rabitz [65, 66]. Such conditions have been described
and employed for example by Li and Rabitz [67, 68], Wang et al. [132] and Djouad and
Sportisse [29].

If a chemical species is represented by a lumped model species, the original species is
forced to react at the reaction rate of the model species - which in general does not equate
its individual reaction rate. Lumping adds an error to the reduced model, which can be
diminished by the principle of reactivity weighting, as introduced by Middleton et al. [89].
Emissions of individual compounds are weighted with the ratio F', that describes the ratio of
the reacted fraction of the emitted vs. the reacted fraction of the model species,

1-— eXp(_kHO, emitt. A)

F
1 — exp(—kno, Model A)

with the rate constant of the emitted species ko, emitt. for the reaction with HO , the rate
constant of the model species kpo, Model for the reaction with HO and A representing a
daily average integrated HO concentration, which depends on the conditions of the model
simulation. This method can be considered as a parametrization of the solution to the lump-
ing problem by means of a constant value for the concentration of HO. A more dynamic

5.3. QUASI-STEADY STATE APPROXIMATION (QSSA) 65

alternative is presented by the concept of hybrid reactivity weighting (cf. Makar et al. [85]):
The integrated HO concentration is not considered as a parameter, but as a an additional
pseudo-species. This leads to a direct altering in the differential equations at each time-step.
The lumping error has proven to be very small, typically within the range of the accuracy of
the solver for most species. A major drawback of this method is its strong dependency on
relative emissions for the different VOC compounds.

5.2.2 Qualification as a Coarse Propagator

In principle, using a lumped model as a coarse propagator within the parareal algorithm is
possible. One minor technical challenge is given by the fact, that the dimensions of the models
used for the fine and the coarse propagator do not coincide anymore. This challenge can be
managed with the construction of mapping operators between the coarse and the fine model
as proposed in Samaey et al. [62].

The scheme, that is being considered in this work (RADM2 [119]), is already a highly
condensed model: Hundreds of VOCs have been aggregated into only 63 chemical species.
Certainly it is possible, to aggregate the system into an even smaller number of lumped
variables. This however requires a high degree of expertise in the chemical system for choosing
an adequate invertible mapping M and M. Lumping does not provide a generic model
reduction framework.

The result of a lumping procedure will be a lower-dimensional ODE system, which is not
necessarily less stiff. However, the overall computational effort for the solution of the chemical
system is mainly dominated by the stiffness of a system, since it determines the size of the
time-steps and hence the total number of time-steps. The computational effort for the solution
of one time-step decreases with the number of chemical species involved. The ratio is strongly
influenced by the chemical character of the remaining system: Solving an s—dimensional, stiff
system is not necessarily faster than solving a completely uncoupled m—dimensional system
with m > s. It is therefore hard to determine the influence of a reduction in the number of
unknowns on the computing time a priori. A reduction in computing time can in any case be
expected, when tackling the system’s stiffness. This can be accomplished by a separation of
timescales. Such methods will be presented in the following section.

5.3 Quasi-Steady State Approximation (QSSA)

Similarly as for lumping methods, the key idea of the QSSA [47] is to reduce the number of
unknowns within a chemical kinetics system. The QSSA bases on a separation of timescales.
Highly reactive species are treated as being in a quasi-steady state (sometimes also denoted as
quasi stationary state), i.e. their temporal development is based on the timescales of the slowly
reacting species. Therefore, they are removed from the original ODE system and expressed
though algebraic relations in terms of the slower species. The result is a coupled system of
differential algebraic equations, composed of a lower dimensional ODE system and a set of
algebraic constraints. Typically, the fast variables are also the source of the problem’s stiffness.
Then, removing the fast species from the ODE system also leads to a reduction in stiffness

66 CHAPTER 5. MODEL REDUCTION

for the ODE system. QSSA reduced models can also be interpreted as sets of lumped species
with sets of algebraic constraints. The key point of the approach is the partitioning into slow
and fast dynamics, which equates the definition of the lumping matrix M under additional
constraints. A theoretical base of the QSSA is provided by the singular perturbation theory
(cf. Tikhonov et al. [120]), which will be outlined briefly in advance.

5.3.1 Singular Perturbation Theory

Let the chemical kinetics of a reaction system with n species be described by Eq. (5.2.1).
We assume, the system can be partitioned into a slow part cgow € Rlew and a fast part
Crast € Rt with sqow + Stast = . We rewrite Eq. (5.2.1) in a singular perturbation form

Jdcgl OCtas
astow = g(Cslows Cfast), M 825t = h(Cslow, Cast), (5.3.1)

with the right-hand side function of Eq. (5.2.1) split into the functions g(-,-) € G C R¥slow
and h(-,-) € H C R¥ast with f = (g, h) € R® and a small asymptotic parameter ;1 € R and
@ > 0. We assume, that equation system (5.3.1) has uniquely defined solutions cgjoy and
ctast and g(+,+) and h(-,-) are continuously differentiable in gy and cgg in G and H. In the
singular limit 4 = 0 we obtain a degenerate system

OCslow

ot

= g(Cslows Cfast), Cast = Y(Cslow)s (5.3.2)

where cgast = ¥(Cs0w) 18 a solution of the system of algebraic equations h(cgiow, Ctast) = 0 and
denoted a root. In the general case, several roots can exist. The question now is, which root
has to be chosen, such that the solution to the equation system (5.3.2) is close to the solution
of system (5.3.1).

Theorem 6 (Tikhonov’s theorem). We define a root cpst = ¥(csow) to be stable in the
domain G, if for all points csow € G we have

8h(cslow,¢ (Cslow))

< 0.
acfast

For u — 0, the solution of the original system (5.3.1) approaches the solution of the degenerate
system (5.3.2), if crast = VY (Csiow) s a stable oot of the degenerate system (5.3.2).
For a proof, see Tikhonov [120].

As a consequence of Tikhonov’s theorem and for sufficiently small u, system (5.3.1) can
be approximated by the degenerate system (5.3.2).

5.3.2 Model Reduction Procedure

In a first step, species are selected, that are considered to be in a quasi-steady state. The
identification of QSS species can be accomplished in many ways, as will be outlined later.

5.3. QUASI-STEADY STATE APPROXIMATION (QSSA) 67

Once the QSS species are selected, their right-hand-side terms in Eq. (5.2.1) are set to zero.
This leads to a differential algebraic system of equations (DAE),

dcql
(;tow g(Cslowa Cfast)7 (5.3.3)

de
0= % = h(cslowa Cfast)- (534)

The second equation implicitly defines an algebraic relation ¥qgsa for the concentrations of
the fast species cgasr in terms of the slow ones crast = 1¥qssA (Cslow),

h(CSIOVW IpQSSA(Cslow)) = 0. (535)

5.3.3 Selection of QSS Species

The key to the success of the QSSA is the proper selection of the QSS species. This can
for example be based on a priori expert knowledge about chemical species. An automatized
and more common approach is based on comparing their production and destruction terms,
which is comparable for very fast species. A more sophisticated method for the selection of
QSS species is based on the error induced by the approximation (c.f. Turdnyi et al. [124],
Whitehouse et al. [137]). An expression for the instantaneous, local error of the QSS approx-
imation in the i—th species Ac;, i.e. the concentration difference between the solutions of the
full ODE Eq. (5.2.1) and the reduced DAE system (5.3.3-5.3.4) Ac¢; = |¢; qssa — ¢il, has been
derived by Turdnyi et al. [124]:

with J;; being the i—th diagonal element of the Jacobian matrix. If the error remains small
throughout the simulation, this species can be considered as a valid QSS species [124].

Alternatively, the choice of the QSS species can also be guided by Computational Singular
Perturbation (CSP) theory, as introduced by Lam and Goussis [59]. The basic idea of the
CSP method is a decoupling of the right-hand-side term in Eq. (5.2.1) according to fast and
slow components. Characteristic timescales are identified through an eigenvalue analysis of
the Jacobian of the right-hand-side term. Individual reaction steps are then associated with
characteristic timescales and grouped into reaction groups. A CSP reduced model equates
a mechanism consisting of virtual reaction steps, with rates as linear combinations of the
original reaction steps of the mechanism. This technique has been utilized successfully for
the identification of steady state species in atmospheric chemistry by Neophytou et al. [95],
Lovas et al. [76] and Mora-Ramriez and Velasco [94]. Lgvas et al. [76] employed the CSP
method for the reduction of the Regional Atmospheric Chemistry Mechanism (RACM) [118],
which originally contains 77 species and 237 reactions. Reduced mechanisms with 16 steps
and 56 of the 77 species in steady state produced excellent results in terms of accuracy for
most species and the scenarios considered.

68 CHAPTER 5. MODEL REDUCTION

5.3.4 Solving the Reduced Model

The DAE system (5.3.3-5.3.4) can be solved with a numerical scheme such as DASSL (Differential-
Algebraic System Solver [98]), but can be very time consuming, since it represents implicit
nonlinear equations. No great gain in computing time in comparison to the solution of the
original system is expectable. Computationally more promising concepts base on the decou-
pling of the two equations, i.e. by solving Eq. (5.3.4) explicitly and independent from Eq.
(5.3.3) with fixed values for cgow. The concentrations of the QSS species are then substituted
into the ODEs for the slow species. Such predictor-corrector type numerical schemes have for
example been proposed by Young and Boris [140] and Jay et al. [50]. Sandu et al. [109, 110]
provided a detailed comparison of different solvers applied to atmospheric chemical kinetics.
They showed, that the performance of QSS solvers is not competitive with specialized stiff
solvers like the Rosenbrock schemes for their investigated atmospheric chemistry scenarios.

5.3.5 Qualification as a Coarse Propagator

Due to the poor performance results in comparison to Rosenbrock solvers [109, 110], QSSA
approaches do not qualify as suitable coarse propagators within the parareal algorithm. An-
other major drawback of the QSSA method is, that the sharp differentiation between fast
and slow species in practice often is not feasible, since many species typically are involved in
both fast and slow processes. The QSSA then indeed leads to a reduction in the size of the
ODE system, but not necessarily also to a reduction in stiffness. The following method of
intrinsic low dimensional manifolds overcomes this idea, by distinguishing between fast and
slow processes instead of fast and slow species.

5.4 Intrinsic Low Dimensional Manifold (ILDM) Method

The key idea of the ILDM (c.f. Maas and Pope [81]) method is to describe the system’s
dynamics on the lowest-dimensional attracting slow manifold. Lower dimensional manifolds
in chemical systems have been studied by several authors, e.g. Roussel and Fraser [106]. The
latter investigated trajectories in the concentration phase space for different initial conditions
for enzyme kinetic systems. They found the trajectories to be attracted from smooth hyper-
surfaces for all initial conditions and depicted the relaxation of chemical kinetics as a “cascade
through a nested hierarchy of smooth hyper-surfaces (inertial manifolds)” [106]. With the
reaction proceeding, more and more fast processes equilibrate, and hence the dimension of the
attracting surfaces (i.e. the slower manifolds), that contain the reaction trajectory, decreases
with elapsing time. The lowest-dimensional attracting slow manifold is denoted as the intrinsic
manifold. Figure 5.1 shows sample trajectories for the six-dimensional nonlinear reaction
system as introduced in Sec. 2.2.2, plotted in the two-dimensional phase space of HOs and
HO and for a simulation time of 10® sec. Independent of the initial values, the concentration
of HO follows a slower manifold after some time, which is represented by a one-dimensional
line in the two-dimensional projection of the six-dimensional reaction system depicted in Fig.
5.1. Having collapsed to the lower dimensional manifold, the concentration of HO2 can be

5.4. INTRIN 69

3.80e+06 [oooog
3.76e+06 Joroo
3.72e+06

3.68e+06 | 5 A AAAAAAAAAAAAAAAA

6340108 6.36e108 6386108 6400108 6420108
[HO,]

Figure 5.1: Sample trajectories for the nonlinear reaction system

as introduced in Sec. 2.2.2, plotted in the phase space of HO9

and HO for a simulation time of 103 sec. Entities on both axes

both are in molecules/cm?. Independent of the initial values, all

trajectories are attracted by the same one-dimensional manifold.

expressed as a function of HO and vice versa, hence the number of global degrees of freedom
is reduced by one.

Same as for the QSSA method, the basic idea of the ILDM method is a decoupling of fast
from slow timescales. Fast timescales are similarly expressed in terms of algebraic relations
of the slow ones. Different than in the QSSA method, timescales are not associated with
individual species, but with fast and slow processes. In order to distinguish these processes,
the system is transformed to the space of modes by a projection into the basis of eigenvectors of
the Jacobian of the source term f(c) given at some time ¢ for ¢ = ¢(t). Each mode is associated
with one single timescale. Slow modes are assumed to constitute a lower-dimensional manifold,
onto which the system collapses. A reduced model is constructed, taking only those modes
into account. Since fast modes are filtered out, the reduced model will be less stiff and lower in
dimension than the original system, given by Eq. (5.2.1). During the solution process, an ODE
solver computes the solution for the reduced model. The total state of the full chemical system,
including also fast timescales, can be reconstructed at any time. The calculation of the fast
modes’ contribution, parametrized as functions of the slow ones, however is computationally
intensive. Significant computational savings during run-time can be achieved from their a
priori calculation: Fast modes are calculated for a lattice of possible input values for the slow
modes and stored in look-up tables. During run-time, the full system can easily be recalled
for any slow mode by accessing and interpolating from the respective look-up table.

5.4.1 Theory

The theory behind the ILDM shall be outlined in the following. For a detailed overview, we
refer to the comprehensive work by Maas et al. [79-82]. Again, we consider the system of

70 CHAPTER 5. MODEL REDUCTION

ODEs defined by Eq. (5.2.1) with initial conditions ¢(0) = ¢”. We disturb the system at a
particular point ¢/ with a small perturbation Ac := ¢ — ¢/*. After a Taylor series expansion
and substitution, it can be seen, that a locally linear representation of the motion of the
perturbation is given by

Ac(t) = eh 7T dr AL, (5.4.1)

with the Jacobian J(t) = df(t)/dc € R**® and an initial perturbation Ac® = ¢® — ¢f*. Each
eigenvalue of J(t) is associated with a timescale or mode of the locally linear solution and
effectively gives the speed of relaxation of a small perturbation of the system. Large negative
eigenvalues (or in the complex case eigenvalues with large negative real part) correspond to
rapidly equilibrating processes, that are not necessary to represent long-time dynamics. For
simplicity, we assume the Jacobian is constant in time in the following. Then, Eq. (5.4.1)
reduces to

Ac(t) = e’ AL,

We denote the eigenvalues of J by A1, Ag,...,As € C and corresponding eigenvectors by

V1,09, ..., € C°. We introduce the matrix of eigenvectors V and its inverse V! € C*** by
I 61 -
o o a
Vi=| v vo ... vg |€C™and V™ =) e C**s,
- IDS -

Then it holds J = VAV™!, where the diagonal matrix of eigenvalues is denoted by
A = diag(A1, Ag, ...y As) € C%*%. A locally linear representation of the development of per-
turbations can then be written as

Ac(t) = VMV TIAL.

Since the matrices V and V! in general don’t have diagonal structure, the off diagonal terms
represent the couplings of species and their contributions to different timescales. Hence,
each species grows/decays to multiple timescales. From this, a new set of variables can be
constructed from linear combinations of the original ones: We define a vector z € C?, that is
the representation of ¢ in the basis of eigenvectors of the Jacobian J. A perturbation in z,

Az =z — 2
will then grow or decay exponentially with
Az(t) = eMAZ, (5.4.2)

depending on the size of the eigenvectors. Since A is a diagonal matrix, a perturbation in the
i—th component of Az grows/decays according to one single timescale 7; with \; = Tz-_l,

Azi(t) = eMPAZY. (5.4.3)

5.4. INTRINSIC LOW DIMENSIONAL MANIFOLD (ILDM) METHOD 71

Ordering the eigenvalues upon the size of their real part from large and negative to large and
positive allows to identify fast and slow modes. From Eq. (5.4.3) it can directly be seen, that
an initial perturbation Az) decays, if Re()\;) < 0. Very fast modes, i.e. modes with very
small 7;, correspond to rapidly equilibrating processes and can be identified by eigenvalues
with large, negative real part, i.e. Re();) < 0. Eigenvalues with Re();) ~ 0 represent
constant modes. Eigenvalues with positive real part correspond to non-equilibrating modes,
since a perturbation will grow in time. Complex eigenvalues in general represent an oscillatory
behavior. Depending on the absolute value of their imaginary part, they are typically treated
as real eigenvalues, in practice.

Since the system responds according to single timescales, we consider the components
of z as the modes of the system. The transformation matrix V! shows, how each species
contributes to the modes associated with each eigenvalues. We rewrite Eq. (5.2.1) in terms

of the new variable z := V!¢,

dc

V*la = Vlf(e)
A
=: F(c).

If an individual mode of the s-dimensional phase space has been attracted by an s —
1-dimensional, slower manifold, we say that it has collapsed to the intrinsic manifold. A
collapsed mode will not change in time anymore, i.e.

0z .
0= 87_; = Uif(c)v
with @; denoting the i—th row of the inverse of V!, Ordering the system according to the
real parts of the eigenvalues (as described above), allows to divide the vector of modes into a

fast and a slow part, zgow € C%low and zgge € Cofast with sgiow + Stast = S,

-1
— Zslow _ ‘/;lowc
Zz = = V 1 5
Zfast fastC
-1

where Vo € C%low*® and Vf,;slt € C®mst*$ denote the first sgow and the last sgg rows in V=1
respectively. Assuming the fast modes to be in local equilibrium, it is

0= %= =V 1f(c). (5.4.4)

Equation (5.4.4) describes the characteristic property of the fast modes, that serves as defi-
nition of the ILDM.

We can further split the vector of concentrations ¢ = Vz in parts arising from slow and
parts arising from fast dynamics, cgow € R® and cgaer € R,

c = Vz
= (Vilow Viast) (isfz)s‘:)

= VilowZslow + Viast Zfast (5-4-5)

=Cslow =Cfast

72 CHAPTER 5. MODEL REDUCTION

with Vijow € R%*Sslow composed of the eigenvectors in V' for the sqow eigenvalues with smallest
absolute values, and Vp,g € R%*Sfast composed of the sgg; eigenvalues with biggest absolute
values,

V — ’UT U|SSIOW vrslow+1 ‘,US ,
—— ———
Vslow Viast

= (Vilow Viast)

Note, that in general (Vyow) ! # VS_1 Inserting Eq. (5.4.5) in the definition of the ILDM,

low*

Eq. (5.4.4) yields an implicit definition of zg.g = A (2slow),

0= va;s}: f(‘/slowzslow + ‘/}astzfast) = va;s}c f(‘/;lowzslow + Wast¢(zslow))~ (546)

Since the original system of ODEs may be nonlinear, V' is not necessarily constant in time
and with varying c(¢). As pointed out earlier, we stick to linear problems here for the sake of
simplicity. Then it J = const. and following also V' = const.. Then, Eq. (5.4.6) can also be

written in terms of cgow = Valow Zslow and
Cfast = ‘/fastzfast = ‘/fast¢ (zslow)
—1
Vfastd)(‘/slowcslow)
=: YoM (Cslow)

and therefore it is also

0 = Vi f(Cstow + PLom(Csiow))- (5.4.7)

Same as for the previously introduced QSSA method, were we have ended up with an algebraic
relation qssa (see Eq. (5.3.5)) for the contributions of the fast species cpas; in terms of
the slow ones cpst = ¥Qssa(Cslow), We have now found an implicit definition for cpe =
YoM (Cslow) -

5.4.2 Model Reduction Procedure

To reduce a complex chemical kinetics model with the ILDM only two input information are
essential: The detailed chemical mechanism and the number of degrees of freedom in the
simplified scheme si,py that define the size of the intrinsic manifold.

The procedure starts with an eigenvalue analysis, whereat the eigenvalues are ordered with
descending absolute values of their real parts. We associate an eigenvalue with one timescale
each and assume that the system is equilibrated with respect to the fastest timescales. During
the integration, only slow processes are explicitly considered. Instead of approximating a
solution ¢ € R® at time t = Typq to Eq. (5.2.1), we only approximate a solution cgow €
R? at time t = Ty with respective slow initial conditions, i.e. a projection of some initial

5.4. INTRINSIC LOW DIMENSIONAL MANIFOLD (ILDM) METHOD 73

conditions into the space of slow modes. The resulting initial value problem does not inhere
fast processes, hence it presents a less stiff system, which allows to use significantly bigger
time-steps during the integration, or respectively less small time-steps if an adaptive time-
stepping scheme is used. At final time T,,q we have to incorporate the contributions of the
fast modes, parametrized by means of the slow ones, c¢fst = YrLpM(csiow). This algebraic
relation is given implicitly by Eq. (5.4.7). Solving the latter however is a tricky issue, both
from an implementational and a computational point of view. Equation (5.4.7) characterizes
the solution implicitly and based on a (in general) nonlinear system. Since f(-) € C*, but
Vf;Si € Cstast %5 it further represents a system of sg,5¢ equations with s > s, unknowns, hence
it is under-determined. One common approach in literature and which we will make use of is
to amend the problem with additional parametrization equations and thereby regularize the
original problem. Once a suitable parametrization has been found, the closed system can be
solved numerically. As f depends nonlinearily on ¢, we use Newton’s method to approximate
a solution x € R® of Vf;; f(x) = 0, which implicitly gives the solution for cf.st = YoM (Cslow)
as T := Cslow + Y1LDM (Cslow) € R®. Newton’s Method is an iterative approach to find the roots
of a real-valued function ®(z): Find x € R® so that ®(x) = 0. With an initial guess z¢, we
iterate over ¢ and repeat
Ti1 o= xy — [VO(z;)] " ®(a)

until convergence. Here, we seek the root of ®(x) := Vi, f(z). Assuming again, that V| is
constant, the Jacobian is V®(z) = Vf;SltV(:c) As an initial guess, we take x¢y = Cglow-

5.4.3 Parametrization of the ILDM

By now, we have not taken into account, that both Vi, € R*st*3 and V®(z) = V1 V(z) €
Rstast XS are not of full rank and therefore not invertible. Eq. (5.4.7) represents a set of Sgagt
equations for s unknowns with s > sge. We therefore add sgoy additional parametrization
equations, to restrict the system’s solution space:

Vit f(2)) _
(P()) = 0, (5.4.8)

and solve .
Vit V(i)] (Vi ()) '

AR [VP(z;) P(z;)

The choice of the parametrization equations influences existence and uniqueness of a solution
to Eq. (5.4.8), but does not affect the manifold itself. Choosing adequate parametrization
equations is one of the crucial parts of the ILDM method.

Reaction Progress Variables One typical approach for adding additional parametrization
equations found in literature, is the usage of specific element mole numbers, concentrations
or even linear combinations of them, see e.g. [81, 82]:

P(x) = cspc — yspe,

74 CHAPTER 5. MODEL REDUCTION

with cgpc being the actual species concentration of species SPC and ygpc being a reference
value on the manifold. This reference value could for example be the value of species SPC at
steady state. The species, that are chosen to parametrize the manifold, are called reaction
progress variables. No matter, how these reaction progress variables are chosen, the manifold
will be the same, as the reaction progress variables only allow for some parametrization. The
manifold can now be constructed by varying the values of the reaction progress variables. By
solving Eq. (5.4.8) for each new input value, we construct the ILDM. As a result, we get
an Sgow—dimensional table for each of the sgg species that holds its values as a function of
the reaction progress variables. Once the manifold has been constructed, we can store it in
tables and use it in subsequent simulations. During the simulation, the respective values can
be looked up in the tables. This way, the time-intensive calculation of the ILDM is omitted
during the simulation. Instead of solving a stiff problem, one solves a less stiff problem,
and updates fast mode contributions by looking up values in the update table. The price of
this relief is the a priori construction of the manifold, which - depending on the requested
detailedness - can be very time-consuming.

Several approaches exist, towards an efficient construction of the manifold. This includes
the choice of the mesh, whose nodal points define the discrete values for the reaction progress
variables, for which we solve Eq. (5.4.8). As the state vector ¢ is bounded by physical
constraints, e.g. temperature and pressure, the manifold will be bounded, too. This charac-
teristics can be exploited during the construction manifold and the mesh can be limited in
preface. Typically, the parametrization is constant during the construction. The approach
inheres difficulties: In regions, where the reaction progress variables are constant, but the
parametrized species are not, the parametrization will be ill-conditioned. This can be circum-
vented by a local adaptation of the parametrization. Aforementioned and more approaches
for an efficient construction of the manifold can be found in [79].

Figure 5.2 visualizes the parametrization using reaction progress variables by means of the
six-dimensional nonlinear example, introduced in Sec. 2.2.2. As reaction progress variables
HO and HOs were chosen. The ILDM was calculated on an equidistant mesh with 441
nodal points, whereat HO ranges from 3.0 - 10° — 3.9 - 10° molecules/cm® and HOy from
5.6-10% — 6.8-10% molecules/cm3. The colored lines show the development of the specific mole
number of O3 during a simulation time of 103 sec, plotted as a function of the specific mole
numbers of HO and HOs. Each of the five runs was started with a slightly modified initial
state. Independent of their initial values, all trajectories are attracted by a slower manifold,
represented as a lattice. Before a trajectory collapses onto this manifold, it is depicted in
yellow, after the collapse in pink. For convenience, the shadow of a trajectory before it has
collapsed (yellow) onto the slower manifold is depicted as a gray dashed line. Having collapsed,
the trajectory will remain close to the manifold for all times. With elapsing simulation time,
all trajectories are further attracted by a lower-dimensional manifold, that is represented as a
blue line here. All trajectories approach one another far before equilibrium is reached. In this
3D-projection of the 6-dimensional chemical system, the manifolds depicted as lattice and line
appear to be two- and one-dimensional. In fact, they are 5- and 4-dimensional.

7.2e+11

6.8e+11

586408 6.4e+11

6.0e+08
[HO], 6.2e+08
6.4e+08

6.6e+08

6.0e+11

3.8e+06
3.4e+06 :6€+06

[HO]
Figure 5.2: Sample trajectories for the nonlinear reaction system as introduced in
Sec. 2.2.2, plotted in the phase space of HOo, HO and Og for a simulation time of
10? sec. Entities in all axes are molecules/cm?.

3.2e+06

Discussion Parametrization The great success of the ILDM method in combustion sim-
ulation stems from its potential to use look-up tables. However, the usage of look-up tables is
limited to applications, where the size of the ILDM is very small, typically below 4. For the
nonlinear ozone formation scenario from Sec. 2.2.2 a tabulation strategy may be promising.
Depending on the choice of parameters, ILDMs with sizes below 3 can be identified. As soon
as we switch to more realistic scenarios, as will be the case in Sec. 6, we will find higher
dimensional intrinsic manifolds. For those scenarios, tabulation methods are not promising
anymore, since the storage demands become paramount. In general, also functional fitting
methods can be used, to replace the look-up tables for the parametrized ILDM. The model re-
duction procedure presented so far is then amended with an additional functional fitting step,
that describes the parametrized ILDM as a function of the reaction progress variables. Instead
of accessing high-dimensional look-up tables that hold values for the individual species, one
has to access a look-up table holding the coefficients of the fitted function and evaluate the
latter.

5.4.4 Qualification as a Coarse Propagator

An ILDM-reduced model consists of a less stiff and lower dimensional system of ODEs than
the original system Eq. (5.2.1). Since all fast modes are filtered out, the reduced ODE system
represents only the change in concentration due to slow modes cgow. It is therefore less stiff
than the original system and will be easier and faster to solve numerically. The contributions
of the fast modes cp,s; can be accounted for through an additional update step at any time of
the simulation, whereat cgg is implicitly defined by Eq. (5.4.7). Solving the latter however

76 CHAPTER 5. MODEL REDUCTION

is computationally demanding and should be avoided during run-time of the reduced model
for the purpose of a good performance. For small ILDM sizes, the fast mode updates can
be calculated a priori over a lattice of possible slow mode contributions cgow and stored in
look-up tables, that are being accessed during runtime. Especially in the field of combustion
simulation, this technique has become increasingly popular within the last decades. For those
applications, very low dimensional manifolds can be found - typically it is sgow = 2 or 3.

While the ILDM method is common use in combustion simulation for more than 20 years,
it has not gained popularity in atmospheric chemistry. Lowe et al. [77] and Tomlin et al.
[121] investigated the method’s potential for several problems arising in atmospheric chem-
istry, such as the Carbon bond mechanism, which models the formation of tropospheric ozone
or the oxidation of butane. For simulated periods of multiple hours up to multiple days,
the authors investigated existence and size of intrinsic low dimensional manifolds. All results
indicate, that the intrinsic manifolds vary diurnally and depending on the photolysis rates.
This poses difficulties for the practical application of the ILDM, since large ILDM sizes lead
to high-dimensional look-up tables. In some cases, the memory requirements associated with
the look-up tables even exceed the storage potential of respective state-of-the art hardware.
For the Carbon bond mechanism, investigated in [77], the lowest dimensional manifold was
shown to vary between 2 at night and 9 at daytime. In practice with the RADM?2 scheme,
this would lead to huge look-up tables: All fast modes have to be tabulated parameterized
by the 9 intrinsic, slow modes. In total, 63 — 9 = 54 tables will be necessary. We assume,
the parametrization is carried out at p discrete values over a realistic range for each of the 9
parameterizing species. Each table then contains p? scalar values. If storing the parametriza-
tion in single precision, the resulting storage demands are 54 - p° - 4 Bytes. Even for a very
rough parametrization using a dimension of p = 12, the total storage demand already ex-
ceeds a TeraByte, for p = 56 an ExaByte. Since the dimension of the ILDM varies with
daytime, multiple such tables have to be constructed and stored. In its classical form, the
ILDM method therefore does not present a promising framework for a reduced model coarse
propagator.

The existence of low dimensional intrinsic manifolds can however be exploited to construct
low-dimensional representations of the chemical reaction kinetics by means of so called repro-
models. Repro-modeling will be outlined in the following section.

5.5 Repro-Modeling

Different than most model reduction approaches, repro-modeling methods do not pursue a
reduction of the dimension or the stiffness of the ODEs. Instead, one seeks for functional
representations of the time-dependent kinetic change within chemical systems. To this end,
for example polynomial functions can be fitted, to map sets of input to sets of output concen-
trations. The result is an explicit expression for the chemical species after certain integration
time. The major drawback of repro-modeling is, that they are only accurate for the condi-
tions, the fitting has been obtained from. However, they have been successfully applied to a
wide range of atmospheric chemistry problems:

5.5. REPRO-MODELING 7

An early application of repro-modeling in atmospheric chemistry dates back to 1985, when
Dunker [30] parameterized a smog mechanism using second-order Taylor expansions to de-
scribe the changes in the concentrations. The coefficients of the expansion were calculated by
solving sensitivity equations and stored for subsequent use. Using the parametrized functional
representation instead of an implicit integration of the full mechanism led to a reduction of
computational efforts of over two orders of magnitude, while maintaining an accuracy of ap-
prox. 10%. In 1987, Marsden et al. [86] used second-order log-linear functions to parametrize
a smog mechanism. The resulting functional representation was approximately 10 — 20% less
accurate than the original model. In 1990, Spivakovsky et al. [115] developed a sophisticated
procedure to parametrize a global model for HO—concentrations. Higher-order polynomials
were generated with a least-squares fitting procedure. Probability density functions (PDFs)
for the lattice of all possible concentrations were used as input data. Ineffective coefficients
were finally sorted out, to make the polynomials easier to evaluate. Crucial modifications to
this method have been proposed by Turdnyi [122] in 1994, who parametrized a skeleton model
of the oscillating Belousov-Zhabotinsky reaction (c.f. [11] and [141]). Turdnyi introduced two
crucial modifications to Spivakovsky’s method: First, he replaced PDFs as input data by
box-model simulations with input values in realistic ranges. Second, he used orthonormal
polynomials instead of usual polynomials, leading to a simpler and more effective fitting pro-
cedure. Section 5.5.1 outlines the basic principles of a general repro-modeling approach as
proposed Turdnyi [122].

An application of polynomial repro-modeling to a realistic 90—species tropospheric chem-
ical mechanism has been presented by Lowe and Tomlin [77]. Since the number of polynomial
terms, and therefore also the fitting and simulation time increase with the number of vari-
ables, it is desirable to choose the lowest dimensional polynomial grade possible. To this end,
the authors first identified the dimension of the intrinsic lowest dimensional manifolds. Fol-
lowing, they showed, that the full model with 90 species can accurately be represented over
a wide range of initial conditions using a 9—th grade polynomial repro-model. The choice
of a nine-dimensional representation was guided by the existence of low dimensional intrin-
sic manifolds with sizes varying between 2 (nighttime) and 9 (daytime). Once a system has
collapsed onto a lower dimensional manifold, less functional expansions will be required. For
each of the 90 species 24 repro-models were fitted by means of a 9—th grade polynomial. Each
of the 24 repro-models per species equates a functional representation of the change within
one hour of a day with different photolysis conditions. The CPU time required to evaluate
the repro-model was approximately 25% below the computing time needed for the box-model
simulations. In total, 360 learning model runs were necessary.

An essential challenge within polynomial fitting approaches is, that the number of data
sets required for an accurate fitting grows exponentially with the number of chemical species
involved. The family of High Dimensional Model Representation (HDMR) [101, 102] methods
present a special class of repro-modeling without requiring large numbers of model runs. Since
an HDMR expansion is represented by very few component functions, it is further faster to
evaluate than a polynomial repro-model. The basic idea is, to express the output of the full
chemical model as an expansion of correlated functions. For this approach, the number of

78 CHAPTER 5. MODEL REDUCTION

input data sets grows polynomially with the number of species. Since its appearance in 1999,
the HDMR method has rapidly gained popularity in atmospheric chemical kinetics. Also in
1999, first applications of the HDMR to stratospheric box-models have been made by Rabitz
and Alig [101] and Shorter et al. [113]. In the same year, Wang et al. [134] applied the
HDMR method to derive a Fully Equivalent Operational Model (FEOM) for usage in a global
chemistry-transport models. Later, Wang et al. [131, 133] proved it in practice: Using HDMR
expansions with first-order expansion led to a speed-up of a factor of up to 1 000 compared
to an implicit integration of the chemical system. The theoretical base behind the HDMR
method will be explained in Section 5.5.2.

5.5.1 Principles of Repro-Modeling

A repro-model can be denoted as a functional representation F' : R® — R?® of the time-
dependent kinetic change within a chemical system (given by Eq. (5.2.1)), that maps vectors
of given concentrations at time ¢, ¢(t) € Z C R®, to respective output vectors at time ¢ + At
for a given At > 0, c¢(t + At) € R*:

c(t+ At) = F(c(t)).

A General Repro-Modeling Algorithm can be stated as follows (c.f. [123]):

1. Select a characteristic time-step size At, for which the repro-model shall be valid.

2. Carry out several thousand simulations % = f(c) for an integration time of At and

with differing input concentrations c(t) (that serve as initial values), which are typical
for the circumstances, under which the repro-model will be used. Additionally, also the
environmental conditions can be varied and serve as input data. They are neglected in
the notation for simplicity.

3. Store pairs of input values ¢(t) and output values c¢(t + At) in a database.
4. Fit a function F to map c(t) to c(t + At).

Once a function F' is found, the repro-model can be used instead of an implicit integration of
Eq. (5.2.1) subject to the initial conditions ¢(t), for example for the solution of the chemical
reaction kinetics during a splitting interval within an AQM.

5.5.2 High Dimensional Model Representation (HDMR)

High Dimensional Model Representation (HDMR) is a family of methods, that provide hierar-
chical, functional representations of the input-output relationship of chemical kinetics systems
with many input variables. The input-output relationship is typically composed of indepen-
dent and/or cooperative effects between multiple chemical species. This suggest to express
the output c(t + At) = F(c) as a hierarchical expansion in terms of the input variables,

Fle) = Fo+> Fla)+ > Fjle,c)+ > Fyilci,cjcr) + -+ Fia.s(cr, ez, (5,54)
i=1

1<i,j<s 1<i 5 k<s

5.5. REPRO-MODELING 79

The constant zeroth-order term Fy denotes the chemical system’s mean effect. The second
term, Fj(c;), denotes the independent effect of variable ¢;, the term Fjj(c;, ¢;) denotes the
interactive effect of a variation of ¢; and ¢j, etc.. Finally, the term Fia s denotes the s—th
order interactive effect of all s input variables on the outputs.

To construct an HDMR expansion, suitable expressions of the component functions
Fiiiy..i,(Ciy s Cig, ...y ¢5;) have to be found with [= 0,1,...s. They are constructed as optimal
choices for the output F'(c) for all ¢ € Z, i.e. through a minimization of the functional

figig...i

min /Iwilig...il (¢,¢c) lF(C) — Fo = Xi<i<s Filei) — 2i<ij<s Fijlciy)
e T Zlgil,iz,...,ilgs Fili2miz (Ci17ci2> s Cil) de,

with the weight functions wj,iyis. i, (€,).

A popular method to compute the component functions is presented by the Cut-HDMR
method (c.f. [101, 102]). The component functions are determined by evaluating input-output
responses relative to a reference point ¢ € 7 for a wide range of input values c € Z,

Fo = f(¢)
Fi(c) = flei,é") —ho
Fyj(ci,cj) = flei ¢, &) = Fy(e) — Fiej) — Fy

The notation f(c;,¢*) signifies, that all input values are at the reference values of é, except
for the i—th concentration of c:

f(Ci, éz) = f(él, 62, ey él',l, Ci, éz'Jrla e és).

The input values ¢ are thereby chosen along associated lines, surfaces, sub-volumes,..., i.e.
along discrete cuts in the input space Z through the reference point é. The computational
effort to learn the component functions scales polynomially with the number of key variables
SHDMR, i-6. the number of variables, for which the input values are varied. When taken to
convergence, the Cut-HDMR is invariant to the choice of ¢ € Z, it is however advisable to
choose ¢ in the neighborhood of interest in Z.

Once the component functions Fp, Fj, Fjj,... have been obtained, they can be used to
predict the output behavior of the system for any input value ¢ € Z. To this end, they are
stored in low-dimensional look-up tables over the input variables. During run-time, the output
value F'(c¢) for any arbitrary point ¢ € Z can be determined by performing low dimensional
interpolation over Fj(c;), Fij(ci,cj),.... A considerable reduction of the complexity of the
HDMR expansion is given by the assumption, that higher-order correlated effects of the inputs
are negligible with respect to the outputs. In practice, an expansion up to 1st or 2nd order is
typically sufficient. The total number of model runs to construct Fy, F; and Fj; for a 1st/2nd

80 CHAPTER 5. MODEL REDUCTION

order HDMR is given by

#runs; = 1+ SHDMR - P, (5.5.2)

SHDMR * (SHDMR — 1) - p?
2)

#Hrunsy,y = Hruns;g + (5.5.3)

for a given number spypymp of key variables, that each is varied over p discrete value. This
equates also the dimension of the look-up table for each of the s species, leading to a total
storage demand of s - #runs - 4 Bytes when using single-precision. For an application to the
63-variable RADM2 scheme with s = sgpyr = 63 and p = 10, 631 model runs for a first-
order, 281 989 model runs for a second-order HDMR, are necessary. Respectively approx. 0.16
MB storage is necessary to hold the look-up table for a first-order expansion, 50 MB for a
second-order expansion.

The storage demands can be reduced dramatically, when defining the HDMR as a function
of few sgpMmR process variables only with sypymr < 8. As the number of component functions
decreases with the number of key variables, also the fitting and simulation time decreases.
Therefore, it is desirable, to choose a low number of key variables. A species can for example
be omitted during the parametrization, if it is constant over the simulation interval [¢, ¢+ At]
or if it is always initialized with the same initial concentration, e.g. with zero or a prescribed
emission.

5.5.3 Construction of the HDMR model

In order to construct an HDMR model, we first need to clarify the purpose of the HDMR
expansion, i.e. for which input space Z and which step-size At shall it be valid and around
which reference point ¢ € Z do we want to construct it. The remaining variable parameters
are:

— the degree of the HDMR expansion
— the number of parametrization points p
— the number of key variables sypmg, to parametrize the repro-model

We showcase some of the variable parameters by means of the Lotka-Volterra problem,
that describes the dynamics of biological systems with two interacting species, one acting as
prey x and the other one as predator . The temporal evolution of the populations of prey and
predator can be described by a first-order, nonlinear ordinary differential equation system,

Oz oy

o = az—Bry,

- 5.4
5t dxy — vy, (5.5.4)

where the parameters «, 8, 7 and § describe the interaction of the two species. For the
following examples, we choose @ = 2.0, 8 = 1, v = 0.25, 6 = 1.0, 2(0) = 1.0, y(0) = 1.0.
Figure 5.2 shows the temporal evolution of the populations of the predator (black) and the
prey (blue) within an simulation interval of 30 seconds. The oscillatory interaction between
prey and predator populations can also be seen in Fig. 5.1, where sample trajectories are

5.5. REPRO-MODELING

81

plotted in the phase space of prey and predator. Sample trajectories were created from evenly

varying the initial concentrations within an input space of Z = [0.5, 1.5] x [0.5, 1.5], depicted

as a dark gray box. The respective solution space after a simulation time of ¢ = 1 sec is

highlighted as a lightly shaded box.

In the following, we want to construct HDMR repro mod-
els with varying parameter choices. In all cases, we choose
the input space as Z = [0.5, 1.5] x [0.5, 1.5], the reference
point as ¢ = (1.0, 1.0) and At = 1.0 sec. Figure 5.3 shows
the input-output responses used for the construction of the
zeroth-, first- and second-order component functions Fy, F;
and Fj; during the construction of an HDMR repro model
for the two dimensional Lotka-Volterra problem and with
p = 4 parametrization points. In all plots, the input space
is depicted as a gray square, the respective output space at
t = At as the light gray area. Black arrows showcase the
trajectories, that need to be calculated for the construction
of the respective component function.

The left plot showcases the construction of the zeroth-
order term, that is defined by the input/output response of
the reference point, here marked with a dark blue dot. For
the construction of the first-order term, each one species is
held at the reference state, while the other species is varied
along the so called cutting lines over p values. The associated
cutting lines are depicted as blue lines, respective initial val-
ues are marked as circles. In total s-p = 8 trajectories need

Figure 5.1:

Predator

Prey and preda-

tor populations of the Lotka-

Volterra problem.

to be calculated for the construction of the first-order component functions F;. For the con-

struction of the second-order term, both species are varied at the same time over the cutting

surface, here indicated with the black grid. For the construction of the second-order compo-

_1).n2
nent functions Fj; another s(s=b-p” 21)P

Lotka-Volterra Problem

a=2.0, 3=1.0, v=0.25, §=1.0

= 16 trajectories need to be calculated. To construct a

Population

[— prey

—_ predatorL

0 1
0 5 10 15

20

25 30t

Figure 5.2: Temporal evolution of predator and prey populations for the Lotka-Volterra prob-

lem over 30 sec.

82 CHAPTER 5. MODEL REDUCTION

45T T T T T T 45 T T T T T 45

35} B 35} 35}

B \\ | 2| \\ \}\ \ | 2. \\\ \ \\
T | ,/ |
/

)

Predator
Predator
Predator

20} 20}

15

/

7V /
1of 4 p=4- 10 "(;’; 7 p=4- vorl A7 //'/' =4
#runs =1 et #runs = 8 A / #runs = 16
= g 4
05 L L 1 L L L] 05 Lo L L L L 1 05 = L il 1]
0.5 1.0 15 2.0 25 3.0 0.5 1.0 15 2.0 25 3.0 0.5 1.0 15 ZO 25 3.0
Prey Prey Prey

Figure 5.3: Input/output responses used for the construction of 0-th (left), 1st (center) and
2nd (right) order component functions fy, f;, fi; during the construction of a HDMR repro-
model for the two-dimensional Lotka-Volterra problem, with sypyr = 2 and p = 4. The
input space Z = [0.5, 1.5] x [0.5, 1.5] is depicted as a dark gray square, the respective output
space at t = At = 1 sec as the light gray area. The reference point is chosen as ¢ = (1.0, 1.0)
(dark blue dot). Respective solution trajectories needed for the construction of fy, fi, fi; are
depicted as black arrows.

second-order HDMR, 1 + 8 4 16 learning runs are therefore necessary in total.

For an uneven number of parametrization points, the HDMR is exact at the reference
point. When adding a random perturbation to the initial conditions, the quality of the
predicted output of the HDMR decreases. Figure 5.4 shows the absolute error of first-order
HDMR expansions with p = 3, 5, 7 of the Lotka-Volterra problem, while adding random
perturbations within (0 — 10%), (10 —20%), (20 — 30%), (30 —40%) of a species’ range in
the input space. To that end, each 100 test runs were carried out, with perturbations chosen
randomly within the respective perturbation interval. The x-axis denotes the percentage of
the perturbation, that has been added to the initial concentration. The y-axis denotes the
absolute error of the HDMR expansion at t = At, in comparison to the reference solution,
calculated from the full system and integrated using RODAS(3)4 [46]. The absolute error at

time At is being calculated as [[u(At) — F(AD)] 2 = /S5, (ui(At) — F(A)],)2.
As can be seen, the HDMR expansion is exact when applylng it to the reference point,

i.,e. at 0%. With increasing perturbation, the quality of the HDMR expansion deteriorates.
For p = 3, the HDMR prediction is significantly worse than for p = 5 and p = 7 for all
perturbations. For p =5 and p = 7, relative errors are comparable for the first-order HDMR.

Figure 5.5 shows respective absolute errors of a second-order HDMR expansion. All ab-
solute errors are significantly smaller than for the first-order expansion. At the same time,
the number of learning runs required for the construction of the HDMR and the number of
floating-point operations and operations during the evaluation of the HDMR increases, as
can be seen in Figure 5.6. The black dots again shows the absolute errors, now only for
random perturbations within 30 —40%. The white bars depict the number of learning runs to
construct the HDMR expansion. Grey bars depict the number of (theoretical) floating-point

5.5. REPRO-MODELING 83

Absolute Error of 1st order HDMR

Key Variables: Prey, Predator

0.06 e
< -3 @ p5 -O-p-7|
=
-~
\<1/ 0.04 |- .
~
=

0.02 | i
< ___4
N—r
3 ‘)/___.:—‘—(.f""

0% (0-10%) (10-20%) (20-30%) (30-40%)

Figure 5.4: Relative error of a two-dimensional, first-order HDMR expansion constructed for
the Lotka-Volterra problem over At = 1 sec and varying choices of p.

Absolute Error of 2nd order HDMR

Key Variables: Prey, Predator

2 - 3 @ p-5 O p-T7
= 0.025 P i = i
—
-~
A 0.020 i
S—r
5'* 0.015 4
< 0.010 .
N
S 0.005 o—
p— T W r

0.000 . hd

0% (0-10%) (10-20%) (20-30%) (30-40%)

Figure 5.5: Relative error of a two-dimensional, second-order HDMR expansion constructed
for the Lotka-Volterra problem over At = 1 sec and varying choices of p.

operations, that are required for a single evaluation of the HDMR expansion once. On the
x-axis, the different HDMRs with varying degree and number of parametrization points are
shown.

5.5.4 Qualification as a Coarse Propagator

An application to tropospheric chemistry of an HDMR expansion has for example been pre-
sented by Wang et al. [131, 133]: In a first study [133], the authors proposed first-order
HDMRs for an application to a box-model study of complex alkane/NO/Og photochemistry,
including 52 chemical species. For each hour of the day, one first-order HDMR expansion with
32 key variables was constructed, each with different photolysis conditions. In total, only 289
box-model runs were necessary. The HDMR operations were about 400 times faster than the
box-model simulations. In a following study [131], Wang et al. applied the HDMR to a con-
densed, lumped form of the same chemical mechanism. This time, 6-dimensional first-order
HDMR expansions were constructed for each species and each hour, which required a total
of 55 box-model runs. The CPU time required to evaluate the HDMR, expansions was more
than 1 000 times faster than the computing time needed for the box-model simulations. The

84 CHAPTER 5. MODEL REDUCTION

Quality of the HDMR vs. Computational Cost

Random Perturbation within (20-30%) of Z
0.05 200

N |E #runs [#FLOPl
— 0.04 |
g {] - 150
—~ 0.03}
LT ® 4100
— 0.02 |}
3
< - 50
& 0.01}
0.00 L— [? L 0
1st order 2nd order 1st order 2nd order 1st order 2nd order
p=3 p=3 p=5 p=5 p=7 p=7

Figure 5.6: Quality of the HDMR versus computational cost for the Lotka-Volterra problem.
Black dots depict absolute errors of the respective HDMRs (as described on the x-axis). White
bars signify the number of learning runs necessary for their construction, gray bars the number
of floating-point operations for their evaluation during runtime.

first-order HDMR was tested with 1 000 random input samples within the full input space Z.
The relative error to the solution of Eq. (5.2.1) was below 5% for only 40% of the random
samples. When choosing samples within a smaller subset of Z the relative error was below 5%
for more than 85% of the samples. A second-order HDMR expansion was further presented,
that accurately represents the full dynamic range. In terms, another 1 215 model runs were
required for the construction of the second-order component functions.

Due to the promising performance speed-ups shown in [131, 133], the HDMR method
appears to be a viable choice for the coarse propagator within the parareal application. Since
the number of key variables defines the number of model runs and the computational effort
for the evaluation of the HDMR expansion, it is advisable to choose a low number of key
variables.

The major drawback of repro-modeling approaches however is, that a repro-model is only
valid for the fixed time-step size, it has been constructed for. In a combined application with
the parareal algorithm, this requires either an equidistant decomposition into time-slabs or a
decomposition into time-slabs with sizes being multiples of each other, such that the repro-
model is being evaluated multiple times on bigger time-slabs. For the six-variable mechanism
considered in Chapter 4.2, equidistant decompositions disqualified, since they have shown to
result in load-imbalances. When using a decomposition with time-slab sizes being multiples
of each other, the respective repro-model must be valid even for the smallest step-sizes. In
Chapter 4.2, we had further seen time-step sizes ranging from approx. 107 sec to 102 sec.
Respectively, the repro-model would have to be called sequentially (Teng—7p)/107? = 3.6-1012
times during the sequential prediction for this scenario. A performance gain can not be
expected here, unless a single evaluation of the repro-model is more than 3.6 - 10'? times
faster than the total computational effort of the sequential scheme. Performance gains found in
literature typically do not exceed a factor of 1 000. On these grounds, we refrain from a repro-
model based parareal approach for the usage in the framework of an internal parallelization
of the six-variable mechanism.

5.6. CONCLUSIONS 85

However, when using an equidistant decomposition in time, a combined application of
repro-modeling and the parareal algorithm still is promising. In the following Chapter we will
therefore apply the approaches to enable an external parallelization of the more sophisticated
chemical mechanism RADM2. Different than in the examples presented so far, we now also
taking into account external disturbances and varying photolysis rates.

5.6 Conclusions

We have seen different model reduction techniques. For the application as a coarse propa-
gator within the parareal algorithm, a suitable reduced model must be significantly faster
than the full model, while maintaining a relatively good accuracy. Lumping methods require
a high degree of expertise in the chemical system and do not present a generic model re-
duction framework. A lumped model will be smaller in dimension, but not necessarily less
stiff. Since stiffness is the dominant factor on the computing time, a significant reduction in
computing time can not per se be expected from a lumped model. QSSA methods present a
way to tackle the system’s stiffness by a separation of timescales. Numerical investigations
[109, 110] however have shown, that such methods are not promising in terms of comput-
ing time compared to Rosenbrock schemes. The ILDM method presents a similar approach,
that bases on a description of the kinetics on lower dimensional manifolds. Computational
gains compared to a solution of the full system can only be expected, if the ILDM can be
calculated a priori and accessed from look-up tables during run-time. Due to the enormous
storage demands for the look-up tables, this is technically not feasible for an application to
atmospheric chemical kinetics. Repro-models are an alternative to aforegoing model reduc-
tion approaches, by providing functional representations of the time-dependent kinetic change
within chemical systems. The HDMR, method thereunder presents a viable choice as a coarse
propagator within the parareal algorithm when using equidistant decompositions in time. For
the application to atmospheric chemical kinetics, HDMRs have been presented in [131] with
speed-ups up to a factor of 1 000x.

Since repro-models are only valid for a fixed time-stepping size, their usage is promising
only, when considering equidistant decompositions in time. For the six-variable example
considered in Ch. 4.2, load-imbalances imposed the usage of adaptive decompositions. The
search for a faster coarse propagator for this scenario ends here - fruitless. In the context of an
external parallelization, where the time-slab size is fix and preset by the size of the splitting
intervals, the approach is useful in contrast. In the next Chapter, we will see a successful
application of using repro-models as coarse propagators, to enable an external parallelization
of the sophisticated chemical mechanism RADM?2.

Chapter 6

Numerical Experiments - RADM2

In Chapter 4, we had investigated an internal in-time parallelization of an example six-
variable tropospheric mechanism. We had identified some fundamental requirements, an
efficient parareal scheme for stiff ODEs must meet. We had seen, that an efficient coarse
propagator should be considerably faster than the full model without a significant loss of
accuracy. We had identified needs for adaptive coarse and fine propagators. By means of
the experimental results for approach AP-I, we had seen, that a uniform decomposition into
equidistant time-slab leads to load-imbalances during the parallel correction step. With AP-
IT we consequently introduced an adaptive initial decomposition, which is suggested by the
coarse propagator. Both for AP-I and AP-II, we had further seen, that the overall computa-
tional cost is dominated by the coarse propagator during the sequential prediction within each
iteration. Following, the results for AP-III had showcased, that a one-step coarse propagator
diminishes this dominance, but at the same time it is not very accurate and hence increases
the number of iterations until convergence. All adaptive parareal approaches had shown to
converge, but none of them outperformed the adaptive Rosenbrock solver RODAS(3)4 in a
purely sequential application. Instead of applying an adaptive solver as the coarse propaga-
tor, we then intended to use a faster and more accurate coarse propagator. For that purpose,
we have been considering different reduced models in Chapter 5. From all the approaches
discussed, the HDMR repro-modeling approach turned out to be the most promising choice -
but only, under the constraint of an equidistant decompositions in time. Since for the example
from Sec. 2.2.2 load-imbalances forced the usage of adaptive decompositions, repro-models
disqualified in that context. For an overview on the specifications of the approaches discussed,
see Tab. 6.1.

A combined application of repro-modeling and the parareal algorithm is however promising
in the context of an external parallelization. An external parallelization equates a paralleliza-
tion of N subsequent splitting intervals. Different than for the examples presented in Sec.
2.2.2, the decomposition into time-slabs is now equidistant and preset by the size of the split-
ting intervals Atg,i;. This enables a straightforward construction and usage of respective
repro-models as coarse propagators in the parareal scheme. For the experiments presented
for an internal parallelization, we had seen equidistant decompositions to result in global
load-imbalances. To lower the load-imbalances of an equidistant decomposition, we had pro-

87

88 CHAPTER 6. NUMERICAL EXPERIMENTS - RADM?2

Decomposition | Initialization Ginit | Prediction G | Correction F
CP equidistant fixed 0T fixed 0T fixed dt with dt < 6T
AP-I equidistant adaptive adaptive adaptive with rtolr < rtolg
AP-II adaptive - suggested by Ginit adaptive adaptive with rtolr < rtolg
AP-III adaptive - suggested by Ginit one-step adaptive with rtolr < rtolg
RM-P equidistant ‘ HDMR HDMR adaptive

Table 6.1: Overview of the parareal approaches discussed in this work: Classical Parareal (CP),
Adaptive Parareal (AP-I, AP-II and AP-III) and repro-model Parareal (RM-P).

posed two adaptive schemes, AP-II and AP-III. Since we now are restricted to equidistant
decompositions, both approaches disqualify in the context of the external parallelization. A
repro-model parareal approach will therefore lead to load-imbalances caused by the fine cor-
rection within the parareal iteration. The main source of these load-imbalances is now given
by the different levels of photolytic activity and hence different degrees of stiffness at different
daytimes. Consequently, the computational effort for the fine correction within the parareal
scheme will vary for different daytimes, as will later be seen in Fig. 6.8.

An external parallelization equates a parallelization of subsequent splitting intervals. For
the application within a three-dimensional AQM, further challenges arise: Due to the operator
splitting within the CTM, disturbances between two intervals, caused by advection, diffusion,
changing photolysis rates and other processes, must be considered in between two intervals.
For the sake of simplicity, we do not take into account all such processes, but emission and
varying photolytic activities only.

6.1 Test Scenarios

Up to now, we have been utilizing very simple models to explain and visualize the parareal
algorithm and the basic principles of ILDM and HDMR. From now on, more realistic test
models shall be considered, similar to the chemical kinetics within in a three-dimensional
complex AQM. We choose three zero-dimensional box-models, as proposed by Kuhn et al.
[1, 56]: LAND, PLUME and URBAN. Those test problems have been used for numerous
validation tests of chemical models, e.g. by Poppe et al. [100] or Gross and Stockwell [42].
The most simple scenario, LAND, covers a continental planetary boundary layer with
a low burden of pollutants and without emission. It covers only very little photochemical
activity. Scenario two, PLUME, represents a moderately polluted planetary boundary layer
with continuous emissions of a complex mixture of organic compounds. The last scenario,
URBAN, represents a polluted planetary boundary layer with emissions as for PLUME. All
simulations start at noon on July 1st with a solar zenith angle of +22°. The integration period
covers b days, with a clear sky and a constant base temperature throughout the simulation.
Photolysis rates are calculated every hour with an albedo of 0.1 at LAT=45° and LON=0°
and a constant solar declination of +23°. The meteorological parameters and the initial
concentrations for all chemical species can be found in Tab. 6.2. The chemical mechanism
used in all simulations is RADM2, as introduced in Sec. 2.2. Reaction rate constants were

6.1. TEST SCENARIOS

LAND

PLUME

URBAN

Start

End

Ground Albedo
Solar Declination
Longitude
Latitude
Altitude [km]
Temperature [K]
Pressure [mbar]
M [#molecules/cm?]
H20 [%]

Os [ppbV]

NO [ppbV]

NO2 [ppbV]
HNO3 [ppbV]
CO [ppbV]

CHa [ppbV]

Hy [ppbV]
H202 [ppbV]
HCHO [ppbV]
O2[%]

N2 [%)]

ISO [ppbV]
DMS [ppbV]
else [ppbV]

July 1st, 12 pm
July 6th, 12 pm
0.1
+23°

0°

45°

0.0
288.15
1013.25
2.55E19
1.0

30.0

0.1

0.1

0.1
100.0
1700.0
500.0
2.0

1.0

20.9
78.1

0.0

0.0
10-20

July 1st, 12 pm
July 6th, 12 pm
0.1
+23°

0°

45°

0.0
288.15
1013.25
2.55E19
1.0

50.0

0.2

0.5

0.1
200.0
1700.0
500.0
2.0

1.0

20.9
78.1

0.0

0.0
10-20

July 1st, 12 pm
July 6th, 12 pm
0.1
+23°

0°

45°

0.0
298.15
1013.25
2.46E19
1.0

30.0

0.1

0.1

1.5
100.0
1700.0
500.0
2.0

1.0

20.9
78.1

0.0

0.0
10—20

Table 6.2: Initial values for LAND, PLUME and URBAN.

89

chosen as presented in the original publication from 1990 by Stockwell et al. [119], except for
the reactions of HO + ETH and HO + CHy4. Since the best agreement with the box-model
results presented in [42, 56, 100] was achieved with this choice, those two reaction rates were

calculated as proposed in Stockwell et al. [118]. Lists of the chemical species, reactions and

the reaction rates are also presented in the Appendix. For the implementation in RADM2 of

the tests proposed in [56], emission rates for VOCs had to be splitted as proposed by Gross

and Stockwell [42]. The diurnal variation of the photolysis intensity is calculated based on
the radiation transfer model by Roeth and adapted by Kuhn [1]. The functions defining the

calculation of emissions, photolysis and reaction rates are also presented in the Appendix.

An appropriate ODE solver (we use RODAS(3)4, again) is re-initiated every hour, so that

a splitting interval covers a period of [t,, t, -+ 3600 sec]. At the beginning of each splitting

interval, photolysis rates are updated and calculated from prescribed diurnal variations of

radiation. Within the splitting interval, the system is in an autonomous mode. In total, 120

subsequent splitting intervals are necessary to cover the full integration period of 5 days. Since

these scenarios represent idealized three-dimensional box-models, meteorological feedbacks,

90 CHAPTER 6. NUMERICAL EXPERIMENTS - RADM?2

advection or diffusion are not incorporated between the intervals.

6.2 Repro-Model Parareal (RM-P)

As a coarse propagator, we now take HDMR repro-models into account. To this end, one
repro-model is constructed for each hour of the day, leading to a total of 24 different, 63-
dimensional HDMR models for every scenario, each set-up around 11 parametrization points
for every species. The input range Z; for species SPC; at time ¢ was defined as

Zi(t) := [max (0,min(SPC;) —0.05-9;), max (SPC;) + 0.05 - §;]
0i(t) := max(SPC;) — min(SPC;),

whereat max and min were taken as the maximum /minimum over all 5 days at the respective
hour of the day. Only first-order terms were constructed. At this point, the flexibility is high:
The input range is tailored to the actual trajectory of the solution. It is though possible, to
generate more universal HDMR models using wider input ranges and more parametrization
points. It is as well possible, to parametrize also the photolysis, i.e. to construct (63 + 1)-
dimensional HDMR models. We will compare the repro-model parareal approach to the
adaptive parareal approach AP-I, as presented in Sec. 4.2. Since the decomposition into
time-slabs here is preset by the size of the splitting intervals used for the operator splitting
within an AQM, both approaches using an adaptive decomposition (AP-IT and AP-III) would
lead to additional interpolations to meet the time interval’s end. Such interpolation could
cause side-effects and should not be discussed subsequently. As a coarse propagator to be
used for AP-I, we again utilize a RODAS(3)4 integrator, now with coarser tolerances. We
choose the coarsest tolerances, that allowed for a stable integration: As a starting time-step
size for G, we choose hinit = 1073 sec and a relative tolerance of rtolg = 1.0.

6.2.1 Convergence

Figures 6.1-6.3 show the convergence behavior of RM-P and AP-I for simulations over 24
hours (left) and over 5 days (right), each parallelized over 24 or 120 processors, respectively.
The x-axis shows the number of iterations, starting with the initialization (iteration 0). On
the y-axis, we see the relative error at final integration time (24 or 120 hours), calculated as
defined by Eq. (4.3.1).

For scenario RADM2 LAND (Fig. 6.1), RM-P leads to relative errors below 107! from
the first iteration on for the 24 hour simulation (left) and from the second iteration on for
the 5 day simulation (right). For small iteration numbers, the RM-P approximation is better
than the AP-I approximation. RM-P errors are smaller than for AP-I up to the 3rd for the
24 hour and up to 7th iteration for the 5 day simulation.

Figure 6.2 exemplarily shows the solution trajectories of O3 for an AP-I (upper) and RM-
P (lower) parareal integration. The blue lines denote the actual trajectory, dotted lines the
parareal solutions. The color of the dots signify the iteration number and ranges from white
(iteration 0, i.e. initialization) to black (7th iteration). For AP-I the initial guess under-, the

6.2. REPRO-MODEL PARAREAL (RM-P) 91
Relative Error at 7, ;= 24 h Relative Error at 7, ;= 5 days
RADM2 LAND C " [A RADMZ2LAND| = Al
3 -O- RM-P [3 -O- RM-P 3
0 1 2 3 4 5 6 7 8 9 10 01 2 3 4 5 6 7 9 10
Iteration Iteration

Figure 6.1: Relative Errors at final integration time for RADM2 LAND.

second overestimates the real trajectory. In the following iterations, the solution is approached
from below. After 4 iterations, the parareal solution appears to have converged (from a visual
point of view). For RM-P already the initial guess is very close to the real trajectory for
RM-P. As a convergence criterion, we shall again consider the relative change in the solution
at final integration time, as defined by Eq. (4.0.1). Convergence is reached, as soon as the
relative change falls below a threshold of tolsi, = 1072. For the simulation over 24 hours
this is given within 4 parareal iterations for RM-P, and 5 for AP-I. For the simulation over 5
days, RM-P needs 5 iterations, AP-I 10.

For scenarios PLUME (Fig. 6.3) and URBAN (Fig. 6.4) again both RM-P and AP-I
converge for the simulation time of 24 hours. As for LAND, the relative error is smaller for
RM-P for both scenarios (with one exception in iteration 8 for scenario URBAN). For the
respective 5 day simulations, RM-P again converges - slowly, while AP-I shows an oscillatory
behavior. For nitric oxide NO, this behavior is showcased in Fig. 6.5, where the parareal
NO—trajectories with varying iteration number are plotted over 120 hours. The presence of
a polluted atmosphere leads to the necessity of very small time-steps at the beginning of each
time-slab. Obviously, the tolerance of the adaptive coarse propagator is not sufficient, to
capture the real trajectory. From iteration to iteration, varying solution branches are being
predicted. In comparison to RM-P, AP-I leads to bigger variations from the actual trajectory
(blue). Those variations are high especially during daytime. Since Fig. 6.4 shows the error
at final integration time, i.e. noon on July 6th, the variation equates the maximal amplitude
during 24 hours and the error is correspondingly high.

For the iteration numbers shown here, the AP-I parareal solution does not converge to
the actual solution. Both for PLUME and URBAN, AP-I finally does converge - at the latest
after 120 iterations. From a practical point of view, high iteration numbers are not interesting,
since they will lead to high WCTs.

92

[2

h)

iz

nd)

ES

u(’

(u(T,

[2

%)

u(T,,

(w(Ten)

CHAPTER 6. NUMERICAL EXPERIMENTS - RADM?2

Concentration of [03] for AP-I

[ppb] ; T
RADM2 LAND = qy(t) —0— k=2 —e— k=5
3.3e401 L —o— k=0 —©— k=3 —e— k=6]]
—o— k=1 —e— k=4 —e— k=7
3.2e+01 | .
3.1e+01 | .
3.0e+01 ! ! ! -
12am 6pm 12pm 6am 12am
(ppb] Concentration of [O3] for RM-P
I I T I T
RADM2 LAND s (1) —o— k=2 —e— k=5
3.3e+01 |- —o— k=0 —o— k=3 —o— k=6
—o— k=1 —e— k=4 —e— k=7
3.2e+01 | .
3.1e+01 | .
3.0e+01 L L ! -

12am

12pm

6am

Figure 6.2: Concentration of O3 for RADM2 LAND over 24 hours.

Relative Error at 7, ,= 24 h

10°
102
10t}
10°F

T T

T T T
RADM2 PLUME

102}
10'3 L L L L L L L L

I T
-@ AP
-O- RM-P [§

104_% 4

01 2 3 4 5 6 7
Iteration

12am

Relative Error at 7, ;= 5 days

Figure 6.3: Relative Errors at final integration time for RADM2 PLUME.

Relative Error at 7, ,= 24 h

10°
102
10*F
10°F
107}
102}
o

T T
RADM2 URBAN

T T

@ AP-l
-O- RM-P[{

01 2 3 4 5 6 7
Iteration

10° ————— : ; —

RADM2 PLUME -@ APl
107 -O- RM-P 4
101 L ./‘\./.\’__.\.—.\.—’.\‘ i
10°F 1
101} T o 6 o00]
107} .
o3 . .

o 1 2 3 4 5 6 7 8 9 10

Iteration
Relative Error at 7, ;= 5 days

10° ———— : ; —

RADM2 URBAN @ AP-|
1021 -O- RM-P|]
107} ’/\/\/\/\/\ ;
10°}F .
10k O—O_O_O\O\O—o—o—o—o——o i
02 v

0O 1 2 3 4 5 6 7 8
Iteration

Figure 6.4: Relative Errors at final integration time for RADM2 URBAN.

6.2. REPRO-MODEL PARAREAL (RM-P) 93

Concentration of [NO| for AP-I

[ppb] | , , ,
RADM2 URBAN u(t) —o— k=2 —e— k=5
[—o— k=0 —o— k=3 —e— k=6
1.0e+00 |- —o— k=1 —e— k=4 —e— k=7
5.0e-01 f /% PO [e P N
0.0e+00 . e
12am 12am 12am 12am 12am 12am
(ppb] Concentration of [NO| for RM-P
T I T 1 T
RADM2 URBAN u(t) —0— k=2 —e— k=5
—o— k=0 —@— k=3 —e— k=6
1.0e+00 |- —o— k=1 —— k=4 —e— k=7H
5.0e-01 |- B
000200 W&Mﬁ

12am 12am 12am 12am 12am 12am

Figure 6.5: Concentration of NO for RADM2 URBAN over 5 days.

6.2.2 Parallel Wall Clock Time

We have seen, that both RM-P and AP-I do converge, i.e. the relative change falls below a
threshold of tolsiop = 1072, In the following, we want to take into account the respective par-
allel WCTs until convergence. The parallel WCT is composed of the WC'T of the initialization
phase (WCTjuit) plus the sum of the WCT per iteration (WCTy) over all keopy iterations.
For AP-I, the WCT for the initialization phase is defined by the sum of the number

of internal time-steps used on each time-slab by the coarse solver G, multiplied with the
computing time per step (which is approx. constant),

N-1

WCTinit = Z Ni,g : CTstep-

i=0

For RM-P the initialization WCT is defined by

WCTinit =N WCTHDMR7

whereat WCTypumpr denotes the WCT required for one single evaluation of an HDMR repro-
model. Since all HDMR repro-models are constructed with the same degree, dimension and
number of parametrization points, their evaluation effort is constant for all iterations and all
time-slabs. The WCT}, per iteration is defined by

WCT, = WCTL,, + WCTE, .

whereat the WCT,, of the parallel correction in both cases is defined by the maximum WCT
of the fine propagator over all time-slabs,

94 CHAPTER 6. NUMERICAL EXPERIMENTS - RADM?2

WCTS,, = max (WCTz).
The WCT,eq of the sequential prediction equates WCTy,j; - approximately for AP-I and
exactly in case of RM-P. This leads to a parallel WCTar of

kconv
WCTpar = WCTin + »_ k- WCT.
k=1

Figure 6.6 contrasts the averaged WCT}, per iteration (left) and parallel WCT,, (right)
for AP-I and RM-P for scenario LAND and a parallel-in-time simulation over 24 hours in
comparison to the sequential solution procedure. In both plots, white bars stand for RM-P,
gray bars for AP-I. The shaded blue bars in the left picture denote the average contribution of
the parallel correction WCT o, The blue bar in the right plot shows the WCT of a sequential
integration using the fine propagator. Respective values are also denoted in Tab. 6.3.

The WCTy per iteration (left plot in Fig. 6.6) is composed of the parallel correction time
(shaded blue) plus the WCTeq of the sequential prediction. For RM-P, the cost per iteration
WCT), is clearly dominated by the correction time, i.e. WCTE =~ = max;_, N_l(WCTﬁ 7).
This part is the parallelizable part of the code. The cost for the sequential prediction is
significantly smaller. In contrast, WCT}, for AP-I is dominated by the sequential prediction
by means of an adaptive propagator. In total, WCT}, is about 80 % smaller for RM-P than
it is for AP-1I.

WCT, Av. WCT per Iteration WCT,,, Parallel WCT
[sec] EEEEEEE fpec] [Ervpr 3 AP BT seq]
6.0e+00 RADM2 LAND, N = 241 RADM2 LAND, N = 24
S=0.4
3.0e+01} B
4.0e+00} B
2.0e+01| E
2 0e+00 | 1 .)
1.0e+01} B
S=28x
0.0e+00 0.0e+00

Figure 6.6: Averaged WCT per iteration (left) and parallel WCT (right)
for a RADM2 Land simulation over 24 hours. Shaded blue bars in the left
picture denote the percentage of the fine propagator during the parallel
prediction. The blue bar in the right picture denotes the sequential refer-
ence run. Respective speed-ups in comparison to the sequential reference
are printed above the bars .

6.2. REPRO-MODEL PARAREAL (RM-P) 95

in average over Kconv

N kconv || WCTinit WCTcorr | WCTpred WCTx WCTpar

AP-1 24 5 4.44e+400 || 9.03e-01 | 4.44e+400 | 5.34e+00 3.12e+01
RM-P 24 4 1.70e-01 9.03e-01 1.70e-01 1.07e+00 || 4.49e+00
RODAS(3)4 24 - - - - - 1.23e+01
AP-I 120 10 2.16e+01 8.94e-01 | 2.16e+01 | 2.25e+401 2.47e+402
RM-P 120 5 8.76e-01 8.94e-01 8.76e-01 1.77e+00 || 9.74e+00
RODAS(3)4 || 120 - - - - - 6.04e+01

Table 6.3: Parallel WCT until convergence for a simulation of RADM2 LAND.

In total, the parallel WCT\,, for RM-P is approx. 2.8 times smaller than the WCTeq of
the sequential integrator. A parallelization over 24 processors here leads to a speed-up of a
factor of S = 2.8 compared to the sequential scheme with S = WCTsq/WCTpa. AP-I in
contrast is slower than the sequential scheme with S = 0.4.

Figure 6.7 contrasts WCT,, for the same scenario LAND but a parallel-in-time simulation
over 5 - 24 hours. The effort per iteration for RM-P now equates approx. 8 % of WCT}, for
AP-I. Since 5 iterations were necessary until convergence for RM-P, but 120 time-slabs are
computed in parallel, the performance improvement is better than for the 24 hour simulation.
In total, RM-P is now 6.2 times faster than the sequential scheme. In contrast, 10 iterations
are necessary for AP-I, leading to a speed-up of S = 0.2.

For scenarios PLUME and URBAN, more than 10 iterations were necessary for the simula-
tion over 24 hours, both for AP-I and RM-P. No speed-ups were observed. For the simulation

WCT, Av. WCT per lteration WCT,,, Parallel WCT
[sec] N —— wor [sec] - -
||:| RM-P [APl | V\(lm,,l 3.004+02} [rMr =T APT B seq]
2.5e+01} RADM2 LAND, N = 120 | RADM2 LAND, N = 120
S=0.2 X
2.0e+01} R
2.0e+02} R
1.5e+01f R
1.0e+01f R
1.0e+02} R
5.0e+001- 1 . .
E— — l
0.0e+00 0.0e+00

Figure 6.7: Averaged WCT per iteration (left) and parallel WCT (right)
for a RADM2 Land simulation over 120 hours. Shaded blue bars in the
left picture denote the percentage of the fine propagator during the parallel
prediction. The blue bar in the right picture denotes the sequential refer-
ence run. Respective speed-ups in comparison to the sequential reference
are printed above the bars .

96 CHAPTER 6. NUMERICAL EXPERIMENTS - RADM?2

over 5 days, RM-P converged in 8 iterations for PLUME and 9 iterations for URBAN, while
AP-I again required more than 10 iterations in both cases. A repro-model parareal approach
here enables speed-ups of S = 5.6 for PLUME and S = 4.7 for URBAN compared to a
sequential scheme.

From the results presented in this section, we see, that HDMR models indeed present
coarse propagators, that are significantly faster than adaptive coarse propagators - in average
approx. 25 times for the scenarios presented here. Potential ways to further improve the
performance of the coarse prediction using HDMR models, will be presented in the concluding
remarks.

6.2.3 Load Imbalances

Now, we are interested in the distribution of parallel work. The parallelizable part within the
parareal algorithm is the correction phase, in which the coarsely and sequentially predicted
trajectories are corrected, see also Eq. 3.2.2. To that end, both the fine and the coarse

propagator are started in parallel on each of the time-slabs. Since the coarse propagator is

k
corr

faster than the fine propagator (per design), WCTg, . is defined by the maximum WCT over

all time-slabs,

k k
WCTE,, = i:r&%{l(WCTi’f).

Figure 6.8 shows the WCT; » for the parallel application of the fine propagator on all
time-slabs. The y-axis denotes the WCT in seconds for the integration of one time-slab of
3 600 sec using the fine-propagator F. On the x-axis we see the physical time, whereat one bar
stands for one processor. Each bar indicates the computing time required by one processor
to integrate the solution on one time-slab. Additionally, the average WCT; 7 is plotted as a
blue horizontal line. In this plot, the fine propagator was initialized with the exact solution.
This allows to derive the load-imbalances for the parareal integration, which is formulated
over the full interval of 5 days.

The highest computing time for one such time-slab over 5 days is required on the very
first time-slab. This is caused by the fact, that the initial conditions here are disturbed
and out of balance, leading to a stiff problem. Throughout the simulation, the computing
time shows a clear dependency on the level of photolytic activity, present on the time-slab:
Highest efforts are observed during the transition phases between day- and nighttime, when
fast photolytic processes take place. With the inset of the sunlight in the morning, photolytic
radicals such as HO are being created, which are later destroyed with sunset. Lowest efforts
can be observed at nighttime, were no photolytic activity appears. The lowest WCT over all
time-slabs, min;—o y(WCT; 7), equates approx. 27% of the highest effort of WCTY . The
consequence is, that these processors will idle for about 73 % of WCT¥_ .

From Tab. 6.3 and the blue shaded bars in the left plots of 6.6 and 6.7 we can see the
domination of WCT} by means of the parallel correction using the fine propagator, whereat
the effect diminishes with increasing N. An unbalanced computational effort therefore has a
major impact on the efficiency of the whole algorithm. Since the size of the time-slabs is preset

6.3. SUMMARY AND CONCLUDING REMARKS 97

by the size of the splitting intervals, it is not possible to use a fully adaptive decomposition
to decrease these imbalances. It is however possible, to adjust the decomposition a-priori,
such that the size of the biggest intervals are multiples of the size of the smallest. In that
framework, HDMRs would have to be constructed for the smallest At.

Computing Times per Time-Slab during Parallel Correction
'RADM2 LAND, N = 120

WCT, [sec|
0.0e+00* |HH H| HH ‘H H| HH |H| H|H|
12

pm 12pm 12pm 12pm 12pm
Figure 6.8: Computing times per time-slab to propagate the solution over [t,, t,41] using the fine

8.0e-01¢

6.0e-01§

A

4.0e-01

2.0e-01

1
1
1
1
1
1
1
1
1
1
July 1st July 2nd July 3rd July 4th July 5th

propagator F. FEach bar signifies one time-slab, which each is calculated on one processors. The
horizontal blue lines denotes the average computing time over all time-slabs.

6.3 Summary and Concluding Remarks

In this Chapter, we investigated the application of the parareal algorithm in combination with
repro-modeling approaches. Since repro-models represent functional mappings of the solution
from time ¢ to time t+ At for a fixed time-step At size, we restricted to the case of an external
parallelization with uniform decompositions in time and time-slab sizes equal to At. Three
zero-dimensional box-models with varying photolysis rates and different levels of pollution
were chosen as test beds. These scenarios represent typical set-ups for the calculation of the
atmospheric chemistry as it is incorporated in typical AQMs. Photolysis rates were updated
every hour, respectively we defined splitting intervals of Aty = 3 600 sec. Different than
in a real AQM, advection and diffusion were not considered. A parallelization in time was
realized via a parallelization of subsequent splitting intervals. This directly prescribed the
size of the parareal time-slabs, i.e. an adaptive decomposition was not possible anymore. A
new repro-model parareal approach (RM-P) using an HDMR-based coarse propagator was
contrasted to AP-I, as introduced in Sec. 4.2.

For the external parallelization considered in this section, the HDMR-based coarse propa-
gator in average was 25 times faster than an adaptive coarse propagator G with rtolg = 1.0 -
the coarsest tolerance, that allowed for a stable computation. The computational cost per it-
eration has again shown to be governed by the cost of the parallel fine correction. For the fine
propagator during the parallel correction, we have noticed diurnally varying computational
efforts. Those differences are directly caused by the presence of different levels of photolytic
activity throughout a day. Similar than for the internal parallelization by means of the sce-
narios examined in Sec. 4.2, this led to load-imbalances during the parallel correction. Those

98 CHAPTER 6. NUMERICAL EXPERIMENTS - RADM?2

can potentially be decreased by using a-priori adjusted decompositions, with biggest interval
sizes being multiples of the smallest.

In all cases and for all three scenarios, AP-I was slower than the sequential reference.
For the scenario RADM2 LAND and a simulation over 24 hours, the repro-model parareal
approach, distributed over 24 processors, was 2.8 times faster than the sequential integration
scheme. Convergence was reached in 4 iterations. The respective adaptive parareal approach
AP-I was slower than the sequential integrator. For a simulation over 120 hours and dis-
tributed over 120 processors, the repro-model parareal approach needed 5 iterations until
convergence, leading to a speed-up of a factor of 6.2 compared to the sequential integrator.
For the two polluted scenarios, RADM2 URBAN and PLUME, and for a simulation over 5
days, speed-ups of S = 5.6 for PLUME and S = 4.7 for URBAN were identified. However,
no speed-ups were observed for a parallel-in-time integration over 24 hours. Presumably,
the respective repro-models were not accurate enough. More profound HDMR repro-models
could be constructed by means of higher numbers of parametrization points and/or adding
second-order terms.

Further performance improvements can potentially be achieved, when parameterizing the
HDMR not in the phase space of chemical species, but in terms of modes (c.f. Sec. 5.4). Then,
the number of key variables would be defined by the dimension of the lowest dimensional
intrinsic manifold. Typically, the size of the ILDM is a lot smaller than the dimension size,
as can be seen in Fig. 6.1 for the scenarios presented here. For scenario RADM2 LAND, 21
parameters could be chosen at daytime, 3 at nighttime instead of 63 parameters all-over. In
turns, additional matrix vector operations would be necessary for the mapping between the
space of species and the space of modes.

Dimension of the ILDM

RADM?2 Test Scenarios

L T T T T]

60 = LAND PLUME == URBAN
50 —
40
30
20
10 |
0 L L | 1 L

12pm 12pm 12pm 12pm 12pm
July 1st July 2nd July 3rd July 4th July 5th

Figure 6.1: Dimension of the intrinsic low dimensional manifold for all three scenarios, calculated as
proposed by Tomlin et al. in [121] with £ = 10712, tol,e; = 1078, toltas; = —10% and toleons = 107°.

Chapter 7

Conclusions and Outlook

In this thesis, we investigated the potential of an in-time parallelization of atmospheric chem-
ical kinetics within an atmospheric chemical transport model. Within such a framework,
chemistry is being solved isolatedly over splitting intervals, decoupled from other processes.
We identified and investigated two fields of application of an in-time parallelization of atmo-
spheric chemistry: An internal parallelization within a single and an external parallelization
across multiple splitting intervals. A key challenge in both cases is the presence of a wide
range of time-scales in the chemistry of the atmosphere. Among different time-parallel inte-
gration techniques, we focused on the parareal algorithm in this work. The multi-scale nature
of the chemistry forces the usage of adaptive fine and coarse propagators within the parareal
algorithm. Further, it leads to load-imbalances in case of equidistant decompositions in time.

For the internal parallelization, adaptive decompositions allowed to balance the load of
work. Using adaptive coarse propagators on non-equidistant decompositions led to overheads
in the sequential part of the parareal algorithm. Those could be diminished by using coarse
propagators, forced to use a single time-step on each interval. Still, all adaptive parareal
approaches presented were slower than the sequential reference. This motivated the search
for faster, but still accurate, reduced-models. In that context, only repro-modeling approaches
qualified as coarse propagators. Adaptive decompositions in time however turned out to be
incompatible with such models.

For the external parallelization, the decomposition was prescribed by the size of the split-
ting intervals. This enabled the usage of repro-models as coarse propagators. These turned
out to be in average 25 faster than adaptive coarse propagators, which allowed for an overall
speed-up of the parareal algorithm up to 6.2x in comparison to the sequential reference. Three
different scenarios with increasing complexity were considered for the external parallelization.
For those scenarios, a further challenge has been the incorporation of external disturbances
across two subsequent splitting intervals. Exemplarily, we incorporated changing photolysis
rates and emission. For a parallel-in-time simulation over 5 days, distributed over 120 pro-
cessors, speed-ups were observed for all three scenarios. For a simulation over 24 hours and
distributed over 24 processors, speed-up was observed only for one scenario representing a
non-polluted atmosphere without emission. Due to higher numbers of iterations until con-
vergence, no speed-ups could be achieved for the other scenarios. More sophisticated HDMR,

99

100 CHAPTER 7. CONCLUSIONS AND OUTLOOK

models, determined by means of further parameter studies, are likely to improve the quality
of a repro-model parareal approach for these scenarios.

In case of the external parallelization, the load-imbalances were caused by diurnally varying
photolysis frequencies. These can roughly be estimated a priori, such that the expected
computational effort for each time of the day can potentially be derived from empirical values
in preface. This would enable an a priori adjustment of the decomposition, such that interval
sizes are multiples of each other. Respectively, the repro-models would have to be constructed
for the smallest interval size and applied multiple times on bigger intervals. Non-uniform
decompositions, adjusted on the base of empirical values, are likely to decrease the load-
imbalances on equidistant decompositions and to further improve speed-ups. A truly adaptive
decomposition however seems not to be possible.

This work was driven by the search for scalable and load-balancing parallel algorithms for
the integration of atmospheric chemical kinetics. Load-balancing, but no speed-ups could be
achieved for an internal in-time-parallelization of atmospheric chemical kinetics. Speed-ups
could only be achieved for the external parallelization and when considering repro-models as
coarse propagators. For the external parallelization, the number of parallel processes equates
the size of the interval to be parallelized (i.e. the problem size), divided by the size of the
splitting intervals. A scalability study for a fixed problem-size was hindered by the fact, that
increasing the size of the splitting intervals changes the physical nature of the problem.

The usage of repro-models as coarse propagators seems to be an attractive alternative to
using time-stepping schemes as coarse propagators. For the scenarios considered here, solution
trajectories were known a priori. This allowed to construct highly tailored repro-models. For
a real application within an AQM, the solution trajectories of the chemical species will not
be known in advance. A high degree of expertise and understanding in the chemical systems
will be necessary, to define respective input spaces for each species, for which the model shall
be valid. Possibly, higher numbers of parametrization points will be required, leading to
higher computational costs. On the other side, the full potential to decrease the cost for the
evaluation of the repro-model has not yet been exploited. Instead of parameterizing in the
phase space of chemical species, one could have alternatively used a parametrization in terms
of modes. Then, the number of parameters would be defined by the dimension of the lowest
dimensional intrinsic manifold, which typically is a lot smaller than the dimension size. Hence,
both the cost for the construction and the evaluation of the repro-model would decrease. In
turn, additional matrix vector multiplication would be necessary to map between the space
of chemical species and modes.

The promising results presented for the external parallelization suggest, that parallel-in-
time techniques could potentially be applied to parallelize chemical transport models. For
the numerical approximation of the chemical transport model, one typically applies an oper-
ator splitting approach. Instead of solving the full chemical transport equation, one solves
simplified problems on short intervals in time, sequentially one after another. In fact, the
operator splitting approach is an artificial decoupling and sequentialization of processes, that
in reality are parallel. Why not compute those parallel processes in a parareal fashion? A
possible approach would be to solve the decoupled problems in parallel on bigger intervals in

101

time, while adding an outer, parareal iteration.

Chemical transport models can typically be found as parts of compound air quality models,
which further comprise an interaction with a meteorological model. Chemistry and meteorol-
ogy are only loosely coupled and solved in parallel. Data is exchanged at so called coupling
intervals. A parallelization across the coupling intervals is challenged by the mutual interac-
tion of chemistry and meteorology. Respectively, also the meteorological model would have
to be recast in a parareal fashion to account for these interactions.

The observation, that all methods presented for the internal parallelization fail, can be
blamed on the overall discretization of the chemistry within an air quality model. In fact,
both the coupling between meteorology and chemistry and the operator splitting used for
the solution of the chemical transport model intensify the emergence of stiff problems out
of balance at the beginning of every splitting interval. This challenge can be damped, when
solving the chemical transport models in a fully coupled fashion and when increasing the level
of coupling between chemistry and meteorology. Respectively, all parallelization strategies
would have to be recast and expanded on the full chemical transport model, or even the full
air quality model. Further investigations will be necessary, to estimate, if this effort eventually
pays off or not.

Appendix

Acronyms
Acronym | Term
AP Adaptive Parareal
AQM Air Quality Model
CBEA Cell Broadband Engine Architecture
CpP Classical Parareal
CPU Central Processing Unit
cT Computing Time
CTM Chemical Transport Model
DAE Differential Algebraic Equation
DLP Data Level Parallelism
FEOM Fully Equivalent Operational Model
GPU Graphic Processing Unit
HDMR High Dimensional Model Representation
HPC High Performance Computing
ILDM Intrinsic Low Dimensional Manifold
MCM Master Chemical Mechanism
ODE Ordinary Differential Equation
PDE Partial Differential Equation
QSSA Quasi-Steady State Approximation
RADM?2 Regional Acid Decomposition Model Version 2
RM-P Repro-Model Parareal
SDC Spectral Deferred Corrections
SIMD Single-Instruction-Multiple-Data
VOC Volatile Organic Compounds
WCT Wall Clock Time

103

RADM2 Chemical Mechanism

105

Table 1: RADM2 chemical reactions and rate constants as presented by Stockwell et al. [119].

Reaction

Reaction rate

UL W

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32

33

34
35
36

38
39
40
41
42

43
44
45

46
47
48
49

NO2 = O3P + NO
03 = 01D + 02

03 = 03P + 02
HONO = HO + NO
HNO3 = HO + NO2
HNO4 = HO2 + NO2

NO3 = NO + 02

NO3 = NO2 + O3P

H202 = 2*HO

HCHO = H2 + CO

HCHO = 2*HO2 + CO

ALD = MO2 + HO2 + CO

OP1 = HCHO + HO2 + HO

OP2 = ALD + HO2 + HO

PAA = MO2 + HO

KET = ACO3 + ETHP

GLY = 0.130*HCHO + 1.870*CO

GLY = 0.450*HCHO + 1.550*CO + 0.800*HO2
MGLY = ACO3 + HO2 + CO

DCB = 0.980*HO2 + 0.020*ACO3 + TCO3
ONIT = 0.200*ALD + 0.800*KET + HO2+
NO2

O3P 4+ 02 =03

03P + NO2 = NO

O1D + N2 = O3P

01D + 02 = 03P

O1D + H20 = 2*HO

03 + NO = NO2

03 + HO = HO2

03 + HO2 = HO

HO2 + NO = NO2 + HO

HO2 4+ NO2 = HNO4

HO2 + HO2 = H202

HO2 + HO2 + H20 = H202

H202 + HO = HO2

NO + HO = HONO

NO + NO + 02 = 2*NO2
03 + NO2 = NO3

NO3 + NO = 2*NO2

NO3 + NO2 = NO + NO2
NO3 + HO2 = HNO3
NO3 + NO2 = N205
N205 = NO2 + NO3

N205 + H20 = 2.000*HNO3
HO + NO2 = HNO3
HO + HNO3 = NO3

HO + HNO4 = NO2

HO + HO2 = DUMMY
HO + SO2 = SULF + HO2
CO + HO = HO2

PHUX(1.03D-02,9.61800D-01,8.46710D-01,Chi)
PHUX (5.00D-05,3.29332D+00,8.07820D-01,Chi)
PHUX (5.11D-04,3.71950D-01,9.22890D-01,Chi)
PHUX(2.36D-03,1.06560D+00,8.36440D-01,Chi)
PHUX(8.07D-07,2.30845D00,8.13640D-01,Chi)
PHUX (4.88D-06,2.08052D~00,8.13200D-
01,Chi)+EQT2(M, TEMP)

PHUX (2.59D-02,2.96180D-01,9.37480D-01,Chi)
PHUX (2.30D-01,3.35180D-01,9.30590D-01,Chi)
PHUX(1.18D-05,1.65050D+00,8.16060D-01,Chi)
PHUX(5.12D-05,1.44263D+00,8.18510D-01,Chi)
PHUX (4.51D-05,1.81238D~+00,8.19300D-01,Chi)
PHUX(7.49D-06,2.20021D+00,8.15430D-01,Chi)
PHUX(6.81D-06,1.60212D+00,8.16880D-01,Chi)
PHUX(6.81D-06,1.60212D+00,8.16880D-01,Chi)
PHUX(1.28D-08,7.94062D+00,7.44350D-01,Chi)
PHUX(6.46D-07,2.99467D~00,8.09690D-01,Chi)
PHUX (2.89D-03,5.76430D-01,8.90430D-01,Chi)
PHUX (2.89D-03,5.76430D-01,8.90430D-01,Chi)
PHUX (3.15D-03,6.15570D-01,8.85050D-01,Chi)
PHUX(6.30D-04,1.27788D~+00,8.25020D-01,Chi)
PHUX(1.50D-07,7.85847D+00,7.44730D-01,Chi)

M * 6.0000E-34 * (TEMP/300)**(-2.30)
6.5000E-12 * exp(120.0/TEMP)

1.8000E-11 * exp(110.0/TEMP)

3.2000E-11 * exp(70.0/TEMP)

2.20E-010

2.0000E-12 * exp(-1400.0/ TEMP)

1.6000E-12 * exp(-940.0/TEMP)

1.1000E-14 * exp(-500.0/TEMP)

3.7000E-12 * exp(240.0/TEMP)

TROE(1.8D-31, 3.2d0, 4.7D-12, 1.4d0, M, TEMP)
2.2E-13 * EXP(620./TEMP) + 1.9E-33 * M *
EXP(980./TEMP)

3.0800E-34 * exp(2820.0/TEMP) + M * (2.660E-54)
* EXP(3180.0/ TEMP)

3.3000E-12 * exp(-200.0/TEMP)

TROE(7.0d-31, 2.6d0, 1.5d-11, 0.5d0, M, TEMP)
3.3000E-39 * exp(530.0/TEMP)

1.4000E-13 * exp(-2500.0/TEMP)

1.7000E-11 * exp(150.0/ TEMP)

2.5000E-14 * exp(-1230.0/ TEMP)

2.50E-012

TROE(2.2d-30, 4.3d0, 1.5d-12, 0.5d0, M, TEMP)
EQT(2.2d-30,

4.3d0,1.5d-12,0.5d0,M, TEMP,9.09d+26,11200.d0)
2.00E-021

TROE(2.6d-30, 3.2d0, 2.4d-11, 1.3d0, M, TEMP)
SPEZ(7.2d-15,785.d0,4.1d-16,1440.d0,1.9d-
33,725.d0,M, TEMP)

1.3000E-12 * exp(380.0/TEMP)

4.6000E-11 * exp(230.0/TEMP)

TROE(3.0d-31, 3.3d0, 1.5d-12, 0.0d0, M, TEMP)
1.5E-13 * (1.0 + 2.439E-20 * M)

106 APPENDIX

Table 1: RADM2 chemical reactions and rate constants as presented by Stockwell et al. [119].

Reaction Reaction rate
501| CH4 + HO = MO2 + H20 TEMP * TEMP * 6.95E-18 * EXP(-1280. / TEMP)
51'| ETH + HO = ETHP TEMP * TEMP * 1.37E-17 * EXP(-444. /TEMP)
52 | HC3 + HO = 0.830*HC3P + 0.170*HO2 + 1.5900E-11 * exp(-540.0/TEMP)
0.009*HCHO + 0.075*ALD + 0.025*KET
53 | HC5 + HO = HC5P + 0.250%*X02 1.7300E-11 * exp(-380.0/TEMP)
54 | HC8 + HO = HC8P + 0.750*X02 3.6400E-11 * exp(-380.0/TEMP)
55 | OL2 + HO = OL2P 2.1500E-12 * exp(411.0/TEMP)
56 | OLT + HO = OLTP 5.3200E-12 * exp(504.0/TEMP)
57 | OLI + HO = OLIP 1.0700E-11 * exp(549.0/TEMP)
58 | TOL + HO = 0.750*TOLP + 0.250*CSL + 2.1000E-12 * exp(322.0/TEMP)
0.250*HO2
59 | XYL + HO = 0.830*XYLP + 0.170*CSL + 1.8900E-11 * exp(116.0/TEMP)
0.170*HO2
60 | CSL + HO = 0.100*HO2 + 0.900*X02 + 4.00E-011
0.900*TCO3
61 | CSL + HO = CSL 9.0000E-01 * 4.0000E-11
62 | HCHO + HO = HO2 + CO 9.00E-012
63 | ALD + HO = ACO3 6.8700E-12 * exp(256.0/TEMP)
64 | KET + HO = KETP 1.2000E-11 * exp(-745.0/TEMP)
65 | GLY + HO = HO2 + 2.000*CO 1.15E-011
66 | MGLY + HO = ACO3 + CO 1.70E-011
67 | DCB + HO = TCO3 2.80E-011
68 | OP1 + HO = 0.500*MO2 + 0.500*HCHO + 1.00E-011
0.500*HO
69 | OP2 + HO = 0.500*HC3P + 0.500*ALD 1.00E-011
70 | PAA + HO = ACO3 1.00E-011
71 | PAN + HO = HCHO + NO3 + X0O2 6.1650E-13 * (TEMP/300)**2 * exp(-444.0/TEMP)
72 | ONIT + HO = HC3P + NO2 1.5500E-11 * exp(-540.0/ TEMP)
73 | ISO + HO = OLTP 2.5500E-11 * exp(409.0/ TEMP)
74 | ACO3 + NO2 = PAN 2.8000E-12 * exp(181.0/TEMP)
75 | PAN = ACO3 + NO2 1.9500E+416 * exp(-13543.0/TEMP)
76 | TCO3 + NO2 = TPAN 4.70E-012
77 | TPAN = TCO3 + NO2 1.9500E+416 * exp(-13543.0/TEMP)
78 | MO2 + NO = HCHO + HO2 + NO2 4.2000E-12 * exp(180.0/TEMP)
79 | HC3P + NO = 0.750*ALD + 0.250*KET + 4.2000E-12 * exp(180.0/TEMP)
0.090*HCHO + 0.036*ONIT + 0.964*NO2 +
0.964*HO2
80 | HC5P + NO = 0.380*ALD + 0.690*KET + 4.2000E-12 * exp(180.0/TEMP)
0.080*ONIT 4+ 0.920*NO2 + 0.920*HO2
81 | HC8P + NO = 0.350*ALD + 1.060*KET + 4.2000E-12 * exp(180.0/TEMP)
0.040*HCHO + 0.240*ONIT + 0.760*NO2 +
0.760*HO2
82 | OL2P + NO = 1.600*HCHO + HO2 + NO2 + 4.2000E-12 * exp(180.0/TEMP)
0.200*ALD
83 | OLTP + NO = ALD + HCHO + HO2 + NO2 4.2000E-12 * exp(180.0/TEMP)
84 | OLIP + NO = HO2 + 1.450*ALD + 4.2000E-12 * exp(180.0/TEMP)
0.280*HCHO + 0.100*KET + NO2
85 | ACO3 + NO = MO2 + NO2 4.2000E-12 * exp(180.0/TEMP)
86 | TCO3 + NO = NO2 + 0.920*HO2 + 0.890*GLY 4.2000E-12 * exp(180.0/TEMP)
+ 0.110*MGLY + 0.050*ACO3 + 0.950*CO +
2.000*X02
87 | TOLP + NO = NO2 + HO2 + 0.170*MGLY + 4.2000E-12 * exp(180.0/TEMP)
0.160*GLY + 0.700*DCB
88 | XYLP + NO = NO2 + HO2 + 0.450*MGLY + 4.2000E-12 * exp(180.0/TEMP)
0.806*DCB
89 | ETHP + NO = ALD + HO2 + NO2 4.2000E-12 * exp(180.0/TEMP)

'Reaction rate as proposed in [118], see also Sec. 6.1.

107

Table 1: RADM2 chemical reactions and rate constants as presented by Stockwell et al. [119].

Reaction Reaction rate
90 | KETP + NO = MGLY + NO2 + HO2 4.2000E-12 * exp(180.0/TEMP)
91 | OLN + NO = HCHO + ALD + 2.000*NO2 4.2000E-12 * exp(180.0/TEMP)
92 | HCHO 4+ NO3 = HO2 + HNO3 + CO 6.0000E-13 * exp(-2058.0/TEMP)
93 | ALD + NO3 = ACO3 + HNO3 1.4000E-12 * exp(-1900.0/TEMP)
94 | GLY + NO3 = HNO3 + HO2 + 2.000*CO 6.0000E-13 * exp(-2058.0/TEMP)
95 | MGLY + NO3 = HNO3 + ACO3 + CO 1.4000E-12 * exp(-1900.0/TEMP)
97 | DCB + NO3 = HNO3 + TCO3 1.4000E-12 * exp(-1900.0/ TEMP)
98 | CSL + NO3 = HNO3 + XNO2 + 0.500*CSL 2.20E-011
99 | OL2 + NO3 = OLN 2.0000E-12 * exp(-2923.0/ TEMP)
100| OLT 4+ NO3 = OLN 3.2300E-11 * exp(-975.0/TEMP)
101| ISO + NO3 = OLN 5.81E-013
102| OL2 + O3 = HCHO + 0.400*ORA1 + 1.2E-14 * exp(-2633.0/TEMP)
0.420*CO + 0.120*HO2
103| OLT + O3 = 0.530*HCHO + 0.5*ALD + 1.32E-14 * exp(-2105.0/ TEMP)
0.330*CO + 0.2*ORA1 + 0.200*ORA2 +
0.230*HO2 + 0.220*MO2 + 0.100*HO
104| OLI + O3 = 0.180*HCHO + 0.720*ALD + 7.29E-15 * exp(-1136.0/TEMP)
0.1*KET + 0.23*CO + 0.06*ORA1 + 0.290RA2
4+ 0.26*HO2 + 0.14*HO + 0.31*MO2
105| ISO + 03 = 0.53*HCHO + 0.5*ALD + 1.23E-14 * exp(-2013.0/TEMP)
0.330*CO + 0.20*ORA1 + 0.2*ORA2 +
0.230*HO2 + 0.22*MO2 + 0.1*HO
106 HO2 + MO2 = OP1 7.7E-14 * exp(1300.0/TEMP)
107 HO2 + ETHP = OP2 7.7TE-14 * exp(1300.0/TEMP)
108| HO2 + HC3P = OP2 7.7TE-14 * exp(1300.0/TEMP)
109 HO2 4+ HC5P = OP2 7.7TE-14 * exp(1300.0/TEMP)
110 HO2 + HC8P = OP2 7.7TE-14 * exp(1300.0/TEMP)
111 HO2 + OL2P = OP2 7.7E-14 * exp(1300.0/TEMP)
112| HO2 + OLTP = OP2 7.7TE-14 * exp(1300.0/TEMP)
113| HO2 + OLIP = OP2 7.7TE-14 * exp(1300.0/TEMP)
114| HO2 + KETP = OP2 7.7TE-14 * exp(1300.0/TEMP)
115/ HO2 + ACO3 = PAA 7.7TE-14 * exp(1300.0/TEMP)
116 HO2 + TOLP = OP2 7.7E-14 * exp(1300.0/TEMP)
117 HO2 + XYLP = OP2 7.7E-14 * exp(1300.0/TEMP)
118 HO2 + TCO3 = OP2 7.7TE-14 * exp(1300.0/TEMP)
119 HO2 + OLN = ONIT 7.7TE-14 * exp(1300.0/TEMP)
120 MO2 + MO2 = 1.500*HCHO + HO2 1.9E-13 * exp(220.0/TEMP)
121 MO2 + ETHP = 0.750*HCHO + HO2 + 1.4E-13 * exp(220.0/TEMP)
0.750*ALD
122| MO2 + HC3P = 0.840*HCHO + 0.770*ALD -+ 4.2E-14 * exp(220.0/TEMP)
0.260*KET + HO2
123| MO2 + HC5P = 0.770*HCHO -+ 0.410*ALD + 3.4E-14 * exp(220.0/TEMP)
0.750*KET + HO?2
124| MO2 + HC8P = 0.800*HCHO + 0.460*ALD + 2.9E-14 * exp(220.0/TEMP)
1.390*KET + HO2
125| MO2 + OL2P = 1.550*HCHO + 0.350*ALD + 1.4E-13 * exp(220.0/TEMP)
HO2
126/ MO2 + OLTP = 1.250*HCHO + 0.750*ALD + 1.4E-13 * exp(220.0/TEMP)
HO2
127| MO2 + OLIP = 0.890*HCHO + 0.725*ALD + 1.7E-14 * exp(220.0/TEMP)
HO2 + 0.550*KET
128/ MO2 + KETP = 0.750*HCHO + 0.750*MGLY 1.7E-14 * exp(220.0/TEMP)
+ HO2
129| MO2 + ACO3 = HCHO + 0.5*HO2 + 0.5*MO2 9.6E-13 * exp(220.0/TEMP)
+ 0.5*ORA2
130 MO2 + TOLP = HCHO + 0.170*MGLY + 1.7E-14 * exp(220.0/TEMP)
0.16*GLY + 0.7*DCB + 2*HO2

108

APPENDIX

Table 1: RADM2 chemical reactions and rate constants as presented by Stockwell et al. [119].

Reaction

Reaction rate

131

132

133

134

135

136

137

138

139

140

141

142
143

144

145

146

147
148
150
151
152
153
154
155
156
157

MO2 + XYLP = HCHO + 0.450*MGLY +
0.806*DCB + 2*HO2

MO2 + TCO3 = 0.500*HCHO + 0.445*GLY +
0.055*MGLY + 0.5*ORA2 4 0.025%*ACO3 +
0.460*HO2 + 0.475*CO + XO2

MO2 + OLN = 1.750*HCHO + 0.500¥*HO2 +
ALD + NO2

ETHP + ACO3 = ALD + 0.500*HO2 +
0.500*MO2 + 0.500*ORA2

HC3P + ACO3 = 0.770*ALD + 0.260*KET +
0.5*HO2 + 0.5*MO2 + 0.5*ORA2

HC5P + ACO3 = 0.410*ALD + 0.750*KET +
0.5*HO2 + 0.5*MO2 + 0.5*ORA2

HC8P + ACO3 = 0.460*ALD + 1.390*KET +
0.5*HO2 + 0.5*MO2 + 0.5*ORA2

OL2P + ACO3 = 0.8*HCHO + 0.6*ALD +
0.5*HO2 + 0.5*MO2 + 0.5*ORA2

OLTP + ACO3 = ALD + 0.5*HCHO +
0.5*HO2 + 0.5*MO2 + 0.5*ORA2

OLIP + ACO3 = 0.725%ALD + 0.550*KET +
0.140*HCHO + 0.500¥*HO2 + 0.500*MO2 +
0.500*ORA2

KETP + ACO3 = MGLY + 0.5*HO2 +
0.5*MO2 + 0.5*ORA2

ACO3 + ACO3 = 2.000*MO2

ACO3 + TOLP = MO2 + 0.170*MGLY +
0.160*GLY + 0.700*DCB + HO2

ACO3 + XYLP = MO2 + 0.450*MGLY +
0.806*DCB + HO2

ACO3 + TCO3 = MO2 + 0.920*HO2 +
0.890*GLY

+ 0.110*MGLY + 0.05*ACO3 + 0.950*CO +
2*¥X02

ACO3 + OLN = HCHO + ALD + 0.5*ORA2 +
NO2 + 0.5*MO2

OLN + OLN = 2¥*HCHO + 2*ALD + 2*NO2
X02 + HO2 = OP2

X02 + MO2 = HCHO + HO2

X02 + X02 = DUMMY

X02 + NO = NO2

XNO2 4+ NO2 = ONIT

XNO2 + HO2 = OP2

XNO2 + MO2 = HCHO + HO2

XNO2 + ACO3 = MO2

XNO2 + XNO2 = DUMMY

1.7E-14 * exp(220.0/TEMP)

9.6E-13 * exp(220.0/TEMP)

1.7E-14 * exp(220.0/TEMP)
3.4E-13 * exp(220.0/TEMP)
1.E-13 * exp(220.0/TEMP)

8.4E-14 * exp(220.0/TEMP)
7.2E-14 * exp(220.0/TEMP)
3.4E-13 * exp(220.0/TEMP)
3.4E-13 * exp(220.0/TEMP)

4.2000E-14 * exp(220.0/TEMP)

4.2000E-14 * exp(220.0/TEMP)

1.1900E-12 * exp(220.0/TEMP)
4.2000E-14 * exp(220.0/TEMP)

4.2000E-14 * exp(220.0/TEMP)

1.1900E-12 * exp(220.0/TEMP)

4.2000E-14 * exp(220.0/TEMP)

3.6000E-16 * exp
7.7000E-14 * exp
4.2000E-14 * exp
3.6000E-16 * exp
4.2000E-12 * exp
4.2000E-12 * exp
7.7000E-14 * exp
1.7000E-14 * exp
4.2000E-14 * exp
3.6000E-16 * exp

220.0/TEMP)
1300.0/TEMP)
220.0/TEMP)
220.0/TEMP)
180.0/TEMP)
180.0/TEMP)
1300.0/TEMP)
220.0/TEMP)
220.0/TEMP)
220.0/TEMP)

AN AN AN AN AN AN SN S S

Table 2: RADM2 chemical species, c.f. Stockwell et al. [119].

Species Description Species Description
Stable Inorganic Compounds Aromatics
Nitrogen 31 TOL Toluene and less reactive aromatics
1 NO2 Nitrogen dioxid 32 CSL Cresol and other hydroxy substituted
2 NO Nitric oxide aromatics
3 HONO Nitrous acid 33 XYL Xylene and more reactive aromatics
4 NO3 Nitrogen trioxide Carbonyls
5 N205 Nitrogen pentoxide 34 HCHO Formaldehyde
6 HNO4 Pemitric acid 35 ALD Acetaldehyde and higher aldehydes
7 HNO3 Nitric acid 36 KET Ketones
Oxidants 37 GLY Glyoxal
8 03 Ozone 38 MGLY Methylglyoxal
9 H202 Hydrogen peroxide 39 DCB Unsaturated dicarbonyl
Sulfur Organic nitrogen
10 SO2 Sulfur dioxide 40 PAN Peroxyacetyl nitrate and higher PANs
11 SULF Sulfuric acid 41 TPAN H(CO)CH=CHCO3NO2

Carbon Oxides

12 CcO Carbon monoxide
13 CO2 Carbon dioxide
14 H2 Hydrogen

Inorganic Short-Lived Intermediates
Atomic species
15 03P Ground state oxygen atom
16 O1D Excited state oxygen atom
Odd hydrogen
17 HO Hydroxyl radical
18 HO2 Hydroperoxyl radical

Abundant Stable Species

19 02 Oxygen
20 N2 Nitrogen
21 H20 Water

Stable Organic Compounds

Alkanes

22 CH4 Methane

23 ETH Ethane

24 HC3 Alkanes with HO rate constant
(298K, latm) between 2.7x10-13
and 3.4x10-12

25 HC5 Alkanes with HO rate constant
(298K, latm) between 3.4x10-12
and 6.8x10-12

26 HC8 Alkanes with HO rate constant
(298K, latm) greater than 6.8x10-12

Alkenes

27 OL2 Ethene

28 OLT Terminal alkenes

29 OLI Intemal alkenes

30 ISO Isoprene

42 ONIT Organic nitrate

Organic peroxides

43 OP1 Methyl hydrogen peroxide
44 OP2 Higher organic peroxides
45 PAA Peroxyacetic acid

Organic acids
46 ORA1 Formic acid
47 ORA2 Acetic acid and higher acids

Organic Short-Lived Intermediates
Peroxy radicals from alkanes
48 MO2 Methyl peroxy radical
49 ETHP Peroxy radical formed from ETH
50 HC3P Peroxy radical formed from HC3
51 HC5P Peroxy radical formed from HC5
52 HCS8P Peroxy radical formed from HCS8
Peroxy radicals from alkenes
53 OL2P Peroxy radical formed from OL2
54 OLTP Peroxy radical formed from OLT
55 OLIP Peroxy radical formed from OLIP
Peroxy radicals from aromatics
56 TOLP Peroxy radical formed from TOL
57 XYLP Peroxy radical formed from XYL
Peroxy radicals with carbonyl groups
58 ACO3 Acetylperoxy radical
59 KETP Peroxy radical formed from KET
60 TCO3 H(CO)CH=CHCO3
Peroxy radicals involving nitrogen
61 OLN NO3-alkene adduct
62 XNO2 Accounts for additional organic
nitrate formation affected by
the lumped organic species
63 X002 Accounts for additional NO
to NO2 conversions affected by

the lumped organic species

110 APPENDIX

Listing 1: Calculation of photolysis rates in 0-d boxmodel. Extracted from Kuhn et al. [56].
C

Ok sk 5k 5k 5k ok ok ok oK oK 3K oK oK oK ok K KK K oK 3K 3K oK oK K KK K K K 3K 3K oK oK K KKK K K oK oK oK K K KKK K 3K oK oK ok K K KK oK K K oK K Kok ok K K
C CALCULATION OF PHOTOLYSIS FREQUENCY WITH ALGORITHM FROM ROETHS FLUX-PROGRAM
C CHI IN RADIAN
C X,Y,Z FROM ROETH
C X IS PHOTOLYSIS FREQUENCY IN 1/S FOR SOLAR ZENITH ANGLE CHI=0 DEG
C AUTHOR: KUHN 07.09.93
Ok sk sk 5k 5k ok ok ok 3k oK oK 3K 3K oK oK K K KK K 3K 3K 5K oK oK K KK K K K 3K 3K oK oK K KKK K K 3K 5K oK oK K K KK K K oK oK K ok K KK K K K oK K Kok R K K
C
FUNCTION PHUX(X,Y,Z,CHI)
REALx8 X,Y,Z,CHI,CHIZ,YCHIZ,MINYZ,EYCHIZ,EMINYZ,PHUX
PARAMETER (MINYZ = —30, EMINYZ = 9.357623D—14) !EMINYZ=EXP(MINYZ)
IF (CHIZ.LT.1.57079632679489D0) THEN
YCHIZ =Y % (1.0 — (1.0/ COS(CHIZ)))
IF (YCHIZ.GT.MINYZ) THEN
EYCHIZ = DEXP (YCHIZ)

ELSE
EYCHIZ = EMINYZ
ENDIF
ELSE
EYCHIZ = EMINYZ
ENDIF

PHUX = X % EYCHIZ
END FUNCTION PHUX

C
Ok sk sk sk ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok K Kk sk ok ok ok ok ok ok ok ok K KK Rk ok ok ok ok sk ok ok ok o ok kR ok ok ok ok ok ok ok o ok ok ok ok
C CALCULATION OF SOLAR ZENITH ANGLE CHI

C*>(<*>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<>(<***
C
FUNCTION CHIBE (ZEIT ,GB,GL, TAG)
REAL(dp) :: CHIBE,ZEIT,GB,GL,TAG,SD,CD,FP,0M,SH, SH1, CHI, DEKL
FP = 0.01745329E0
DEKL = 23.45E0+SIN ((280.1E0+0.981E0+TAG)*0.01745329E0)
SD = SIN (DEKL+FP)
CD = COS(DEKL+FP)
OM = (12.E0—(ZEIT/60.4GL/15.50))*0.261799388E0
SH = SIN (GB*FP)#SD+COS (GB+FP) xCD+COS (OM)
SH1 = ASIN(SH)*180./3.141592
CHI=90.—SH1
CHI=3.141592/180.%CHI
CHIBE=CHI
END FUNCTION CHIBE

C
Ot s sk sk ok sk ok st ok sk ok ok ko ok ok s ok ok ok sk ok sk ok sk ok ok ok ok ok s ok sk ok sk ok ok Kk ok ok Kk ok ok ok sk ok ok ok ok ok ok Kk ok ok Kk ok ok ok ok ok ok
C CALCULATION OF REACTION RATES for pressure depending rate constants
C according to Stockwell et al.
Ot s sk sk ok sk ok sk ok sk ok ok ok ok ok ok ok sk ok sk ok ok ok sk ok ok ok ok ok ok sk ok sk ok ok ok ok ok Kk sk ok ok sk ok ok sk ok ok ok ok Kk ok ok Ok ok ok R ok ok ok
C
FUNCTION TROE(KO0300, Q, KU300, R, M, T)

REAL(dp) :: KO0300, Q, KU300, R, M, T, TROE

REAL(dp) :: tt, kO, ku, kOm, kk, lgkk, e, f

TI=T / 3.D2

KO0= K0300 / TTx*xQ

KU= KU300 / TTx%R

KOM= KO « M

KK= KOM / KU

LGKK=0.434294481D0 * LOG(KK)

E=1.D0 / (1.D0 + LGKK+«LGKK)

F=0.6D0 *x E

TROE= F « KOM / (1.D0 + KK)
END FUNCTION TROE

C
sk sk sk sk s o o ok ok o ok ok ok ok ok ok ok ok ok ok ok ok 3k 5k ok 5k 5k 5k 5k 3k 5k 5k 5k 5k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k 5k ok ok ok ok 3 3 3 3 3 3 3 o K K K K K K K K K K
C CALCULATION OF REACTION RATE for N205 —> NO2 + NO3
R O O T
C
FUNCTION EQT(K0300, Q, KU300, R, M, T, A, B)
REAL(dp) :: KO0300, Q, KU300, R, M, T, A, B, EQT
REAL(dp) :: kh
KH= TROE(K0300, Q, KU300, R, M, T)
EQT= KH * A +DEXP(-B / T)
END FUNCTION EQT

C
Ot s sk sk ok sk ok sk ok sk ok ok ok sk ok ok s ok ok ok sk ok st ok sk ok okt ok ok ok s ok sk ok sk ok sk ok sk ok ok K sk ok ok ok sk ok sk ok sk ok ok ok sk ok sk ok ok ok ok ok sk ok ok ok
C CALCULATION OF REACTION RATE
C for HNO4 —> HO2 + NO2
Ot sk sk ok sk ok sk ok sk ok ok ok ok ok ok s ok ok ok sk ok sk ok sk ok okt ok ok ok ok sk ok sk ok sk ok ok ok ok Kk ok ok ok sk ok sk ok sk ok ok sk oKk ok ok Ok ok ok sk kK ok
C
FUNCTION EQT2(M, T)
REAL(dp) :: KO0300, Q, KU300, R, M, T, A, B, EQT2
REAL(dp) :: kh
K0300=1.8d-31
Q=3.2d0
KU300=4.7d—12
R=1.4d0
A=4.76d426
B=10900.d0
KH= TROE(KO0300, Q, KU300, R, M, T)
EQT2= KH * A «DEXP(-B / T)
END FUNCTION EQT?2

111

112

C

APPENDIX

Ok oKk ok ok ok ok ok ok ok ok oK o ok Kk ok ok o ok K ok ok o ok ok K ok ok
C CALCULATION OF REACTION RATE for HNO3 + HO —> H20 + NO3

Ok sk ok kR ok ok ok ok ok ok ok ok ok ok kK Rk ok ok ok ok ok ok ok ok ok ok ok Rk ok ok ok ok ok ok ok o ok o kR ok

C

FUNCTION SPEZ(A0,B0,A2,B2,A3,B3,M,T)
A0,B0,A2,B2,A3,B3,M,T, SPEZ
k2,

END FUNCTION SPEZ

C

REAL(dp)
REAL(dp)

K0=A0+DEXP(B0/T)
K2=A2+DEXP(B2/T)

k0,

K3=A3:0M«DEXP(B3/T)
SPEZ= KO + K3 / (1 + K3/K2)

k3

Ok sk sk ok ok ok ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok ok ok Kk sk ok ok ok ok ok ok ok ok ok o K KRk ok ok ok ok ok ok ok ok o ok o ok Rk ok ok ok ok ok ok ok o ok o Kk ok
C CALCULATION OF EMISSIONS FOR SCENARIOS URBAN AND PLUME

C**

C

SUBROUTINE EMISSION

C(ind_NO)
C(ind_S02)
C(ind_CO)
C(ind_ALD)

C(ind_HCHO)
C(ind_HC3)
C(ind_HC5)
C(ind_HCS)
C(ind_ETH)
C(ind_OL2)
C(ind_OLT)
C(i)
C(ind__ TOL)
C(ind_XYL)
C(ind_KET)

END SUBROUTINE EMISSION

ind_NO)
ind_S0O2)
ind_CO)
ind_ALD)
ind_ HCHO)
ind_HC3)
ind HC5

e e e N e e T N
. D,
=
(oW
oo

e i i i

[=leleleoBoBolBoBoBololaoNaol VRNV S

.1e6xDT

.2e5*DT

.4e5*xDT

.0051221%3.
.0196705%3.
.3633745%3.
.1076187%3.
.0643181x%3.
.0340956%3.
.0646318x*3.
.0309905%3.
.0265693%3.
.0811276%3.
.0734949%3.
.0453156%3.

0e6«DT
0e6DT
0e6xDT
0e6«DT
0e6«DT
0e6xDT
0e6xDT
0e6«DT
0e6xDT
0e6+DT
0e6«DT
0e6xDT

NO
SO2

HCHO
HC3
HC5
HC8

OL2
OLT
OLI
TOL

113

Convergence of the Parareal Algorithm

Theorem. At any parareal iteration k > 1 the parareal solution at all times n < k equate the
solution of the fine propagator Fay, i.e.

UF = F2(uw), Yn<k with F&(ug) = Fayo...oFaylug). (1)
N——

n times

Proof. By induction.
1. Base Case:
Consider k = 1: The parareal scheme (3.2.2) at iteration k = 1 reads
Up = Gar(Un1) + (Far = Gar) (Up—y)- (2)

We distinguish two cases:

— n = 0: Since Ué“ = wy for all k, it must also be Ug = uy = fgt(uo).

— n=1: We insert U} = U§ = ug into Eq. (2) and

Ul = Gailuo) + Far(uo) — Gai(uo)
= Farluo).
Eq. (1) is true for k=1 and n =0 and n = 1.

2. Induction Step:

Now assume, that Eq. (1) holds for all £ > 1. Then it must also hold for all £k — &+ 1.
The parareal scheme at iteration k + 1 reads

UE = GadUSH) + (Far— Ga0) (UL,) .)

As we have already proven Eq. (1) for ¥ = 0 and k£ = 1, we only have to consider all
1 <n < k+1. Since we assume Eq. (1) to hold for all n < k, it is Far(UF_}) = FR,(uo)
and therefore also

Ut = FRy(wo) + Gar (UK}~ UR_y) .

We are left to show, that
UMl —U* | Vidk>1+4k>n>1, (4)
which we will proof in a double nested inner induction.
— Consider k= 1:
n=1:U2=U} =up
- n=2:Uf = Gai(U§) + (Far — Gar) (Ug) = FaUg = U}
— We assume that Eq. (4) holds for k. Then it must also hold for k =k + 1.

114 APPENDIX

Uk = Uk = ug
-n = n+1: We assume Eq. (4) holds for n. Then it must also hold for
n=n+1< E+1:

UMD = Ga (UMDY + (Far — Gae) (UF)

= At UO"‘QAt(k+1 Uk)

Since we assume Eq. (4) to hold for k, it must be U, k+1 U,,’;“_Q and therefore
it is
UM = 72 .

n

Further, we use that "T_Xt ug = UF_| for all n < k . Then it is

UMl —UF | Vi4k>14k>n>1

and Eq. (4) holds for all k -+ 1.

3. Conclusion:

With the equality Ukle Uﬁ/’_l shown for all 1 +k > 1 +k >mn > 1, it is shown, that
Eq. (1) holds for all & — k + 1 and the proof of Eq. (1) is finished.

O]

Bibliography

Protocol scenarios for modelling of multi-phase tropospheric chemistry, ver-
sion 2. http://www.fz-juelich.de/iek/iek-8/EN/Research/Modelling/
RegionalAndInverseModelling/CMD/Downloads/MULT_pdf .pdf.

R.C. Aiken. Stiff Computation. Oxford University Press, New York, 1985.

S.P. Arya. Air Pollution Meteorology and Dispersion. Oxford University Press, New
York, 1999.

U.M. Ascher, S.J. Ruuth, and R.J. Spiteri. Implicit-explicit Runge-Kutta methods for
time-dependent partial differential equations. Applied Numerical Mathematics, 25:151—
167, 1997.

R. Atkinson. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical
with organic compounds under atmospheric conditions. Chemical Reviews, 86:69-201,
1986.

E. Aubanel. Scheduling of tasks in the parareal algorithm. Parallel Computing, 37:172—
182, 2011.

L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah. Parallel-in-time molecular-
dynamics simulations. Physical Review E - Statistical, Nonlinear, and Soft Matter
Physics, 66:3—6, 2002.

A. Baklanov, K. Schlinzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu,
G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell,
M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm,
A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi,
N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solo-
mos, B. Sgrensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang. Online coupled
regional meteorology chemistry models in europe: current status and prospects. Atmo-
spheric Chemistry and Physics, 14(1):317-398, 2014.

G. Bal. Parallelization in time of (stochastic) ordinary differential equations. (unpub-
lished), 2003.

115

116

[10]

[20]

[21]

BIBLIOGRAPHY

G. Bal and Y. Maday. A parareal time discretization for nonlinear pde’s with ap-
plications to the pricing of and American put. In Recent Developments in Domain
Decomposition Methods, volume 23, pages 189-202. 2002.

B.P. Belousov. Periodically acting reaction and its mechanism. Collection of Abstracts
on Radiation Medicine, 147, 1958.

C. Bendtsen. A parallel stiff ODE solver based on MIRKs. Advances in Computational
Mathematics, 7:27-36, 1997.

L.A. Berry, W. Elwasif, J.M. Reynolds-Barredo, D. Samaddar, R. Sanchez, and D.E.
Newman. Event-based parareal: A data-flow based implementation of parareal. Journal
of Computational Physics, 231:5945-5954, 2012.

A. Blouza, L. Boudin, and S.M. Kaber. Parallel in time algorithms with reduction
methods for solving chemical kinetics. Communications in Applied Mathematics and
Computational Science, 5:93-115, 2010.

C. Bolley and M. Crouzeix. Consérvation de la positivité lors de la discrétisation des
problémes d’évolution paraboliques. RAIRO Analyse Numérique, 12:81-88, 1978.

J. Boutahar and B. Sportisse. Reduction methods and uncertainty propagation: appli-
cation to a Chemistry-Transport-Model. In Proceedings of the TAM-TAM conference,
volume 1, pages 1-6, 2005.

S. Bu and J.Y. Lee. An enhanced parareal algorithm based on the deferred correction
methods for a stiff system. Journal of Computational and Applied Mathematics, 255:297—
305, 2014.

A. Biki, T. Perger, T. Turdnyi, and U. Maas. Repro-modelling based generation of
intrinsic low-dimensional manifolds. Journal of Mathematical Chemistry, 31(4):345—
362, 2002.

K. Burrage. Parallel and sequential methods for ordinary differential equations. The
Clarendon Press Oxford University Press, Burlington, MA, USA, 1995.

X.N. Cao, S.F. Li, and D.G. Liu. Modified parallel Rosenbrock methods for stiff differ-
ential equations. Journal of Computational Mathematics, 20:23-34, 2002.

W.P.L. Carter. Documentation of the SAPRC-99 Chemical Mechanism for VOC Reac-
tivity Assessment. 2000.

W.P.L. Carter. Implementation of the SAPRC-99 Chemical Mechanism into the Models-
3 Framework. 2000.

W.P.L. Carter. Development of the SAPRC-07 chemical mechanism. Atmospheric
Environment, 44(40):5324-5335, 2010.

BIBLIOGRAPHY 117

[24]

[27]

[28]

B. Cumming, G. Fourestey, O. Fuhrer, T. Gysi, M. Fatica, and T.C. Schulthess. Ap-
plication centric energy-efficiency study of distributed multi-core and hybrid cpu-gpu
systems. In Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 14, pages 819-829, Piscataway, NJ, USA,
2014. IEEE Press.

C.F. Curtiss and J.O. Hirschfelder. Integration of stiff equations. In Proceedings of the
National Academy of Sciences US, volume 38, pages 235-243, 1952.

G. Dahlquist. Convergence and stability in the numerical integration of ordinary differ-
ential equations. Mathematica Scandinavica, 4:33-53, 1956.

G.G. Dahlquist. A special stability problem for linear multistep methods. BIT Numer-
ical Mathematics, 3(1):27-43, 1963.

K. Dekker and J.G. Verwer. Stability of Runge-Kutta methods for stiff nonlinear differ-
ential equations. North-Holland, Amsterdam, 1984.

R. Djouad and B. Sportisse. Partitioning techniques and lumping computation for
reducing chemical kinetics. APLA: An automatic partitioning and lumping algorithm.
Applied Numerical Mathematics, 43(4):383-398, 2002.

A.M. Dunker. The Reduction and Parametrization of Chemical Mechanisms for Inclu-
sion in Atmospheric Reaction-Transport-Models. Atmospheric Environment, 20(3):479-
486, 1985.

A. Dutt, L. Greengard, and V. Rokhlin. Spectral deferred correction methods for ordi-
nary differential equations. BIT Numerical Mathematics, 40(2):241-266, 2000.

B.L. Ehle. On padé approximations to the exponential function and a-stable methods
for the numerical solution of initial value problems. Research report CSRR 2010, 1969.

N. Fenichel. Geometric singular perturbation theory for ordinary differential equations.
Journal of Differential Equations, 31(1):53-98, 1979.

P.F. Fischer, F. Hecht, and Y. Maday. A parareal in time semi-implicit approximation
of the Navier-Stokes equations. In Domain Decomposition Methods in Science and
Engineering XI, volume 40. 2005.

M.J. Gander. 50 years of Time Parallel Time Integration. In Multiple Shooting and
Time Domain Decomposition. Springer, 2015.

M.J. Gander and E. Hairer. Nonlinear convergence analysis for the parareal algorithm.
Lecture Notes in Computational Science and Engineering, 60:45-56, 2008.

M.J. Gander and S. Vandewalle. Analysis of the Parareal Time-Parallel Time-
Integration Method. SIAM Journal on Scientific Computing, 29:556-578, 2007.

[39]

[40]

[41]

[47]

BIBLIOGRAPHY

M.J. Gander and S. Vandewalle. On the superlinear and linear convergence of the
parareal algorithm. In Domain Decomposition Methods in Science and Engineering
XVI, volume 55 of Lecture Notes in Computational Science and Engineering, pages
291-298. Springer, 2007.

M.J. Gander and S.G. Vandewalle. On the superlinear and linear convergence of the
parareal algorithm. Domain Decomposition Methods in Science and Engineering X VI,
55:291-298, 2007.

C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 1971.

M.W. Gery, G.Z. Whitten, J.P. Killus, and M.C. Dodge. A photochemical kinetics
mechanism for urban and regional scale computer modeling. Journal of Geophysical
Research: Atmospheres, 94(D10):12925-12956, 1989.

A. Gross and W.R. Stockwell. Comparison of the EMEP, RADM2 and RACM mecha-
nisms. Journal of Atmospheric Chemistry, 44:151-170, 2003.

D. Guibert and D. Tromeur-Dervout. Parallel adaptive time domain decomposition for
stiff systems of ODEs/DAEs. Computers and Structures, 85:553-562, 2007.

W. Hackbusch. Parabolic multi-grid methods. In Proceedings of the Sizth International
Symposium on Computing Methods in Applied Sciences, pages 198197, 1985.

E. Hairer, S.P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I:
Nonstiff Problems. Springer series in computational mathematics. Springer, second
edition, 2009.

E. Hairer and G. Wanner. Solving ordinary differential equations II: Stiff and
differential-algebraic problems. Springer series in computational mathematics. Springer,
second edition, 1996.

E. Hesstvedt, @. Hov, and I.S.A. Isaksen. Quasi-steady-state approximations in air
pollution modeling: Comparison of two numerical schemes for oxidant prediction. In-
ternational Journal of Chemical Kinetics, 10:971-994, 1978.

J.R. Holton. An introduction to dynamic meteorology. Elsevier Academic Press, Ams-
terdam, Boston, Heidelberg, 2004.

J. Huang, J. Jia, and M. Minion. Accelerating the convergence of spectral deferred
correction methods. Journal of Computational Physics, 214:633-656, 2006.

L.O. Jay, A. Sandu, F.A. Potra, and G.R. Carmichael. Improved QSSA methods for
atmospheric chemistry integration. STAM Journal on Scientific Computing, 18(1):182—
202, 1997.

BIBLIOGRAPHY 119

[51]

[52]

[53]

[55]

[56]

M.E. Jenkin, S.M. Saunders, and M.J. Pilling. The tropospheric degredation of volatile
organic compounds: a protocol for mechanism developmen. Atmospheric Environment,
31:81-104, 1997.

M.E. Jenkin, S.M. Saunders, V. Wagner, and M.J. Pilling. Protocol for the development
of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of

aromatic volatile organic compounds. Atmospheric Chemistry and Physics, 3(1):181—
193, 2003.

J.A. Kerr, J.G. Calvert, and Atmospheric Sciences Research Laboratory. Chemical
transformation modules for Fulerian acid deposition models. U.S. Environmental Pro-
tection Agency, Atmospheric Sciences Research Laboratory Research Triangle Park,
NC, 1985.

B.M.S. Khalaf and D. Hutchinson. Parallel algorithms for initial value problems: Par-
allel shooting. Parallel Computing, 18(6):661-673, 1992.

M. Kiehl. Parallel multiple shooting for the solution of initial value problems. Parallel
Computing, 20(3):275-295, 1994.

M. Kuhn, P.J.H. Builtjes, D. Poppe, D. Simpson, W.R.. Stockwell, Y. Andersson-Skéld,
A. Baart, M. Das, F. Fiedler, Hov, F. Kirchner, P.A. Makar, J.B. Milford, M.G.M.
Roemer, R. Ruhnke, A. Strand, B. Vogel, and H. Vogel. Intercomparison of the gas-
phase chemistry in several chemistry and transport models. Atmospheric Environment,
32:693-709, 1998.

K. Kunisch and S. Volkwein. Control of the Burgers Equation by a Reduced-Order
Approach Using Proper Orthogonal Decomposition 1. Journal of Optimization and
Application, 102(2):345-371, 1999.

K. Kunisch and S. Volkwein. Galerkin proper orthogonal decomposition methods for
parabolic problems. Numerische Mathematik, 148:117-148, 2001.

S.H. Lam and D.A. Goussis. Understanding complex chemical kinetics with computa-
tional singular perturbation. Symposium (International) on Combustion, 22:931-941,
1989.

J.D. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value
Problem. John Wiley & Sons, Inc., New York, 1991.

D. Lanser and J.G. Verwer. Analysis of operator splitting for advection-diffusion-
reaction problems from air pollution modelling. Journal of Computational and Applied
Mathematics, 111(1-2):201-216, 1999.

F. Legoll, T. Lelievre, and G. Samaey. A micro-macro parareal algorithm: application
to singularly perturbed ordinary differential equations. SIAM Journal on Scientific
Computing, 35:A1951-A1986, 2013.

120

[63]

[65]

[66]

[67]

[72]

BIBLIOGRAPHY

E. Lelarasmee, A.E. Ruehli, and A.L. Sangiovanni-Vincentelli. The Waveform Relax-
ation Method for Time-Domain Analysis of Large Scale Integrated Circuits. IFEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1, 1982.

J.A. Leone and J.H. Seinfeld. Comparative analysis of chemical reaction mechanisms
for photochemical smog. Atmospheric Environment, 19:437-464, 1985.

G. Li and H. Rabitz. A general analysis of exact lumping in chemical kinetics. Chemical
Engineering Science, 44(6):1413-1430, 1989.

G. Li and H. Rabitz. A general analysis of approximate lumping in chemical kinetics.
Chemical Engineering Science, 45(4):977-1002, 1990.

G. Li and H. Rabitz. Determination of constrained lumping schemes for nonisothermal
first-order reaction systems. Chemical Engineering Science, 46(2):583-596, 1991.

G. Li and H. Rabitz. New approaches to determination of constrained lumping schemes
for a reaction system in the whole composition space. Chemical Engineering Science,
46(1):95-111, 1991.

J. Linford and A. Sandu. Scalable parallelism for atmospheric modeling and simulation.
Journal of Supercomputing, 56:300-327, 2010.

J.C. Linford. Accelerating Atmospheric Modeling Through Emerging Multi-core Tech-
nologies Emerging Multi-core Technologies. PhD thesis, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061, USA, 2010.

J.C. Linford, J. Michalakes, M. Vachharajani, and A. Sandu. Multi-core acceleration
of chemical kinetics for simulation and prediction. In Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis - SC ’09, page 1. ACM
Press, 2009.

J.C. Linford, J. Michalakes, M. Vachharajani, and A. Sandu. Automatic Generation of
Multicore Chemical Kernels. IEEE Transactions on Parallel and Distributed Systems,
22(1):119-131, 2011.

J.C. Linford and A. Sandu. Optimizing large scale chemical transport models for mul-
ticore platforms. In SpringSim ’08: Proceedings of the 2008 Spring simulation multi-
conference, pages 369-376, 2008.

J.-L. Lions, Y. Maday, and G. Turinici. A "parareal" in time discretization of PDE’s.
Comptes Rendus de I’Académie des Sciences - Series I - Mathematics, 332(2):661-668,
2001.

C. Lirong and L. Degui. A class of parallel rosenbrock formulas. In Proceeding of 3rd
BICSC, volume 95, 1995.

BIBLIOGRAPHY 121

[76]

[81]

[82]

[85]

[36]

[87]

[88]

T. Lgvas, E. Mastorakos, and D.A. Goussis. Reduction of the RACM scheme us-
ing Computational Singular Perturbation Analysis. Journal of Geophysical Research,
111(D13):D13302, 2006.

R. Lowe and A. Tomlin. Low-dimensional manifolds and reduced chemical models for
tropospheric chemistry simulations. Atmospheric Environment, 34(15):2425-2436, 2000.

F.W. Lurmann, A.C. Lloyd, and R. Atkinson. A chemical mechanism for use in long-
range transport/acid deposition computer modeling. Journal of Geophysical Research:
Atmospheres, 91(1D10):10905-10936, 1986.

U. Maas. Efficient Calculation of Intrinsic Low-Dimensional Manifolds for the Simplifi-
cation of Chemical Kinetics. Computing and Visualization in Science, 1:69-81, 1997.

U. Maas and S.B. Pope. Implementation of simplified chemical kinetics based on intrinsic
low dimensional manifolds. Symposium (International) on Combustion, 24:103-112,
1992.

U. Maas and S.B. Pope. Simplifying chemical kinetics: Intrinsic low-dimensional man-
ifolds in composition space. Combustion and Flame, 88:239-264, 1992.

U. Maas and S.B. Pope. Laminar flame calculations using simplified chemical kinetics
based on intrinsic low-dimensional manifolds. Symposium (International) on Combus-

tion, 25:1349-1356, 1994.

Y. Maday. Parareal in time algorithm for kinetic systems based on model reduction.
High-Dimensional Partial Differential Equations in Science and Engineering, 41:183—
194, 2007.

Y. Maday, E. Ronquist, and G. Staff. The parareal-in-time algorithm: Basics, stability
analysis and more. (Preprint), pages 1-20, 2007.

P.A. Makar and S.M. Polavarapu. Analytic solutions for gas-phase chemical mechanism
compression. Atmospheric Environment, 31(7):1025-1039, 1997.

A.R. Marsden, M. Frenklach, and D.D. Reible. Increasing the Computational Feasibility
of Urban Air Quality Models that Employ Complex Chemical Mechanisms. Journal of
the Air Pollution Control Association, 37(4):370-376, 1987.

G.J. McRae, W.R. Goodin, and J.H. Seinfeld. Numerical solution of the atmospheric
diffusion equation for chemically reacting flows. Journal of Computational Physics,
45(1):1-42, 1982.

J. Michalakes and M. Vachharajani. GPU Acceleration of Numerical Weather Pre-
diction. In International Parallel and Distributed Processing Symposium, pages 1-18,
2008.

122

[89]

[94]

[95]

[100]

[101]

[102]

[103]

BIBLIOGRAPHY

P. Middleton, W.R. Stockwell, and W.P.L. Carter. Aggregation and Analysis of
Volatile Organic Compound Emissions for Regional Modeling. Atmospheric Environ-
ment, 24(5):1107-1133, 1990.

M. Minion. A hybrid parareal spectral deferred corrections method. Communications
in Applied Mathematics and Computational Science, 5(2):265-301, 2010.

M. Minion and S.A. Williams. Parareal and spectral deferred corrections. In AIP
Conference Proceedings, volume 1048, pages 388-391, 2008.

W. Miranker and W. Liniger. Parallel methods for the numerical integration of ordinary
differential equations. Mathematics of Computation, 21:303-320, 1967.

G. E. Moore. Cramming More Components onto Integrated Circuits. FElectronics,
38(8):114-117, 1965.

M.A. Mora-Ramirez and R.M. Velasco. Reduction of CB05 mechanism according to the
CSP method. Atmospheric Environment, 45(1):235-243, 2011.

M.K. Neophytou, D.A. Goussis, M. Van Loon, and E. Mastorakos. Reduced chemi-
cal mechanisms for atmospheric pollution using Computational Singular Perturbation
analysis. Atmospheric Environment, 38:3661-3673, 2004.

A.S. Nielsen. Feasibility study of the parareal algorithm. Master’s thesis, Technical
University of Denmark, Asmussens Alle, DK-2800 Kgs. Lyngby, Denmark, 2012.

J. Nievergelt. Parallel methods for integrating ordinary differential equations. 7:731-
733, 1964.

L.R. Petzold. A description of DASSL: a differential /algebraic system solver. In Scien-
tific computing, pages 65—68. IMACS, New Brunswick, New Jersey, 1983.

R. Ponalagusamy and K. Ponnammal. A Parallel Fourth Order Rosenbrock Method:
Construction, Analysis and Numerical Comparison. International Journal of Applied
and Computational Mathematics, 1:45-68, 2014.

D. Poppe, B. Aumont, B. Ervens, H. Geiger, H. Herrmann, E.P. Réth, W. Seidl, W.R.
Stockwell, B. Vogel, S. Wagner, and D. Weise. Scenarios for modeling multiphase
tropospheric chemistry. Journal of Atmospheric Chemistry, 40:77-86, 2001.

H. Rabitz and O. Alis. General foundations of high-dimensional model representations.
Journal of Mathematical Chemistry, 25:197-233, 1999.

H. Rabitz, O. Alis, J. Shorter, and K. Shim. Efficient input-output model representa-
tions. Computer Physics Communications, 117:11-20, 1999.

L.F. Richardson. Weather Prediction by Numerical Process. Cambridge University
Press, Cambridge, New York, 2007.

BIBLIOGRAPHY 123

[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

J.S. Rosenbaum. Conservation properties of numerical integration methods for systems
of ordinary differential equations. Journal of Computational Physics, 267:259-267, 1976.

H.H. Rosenbrock. Some general implicit processes for the numerical solution of differ-
ential equations. The Computer Journal, 5(4):329-330, 1963.

M.R. Roussel and S.J. Fraser. On the geometry of transient relaxation. Journal of
Chemical Physics, 94(1991):7106-7113, 1991.

D. Ruprecht and R. Krause. Explicit parallel-in-time integration of a linear acoustic-
advection system. Computers and Fluids, 59:72-83, 2012.

A. Sandu. Time-stepping methods that favor positivity for atmospheric chemistry mod-
eling. In IMA Volume on Atmospheric Modeling, pages 1-21. Springer, 2001.

A. Sandu, J.G. Verwer, J.G. Blom, E.J. Spee, G.R. Carmichael, and F.A. Potra. Bench-
marking stiff ODE solvers for atmospheric chemistry problems. II: Rosenbrock methods.
Atmospheric Environment, 31:3459-3472, 1997.

A. Sandu, J.G. Verwer, M. van Loon, G.R. Carmichael, F.A. Potra, D. Dabdub, and
J.H. Seinfeld. Benchmarking stiff ODE solvers for atmospheric chemistry problems. I:
implicit versus explicit. Atmospheric Environment, 31:3151-3166, 1997.

J.H. Seinfeld and S.N. Pandis. Atmospheric Chemistry and Physics: From Air Pollution
to Climate Change. John Wiley & Sons, second edition, 2012.

L.F. Shampine. Error estimation and control for ODEs. Journal of Scientific Computing,
25:3-16, 2005.

J.A. Shorter, P.C. Ip, and H. Rabitz. An Efficient Chemical Kinetics Solver Using High
Dimensional Model Representation. The Journal of Physical Chemistry, 103(36):7192—
7198, 1999.

M.N. Spijker. Stiffness in numerical initial-value problems. Journal of Computational
and Applied Mathematics, 72(2):393-406, 1996.

C.M. Spivakovsky, Wofsy S.C., and Prather M.J. A numerical method for parameteriza-
tion of atmospheric chemistry: Computation of tropospheric OH. Journal of Geophysical
Research, 95(18), 1990.

B. Sportisse and R. Djouad. Use of proper orthogonal decomposition for the reduction
of atmospheric chemical kinetics. Journal of Geophysical Research, 112(D6):D06303,
2007.

G.A. Staff. The Parareal Algorithm. Science And Technology, 60(2):173-184, 2003.

W.R. Stockwell, F. Kirchner, M. Kuhn, and S. Seefeld. A new mechanism for regional
atmospheric chemistry modeling. Journal of Geophysical Research, 102:25847, 1997.

124

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127)

[128]

[129]

[130]

[131]

[132]

BIBLIOGRAPHY

W.R. Stockwell, P. Middleton, J.S. Chang, and X. Tang. The second generation regional
acid deposition model chemical mechanism for regional air quality modeling. Journal
of Geophysical Research, 95(D10):16343, 1990.

A.N. Tikhonov, A.B. Vasileva, and Sveshnikov A.G. Differential Equations. Springer,
1985.

A.S. Tomlin, L. Whitehouse, R. Lowe, and M.J. Pilling. Low-dimensional manifolds in
tropospheric chemical systems. Faraday discussions, (120):125-146; discussion 197-213,
2001.

T. Turdnyi. Parameterization of reaction mechanisms using orthonormal polynomials.
Computers € chemistry, 18(1):45-54, 1994.

T. Turdnyi and A.S. Tomlin. Analysis of Kinetic Reaction Mechanisms. Springer, 2014.

T. Turdnyi, A.S. Tomlin, and M.J. Pilling. On the error of the quasi-steady-state
approximation. The Journal of Physical Chemistry, 97(1):163-172, 1993.

P.J. Van Der Houwen and B.P. Sommeijer. Parallel iteration of high-order Runge-Kutta
methods with stepsize control. Journal of Computational and Applied Mathematics,
29:111-127, 1990.

S.G. Vandewalle and E.F. van de Velde. Space-time Concurrent Multigrid Waveform
Relaxation. Annals of Numerical Mathematics, 1(1):347-360, 1994.

J.G. Verwer, J.G. Blom, M. Van Loon, and E.J. Spee. A comparison of stiff ode solvers
for atmospheric chemistry problems. Atmospheric Environment, 30:49-58, 1996.

J.G. Verwer, W.H. Hundsdorfer, and J.G. Blom. Numerical time integration for air
pollution models. Surveys on Mathematics for Industry, 10(2):107-174, 2002.

D.A. Voss. Fourth-order parallel Rosenbrock formulae for stiff systems. Mathematical
and Computer Modelling, 40:1193-1198, 2004.

D.A. Voss and A.Q.M. Khaliq. Parallel Rosenbrock methods for chemical systems.
Computers and Chemistry, 25:101-107, 2001.

S.W. Wang, S. Balakrishnan, and P. Georgopoulos. Fast equivalent operational model
of tropospheric alkane photochemistry. AIChE Journal, 51(4):1297-1303, 2005.

S.W. Wang, P.G. Georgopoulos, G. Li, and H. Rabitz. Condensing Complex At-
mospheric Chemistry Mechanisms. 1. The Direct Constrained Approximate Lumping
Method Applied to Alkane Photochemistry. FEnwvironmental Science € Technology,
32(13):2018-2024, 1998.

BIBLIOGRAPHY 125

[133]

[134]

[135]

[136]

[137]

138

[139)]

[140]

[141]

[142]

S.W. Wang, P.G. Georgopoulos, G. Li, and H. Rabitz. Computationally efficient atmo-
spheric chemical kinetic modeling by means of high dimensional model representation.
In Large-Scale Scientific Computing, volume 2179 of Lecture Notes in Computer Science,
pages 326-333. Springer, 2001.

S.W. Wang, H. Levy, G. Li, and H. Rabitz. Fully equivalent operational models for
atmospheric chemical kinetics within global chemistry-transport models. Journal of
Geophysical Research, 104(D23):30417, 1999.

Z. Wang and S. Wu. Parareal Algorithms Implemented with IMEX Runge-Kutta Meth-
ods. 2014.

J. Warnatz, U. Maas, and R.W. Dibble. Combustion: Physical and chemical fundamen-
tals, modeling and simulation, experiments, pollutant formation. Springer, 2006.

L.E. Whitehouse, A.S. Tomlin, and M.J. Pilling. Systematic reduction of complex tro-
pospheric chemical mechanisms using sensitivity and time-scale analyses. Atmospheric
Chemistry and Physics, 4(4):3721-3783, 2004.

G.Z. Whitten, J.P. Killus, R.G. Johnson, and Atmospheric Sciences Research Labora-
tory. Modeling of auto exhaust smog chamber data for EKMA development. U.S. En-
vironmental Protection Agency, Atmospheric Sciences Research Laboratory Research
Triangle Park, NC, 1985.

S. Wu, B. Shi, and C. Huang. Parareal-richardson algorithm for solving nonlinear ODEs
and PDEs. Communications in Computational Physics, 6(4):883-902, 2009.

T.R. Young and J.P. Boris. Numerical Technique for solving stiff ordinary differential
equations associated with the chemical kinetics. The Journal of Physical Chemistry,
81:2424-2427, 1977.

A .M. Zhabotinsky. Periodical process of oxidation of malonic acid solution. Biophysics,
9:306 — 311, 1964.

H. Zhang, J.C. Linford, A. Sandu, and R. Sander. Chemical mechanism solvers in air
quality models. Atmosphere, 2(3):510-532, 2011.

