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Abstract 

Initially found to regulate G2/M cell cycle checkpoint upon irradiation-induced DNA 

damage, RINT1 (RAD50-interacting protein 1) was later shown to be a multifunctional 

protein. RINT1 participates in telomerase-independent telomere length maintenance, 

membrane trafficking between Golgi apparatus and endoplasmic reticulum and ER-Golgi 

homeostasis. Inactivation of Rint1 leads to an early embryonic lethality. RINT1 can act as 

tumor suppressor, since heterozygous inactivation results in tumor formation in mice, 

while in humans mutant RINT1 variants predispose to development of breast- and Lynch 

syndrome-related cancers. RINT1 was also proposed to be an oncogene for glioblastoma 

development. Nevertheless, despite its involvement in a variety of biological pathways, 

no data regarding post-translational modifications (PTM) of RINT1 or their impact on the 

protein’s function was reported. 

The present study shows that RINT1 is subjected to two kinds of post-translational 

modifications: ubiquitination and, putatively, SUMOylation. It was found that RINT1 is a 

short-lived protein with a half-life (approx. 40 min) regulated by a proteasomal 

degradation pathway. RINT1 is ubiquitinated by several ubiquitin linkage types. Since K48-

mediated polyubiquitin (polyUb) chains as well as K63- and K29-mediated polyUb chains 

were detected, functional significance of RINT1 ubiquitination is not limited to 

proteasomal degradation (K48-mediated polyUb chains) but could also serve to regulate 

multiple cellular functions of RINT1 (K63- and K29-mediated polyUb chains). Interestingly, 

RINT1 was also found to interact with lysineless ubiquitin mutant. Thus, 

monoubiquitination or linear ubiquitination (a less characterized and newly discovered 

PTM) of RINT1 could also be postulated. Furthermore, analysis of in silico predicted 

ubiquitination sites of RINT1 by co-immunoprecipitation of mutant versions (truncated 

mutants and site-directed mutagenesis) revealed that RINT1 is ubiquitinated at different 

sites within the protein. Two E3 ubiquitin ligases, HUWE1 and RNF20/RNF40E3 complex, 

were identified by mass spectrometry assay as binding partners mediating ubiquitination 

of RINT1. The specificity of these interactions was subsequently confirmed by co-

immunoprecipitation experiments. Importantly, shRNA-induced down-regulation of 

HUWE1 and RNF20 or RNF40 protein levels resulted in enhanced RINT1 stability, thus 

indicated their novel role as regulators of proteasomal degradation of RINT1. Moreover, 
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mass spectrometry analysis and yeast two-hybrid assay identified SUMOylation as 

another covalent modification of RINT1. First experiments suggested covalent 

modification of RINT1 by SUMO proteins. 

In conclusion, the present study demonstrated that human RINT1 is a protein of a short-

half life, heavily ubiquitinated at different sites within the protein and via different 

ubiquitin chain linkage types (K29, K48, K63). It is also modified by a lysineless ubiquitin 

mutant and potentially SUMOylation. Importantly, RINT1 interacts with HUWE1 and 

RNF20/40 E3 ubiquitin ligases, which tightly control its cellular levels. This study reveals 

crucial mechanisms governing homeostatic RINT1 turnover and, in this respect, is the first 

to address the presence and functionality of RINT1 polyubiquitination. 
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Zusammenfassung 

Nachdem zunächst festgestellt wurde, dass RINT1 (RAD50-interacting-Protein 1) den 

G2/M-Zellzyklus-Kontrollpunkt nach DNA Schäden durch Bestrahlung reguliert, wurde 

später herausgefunden, dass RINT1 ein multifunktionelles Protein ist. So beteiligt sich 

RINT1 an der Telomerase unabhängigen Aufrechterhaltung der Telomerlänge sowie an 

Membrantransport zwischen Golgi-Apparat und endoplasmatischem Retikulum und 

deren Homöostase. Inaktivierung von Rint1 führte zu einer frühen embryonalen 

Sterblichkeit, während sie im Menschen zu einer Prädisposition für Brustkrebs und dem 

Lynch-Syndrom beiträgt. Auch wird vermutet, dass RINT1 als Onkogen in der Entstehung 

von Gliomen mitwirkt. Trotz der Beteiligung an einer Vielzahl biologischer Prozesse gab es 

bisher keine Daten zu post-translationalen Modifikationen (PTM) von RINT1 und deren 

Auswirkung auf die Funktionen des Proteins.    

Die vorliegende Studie zeigt, dass RINT1 zwei Arten von PTM unterzogen wird: 

Ubiquitinierung und gegebenenfalls SUMOylierung. Es wurde festgestellt, dass RINT1 ein 

kurzlebiges Protein mit einer Halbwertszeit von ca. 40 Minuten ist, welche durch 

proteosomalen Abbau reguliert wird. RINT1 wird auf verschiedene Weisen ubiquitiniert. 

So konnten sowohl K48-verknüpfte Polyubiquitin (polyUb) Ketten als auch K63- und K29- 

verknüpfte polyUb Ketten nachgewiesen werden. Dies deutet darauf hin, dass 

Ubiquitinierung von RINT1 nicht nur dessen proteosomalen Abbau reguliert (vermittelt 

durch K48-verknüpfte polyUb Ketten) sondern außerdem an der Regulation weiterer 

biologischer Prozesse beteiligt ist (vermittelt durch K63- und K29-verknüpfte polyUb 

Ketten). Interessanterweise konnte außerdem eine Interaktion von RINT1 mit Lysine-

freien Ubiquitin-Mutanten nachgewiesen werden. Dies lässt sowohl Monoubiquitinierung 

als auch lineare Ubiquitinierung (eine weniger charakterisiert und neu entdeckte PTM) 

von RINT1 vermuten.  

Des Weiteren bestätigte die Analyse von in silico vorhergesagten Ubiquitinierungsstellen 

mittels Co-Immunpräzipitation mutierter RINT1-Varianten, dass RINT1 an verschiedenen 

Stellen innerhalb des Proteins ubiquitiniert wird. Zwei E3 Ubiquitin-Ligasen, HUWE1 und 

RNF20/RNF40E3-Komplex, konnten mittels Massenspektrometrie als Bindungspartner 

von RINT1 und Vermittler der Ubiquitinierung identifiziert werden. Die Spezifität der 

Interaktionen wurde anschließend durch Co-Immunpräzipitation bestätigt. Die shRNA-
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induzierte Reduktion von HUWE1, RNF20 sowie RNF40 resultierte in einer erhöhten 

Proteinstabilität von RINT1. Dies bestätigt die bislang  unbekannte Rolle dieser Proteine 

als Regulatoren des proteosomalen Abbaus von RINT1. Des Weiteren konnte in 

massenspektrometrischen Analysen sowie mittels yeast two-hybrid-assay SUMOylierung 

von RINT1 als eine weitere kovalente Modifikation identifiziert werden. Diese Ergebnisse 

wurden mit initialen Versuchen angedeutet.  

Zusammenfassend zeigt die hier vorliegende Studie, dass humanes RINT1 ein Protein mit 

kurzer Halbwertszeit ist, welches an verschiedenen Stellen innerhalb des Proteins und 

über verschiedene Ubiquitinierungsarten (K29, K48, K63) modifiziert wird. Zusätzlich wird 

RINT1 auch durch eine Lysine-freie Ubiquitin-Mutante sowie potenziell SUMOylierung 

modifiziert. RINT1 interagiert mit den E3-Ubiquitin-Ligasen HUWE1 und RNF20/40-

Komplex, wodurch die Stabilität des Proteins reguliert wird. 

Die vorliegende Studie beschreibt essentielle Mechanismen der homöostatischen 

Regulation von RINT1 und belegt in diesem Zusammenhang erstmals sowohl 

Vorhandensein als auch Funktionalität von Polyubiquitinierung von RINT1 als 

verantwortliche post-translationale Modifikation. 
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Aim of the study  

Post-translational modifications (PTMs) constitute a powerful biochemical tool to modify 

functions, interactions and localization of a modified protein. PTMs are especially 

important to diversify cellular roles of a given protein by providing precise regulation and 

flexibility to perform different functions. 

RINT1 (RAD50-interacting protein 1) is a multifunctional protein, which plays an 

important role in the cell cycle regulation, telomere length maintenance and ER-Golgi 

trafficking. Recently, it was shown to act as a both proto-oncogene and tumor supressor. 

Despite its involvement in such diverse processes nothing is known about the PTMs of 

RINT1, which could regulate and drive the possibility of executing such spatially and 

temporally distinct cellular functions of the protein.  

The objective of the current experimental study was: (1) to investigate and characterize 

PTMs of RINT1 as well as (2) to reveal novel proteins interacting with RINT1 able to 

mediate its modifications. The obtained data would help to understand the regulation of 

RINT1 functions and to further define other putative biological roles of RINT1 protein. 
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1. Introduction 

1.1. General characteristics of RINT1 protein 

Human RINT1 (RAD50-interacting protein 1) is a 90 kDa (NCBI Ref. Seq. NP_068749.3) 

protein, encoded by the RINT1 gene located on the chromosome 7 in humans (long arm; 

7q22.3) and chromosome 5 in mice (5 A3, 5). It was discovered as an interaction partner 

of RAD50 during late S and G2/M phases of the cell cycle (Xiao, Liu et al. 2001). Although 

almost 14 years have passed since this initial finding, still surprisingly little is known about 

biochemical features and exact cellular functions of RINT1 protein. Of note, very recent 

reports addressing a pivotal role of RINT1 in tumorigenesis, call for more detailed 

biochemical studies of this protein. 

RINT1 is expressed throughout the cell cycle and localized in the cytoplasm, endoplasmic 

reticulum (ER), Golgi apparatus and centrosome (Xiao, Liu et al. 2001; Hirose, Arasaki et 

al. 2004; Nakajima, Hirose et al. 2004; Kong, Meloni et al. 2006). Due to its reported 

association with DNA double-strand brakes repair complex and function in maintenance 

of telomere length, the nuclear localization of human RINT1 could also be possible (Xiao, 

Liu et al. 2001; Kong, Meloni et al. 2006). Despite localization of RINT1 protein at the ER 

and Golgi membranes, RINT1 itself is not considered to be a trans-membrane protein or 

protein directly associated with the membrane. Experimental results indicate that RINT1 

binds to cellular membrane structures via protein interaction partners. In that respect, 

RINT1 interacts with BNIP1, ZW10 and NAG proteins forming a NRZ (NAG-RINT1-ZW10) 

complex associated with ER SNARE (Hirose, Arasaki et al. 2004; Aoki, Ichimura et al. 2009; 

Schmitt 2010; Tagaya, Arasaki et al. 2014). This conclusion is supported by in silico 

predictions of hydrophobicity (Kyte & Doolittle) and transmembrane regions of RINT1 

(Fig. 1). It Is apparent that no trans-membrane helices of hydrophobic patches 

reminiscent of transmembrane regions could be identified. Summary of known features 

of RINT1 protein and comparison between human and mouse RINT1 are presented in 

Table 1. Interestingly, in human only one isoform of RINT1 have been identified, while in 

mouse, at least two isoforms of the protein have been described. They are a result of an 

alternative splicing and differ in 58 amino acids (172 – 229), which are missing in isoform 

2 (source: Uniprot). 
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Figure 1. RINT1 is not predicted to be a membrane protein. Hydrophobicity plots and 

transmembrane region prediction generated with ProtScale (Gasteiger, Gattiker et al. 2003) 

(upper panel, window size applied = 17) and TMHMM online software (Krogh, Larsson et al. 2001) 

(lower panel).  

Table I. Features of human and mouse RINT1/Rint1. 

Feature Homo sapiens, Human Mus musculus, Mouse 

Size 792 amino acids, 90 kDa 792 amino acids, 90 kDa 

Genomic location 7q22.3 5 A3, 5 

Cellular location ER, cytoplasm, Golgi, 

centrosome 
ER, cytoplasm 

Domain RINT1/TIP20 

Position: 304 - 785 aa 

RINT1/TIP20 

Position: 220 - 792 aa 

Coiled coil Position: 103 – 124 aa Position: 71 – 123 aa 

Source: UniProt database (www.uniprot.org) 
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1.1.1. Functional RINT1 domains 

Several functional and two sequence/structure prediction-based domains have been 

identified in RINT1. First, a coiled coil (CC) structural motif has been localized between 

amino acids (aa) 103 and 124 (Table I, UniProt). It is built of alpha-helices forming a 

supercoil structure potentially suitable for mediating protein-protein or protein-DNA 

interactions (Burkhard, Stetefeld et al. 2001). A RINT1-characteristic aa stretch from 

position 220 to 792 was designated as “RINT1/TIP20 domain” on the basis on the high 

evolutionary conservation of the aa sequence (Fig. A-6, Appendix).  

At the functional level, Xiao et. al. reported that RINT1 interaction with RAD50 is 

mediated by protein region at position 257-792 aa (“RAD50 interaction domain”) (Xiao, 

Liu et al. 2001). Similarly, Kong et. al. identified the “p130 interaction domain” – position 

358-440 aa (Kong, Meloni et al. 2006). Moreover, aa stretch 1-264 identified as the 

“ZW10 interaction domain” by Arasaki et. al. was also reported to be the “COG1 

interaction domain” (conserved oligomeric Golgi complex subunit 1) and the “syntaxin 16 

interaction domain”. (Arasaki, Taniguchi et al. 2006; Arasaki, Takagi et al. 2013). 

Interestingly, since interactions with ZW10, COG1 and syntaxin 16 are all encompassing 

CC domain, functional role of the CC structure for mediating protein-protein interaction is 

highly probable. Figure 2 aligns in graphical way all identified domains of human RINT1 

protein. 

 

 

 

Figure 2. Alignment of functional and “sequence/structure-prediction”-based domains of 

human RINT1. 
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1.1.2. RINT1 post-translational modifications 

On the basis of published high throughput screens, only few data point towards 

possibility of post-translational modifications (PTMs) of RINT1. One study reported two 

putative ubiquitination sites of Rint1, on lysine 69 (Lys69) and on lysine 502 (Lys502), 

based on proteomic analysis of murine tissue (Wagner, Beli et al. 2011). Subsequent 

analysis of human multiple myeloma cell line AMO-1, confirmed Lys502 ubiquitination of 

RINT1 (PhosphoSitePlus database, www.phosphosite.org). 

There are few reports regarding phosphorylation of RINT1 protein. Two of them showed 

modification on serine residue (Ser) at position 10, based on mass spectrometry (MS) 

analysis of proteins from human male urine sample (Human Proteinpedia, HuPA_00021) 

and of human cervical cancer HeLA cell line (Sharma, D'Souza et al. 2014). Another piece 

of data suggesting phosphorylation originated from the in-depth analysis of human liver 

phosphoproteome and suggested Ser19 to be a phosphorylated residue (Bian, Song et al. 

2014). According to MS analysis of human gastric carcinoma samples, threonine (Thr) 94, 

Ser96 and Ser97 are also subjected to phosphorylation (PhosphoSitePlus database, 

www.phosphosite.org; NAR, 2012,40:D261-70). Last evidence towards human RINT1 

phosphorylation came from the study of Jurkat cell line derived from human T-

lymphocyte acute lymphoblastic leukemia (T-ALL). Based on MS data, Ser635 and Thr654 

were considered as phosphorylated (PhosphoSitePlus database). Figure 3 summarizes all 

putative PTMs of Rint1 suggested by the high throughput screen data. 

 

 

 
 

Figure 3. MS-based ubiquitination and phosphorylation sites of RINT1. Scheme represents 

positions of modified residues: green – ubiquitination (U) on lysine residues, red – 

phosphorylation (P) on serine residues, blue – phosphorylation (P) on threonine residues. 
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1.1.3. Phylogenomic analysis of homology and conserved, putative 

PTMs of RINT1 

RINT1 is a prototypic protein of a RINT1 protein family. Its members share sequence 

similarity with an N-terminal leucine heptad repeat rich coiled, and contain carboxy-

terminal “RINT1/TIP20 domain” of ~500-residue length. In general, these proteins play a 

role in retrograde and anterograde transport between the ER and the Golgi. Besides 

RINT1, other members are: mouse Rint1 protein (Mus musculus), MAG2 (MAIGO2) and 

MAG2L protein of Arabidopsis thaliana, and RINT1-like protein encoded by the gene 

CG8605 in Drosophila melanogaster. In Arabidopsis, MAG2 has a function in transport of 

storage protein precursors between the ER and Golgi (Li, Shimada et al. 2006). TIP20 

(Tip20) is RINT1 orthologue in yeasts (Saccharomyces cerevisiae) and it plays a role in the 

retrograde transport from the Golgi to ER (Sweet and Pelham 1993; Tripathi, Ren et al. 

2009). 

Phylogenetic tree prediction, based on amino acid sequences of RINT1 homologs, is 

presented in Figure 4. 

 

 

 

 

 

 

 

Figure 4. The phylogenetic tree of RINT1 protein. The analysis was performed on the 

Phylogeny.fr platform (http://phylogeny.lirmm.fr/). The line with the number “0.5” shows the 

length of branch representing an amount of genetic modification of 0.05 [nucleotide substitution 

per site]. The phylogenetic tree was reconstructed using the maximum likelihood method 

implemented in the PhyML program (v3.0). Graphical representation and edition of the 

phylogenetic tree were performed with the TreeDyn (v198.3) (Castresana 2000; Edgar 2004; 

Anisimova and Gascuel 2006; Chevenet, Brun et al. 2006; Dereeper, Guignon et al. 2008; Guindon, 

Dufayard et al. 2010). 
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Highly evolutionary conserved “RINT1/TIP20 domain” region could be of potential 

meaning for the identification of residues modified by PTMs. In silico prediction of 

modified residues indicates that RINT1 homologs share evolutionary conserved putative 

post-translational modification sites. Figure 5 depicts the identified positions and 

postulated modifications.  

 

 

 

 

 

 

 

 

 

Figure 5. Example of evolutionary conserved RINT1 post-translational modification sites and 

their localization. The predicted modification sites are indicated: phosphorylation (P), 

ubiquitination (U) and SUMOylation (S). The number indicates position of the PTM on the human 

RINT1 amino acid (aa) sequence. The most conserved aa is lysine on the position 449 (K449) and is 

predicted to be SUMOylated (S449) and ubiquitinated (U449) (courtesy of Dr. P. Grigaravičius). 

 

1.1.4. RINT1 expression pattern in human tissues 

High-throughput gene expression profiling allows investigation of transcriptional activity 

in biological samples of different organisms on a genome scale. Analysis of normal or 

cancerous tissues, organs or cell lines, gives a tissue-specific pattern of mRNA expression, 

which can indicate function of the protein encoded by a given gene.  

The examination of RINT1 expression pattern (high-density oligonucleotide arrays; BioGPS 

database, http://biogps.org) showed that the gene is highly expressed in nervous system, 
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especially in superior cervical ganglion (a part of the autonomic nervous system), skeletal 

muscle as well as in immune cells (B-lymphocytes, T-lymphocytes, dendritic cells). The 

RINT1 expression higher than average was detected in: tonsil, adrenal cortex, pituitary, 

fetal thyroid, pancreatic islet, Leydig and interstitial testis cells, smooth muscle, thyroid, 

liver, heart, uterus corpus, appendix, tongue, retina, in colorectal carcinoma and Burkitts 

lymphoma. 

These results are mostly overlapping with gene expression data stored in another 

database, Genevestigator (http://Genevestigator.com). According to collected results, 

RINT1 is highly expressed in B-lymphocytes, T-lymphocytes, skeletal muscle, heart, brain, 

eye, salivary gland, colon, rectum, liver, pancreas and macrophages. Figure 6 represents 

exemplary tissues and cells with medium and high expression of the human RINT1 gene. 

Interestingly, data deposited in Genevestigator concerning RINT1 expression in cancers, 

showed its medium to high expression in almost all cancer types, with particularly 

significant expression potential in colon, liver and pancreas cancers, neoplasms of 

respiratory system, bone cancers, eye, brain and central nervous system cancers, 

lymphomas and leukemias. 

To judge on their physiological relevance, the gene expression data have to be validated 

on a protein level. Thus, according to mass spectrometry analyses of the proteome 

deposited in the MOPED (Multi-Omics Profiling Expression Database) database 

(www.proteinspire.org), human RINT1 protein is expressed in following tissues: bone, 

testis, olfactory epithelium, stomach, adrenal gland, liver, rectum, pancreas, colon, 

salivary, thyroid and adrenal glands, esophagus, frontal lobe, spinal cord, retina, lung, 

lymph node, B- and helper T-lymphocytes, blood platelet, peripheral blood mononuclear 

cells, natural killer cell, ovary, placenta, pre-menopause uterus, breast cancer tissue, 

fetal: ovary, testis, heart, gut and liver. 

Therefore, it could be stated that RINT1 gene expression pattern corresponds well with 

tissue distribution of RINT1 protein. 
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B. 

 

 

 

 

 

 

 

 

Figure 6. Genevestigator database data showing RINT1 expression in selected cells and tissues. 

A. RINT1 expression levels higher than average were found in liver, eye, leukocytes and parotid 

gland.  B. Cancer tissues analyzed reveal high expression of RINT1 in infiltrating duct carcinoma, 

chronic myelogenous leukemia, adenoma, glioblastoma and chronic lymphocyte B-cell leukemia.   

 

In conclusion, these data indicate that RINT1 is present in tissues of high metabolic rate, 

i.e. heart, liver, brain and skeleton muscle tissue. In addition, presence of RINT1 in cells 

and tissues, such as nervous system, T-cells and B-cells, support described RINT1 function 

in cell division (e.g. rapid proliferation of T-cells and B-cells upon antigen-induced 
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activation) and membrane trafficking (e.g. antibody production in B-cells and vesicular 

trafficking at synaptic terminals of neurons). 

 

1.2. Cellular roles of RINT1 

Current knowledge about RINT1 functions in, based on miscellaneous research results 

and places RINT1 amongst multifunctional proteins, participating in very different, 

spatially and temporarily separate biological pathways. This diversity of RINT1 functions 

depends on its interactions with various protein-partners, and on the cellular localization. 

Identified in 2001 as a RAD50-interactor, RINT1 was described for the first time as a 

protein involved in DNA damage-induced cell cycle checkpoint (Xiao, Liu et al. 2001). 

Further research studies highlighted its role in other biological processes, such as 

membrane trafficking (Hirose, Arasaki et al. 2004; Arasaki, Taniguchi et al. 2006; Lin, Liu et 

al. 2007; Sun, Shestakova et al. 2007; Arasaki, Takagi et al. 2013) and telomere length 

maintenance (Kong, Meloni et al. 2006). RINT1 was also reported to be an oncogene and 

a tumor suppressor gene (Lin, Liu et al. 2007; Quayle, Chheda et al. 2012; Park, Tao et al. 

2014). 

 

1.2.1. RINT1 function in DNA repair and double-strand breaks (DSBs)-

induced cell cycle checkpoints 

 

In the context of a known role of RINT1 in the maintenance of DNA integrity, particularly 

interesting cellular processes are: repair of double strand DNA breaks (DSBs), control of 

G2/M cell cycle checkpoint (Hoeijmakers 2009; Deckbar, Jeggo et al. 2011) and the 

process of DNA mismatch repair (Park, Tao et al. 2014). 

 

1.2.1.1. DBSs-induced cell cycle checkpoints and DNA mismatch 

repair (MMR) 

As a result of natural metabolic activity of the cells, as well as of the chemical and physical 

environmental factors, genetic information is exposed to potentially harmful molecular 

lesions every single day. Once DNA mutation is not properly repaired, it might be 
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accumulated and lead to premature cell aging or, in case of proliferating cells, be 

transmitted to the daughter cells during mitosis, thus causing genomic instability. 

Consequently, at the level of an organism, unrepaired DNA lesions may lead to  

tumorigenesis, and finally to death. Therefore, permanently active cellular DNA repair 

processes are necessary to preserve genetic information from destruction, and to restore 

damaged DNA. Efficient and accurate systems of the DNA damage responses (DDRs), 

protect genome integrity and guarantee functionality of the cell and accurate cell division 

(Branzei and Foiani 2008; Ciccia and Elledge 2010). In the course of evolution, cells have 

developed a number of signaling pathways providing efficient and precise DDRs. 

Following the detection of DNA damage, molecular complex signaling induces activation 

of corresponding cell cycle checkpoint (Fig. 7). 

The cell cycle checkpoints are specific time-points of the cell cycle, at which it can be 

stopped if the preceding phase hasn’t been properly completed, e.g. as a consequence of 

damaged DNA. There are several cell cycle checkpoints: the G1 checkpoint, named also 

restriction checkpoint in mammals or start checkpoint in yeast (checking for the DNA 

damage, cell size, nutrients and growth factors), the G2/M checkpoint (controlling proper 

DNA replication and cell size), the spindle assembly or metaphase checkpoint (supervising 

chromosome attachment to spindle), and the intra-S-phase checkpoint (checking for 

chromosomal DNA structures and replication) – depicted in Fig. 7. Efficient and proper 

mechanism of the cell cycle control is assured by the family of serine-threonine kinases 

called cyclin-dependent kinases (CDKs), activated upon their interaction with specific 

cyclins. For example, the main cyclin-CDK complex driving the G2/M cell cycle checkpoint 

is Cyclin B-cdc2 (CDK1) complex. When activated, CDKs subsequently activate their 

substrates characteristic for the specific cell cycle phase and release cascade of 

downstream processes promoting cell cycle progression.  

If the DNA damage occurs and the cell cycle checkpoint is activated, the activity of cyclin-

CDKs complexes driving cell cycle transitions is restrained. As a consequence, cell cycle is 

arrested in G1- (the G1 checkpoint) or G2-phase (the G2/M checkpoint), or the replication 

in S-phase is slowed down (intra-S checkpoint). This mechanism allows to repair DNA 

damage and resume the cell cycle, or to completely exit the cell cycle, if the lesions are 

irreparable (Branzei and Foiani 2008; Shaltiel, Krenning et al. 2015). 
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Figure 7. Cell cycle checkpoints. Cell cycle checkpoints assure proper cell cycle progression by 

monitoring the status of completion of the preceding phase. 

 

Cellular DDR depends both on the stage of the cell cycle, as well as on the character of the 

DNA damage. There are few common types of DNA damages, which are: base 

modification, mispairs, cross-linked nucleotides or double-strand DNA breaks (DSBs).  

DSBs are especially harmful type of lesions, as they can contribute to structural 

rearrangements and chromosome missegregation (Hoeijmakers 2009). Response to DSBs 

in G2-phase induces reversible cell cycle arrest , preventing cell from entering mitosis (M-

phase), thereby blocking proliferation of the cell with damaged genomic DNA. DNA repair 

machinery fixes the damage, mainly by homologous recombination repair (HRR) or non-

homologous end joining (NHEJ). The cell can also exit the cell cycle to undergo apoptosis, 

if the damage is irreparable (Liang, Deng et al. 2005; Klein, Hoffmann et al. 2015).  

Activation of the cellular response to DSBs in G2 phase occurs through the recognition of 

the DNA damage by the MRN complex (proteins: MRE11, RAD50 and NBN), followed by 

the recruitment and activation of the checkpoint kinase ATM (ataxia telangiectasia 

Intra-S 
Checkpoint 

Spindle assembly 
Checkpoint 

G2 Checkpoint 
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mutated), which phosphorylates and activates its downstream targets (Fig. 8). This 

particular molecular pathway involves following steps: amplification of the signal by 

mediator proteins (MDC1, 53BP1, MRN complex, BRCA1), phosphorylation of checkpoint 

kinases CHK1 and CHK2, and phosphorylation of M-phase inducer phosphatase 3, 

CDC25C. Under normal conditions, non-phosphorylated CDC25 removes inhibitory 

phosphate residues from the Cyclin B-CDK1 complex. Dephosphorylation activates the 

complex thereby triggers entry into the next phase of the cell cycle, the mitosis (Fig. 8). 

Phosphorylation of active CDC25C by CHK1 inhibits its activity and, as a consequence, 

Cyclin B-CDK1 remains phosphorylated by protein kinase WEE1, thus inactive. The 

transition from G2 to M phase is inhibited. The block of CDK1 function is the most 

essential stage of this pathway (Lobrich and Jeggo 2007; Matsuoka, Ballif et al. 2007; 

Ciccia and Elledge 2010; Langerak and Russell 2011). 

One of the key-regulators of DNA repair and stress-induced cell cycle arrest is the p53 

protein, which levels are regulated by Mdm2 E3 ubiquitin ligase. The role of p53 in the 

regulation of the cell entry into mitosis is well established. DNA damaging factors, such as 

UV or ionizing radiation, activate the DDR; ATM/ATR kinases phosphorylate p53 protein 

directly, or activate CHK2 kinase also phosphorylating p53. Modification of p53 activates 

the protein and leads to its stabilization and induction of its DNA binding activity and 

transcriptional regulatory response. Moreover, upon activation p53 indirectly inhibits 

cdc2, required for entering the mitosis, by regulating three targets: (i) 14-3-3, which binds 

to phosphorylated Cyclin B-cdc2 complex and exports it from the nucleus, (ii) GADD45, 

binding and dissociating Cyclin B-cdc2 complex, and (iii) p21 Cip1, inhibiting several CDKs, 

and among them cdc2 (Taylor and Stark 2001; Hein, Ouellette et al. 2014). 
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Figure 8. Molecular pathway of double-strand breaks (DSBs) repair and G2/M checkpoint 

activation (adapted from Löbrich et al. (Lobrich and Jeggo 2007)). ATR protein responds to single 

stranded DNA. 

 

DNA damages that occur during DNA replication and recombination, such as small 

insertions, small deletions or base-base mismatches (G/T or A/C pairing), are repaired via 

the DNA mismatch repair (MMR) pathway. This allows for genomic stability maintenance 

by control of the cell cycle arrest and cell death. The mechanism of DNA mismatch repair 

was investigated and described in great details based on the studies in E. coli. 

Nevertheless, as a highly conserved process, MMR exhibits substantial similarities 

between E. coli and human, i.e. in substrate specificity and bi-directionality. Briefly, the 

process of MMR in humans begins with the detection of damaged DNA fragment by the 

MMR machinery. Heterodimer MSH (MutS homologs, hMutSα (MSH2-MSH6), hMutSß 

(MSH2-MSH3)) recognizes small insertions. In turn, deletions and mismatched bases and 

the template and non-template DNA strands are determined. Heterodimeric hMutLα 

(MLH1-PMS2), which endonucleolytic activity depends on the PCNA and RFC proteins, 

interacts with MSH to increase the detection of mismatched DNA. MutLα is responsible 
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for the incision 5’ to the mismatch. The excision of damaged DNA is catalyzed by the EXO1 

exonuclease (5’3’ excision), while the DNA polymerase Pol δ drives DNA re-synthesis. 

The incorrect nucleotide and adjacent base pairs are eliminated and replaced by matching 

bases. During this step, single-strand DNA-binding protein RPA plays an important role in 

the termination of DNA excision and stimulation the process of DNA re-synthesis. DNA 

ligase I is responsible for the nick ligation (Li 1999; Stojic, Brun et al. 2004; Kunkel and Erie 

2005; Iyer, Pluciennik et al. 2006; Hsieh and Yamane 2008; Li 2008). Failures in 

appropriate completion of the MMR process caused by gene mutations result in 

predisposition to diseases and serious dysfunctions, i.e. cancers related to the Lynch 

syndrome (mutations in genes: MLH1, MSH2, PMS2), sporadic cancers, resistance to 

chemotherapeutics or sterility in mammals (Modrich and Lahue 1996; Kunkel and Erie 

2005). 

 

1.2.1.2. Role of RINT1 in DNA repair and DNA damage-induced cell 

cycle checkpoints 

RINT1 protein was discovered in the context of irradiation-induced G2/M checkpoint 

control (Xiao, Liu et al. 2001). It was identified by yeast two-hybrid (Y2H) screen of a 

human B-cell cDNA library using a C-terminal fragment of human RAD50 protein as a bait. 

RAD50 is one of the SMC (structural maintenance of chromosomes) protein family 

members, and as component of the MRN complex, participates in DSBs repair (Fig. 8). The 

interaction between RINT1 and RAD50 was detected specifically during late S and G2/M 

phases of the cell cycle. Expression of an N-terminally truncated, dominant negative 

mutant of RINT1, which binds to RAD50, led to delay of G2/M cell cycle checkpoint 

following γ-irradiation. These observations suggested a role of RINT1 in G2/M cell cycle 

checkpoint regulation after DSBs repair (Xiao, Liu et al. 2001). 

 

1.2.1.3. RINT1 and DNA mismatch repair (MMR) 

Recently, RINT1 function has been putatively linked to the Lynch syndrome (LS), a disease 

caused by the mutations in genes encoding proteins of the MMR pathway (Park, Tao et al. 

2014). The exome-sequencing study of multiple case breast cancer family members, 
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detected three rare RINT1 mutant variants (RINT1 c.343C>T (p.Q115X), c.1132_1134del 

(p.M378del), c.1207G>T (p.D403Y)), predisposing their carriers not only to breast cancer, 

but also to the LS, a disease often called hereditary nonpolyposis colorectal cancer 

(HNPCC). LS is hereditary autosomal dominant genetic disease resulting in predisposition 

for colon cancers, but also other cancer types such as stomach and liver cancers, cancer 

of the small intestine, upper urinary tract cancer, cancer of skin, brain and hepatobiliary 

tract. In women, the LS increases probability of ovary and endometrium cancer 

(Kohlmann and Gruber 1993; Park, Tao et al. 2014). LS-affected individuals have a lifetime 

risk for colon cancer of 80%. The prevalence of the LS was estimated to be 1-3% (de la 

Chapelle 2005). At molecular level, the LS is caused by a defective MMR pathway and 

germline defects in mismatch repair genes: MLH1, MSH2, MSH6, PMS2 or EPCAM (Jang 

and Chung ; Peltomaki 2005; Tiwari, Roy et al. 2015). Thus, it is a matter of question, what 

is the role of RINT1 in the MMR pathway and how this gene function could be linked to 

the occurrence of the Lynch syndrome. 

 

1.2.2. RINT1 and ER-Golgi trafficking 

1.2.2.1. Membrane trafficking 

Membrane trafficking, named also vesicle trafficking, refers to the cellular activity by 

which proteins as well as other macromolecules are administered and distributed 

throughout the cell and released to, or incorporated from the extracellular milieu. It is 

thus a core mechanism in cellular biosynthesis, secretion and endocytosis, underpinning 

cell homeostasis. Membrane trafficking processes are inseparably connected with the 

cytoskeleton, cell metabolism, signaling, movement and proliferation (Bonifacino and 

Glick 2004). 

Fundamental structures in membrane trafficking network are endoplasmic reticulum (ER) 

and Golgi apparatus. These are two organelles constitute the major route of vesicular 

transport. Briefly, ER functions as an organelle where the synthesis of proteins and 

membrane lipids takes place. The Golgi is responsible for packaging proteins received 

from the ER into membrane-bound vesicles before their shuttle to the final place of 

destination. Golgi itself consists of compartments forming two networks: the cis Golgi 
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network (CGN), originating from fused cargo-bearing vesicles coming from the ER, and the 

trans Golgi network (TGN), a terminal structure of Golgi, where cargo is bundled up into 

vesicles and transported to the target compartment (Fig. 9). Vesicle transport from the ER 

to Golgi complex is called anterograde transport, while in the opposite direction is named 

retrograde transport (Bonifacino and Glick 2004; Guo, Sirkis et al. 2014; Spang 2015). 

 

 

 

 

 

 

 

 

 

 

Figure 9. Membrane vesicular trafficking in the cell (adapted from Kirchhausen (Kirchhausen 

2000)). 

 

Highly organized and dynamic network of membrane-bounded vesicles mediates the 

intracellular shuttle processes. Transported proteins are associated with vesicle 

membranes or enclosed within them. The transport occurs in a step-wise manner, and 

each step is precisely regulated by the complex molecular machinery controlling sorting 

and burdening of cargo, as well as vesicle movement and unloading of transported 

molecules. Characterization of the proteins required for cargo selection, loading and 

carrier budding, allowed to identify three different types of transporting vesicles: (i) COPI- 

(coat-protein complexes I) coated, (ii) COPII- (coat-protein complexes II) coated and (iii) 

clathrin-coated vesicles (CCVs) (Fig. 9). The COPI- and COPII-coated vesicles participate in 

the secretory pathway (retrograde and anterograde transport) and CCVs are a part of the 
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transport within the endosomal membrane system and mediate endocytosis at the 

plasma membrane. COP-vesicles are made of large protein complexes consisting of seven 

(in case of COPI) or four (in case of COPII) coat-protein subunits and associated small 

GTPases (hydrolase) enzymes, participating in the cargo loading. Clathrin-coated vesicles 

are critical for the process of endocytosis, thus ensure the import of proteins and lipids 

from the extracellular milieu. Clathrin made of polypeptide chains building three-legged 

structures named triskelions aggregates with the help of adaptin protein complex to form 

coated cavities on the surface of a membrane (the vesicular coat) while GTPase separates 

the mature CCV from the membrane (Schekman and Orci 1996; Nickel, Brugger et al. 

2002; Bonifacino and Glick 2004; Saito and Katada 2015). 

Other group of proteins needed for accurate membrane trafficking are NSF (N-

ethylmaleimide-sensitive factor) and SNARE (soluble NSF attachment protein receptor, 

SNAP receptor) proteins, which mediate docking and fusion of transport vesicles with 

their target membrane compartments. The SNAREs could be divided into two classes: 

vesicle or v-SNAREs, incorporated into the membranes of transport vesicles during 

budding process, and target or t-SNAREs, located in the membranes of destination 

compartments (Bonifacino and Glick 2004; Jung, Inamdar et al. 2012; Stow 2013; Meng 

and Wang 2015). 

 

1.2.2.2. RINT1 function in membrane vesicle trafficking and dynamic 

integrity of the Golgi apparatus and centrosome 

 

Valuable information about putative role of RINT1 in membrane vesicle trafficking and 

correct cell cycle progression were provided by the RNA interference (RNAi) experiments 

performed in HeLa cells (Lin, Liu et al. 2007). The experiments demonstrated that 

depletion of RINT1 led to dispersal of Golgi apparatus and loss of its pericentrioliar 

location, with simultaneous centrosome amplification in interphase. Further studies on 

synchronized cells shown that RINT1-depleted cells exhibited various abnormalities upon 

the mitotic entry: missegregation of chromosomes, multiple spindle poles formation and 

abnormal Golgi dynamics during early mitosis as well as incorrect reassembly of Golgi in 

the telophase. As a consequence of faulty mitosis and multiple cellular defects, cells 
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underwent cell death. Concluding, based on the research of Lin and colleagues, RINT1 was 

found to be a protein essential for dynamic integrity maintenance of both centrosome 

and Golgi apparatus. 

Other studies confirmed significance of RINT1 for vesicle trafficking (Fig. 10). Extensive 

binding assays shown that RINT1 interacts with ER-localized t-SNARE, syntaxin 18 (Table 

II), thus it is involved in the regulation of the membrane trafficking between ER and Golgi. 

Together with ZW10, p31 and NAG proteins, RINT1 forms subcomplex which is a 

peripheral membrane component of SNARE, essential for both retrograde and 

anterograde membrane flow (Hirose, Arasaki et al. 2004; Aoki, Ichimura et al. 2009; 

Schmitt 2010). Immunoprecipitation studies demonstrated direct interaction of RINT1 

with the conserved oligomeric Golgi complex (COG) subunit 1 (COG complex subunit 1), 

which is required for appropriate Golgi morphology and function. Thus, in coordination 

with the COG complex, RINT1 regulates SNARE complex assembly at TGN. Interestingly, 

N-terminal ZW10-interaction domain of RINT1 overlaps with COG1 interaction domain of 

RINT1 (Fig. 2), suggesting existence of some kind of “shifting” mechanism.  

Another study on RINT1 and vesicular trafficking uncovered important role of 

ZW10/RINT1 complex in appropriate Rab6-dependent membrane trafficking and 

homeostasis. Rab6 belongs to the family of Rab GTPases, which promotes Golgi-to-ER 

retrograde trafficking (Sun, Shestakova et al. 2007). Participation of RINT1 in endosome-

to-TGN vesicle trafficking was discovered via its interaction with the SNARE domain of 

syntaxin 16 (Sun, Shestakova et al. 2007; Arasaki, Takagi et al. 2013). Not surprisingly, 

RINT1 knock-down in HeLa cells blocked endosome-to-TGN membrane flow and led to 

redistribution of protein markers of TGN (Arasaki, Takagi et al. 2013). Figure 10 

summarizes known interactions of RINT1 with components of the ER and TGN SNAREs, 

while in Table II lists all known RINT1 interactors together with functional significance of 

the given interaction. 
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Figure 10. The interactions of RINT1 with tethers and SNAREs in the TGN and ER (adapted from 

Tagaya et. al. (Tagaya, Arasaki et al. 2014)). SNARE binds the COG complex through RINT1 (left 

panel). RINT1 and NAG bind to N-terminal regions of BNIP1 and Use1/p31, respectively (right 

panel). N and C represent N- and C-terminal regions of the protein. Numbers 1-8 indicate subunits 

of COG (Cog1 – Cog8) organized in three heterodimeric subcomplexes. Dashed lines indicate 

connections between proteins/SNAREs. 

 

 

Table II. RINT1 interaction partners and functions of the interactions. 

Name of RINT1 partner Function of the interaction 

BNIP/SEC20L ER-Golgi trafficking (Nakajima, Hirose et al. 2004) 

COG complex subunit 1 vesicle trafficking (Arasaki, Takagi et al. 2013) 

UVRAG 
positive regulator of the ER-tether in Golgi-ER retrograde 

transport, cis-Golgi maintenance (He, Ni et al. 2013) 

p130 (RBL2, 

retinoblastoma-like 2) 
telomerase-independent telomere length maintenance 

(Kong, Meloni et al. 2006) 

RAD50 
irradiation-induced G2/M cell cycle checkpoint regulation 

(Xiao, Liu et al. 2001) 

syntaxin 16 (STX16) endosome-to-TGN trafficking (Arasaki, Takagi et al. 2013) 

syntaxin 18 (STX18) 
ER-Golgi trafficking (Hirose, Arasaki et al. 2004; Aoki, 

Ichimura et al. 2009; Civril, Wehenkel et al. 2010) 

ZW10 
ER-Golgi trafficking (Hirose, Arasaki et al. 2004; Arasaki, 

Taniguchi et al. 2006) 
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1.2.3. Oncogenic and tumor suppressor functions 

1.2.3.1. Oncogenes and tumor suppressor genes 

Oncogenes and tumor supressor genes are the key players in cancer development. Both 

classes of genes encode proteins involved in cell growth control and proliferation. 

The oncogenes are derived from proto-oncogenes, which code for proteins enhancing cell 

growth and division, controlling cell cycle progression or proteins inhibiting cell death. 

Thus, products of oncogenes are aberrant versions of proteins normally involved in 

molecular signal transduction cascades mediating growth, proliferation or pro-survival 

signals, such as membrane receptors, proteins transporting the signal across the 

cytoplasm, and finally, transcription factors in the nucleus activating e.g. genes 

responsible for cellular division. Importantly, oncogenic versions of proteins, being 

dominant, tend to activate signaling pathways unceasingly, resulting in excessive 

production of cell growth stimulators, thus contributing to development of cancer.  

Alteration from an oncogene to the proto-oncogene might be a result of mutation. It 

could also be a consequence of chromosomal rearrangement changing genomic location 

of the proto-oncogene (e.g. a novel location results in strong transcription of proto-

oncogene due to hyper-activated gene promoter of novel gene locus or in fusion with 

other highly expressed protein, e.g. BCR-Abl). A shift from proto-oncogene to oncogene 

could also be caused by an increase in number of gene copies (e.g. duplication). In 

addition, conversion from proto-oncogene to an oncogene could be an effect of infection 

and resulting insertions of viral DNA disrupting correct genomic architecture of proto-

oncogene. 

All of these processes result in gain-of-function mutations. Moreover, since most of the 

oncogenes carry dominant mutations, only single copy of mutated proto-oncogene may 

result in cancerous transformation. If such mutation occurs in germ line cells, offspring 

will acquire predisposition to tumor formation.  

Exemplary proto-oncogene is c-Myc gene, which encodes a transcription factor and 

controls expression of plethora of genes involved in cellular growth, proliferation and 

differentiation. Mutations in this gene transforms it to an oncogene associated with most 
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forms of cancers. Another example of proto-oncogene is Ras, which, if mutated, causes 

unrestrained cell growth. Products of Ras gene are involved in kinase signaling pathways 

controlling gene transcription and regulating cell growth and differentiation. Another 

oncogene is Src, the first oncogene described. It encodes a tyrosine kinase, regulating 

cellular growth, differentiation and motility. 

Moreover, viruses may carry their own oncogenes, which are transduced to infected cells. 

These include: Tax protein deregulating cell cycle and encoded by human T-lymphotropic 

virus (HTVL), E6 and E7 proteins inactivating tumor supressor proteins p53 and pRb, 

respectively, carried by human papilloma viruses (HPV16 or HPV18), or v-FLIP protein 

inhibiting pro-apoptotic proteins caspase 8 and 10 and encoded by human herpesvirus 8 

(HHV-8). 

Tumor suppressor gene, or anti-oncogene, usually encodes protein inhibiting cell 

proliferation or leading to cellular death, and therefore naturally preventing tumor 

growth. When mutated and lacking their original function, tumor suppressor genes lead 

to deregulation of cell growth and proliferation processes. Mutations are usually 

recessive, meaning that both copies of a gene are mutated, and lead to a loss-of-function. 

An example of the disease caused by mutated tumor suppressor gene, is  retinoblastoma, 

a tumor developing in early childhood due to dysfunction of Rb gene (Giacinti and 

Giordano 2006). Other example is familial adenomatous polyposis of the colon (FAP), 

generated by mutations of APC gene, which product controls the availability of 

transcription factor ß-catenin (Ficari, Cama et al. 2000). Hereditary breast cancer results 

from mutations of BRCA2 tumor suppressor gene, and hereditary breast and ovarian 

cancer is related to mutations in BRCA1 gene (Lee and Muller 2010). Another important 

tumor suppressor gene is TP53, encoding transcription factor p53 regulating cell division 

and cell death. Its mutation is related with cancers of colon, breast and lung. Moreover, 

modified p53 protein is involved in leukemias, lymphomas, sarcomas, and neurogenic 

tumors (Royds and Iacopetta 2006; Olivier, Hollstein et al. 2010). 
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1.2.3.2. Oncogenic and tumor suppressor function of RINT1 

In line with extensive function of RINT1 in controlling the ER-Golgi homeostasis, RINT1-

depleted cells exhibited abnormalities in Golgi dynamics and integrity as well as improper 

functioning of centrosome during cell division (Arasaki, Taniguchi et al. 2006; Lin, Liu et al. 

2007; Arasaki, Takagi et al. 2013). Such observations suggest tumor suppressor function 

of RINT1. The tumor suppressor role was confirmed by the study demonstrating that 

Rint1 is involved in the tumor development in mice. Inactivation and heterozygous loss of 

Rint1 led to tumor formation in about 81% of knock-out mice. Interestingly, homozygous 

deletion of Rint1 caused early embryonic lethality and the failure of blastocyst outgrowth 

ex vivo (Lin, Liu et al. 2007). Another, recently published data revealed, that RINT1 could 

be a gene predisposing to breast cancer. Multiple-case, breast cancer family whole exome 

sequencing analysis, showed that rare RINT1 sequence variants may lead to the 

development of breast cancer and to Lynch syndrome-spectrum cancers (Park, Tao et al. 

2014). Since another known function of RINT1 is telomerase-independent telomere 

length maintenance realized by RINT1 interaction with Rb-related, p130 protein (Kong, 

Meloni et al. 2006), a RINT1 mutation could potentially lead to decreased chromosomal 

stability, and thus contribute to tumorigenesis. 

However, there are also studies showing that RINT1 is a cancer-promoting gene. The gain- 

and loss-of-function screens identified RINT1 as a novel oncogene in glioblastoma 

(Quayle, Chheda et al. 2012). Other research results demonstrated that high expression of 

RINT1 in low-grade glioma patients was associated with higher risk of epileptic seizure 

occurrence (Fan, Wang et al. 2014). 

Figure 11 summarizes cellular processes involving RINT1 and regulatory interactions 

described until now. 
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Figure. 11. Cellular processes involving RINT1 and their cellular localization together with 

respective interaction partners. 

 

1.3. General mechanisms regulating protein functions 

In order to provide and control accurate functioning of the cell, proteins need to be 

precisely regulated. The protein regulatory mechanisms could be divided into several 

groups: transcriptional and translational control, processes modifying spatial localization 

of the proteins, covalent or non-covalent interactions with effector molecules, control of 

the quantity and lifetime of active proteins and control of protein activity due to changes 

of intracellular pH and redox environment. A single protein may be subjected to various 

regulatory operations (Perutz 1989; Goodsell 1991; Jensen and Shapiro 2000; Kornitzer 

and Ciechanover 2000). 

Significant category of mechanisms influencing protein function are post-translational 

protein modifications (PTMs). They are fundamental and powerful biochemical tool 

influencing whole proteome, thereby having an impact on various aspects of cell biology, 
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(i.e. modification of tubulin leads to diversity in microtubules, which differ depending on 

the cellular developmental stage, cell compartment, or the cell cycle stage (Song and 

Brady 2015)). By modulating protein activity, localization, fate, and interaction with other 

molecules, PTMs increase functional diversity of proteins. Sometimes reversible and very 

often enzyme-mediated (e.g. ligases, phosphatases, kinases), PTMs are executed by: (i) 

the covalent addition of functional groups or specific molecules to the proteins, (ii) by the 

cleavage of different regulatory subunits or (iii) by the degradation of the proteins. 

Ubiquitination, phosphorylation, methylation, acetylation, SUMOylation and 

glycosylation, are among the most ubiquitous and important PTMs (Hunter 2007; 

McDowell and Philpott 2013). 

Importantly, precise mechanisms controlling cellular functions of RINT1 are not yet 

known or described. Foremost, there was no functional data available regarding RINT1 

PTMs until now. 

 

1.3.1. Regulation of protein lifetime 

One of the ways to regulate protein function is to control its lifetime. Half-life of a protein 

may vary from few minutes to many days, depending on the stability of protein structure 

and on the cellular mechanisms and rates of the degradation. Proteins of the shortest 

half-life are generally significant for crucial cellular processes, therefore, usually involved 

in the regulation of cell growth and proliferation or catalyzing important steps in 

metabolic signaling. Fast adjustment of the concentration of a gene product, allows for 

rapid response to environmental changes and provides cellular homeostasis 

(Hochstrasser 1995; Toyama and Hetzer 2013). Moreover, selective protein degradation 

regulates the relative timing of molecular events in the cell (Liu, Urbe et al. 2012) and is 

indispensable for removing proteins that are no longer needed, even if still functional. 

Another important function of protein lifetime regulation is to eliminate damaged and 

potentially harmful proteins. Once misfolded or subjected to abnormal PTM, protein may 

become toxic and unwanted component of the cell and cause, so called “protein 

deposition diseases”, such as Alzheimer’s disease, Huntington’s disease (HD), Parkinson’s 

disease, Amyotrophic Lateral Sclerosis (ALS) or spongiform encephalopathies (Kaytor and 
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Warren 1999; Bucciantini, Giannoni et al. 2002; Goldberg 2003; Haynes, Titus et al. 2004; 

Ciechanover and Kwon 2015). 

One of the characteristics of the intracellular protein degradation, is its dependence on 

the cellular energetic status (ATP pool). Another important feature is its processiveness; 

meaning, that if a protein is selected for the degradation, it is completely degraded to 

small peptides and no intermediate larger fragments are produced (Ciechanover 2005). 

In eukaryotic cells proteasomal degradation pathway and lysosomal degradation pathway 

constitute major mechanisms leading to protein degradation. 

 

1.3.1.1. Proteasomal degradation of proteins 

Proteasomal degradation or the ubiquitin-proteasome system, is the major pathway of 

protein degradation. It is thought to occur in both the nucleus and the cytoplasm (Floyd, 

Trausch-Azar et al. 2001; von Mikecz, Chen et al. 2008). Nevertheless, recent studies 

question the possibility of nuclear proteasomal degradation (Chen and Madura 2014). In 

order to be subjected to proteasomal degradation, protein has to be covalently modified 

by a chain of ubiquitin polypeptide at  first (Fig. 14). Then, tagged for the degradation by 

polyubiquitination, a target protein binds to the 26S proteasome, situated in the 

cytoplasm (Fig. 12). 26S proteasome is a highly specialized and very large (~2.5 MDa) 

ubiquitin-dependent protease, that consists of at least 32 different polypeptides, forming 

a complex (Fig. 14). 
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Fig. 12. Schematic subunit composition of the 26S proteasome and proteasomal protein 

degradation. 20S catalytic core complex and two 19S regulatory complexes constitute the 26S 

proteasome (left panel). The proteasome recognizes Ub-tagged protein and initiates degradation 

at a relaxed region of the substrate. The protein is translocated through the degradation channel, 

cleaved into peptides and finally released (right panel). 

 

Prior to proteolysis within the 26S proteasome, polyubiquitin chain tag has to be removed 

from the substrate by deubiquitinating enzymes, located in the 19S regulatory 

subcomplexes (or caps) of the proteasome (Fig. 14). Moreover, these parts of the 

protease contain ATPase subunits that use the energy of ATP hydrolysis to perform 

unfolding of the protein. Such processed protein is subsequently translocated to the core 

of 26S proteasome, a central 20S subcomplex forming a hydrolytic chamber, where 

processive proteolysis takes place. As a consequence, small peptides of ~8 to 12 amino 

acids are generated and released from the proteasome. 
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1.3.1.2. Non-proteasomal degradation of proteins 

1.3.1.2.1. Lysosomal proteolysis 

Protein degradation may also occur in lysosomes, which are membrane-enclosed 

organelles, containing a variety of hydrolytic proteases. Proteins that are to be degraded 

by this mechanism are shifted to lysosomes and subjected to the intra-lysosomal 

proteolysis. In particular, selective proteolysis of the cytosolic substrates is fulfilled by the 

recognition of the dedicated peptide sequence (related to the sequence Lys-Phe-Glu-Arg-

Gln) on a given protein, which results in subsequent sorting towards lysosome. Another 

particular feature of the lysosomal degradation is conferred by the regulatory function of 

intra-lysosomal pH, i.e. lysosomal proteases of cathepsin family are active only under 

highly acidic pH conditions of the lysosome (pH 4.8) (Ciechanover 2005; Schulze, Kolter et 

al. 2009; Appelqvist, Waster et al. 2013). 

 

1.3.1.2.2. Autophagy 

Generally, autophagy is a cellular mechanism to degrade random cytoplasmic proteins 

under stressful conditions, e.g. during starvation. In such unselective mode autophagy 

can also play a role in programmed cell death. However, in its selective mode autophagy 

contributes to repair of damaged organelles (e.g. mitophagy - selective digestion of 

damaged mitochondria) or could be strictly linked with the lysosomal pathway of protein 

degradation. Selective autophagy is a complex process, based on cargo-specific 

autophagy receptors and tightly regulated on a molecular level. 

Autophagy involves enclosing organelles and cytosol within double-membrane structures, 

which are subsequently degraded by the lysosome. The whole process starts with the 

formation of a transient pre-autophagosome (PAS). Next, two-lipid bilayers-surrounded 

organelle, the autophagosome (Fig. 13) is formed, which insulates the cytoplasmic 

structures that are to be degraded. Subsequently, outer membrane of autophagosome is 

fused with lysosome, creating a membranous vesicle within lysosome. This structure, 

called an autophagic body, is decomposed and its interior digested by lysosomal enzymes 

(Noda, Suzuki et al. 2002; Klionsky 2007; Levine, Mizushima et al. 2011).  
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Over 30 genes and their products have been identified as autophagy-related (Atg) and 

classified into one of the following groups: (i) ULK1 kinase complex, responsible for the 

autophagy induction, (ii) Atg9, involved in the recycling of the membrane, (iii) PI3K 

complex I (including beclin 1), which drives autophagosome formation (isolation of 

membrane nucleation, elongation and completion) (iv) PI(3)P-binding ATG2-ATG18 

complex, (v) ubiquitin-like protein conjugation system ATG5-ATG12/ATG16L1, essential 

for the pre-autophagosome creation, and (vi) ubiquitin-like protein conjugation system 

LC3-PE (LC3-phosphatidylethanolamine), playing a role in membrane expansion. The ULK1 

complex is negatively regulated by a mammalian Target of rapamycin complex 1 

(mTORC1) kinase (Pyo, Nah et al. 2012; Boya, Reggiori et al. 2013).  

 

 

 

 

 

 

 

 

 

 

Figure. 13. Schematic representation of autophagy process. First, the cellular component 

subjected to autophagy is being isolated by a double-membrane autophagosome. Next, the whole 

structure fuses with lysosome and forms an autophagic body. Finally, the content of a vesicle is 

degraded. 
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1.3.2. Ubiquitination and its biological significance 

Ubiquitination, also known as ubiquitylation, is a versatile enzymatic reaction, in which 

ubiquitin (Ub) molecules are covalently attached to lysine residue on substrate proteins 

or itself, at one or multiple sites. This post-translational modification directs eukaryotic 

proteins to miscellaneous fates, and is considered to be spatial-, temporal- and substrate-

specific. Ubiquitin is a small, 8-kDa polypeptide that consists of 76 amino acids and is 

highly evolutionary conserved. In humans, Ub is a product of four genes: UBB, UBC, 

UBA52 and RPS27A. UBB and UBC genes code for a linear ubiquitin chain precursor 

consisting of at least four Ub molecules. Two other genes, UBA52 and RPS27A, encode a 

single copy of Ub fused to the ribosomal proteins L40 and S27a, respectively.  In order to 

ensure functionality, the UBB- or UBC-encoded Ub precursor is processed by 

deubiquitinating enzymes (ubiquitin proteases) and cleaved to monomers. 

As it is shown in Figure 14, ubiquitin has seven internal lysines (Lys, K) used during 

polyubiquitin chain formation, and C-terminal diglycine motif (GG) serving for attachment 

to ubiquitinated substrate (Peng, Schwartz et al. 2003; Kimura and Tanaka 2010; 

Komander and Rape 2012). 

 

 

 

 

Figure 14 Schematic representation of ubiquitin molecule and positions of internal ubiquitin 

lysines. K = lysine, GG = diglycine. 

 

1.3.2.1. Process of ubiquitination  

The process of attaching ubiquitin to the substrate is mediated by the sequential action of 

three classes of enzymes: ubiquitin-activating enzymes (E1s), ubiquitin-conjugating 

enzymes (E2s, also known as UBCs or ubiquitin carrier proteins) and ubiquitin-protein 

ligases (E3s) (Pickart 2001; Ye and Rape 2009). At first, C-terminal carboxyl group of Ub 

forms a thioester linkage with the active site of the cysteine of E1, and therefore activates 

 
        GG K K K K K K K 

6 11 27 29 33 48 63 



Introduction 

 

30 
 

Ub. This step is energy-dependent and requires Adenosine-5’-triphosphate (ATP). Then, 

Ub is transferred (trans-thiolated) from the E1 to the catalytic cysteine of one of around 

40 E2s. This conjugate associates with the third enzyme of the cascade, E3 ubiquitin 

ligase, to finally transfer Ub from E2 to the Ɛ-amino group of target protein lysine (Fig. 

15). 

 

 

 

 

 

 

 

 

 

 

Figure 15. Schematic representation of ubiquitination process. Attachment of ubiquitin to the 

substrate lysine is executed by the cascade activity of three enzymes: ubiquitin-activating enzyme 

(E1), ubiquitin-conjugating enzyme (E2) and ubiquitin ligase (E3). The protein recognition by E3 

ligase assures the specificity of reaction. 

 

Initial attachment of a single Ub molecule to its target, called monoubiquitination, is 

usually, but not always, followed by the attachment of another Ub molecule(s). In this 

case, lysine of the Ub already conjugated with the substrate serves as an acceptor for the 

next Ub(s). Ubiquitin conjugation is a reversible process through the activities of 

proteases, called deubiquitinases or deubiquitinating enzymes (DUBs), which are able to 

cleave off the single Ub molecule or Ub polychain. DUBs have several functions in the 

ubiquitination pathway. They remove single molecule or polyUb chain from the target, 

thus serve as antagonists for the ubiquitination process. They also activate polyUb 

precursor by the proteolysis and recycle the pool of monoUb in the cell by the cleavage of 

free polyUb chains. Some DUBs are able to cleave ubiquitin-like proteins such as SUMO.  
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1.3.2.2. E3 and E4 ubiquitin ligases 

E3 ubiquitin ligases are enzymes that enable binding of Ub to the substrate. They also 

confer the specificity of ubiquitination by recognizing a specific protein target. For 

example, they are the factors which provide the specificity to proteasomal degradation by 

recognizing and ubiquitinating the proteins subsequently degraded. Currently, there is 

more than 600 E3s described, that belong to the one of two major families of E3 ubiquitin 

ligases, which are: the Really Interesting New Gene (RING) family, and the Homologous to 

E6-AP Carboxyl Terminus (HECT) family (Tab. 3.). These two groups of ligases catalyze 

ubiquitination reaction in a different manner. RING domain E3 ligases bind both the 

E2~Ub conjugate and the substrate protein and lead to the direct transfer of C-terminal 

diglycine of Ub to a substrate lysine, and therefore allow formation of an isopeptide 

bond, and as a consequence, ubiquitination.  

 
Table III. Comparison between RING domain and HECT domain family of E3 ubiquitin 
ligases. 

 RING family HECT family 

number of 

members 

~600 ~30 

characteristics RING finger is Zn2+-coordinating 

domain; consists of a series of 

cysteine and histidine residues; 

does not form a catalytic 

intermediate with Ub; function 

as monomers, dimers or multi-

subunit complexes 

HECT domain consists of 

~350 aa, is located at the C-

terminus; N-terminal 

domain serve for targeting a 

substrate 

main functions cell cycle progression, apoptosis, 

proteasomal degradation of the 

proteins, angiogenesis (Metzger, 

Hristova et al. 2012) 

protein trafficking, immune 

response, signaling 

pathways regulating cellular 

growth and proliferation 

(Rotin and Kumar 2009) 

examples MDM2 (regulates p53), IAPs, 

APC/C family, SCF family, CBL 

family 

UBE3A (E6AP), NEDD4 family 
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The RING finger domain serves as a scaffold bringing E2 and the target protein together. 

Members of the HECT E3 Ub ligases first bind Ub from the E2~Ub complex onto catalytic 

cysteine and form thioester intermediate with the catalytic cysteine, and then transfer it 

to the target protein (Deshaies and Joazeiro 2009; Metzger, Hristova et al. 2012; 

Sadowski, Suryadinata et al. 2012; Berndsen and Wolberger 2014). 

LUBAC (Linear Ubiquitin Chain Assembly Complex) is a special E3 ubiquitin ligase, which 

catalyzes formation of linear ubiquitin-chains. In humans, it is known to consist of HOIL-1 

(RBCK1), HOIP (RNF31) and SHARPIN and has a MW of approximately 600 kDa, probably 

due to the hetero-multimeric assembly of a complex. Although, as a separate protein, 

HOIL-1 was previously described as an ubiquitin ligase, in the case of LUBAC complex the 

HOIP protein is responsible for the E3 ligase activity of LUBAC. As for now, LUBAC is one 

of the two E3 ligases known to participate in the head-to-tail ubiquitin chain formation 

(Haas, Emmerich et al. 2009; Emmerich, Schmukle et al. 2011; Ikeda, Deribe et al. 2011; 

Tokunaga and Iwai 2012; Rieser, Cordier et al. 2013). Another E3 ubiquitin ligase recently 

suggested to mediate linear connection of the ubiquitin molecules is Parkin (Muller-

Rischart, Pilsl et al. 2013). Table IV briefly describes E3 ubiquitin ligases found as RINT1 

modulators in the course of the experimental part of presented work. 

 

Table IV. E3 ubiquitin ligases found as interacting partners of RINT1. 

E3 ubiquitin 

ligase 

Alternative names Biological processes involving 

ligase activity 

HUWE1 MULE, LASU1, 

UREB1, ARF-BP1, 

HSPC272, HECTH9, 

URE-B1 

base-excision repair (Parsons, Tait et al. 

2009), histone ubiquitination (Liu, Oughtred 

et al. 2005), protein mono- (Parsons, Tait et 

al. 2009) and polyubiquitination (Zhong, 

Gao et al. 2005) 

RNF20 BRE1, BRE1A histone H2B ubiquitination (Zhu, Zheng et 

al. 2005), histone monoubiquitination (Kim, 

Hake et al. 2005), regulation of cell 

migration (Shema, Tirosh et al. 2008), 

regulation of transcription (Pavri, Zhu et al. 

2006; Shema, Tirosh et al. 2008), protein 

polyubiquitination (Liu, Oh et al. 2009), 

regulation of mRNA polyadenylation 

(Pirngruber, Shchebet et al. 2009) 

RNF40 BRE1B, RBP95, 

STARING 
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It should be noted, that ubiquitination may also occur in E3 ligase-independent manner. 

Such modification is possible through direct and non-covalent interaction between Ub 

molecule and ubiquitin-binding domain of a substrate (UBD) (Hoeller, Hecker et al. 2007). 

Currently, there are more than twenty UBDs described, which exhibit preference for the 

specific Ub chains, i.e. depending on the length of Ub chains or inter-ubiquitin linkage 

type. The interplay between Ub and UBD plays an important role in such processes as 

proteolysis (e.g. α-helix UIM domain of proteasome subunit S5a), endocytosis (e.g. SH3 

domain of CIN85 protein) or in DNA repair (e.g. zinc finger UBZ domain of polymerase-h) 

(Bienko, Green et al. 2005; Wang, Young et al. 2005; Stamenova, French et al. 2007; Dikic, 

Wakatsuki et al. 2009). 

 

The nomenclature of enzymes involved in the ubiquitination process includes additional 

group of ligases, named E4 ubiquitin ligases or ubiquitin chain assembly factors. They 

serve as the enhancers of E3 ligase-mediated transfer of Ub to a protein target, thus are 

involved in multiubiquitin chain assembly and facilitate polyubiquitination. Examples of 

E4 enzymes are UFD2 in yeast and its human homolog UBE4B (Wu and Leng 2011; Micel, 

Tentler et al. 2013). 

 

1.3.2.3. Types of ubiquitination 

There are two major types of ubiquitination depending on nomenclature: (i) number of 

target lysines (K), which are ubiquitinated, (ii) number of molecules of Ub attached to the 

substrate. If a protein is subjected to ubiquitination on a single lysine, this process is 

called monoubiquitination; if several lysines of the substrate are involved, it is 

multiubiquitinated. Nevertheless, monoubiquitination occurs also when Ub is attached to 

the target protein as a monomer. Conversely, successive addition of another Ub(s) results 

in polyubiquitination. Alternative mode of inter-ubiquitin linkage that does not involve Ub 

lysine, results in linear, so-called “head-to-tale” ubiquitin chain formation (see also 

1.2.1.4.). Some examples of different ubiquitination types are shown in Figure 16. 
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Figure 16. Nomenclature of ubiquitination depending on the ubiquitin chain typology and 

number of targeted lysine residues. 

 

In the canonical ubiquitination process, substrate protein is modified by a covalent 

linkage of Ub to the amine group of lysine residue of the target protein. Recently, some 

new modes of ubiquitin chain attachment have been described. It was reported, that Ub 

may covalently modify its substrate and bind to non-lysine site of the protein, such as N-

terminal amine group, the hydroxyl group of serine and threonine residues (Wang, Herr 

et al. 2007), or the thiol groups of cysteine residues (Cadwell and Coscoy 2005; Williams, 

van den Berg et al. 2007). 

 

1.3.2.4. Ubiquitin chain typologies 

Ubiquitin chains vary in structure, which translates to the function of ubiquitination. Since 

there are seven lysine residues in the Ub molecule, each of them might be potentially 

used to form the polyubiquitin chain (Hochstrasser 2006). Based on homo-/heterogeneity 

of the Ub lysines serving as an inter-Ub linkage, one can distinguish homotypic or mixed 

chains, respectively (Fig. 17). The last ones are branched structures, generated by specific 

RING E3 Ub ligases. Moreover, the α-amino group of the N-terminal methionine (M) 



Introduction 

 

35 
 

residue of Ub can generate the eighth linkage type, which is linear and called “head-to-

tail” or “M1” linkage (Fig. 16) (Kirisako, Kamei et al. 2006; Emmerich, Schmukle et al. 

2011; Walczak, Iwai et al. 2012). In addition, heterologous chains might be formed, if 

post-translational protein modification involves not only Ub, but also e.g. SUMO2 

molecule. 

 

 

 

 

 

 

 

 

 

Figure 17. Ubiquitin-chains typology. Adapted from (Ikeda and Dikic 2008). 

 

1.3.2.5. Functions of ubiquitination 

Although ubiquitination was originally described and is best known as a mechanism 

targeting proteins for degradation by the 26S proteasome (Chau, Tobias et al. 1989; 

Hershko and Ciechanover 1998), it is currently known, that it is also crucial for a variety of 

other cellular processes, e.g. autophagic and lysosomal protein degradation, modulation 

of protein-protein interactions, DNA repair, gene transcription, alteration of subcellular 

localization and distribution, cell cycle regulation or cellular signaling (Passmore and 

Barford 2004; Pickart and Eddins 2004; Hunter 2007; Clague and Urbe 2010; Mocciaro 

and Rape 2012). Such wide range of ubiquitination functions is specified by the inter-

ubiquitin chain typologies, i.e. the role of ubiquitination and fate of the protein substrate 

largely depend on which lysine residue of Ub serves as an inter-ubiquitin chain linker. Of 

course, other factors influencing ubiquitination are Ub receptors and deubiquitinating 

enzymes (DUBs) (see 1.3.2.1. and 1.3.2.2.). The most characterized mode of 
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ubiquitination, is K48-mediated polyubiquitination (Ub K48), where at least four Ub 

molecules are linked one to another via lysine residue on position 48. Its main role is to 

regulate cellular protein levels by targeting them for the proteasomal degradation 

(Hershko and Ciechanover 1998). Other, relatively well-described type of ubiquitination, 

is K63-mediated polyubiquitination (Ub K63). These poly-Ub chains are mostly associated 

with non-degradative functions, such as lysosomal protein sorting, signal transduction, 

DNA damage or endocytosis (Passmore and Barford 2004; Mukhopadhyay and Riezman 

2007; Chiu, Zhao et al. 2009; Lauwers, Jacob et al. 2009; Yang, Zhang et al. 2010), but 

recent studies show that they might also serve as a tag for degradation. Different types of 

ubiquitination linked to known functions are presented in Table V. Currently, the exact 

functions of the different types of ubiquitination remain a subject of intensive research. 

 
Table V. Ubiquitination types and their functions. 

Type of ubiquitination Examples of ubiquitination function 

polyubiquitination: K6 linkage regulation of microtubule stability and mitotic 
spindle orientation by α-tubulin ubiquitination 

mediated by MGRN1 ligase 

polyubiquitination: K11 linkage proteasomal degradation, e.g. the anaphase-
promoting complex (APC/C) triggers degradation 
of its mitotic substrate Cyclin B1 by assembling 

K11-linked Ub chains 

polyubiquitination: K27 linkage monoubiquitination of histone H2A, important 
in mitochondrial and T cells biology, e.g. E3 

ligase Parkin catalyzes K27-linked Ub chains on 
voltage-dependent anion-selective channel 

protein 1 (VDAC1), which leads to mitophagy 

polyubiquitination: K29 linkage protein degradation, e.g. lysosomal degradation 
of Deltex (DTX) protein mediated by ITCH/AIP4 

polyubiquitination: K33 linkage important in T cell antigen receptor (TCR) 
signaling, i.e. K33-linked polyubiquitination of ζ-

chain of TCR catalyzed by ITCH leads to the 
reduction of TCR phosphorylation and, as a 

consequence, lessens TCR signaling 

polyubiquitination: K48 linkage 
(at least 4 Ubs) 

generaly proteasomal degradation, e.g. of 
protein MDC1, a key component of DDR 

followed by DSB repair; lysosomal degradation, 
e.g. of LDL receptor 

polyubiquitination: K63 linkage kinase activation and localization (e.g. K63-
linked ubiquitination of transforming growth 

factor-ß activating kinase 1 (TAK1) triggered by 
TRAF6 and indispensable for TAK1 auto-
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phosphorylation), DNA damage tolerance, signal 
transduction, endocytosis (e.g. Epsin1-mediated 

endocytosis of MHCI; TNFα-mediated NF-κB 
activation), lysosomal degradation (e.g. of LDL 

receptor) 

monoubiquitination transcriptional silencing and X-inactivation, i.e. 
as a consequence of monoubiquitination of 
histone H2A; viral budding, gene expression, 

DNA repair, e.g. monoubiquitination of FANCD2 
in response to DNA damage, triggering the 

recruitment of repair proteins to the damaged 
site 

multiubiquitination or 
monoubiquitination on multiple sites 

receptor endocytosis, e.g. multiple 
monoubiquitination of receptor tyrosine kinases 

(RTKs) leads for their endocytosis and 
degradation 

linear (M1) ubiquitination NFκB signaling, i.e. linear ubiquitination of 
NEMO is necessary for NFκB activation; protein 
degradation, i.e. in vitro degradation of Ub-GFP 

 

The table was based on following publications: (Thrower, Hoffman et al. 2000; Hicke 2001; 

Sarcevic, Mawson et al. 2002; Haglund, Di Fiore et al. 2003; Haglund, Sigismund et al. 2003; 

Passmore and Barford 2004; Ben-Saadon, Zaaroor et al. 2006; Chastagner, Israel et al. 2006; 

Kirisako, Kamei et al. 2006; Jin, Williamson et al. 2008; Shi, Ma et al. 2008; Bergink and Jentsch 

2009; Tokunaga, Sakata et al. 2009; Yang, Zhang et al. 2010; Kulathu and Komander 2012; Zhang, 

Xu et al. 2013; Longerich, Kwon et al. 2014; Srivastava and Chakrabarti 2014; Luo, Zhou et al. 

2015) 

 

1.3.3. SUMOylation and SUMO protein 

SUMOylation is a post-translational modification of the proteins mediated by members of 

the Small Ubiquitin-related Modifier (SUMO) protein family and resulting in a covalent 

attachment of a SUMO family member to a target protein. In vertebrates, four SUMO 

isoforms encoded by distinct genes have been identified: SUMO1, SUMO2, SUMO3 and 

SUMO4. Moreover, SUMO2 and SUMO3 proteins share 97% of similarity, thereby are 

specified as SUMO2/3 (Hay 2005; Henley, Craig et al. 2014). Theoretical weight of SUMO 

family members is 10-11 kDa, however, it should be noted that on SDS-PAGE gel SUMO is 

detectable as a 15-17 kDa protein (Park-Sarge and Sarge 2009). As it is the case with 

ubiquitination, SUMOylation as a process is reversible through proteases, such as 

ubiquitin-like protein-specific proteases (Ulps) and sentrin-specific proteases (SENPs) that 
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remove SUMO molecule(s) from SUMO-modified proteins (Johnson 2004). Mature SUMO, 

processed from the precursor form by proteases, is generated when at least four C-

terminal amino acids have been cut off. Such SUMO possesses a carboxy-terminal 

diglycine motif, necessary to form an isopeptide bond with an acceptor lysine residue on 

the substrate.  

SUMOylation regulates and alters a variety of cellular processes, such as transcription 

(e.g. modification of DEC1 protein modifies its transcriptional activity), protein-protein 

interactions and localization (e.g. SUMOylation of the von Hippel-Lindau (VHL) tumor 

suppressor protein leads to its nuclear redistribution), ER stress response and activation 

of unfolded protein response (UPR) (e.g. regulation of PML function), cell cycle 

progression (e.g. modification of Forkhead box transcription factor M1 (FoxM1) 

modulates its transcriptional activity), DNA damage response (e.g. SUMOylation of PCNA) 

and chromosome segregation (Mahajan, Delphin et al. 1997; Kretz-Remy and Tanguay 

1999; Huang, Wuerzberger-Davis et al. 2003; Girdwood, Tatham et al. 2004; Li, Evdokimov 

et al. 2004; Liang, Melchior et al. 2004; Besnault-Mascard, Leprince et al. 2005; Cai and 

Robertson 2010; Hong, Xing et al. 2011; Schimmel, Eifler et al. 2014; Enserink 2015).  

 

1.3.3.1. SUMOylation process 

SUMO conjugation occurs in analogous manner to ubiquitination. Covalent attachment of 

SUMO protein to the acceptor lysine of substrate involves a cascade of enzymes acting in 

particular sequence; first, activating enzymes (E1s), then conjugating enzymes (E2), and 

protein ligases (E3) at the end. At the beginning of the SUMO conjugation cycle, SUMO 

protein undergoes processing by proteases to its mature form. Following maturation, E1 

activating enzyme adenylates C-terminal diglycine of SUMO that subsequently forms an 

E1~SUMO thioester with E1 conserved cysteine residue. Next, SUMO is transferred to the 

active site of conjugating enzyme E2, generating an E2~SUMO thioester. In the last step of 

the process, SUMO E3 ligase might catalyze reaction in two distinct manners. It either 

recruits both E2~SUMO thioester and the substrate into a complex, to allow an optimal 

conformation and to facilitate conjugation, or binds to the E2~SUMO thioester to 

orientate it and to facilitate E2-dependent substrate interaction and binding SUMO to the 

target protein. Second mechanism does not require direct interaction between E3 ligase 
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and the substrate. In both cases, as a result an isopeptide bond between the C-terminal 

carboxyl group of SUMO and the Ɛ-amino group of a lysine residue of the substrate is 

formed. E3 ligase function in SUMO conjugation pathway might be also omitted. In some 

cases, E2 conjugating enzyme interacts directly with SUMO substrate in an E3 ligase-

independent manner, to transfer the cargo directly to acceptor lysines (Gareau and Lima 

2010). Unlike ubiquitination-involved enzymes, only few have been identified in the 

SUMO pathway (Tab. VI), and among them, merely single E2 enzyme in human, which is 

SUMO-conjugating enzyme 9 (UBC9, UBCE9, UBE2I) (Geiss-Friedlander and Melchior 

2007; Zhao 2007; Wilson and Heaton 2008; Yang and Chiang 2013). 

 

Table VI. Examples of E1 and E3 enzymes involved in the SUMOylation. 

E1 activating enzyme Function 

SAE1 (UBLE1A) E1 ligase for SUMO1, SUMO2, SUMO3,  

and probably SUMO4 

SAE2 (UBA2, UBLE1B) E1 ligase for SUMO1, SUMO2, SUMO3, and 

probably SUMO4 

UBA5 Activates SUMO2 

E3 ligase Examples of proteins modified by the enzyme 

CBX4 HNRNPK, ZNF131 

EGR2 (KROX20) NAB1, NAB2 

MUL1 DNM1L 

NSE2 (NSMCE2) SMC6L1, TRAX, TERF1, TERF2, TINF2, TERF2IP 

PIAS1 PML, CEBPB 

PIAS2 PML, PARK7 (isoform PIAS2-alpha),  

NCOA2, MDM2 (isoform PIAS2-beta) 

PIAS3 CCAR2, MTA1 

PIAS4 CEBPA, PARK7, HERC2, MYB, TCF4, RNF168 

RANBP2 PML, facilitates SUMO1 and SUMO2 conjugation 

RNF212 MSH4, MSH5 

TRIM28 IRF7, TRIM28 

Source: UniProt database (www.uniprot.org) 
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2. Materials and methods 

2.1. Materials 

2.1.1. Chemical reagents used for the cell treatment 

Name      Producer, catalogue number 

Ammonium chloride (NH4Cl)   Sigma-Aldrich, #254134 

Chloroquine     InvivoGen, #tlrl-chq 

Cycloheximide (CHX)    Sigma-Aldrich, #C4859 

DAPI (4’6-diamidino-2-phenylindole) Invitrogen, #D1306 

Etoposide     Sigma-Aldrich, #E1383 

FuGENE® HD Transfection reagent  Promega, #E2311 

Leupeptin     GERBU Biotechnik GmbH, #1335 

MG132     Calbiochem, #474790 

N-ethylmaleimide (NEM)   Sigma-Aldrich, #E3876-5G 

Polyethylenimine (PEI)   Sigma-Aldrich, #408727 

Propidium iodide (PI)    Sigma-Aldrich, #P4170 

Rapamycin     Sigma-Aldrich, #R8781 

 

2.1.2. Buffers and solutions 

Buffer Reagents Concentration 

Protein lysis buffer Tris-HCl (pH=7.4) 

MgCl2 

NaCl 

Glycerol 

NP40 

EDTA 

EGTA 

DTT 

PMSF 

NaF 

Na3VO4 

ß-glycerolphosphate 

Protease inhibitor cocktail 

20 mM 

1 mM 

0.5 M 

20% (v/v) 

0.5% (v/v) 

1 mM 

1 mM 

1 mM 

1 mM 

2.5 mM 

200 mM 

1 mM 

1 tablet / 50 ml 
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Protein lysis buffer for IP Tris-HCl (pH=7.4) 

NaCl 

EDTA 

Triton X-100 

50 mM 

150 mM 

1 mM 

1% (v/v) 

PBS (10x) NaCl 

KCl 

Na2HPO4 ∙ 2H2O 

KH2PO4 

137 mM 

27 mM 

10 mM 

2 mM 

TBS (10x) Tris-HCl (pH=7.4) 

NaCl 

500 mM 

1500 mM 

Reducing sample buffer (5x) Tris-HCl (pH=6.8) 

Glycerol 

SDS 

Bromophenolblue sodium salt 

DTT 

0.27 M 

50% (v/v) 

8.3% (w/v) 

0.12% (w/v) 

0.5 M 

Running buffer (SDS-PAGE) Tris base 

Glycine 

SDS 

25 mM 

192 mM 

0.1% (w/v) 

Transfer buffer (Western blot) Tris base 

Glycine 

Methanol 

25 mM 

192 mM 

20% (v/v) 

Blocking buffer non-fat dry milk in TBST  4% (w/v) 

TE10/1 Tris-HCl (pH=8.0) 

EDTA (pH=8.0) 

10 mM 

1 mM 

PCR buffer (10x) KCl 

Tris-HCl (pH=8.3) 

MgCl2 

0.5 M 

0.1 M 

15 mM 

TAE (50x) Tris acetate 

EDTA (pH=8.2) 

2 M 

0.05 M 

Nicoletti lysis buffer Sodium citrate (pH=7.4) 

Triton X-100 

Propidium iodide 

0.1% (w/v) 

0.1% (w/v) 

50 µg/ml 

S1 Resuspension buffer 

 

Tris-HCl (pH=8.0) 

EDTA 

RNase A 

50 mM 

10 mM 

50 µg/ml 

S2 Lysis buffer NaOH 

SDS 

200 mM 

1% (v/v) 

S3 Neutralization buffer KAc (pH=5.1) 3 M 

 

 



Materials and methods 

 

42 
 

2.1.3. Eukaryotic cell lines and bacterial strains 

Cell line Characteristics 

COS-7 African green monkey (Cercopithecus aethiops, Chlorocebus 

aethiops) kidney fibroblast-like cell line, derived from the CV-1 cell 

line, transformed with an origin defective mutant of SV40, which 

encodes for wild type T antigen. 

HEK293T Human (Homo sapiens) embryonic kidney 293 cells constitutively 

expressing the simian virus 40 (SV40) large T antigen; derivative of 

the 293 cell line. 

POF35-5 CER Mice embryonic fibroblast (MEF) cell line, generated by Dr. Pierre-

Olivier Frappart, carrying CreER(T2) construct, tamoxifen-inducible 

Rint1 conditional knock-out 

POF35-5 EV MEF cell line, generated by Dr. Pierre-Olivier Frappart, carrying Cre 

recombinase construct, EV control cell line 

POF39-4 CER MEF cell line, generated by Dr. Pierre-Olivier Frappart, carrying 

CreER(T2) construct, tamoxifen-inducible Rint1 conditional knock-

out 

POF39-4 EV MEF cell line, generated by Dr. Pierre-Olivier Frappart, carrying Cre 

recombinase construct, EV control cell line 

 

 

Bacterial strain Resistance Experimental purpose 

E. coli DH5α Nalidixic acid Propagating DNA/shRNA plasmids 

E. coli TOP10 Streptomycin Propagating DNA/shRNA plasmids 

E. coli DB3.1 Streptomycin Propagating DNA plasmids containing the ccdB 

operon 

 

 

2.1.4. Culture media 

2.1.4.1. Bacterial culture media 

Medium type Content Manufacturer 

LB-Broth 10 g/l tryptone 

5 g/l yeast extract 

5 g/l NaCl 

pH=7.0 

Carl Roth GmbH, #X968.2 
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LB-Broth agar plates LB-Broth 

2% Agar-agar 

Carl Roth GmbH, #X968.2 

GERBU Biotechnik GmbH, #1340 

 

For the preparation of LB-medium agar plates, 6 g of agar was added to 300 ml of LB-

Broth medium, autoclaved and cooled down to 55°C. At this temperature, antibiotic was 

added: 50 µg/ml of ampicillin or 100 µg/ml kanamycin. Petri dishes were filled with the 

solution. Plates were stored at 4°C. 

 

2.1.4.2. Eukaryotic cell lines culture medium 

Medium Cell type Composition 

D-MEM 

(Dulbecco’s Modified 

Eagle Medium) 

COS-7, HEK293T, MEF 

 

Liquid with L-glutamine, 4500 mg/l 

D-glucose, 25 mM HEPES 

This medium was supplemented with: FCS 

sodium pyruvate 

penicillin/streptomycin 

ß-mercaptoethanol 

L-glutamine 

10% (v/v) 

1 mM 

100U/100µg 

0.1 mM 

2 mM 

Freezing medium COS-7, HEK293T, MEF D-MEM 

FCS 

DMSO 

80% (v/v) 

10% (v/v) 

10% (v/v) 

 

D-MEM and all the reagents were purchased from Gibco, Karlsruhe, with an exception of 

FCS, purchased from Perbio Sciences. 

 

2.1.5. Antibodies 

2.1.5.1. Primary antibodies 

Name (clone) Antigen Isotype Producer,  
catalogue number 

anti-FLAG® (M2)  FLAG Tag mouse monoclonal IgG1 Sigma-Aldrich, #F3165 

anti-FLAG® (M2)  
Affinity Gel 

FLAG Tag mouse monoclonal IgG1 Sigma-Aldrich, #A2220 

anti-GFP (B-2) GFP Tag mouse monoclonal IgG2A Santa Cruz 
Biotechnology,  
sc-9996 
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anti-HA (3F10) HA Tag rat monoclonal IgG1 Roche,  
#11867423001 

anti-HA Affinity Matrix 
(3F10) 

HA Tag rat monoclonal IgG1 Roche,  
#11815016001 

Calreticulin Calreticulin rabbit polyclonal IgG Affinity Bioreagents, 
#PA3-900 

Caspase-3/CPP32 
(Clone 46) 

Caspase-3 mouse monoclonal IgG1 BD Biosciences, 
#611048 

GADD 153 
(F-168) 

GADD 153 
(CHOP10) 

rabbit polyclonal IgG Santa Cruz 
Biotechnology,  
sc-575 

GFP-Trap®_A GFP  ChromoTek,  
#gta-20 

Lasu1/Ureb1 HUWE1 
(LASU1, 
UREB1) 

rabbit polyclonal IgG Bethyl Laboratories, 
#A300-486A 

PARP 
(C2-10) 

PARP1 mouse monoclonal IgG1 Trevigen,  
#4338-MC-50 

RINT1  RINT1 rabbit polyclonal IgG Proteintech Europe, 
#14567-1-AP 

RNF20  
(D6E10) 

RNF20 rabbit monoclonal IgG Cell Signaling,  
#11974 

RNF40  
(KA7-27) 

RNF40 mouse monoclonal IgG1 Sigma-Aldrich,  
#R9029-25UL 

SUMO1 SUMO1 mouse monoclonal IgG generous gift from Dr. 
F. Melchior 

SUMO2 SUMO2 mouse monoclonal IgG generous gift from Dr. 
F. Melchior 

Ubiquitin  
(P4D1) 

Ubiquitin mouse monoclonal IgG1 Santa Cruz 
Biotechnology,  
sc-8017 

 

2.1.5.2. Secondary antibodies 

Name (catalogue number) Antigen Producer,  
catalogue number 

Secondary HRP-conjugated goat polyclonal IgG 
anti-mouse IgG 

Dianova,  
#115-035-003 

Secondary HRP-conjugated goat polyclonal IgG 
anti-rabbit IgG 

Dako, 
#00033131 

Secondary HRP-conjugated goat polyclonal IgG 
anti-rat IgG 

Santa Cruz 
Biotechnology,  
sc-2065 
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2.1.6. Plasmids 

Name, Producer Producer 

MISSION® shRNA HUWE1, pLKO.1  Sigma-Aldrich, #SHCLNG NM_031407 

MISSION® shRNA RNF20, pLKO.1  Sigma-Aldrich, #SHCLNG NM_019592 

MISSION® shRNA RNF40, pLKO.1  Sigma-Aldrich, #SHCLNG NM_014771 

pcDNA3.1-HA  Invitrogen 

pcDNA3.1-HA-Ubiquitin  generous gift from Dr. T. Hofmann 

pFLAG-CMV2  Sigma-Aldrich 

pEGFP-C1  Clontech 

pFLAG-CMV2-RINT1  generous gift from Dr. M. Tagaya 

pFLAG-CMV2-RINT1-N  generous gift from Dr. M. Tagaya 

pFLAG-CMV2-RINT1-M  generous gift from Dr. M. Tagaya 

pFLAG-CMV2-RINT-C  generous gift from Dr. M. Tagaya 

pRK5-HA-Ubiquitin-K29  Addgene #22903 

pRK5-HA-Ubiquitin-K48  Addgene #17605 

pRK5-HA-Ubiquitin-K63  Addgene #17606 

pRK5-HA-Ubiquitin-KO  Addgene #17603 

 

2.1.7. Primers 

Name Primer sequence 

Quantitative PCR 

Oligo-dT (dT)15 

human Huwe1 

 

sense 5’-TGTAATGATGAGCAACTCCTCTT-3‘ 

anti-sense 5’-GGTCCAACAGATCCACCCA3-‘ 

human ß-actin sense 5’-ACCCACACTGTGCCCATCTACGA-3′ 

anti-sense 5’-CAGCGGAACCGCTCATTGCCAATGG-3′ 

Quantitative PCR primers were designated using “Roche Universal ProbeLibrary for Human” 
(www.lifescience.roche.com) 

Generation of truncated human RINT1 mutants 

Rint1-Δ1 

 

sense: 5'-AAGCGGCCGCAGAAGTTGGAAATGACCTTAAATC-3' 

anti-sense: 5'-AAGGATCCTTATTTTCCAGTATTAGGCCAATTTG-3' 

Rint1-Δ2 

 

sense: 5'-AAGCGGCCGCACAATTTCTTAATCAGTTTCTGGAGC-3' 

anti-sense 5'-AGGATCCTTATTTTCCAGTATTAGGCCAATTTGTCC-3' 
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Rint1-Δ3 sense: 5'-AAGCGGCCGCATACTCTCTTCCTGCCTCCCC-3' 

anti-sense: 5'-AAGGATCCTTATTTTCCAGTATTAGGCCAATTTGTCC-3' 

Site directed mutagenesis – Rint1 putative ubiquitination site 

Rint1-A71G sense: 5'-GTGACGAAAGGAGGAACCTCGAGGAG-3' 

anti-sense: 5'-CTCCTCGAGGTTCCTCCTTTCGTCAC-3' 

  

2.1.8. shRNA 

Name shRNA sequence 

shRNA HUWE1 CGGGCTCCCACTATAACCTCACTTCTCGAGAAGTGAGGTTATAGTGGGA

GCTTTTTG 

shRNA RNF20 CCGGCGGAGGAACTAGACATTAGAACTCGAGTTCTAATGTCTAGTTCCT

CCGTTTTTG 

shRNA RNF40 CCGGGCAGAAGTTTGAGATGCTGAACTCGAGTTCAGCATCTCAAACTTC
TGCTTTTT 

 

2.1.9. Commercial kits and materials 

Commercial kit/material    Manufacturer, catalogue number 

ApopTag Plus® Fluorescein In Situ    Chemicon International, #S7111 
Apoptosis Detection Kit 

Gateway® BP Clonase® II Enzyme Mix  Life Technologies, #11789-020 

Gateway® LR Clonase® II Enzyme Mix  Life Technologies, #11791-020 

GeneAmp RNA PCR     Applied Biosystems, #4312765 

KOD Hot Start DNA Polymerase   Novagene, #71086-3 

LigaFast™ Rapid DNA Ligation System  Promega, #M8221 

Power SYBR Green PCR Master Mix   Applied Biosystems, #4368708 

ProLong® Gold Antifade Mountant   ThermoFisher Scientific, #P36930 

QIAGEN Plasmid Plus Maxi Kit   Qiagen, #12965 

QIAquick Gel Extraction Kit    Qiagen, #28706 

QIAquick PCR purification Kit    Qiagen, #28106 

Reverse Transcriptase    Applied Biosystems, #4311235 

RNeasy Mini Kit     Qiagen, #74106 

Western Lightning® Plus-ECL    PerkinElmer, USA, #NEL103001EA 



Materials and methods 

 

47 
 

2.1.10. Instruments 

Instrument       Manufacturer 

Agarose gel electrophoresis chamber   Bio-Rad 

Bacterial culture incubator/shaker    Eppendorf 

Basic pH Meter PB-11      Sartorius 

Blotting system, Mini Trans-Blot® Cell   Bio-Rad 

Centrifuges: 

 5415R       Eppendorf 

 5418       Eppendorf 

 5804R       Eppendorf 

Chemiluminescence visualization system   Bio-Rad 

CO2-cell culture incubator     Sanyo 

DNA Engine Thermal Cycler PTC-200    Bio-Rad 

Electrophoresis power supply, PowerPac Basic  Bio-Rad 

Electroporation system, Gene Pulser Xcell™   Bio-Rad 

Gel documentation system: 

 UV Transilluminator, UST-20M-8K   Biostep 

 Digital camera, EOS 500D    Canon 

 EF 28mm f/1.8 USM     Canon 

Heat block       Eppendorf 

Light microscope      Leica Microsystems 

MicroPulser electroporation cuvettes   Bio-Rad 

Magnetic stirrer, MR Hei-Standard    Heidolph Instruments 

Microwave oven      Samsung 

Platform shaker, Unimax 1010 orbital   Heidolph Instruments 

Quartz cuvettes      Sigma-Aldrich 

Rotary shaker       Stuart 

Sonicator       Qsonica 

Spectrophotometer      Bio-Rad   

Spectrophotometer NanoDrop 1000    PEQLAB 

Thermomixer compact     Eppendorf 

Vortex Genie 2      Scientific Industries 



Materials and methods 

 

48 
 

2.1.11. Software 

Software      Company/Link 

BDM-PUB      www.bdmpub.biocuckoo.org 

GENtle, version 1.9.4     Magnus Manske, University of Cologne 

GPS-SUMO      sumosp.biocuckoo.org/online.php 

ImageJ, version 1.46r     Public domain, Wayne Rasband, NIH 

Multi-Omics Profiling Expression Database  www.proteinspire.org 

PHOSIDA      www.phosida.com 

PhosphoSitePlus     www.phosphosite.org 

Phylogeny.fr      http://phylogeny.lirmm.fr 

PRALINE      www.ibi.vu.nl/programs/pralinewww 

Roche Universal ProbeLibrary for Human  www.lifescience.roche.com 

Scaffold, version 4.0.7.    Proteome Software 

Sequence Detection Software   Applied Biosystems 

UbPred      www.ubpred.org 

 

 

 

2.2. Methods 

2.2.1. Molecular biological methods 

2.2.1.1. Transformation of plasmid DNA in competent bacteria 

Competent E. coli bacteria (50 µl) were thawed on ice and a plasmid (25 ng) was 

transferred to the bacterial solution. Bacterial solution was subsequently gently mixed 

and incubated on ice for 30 min After this time, a heat shock at 42°C for 50 sec in water 

bath was performed. Then, the reaction mix was incubated on ice for 3-4 min, and 250 µl 

of LB-medium was added. Eppendorf tube containing the solution was transferred to a 

shaker and incubated for 1h at 37°C, 300 rpm. Afterwards, 100 µl of the mixture was 

transferred to LB-agar selective plate containing the appropriate antibiotic (ampicillin or 

kanamycin). The plate was incubated o/n at 37°C. 
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2.2.1.2. Preparation of plasmid DNA 

2.2.1.2.1. Large-scale purification of plasmid DNA 

Large-scale plasmid purification was performed using commercially available QIAGEN 

Plasmid Plus Maxi Kit, according to the manufacturer’s protocol. Bacteria containing the 

transformed plasmid were cultured o/n in 300 ml of LB-medium, containing appropriate 

antibiotic for selection pressure in an incubator at 37°C, 300 rpm. The next day, bacteria 

was harvested by centrifugation at 6000 x g, for 15 min at 4°C. The supernatant was 

carefully discarded and the bacterial pellet was resuspended in 10 ml of the supplied 

buffer P1. In order to lyse the cells, 10 ml of buffer P2 was added, the content of the tube 

was mixed thoroughly by inverting it 4-6 times, and the mixture was incubated at RT for 5 

min To stop the lysis, 10 ml of chilled buffer P3 was added. Solution was mixed, incubated 

on ice for 20 min and subsequently centrifuged at 20000 x g for 30 min at 4°C. The 

supernatant containing plasmid DNA was applied to equilibrated with 10 ml of QBT buffer 

QIAGEN-tip 500 column. The column was washed two times with 30 ml of buffer QC. In 

order to elute the plasmid DNA, 15 ml of buffer QF was applied to the column and the 

eluate was collected into fresh tube by free-flow. Precipitation of the DNA was performed 

by adding 10.5 ml (0.7x volume) of RT isopropanol to the eluate and by immediate 

centrifugation of mixed solution at 15000 x g for 30 min at 4°C. The DNA pellet was 

washed with 5 ml of RT 70% ethanol and centrifuged again at 15000 x g for 10 min at 4°C. 

The ethanol was discarded, the DNA pellet was air-dried for 10-15 min and resuspended 

in 100 µl of TE buffer. The quantity and the quality of purified plasmid DNA were verified 

by agarose gel electrophoresis and using NanoDrop 1000 spectrophotometer. 

 

2.2.1.2.2. Preparation of plasmid DNA using home-made buffers 

Purification of DNA plasmids up to 25 µg was performed using home-made S1, S2 and S3 

buffers. 1.5 ml of o/n bacterial culture containing the plasmid was centrifuged at 14000 x 

g for 1 min. and the supernatant was carefully removed. Bacterial pellet was resuspended 

in 250 µl of buffer S1 and 250 µl of S2 lysis buffer was added. The tube was inverted 5-6 

times and incubated on ice for 5 min Next, 350 µl of S3 neutralization buffer was added, 

the tube was again inverted 5-6 times and incubated on ice for additional 5 min 
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Subsequently, the tube was centrifuged for 10 min at 14000 x g and the supernatant (750 

µl) was transferred to a fresh 1.5 ml tube. Single volume (750 µl) of ice-cold 100% ethanol 

was added, the tube was vortexed and centrifuged again for 10 min at 14000 x g. The 

pellet of plasmid DNA was washed with 1 ml of ice cold 70% ethanol and the tube was 

centrifuged as before. The supernatant was carefully discarded, the pellet was air-dried 

for 10-15 min at RT and resuspended in 30-50 µl of TE10/1 buffer. The quantity and the 

quality of purified plasmid DNA was verified by agarose gel electrophoresis and using 

NanoDrop 1000 spectrophotometer. Briefly, the spectrophotometer was equilibrated 

with 1 µl of H2O pipetted onto the lower measurement pedestal. Then, 1 µl of DNA 

sample was placed onto measurement pedestal and the reading was initiated using the 

operating software on the PC. The absorbance was recorded at 260 nm and 280 nm. 

 

2.2.1.3. Restriction enzyme digestion and ligation of DNA fragments 

Restriction enzyme-mediated digestion of DNA was performed as one of the steps for 

cloning of the DNA fragments into another plasmid, or in order to verify the sequence of 

cloned construct according to a restriction map. Plasmid DNA and DNA fragments were 

digested with appropriate restriction enzymes (and their concentrations), typically for 4 h 

at 37°C. Following reaction mixture were prepared (volumes are given for one reaction 

vial):  

Restriction digest of DNA fragments obtained by PCR-mediated synthesis: 

Reagent:    Volume: 

DNA fragment    5 µl (final concentration: 1 µg)  

restriction enzyme   1 µl (10 U) 

respective restriction buffer 10x 3 µl 

H2O      to a final volume of 30 µl 

Restriction digest of plasmid DNA: 

Reagent:    Volume: 

plasmid     1 µg  

restriction enzyme   1 µl (10 U) 

respective restriction buffer 10x 3 µl 

H2O      to a final volume of 30 µl 
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DNA fragments were subsequently separated on an agarose gel, and purified using 

QIAquick Gel Extraction Kit (Qiagen), according to the manufacturer’s protocol. For the 

ligation, following reaction was performed: 

Reagent:   Volume: 

vector DNA   100 ng 

insert DNA   33 ng 

2X Rapid Ligation Buffer 5 µl 

T4 DNA Ligase (Weiss units) 3 U 

Reaction mix was incubated o/n at 4°C. 

 

2.2.1.4. Gateway® Recombination Cloning Technology 

Gateway® Recombination Cloning Technology was used to quickly and efficiently clone 

genes into multiple destination vectors, without a need to use restriction enzymes, ligase 

and subcloning steps. Gateway cloning was performed in two steps and following 

manufacturer’s protocol. First, a BP recombination reaction between an attB-flanked DNA 

fragment and an attP-containing donor vector was performed, to create an entry clone. 

During a second step a LR recombination reaction between an attL-containing entry clone 

and an attR-containing destination vector was performed to generate an expression 

clone. Reactions were prepared as follows: 

 

BP recombination reaction: 

Reagent:    Volume: 

attB-PCR product   1-7 µl (10 ng/µl, final amount ~15-150 ng)  

pDONR™ vector   1 µl (150 ng/µl) 

5X BP Clonase™ reaction buffer 2 µl 

TE10/1      to final volume of 8 µl 

 

Reaction was incubated at RT for 1 h. Then, 2 µl of 2 µg/µl proteinase K solution was 

added and the mix was incubated at 37°C for 10 min Competent E. coli were transformed 

with the reaction mix and selected for appropriate antibiotic-resistant entry clones. 
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LR recombination reaction: 

Reagent:    Volume: 

entry clone    1-7 µl (50-150 ng)  

destination vector   1 µl (150 ng/µl) 

5X LR Clonase™ reaction buffer 2 µl 

TE10/1      to final volume of 8 µl 

 

Reaction was incubated at RT for 1 h. Then, 2 µl of 2 µg/µl proteinase K solution was 

added and the mix was incubated at 37°C for 10 min. Competent E. coli were transformed 

with the reaction mix and selected for the appropriate antibiotic-resistant expression 

clones. 

 

2.2.1.5. Total cellular RNA extraction 

Total RNA was extracted using RNeasy Mini Kit (Qiagen). Briefly, cells were first lysed and 

homogenized by adding 600 µl of buffer RLT. Single volume of ethanol 70% (in RNase-free 

water) was added to the lysate to provide ideal binding conditions, and mixed by 

pipetting. 700 µl of the sample was loaded onto the RNeasy mini spin column placed in a 

2 ml collection tube. Tube was centrifuged for 15 s at 8000 x g. Contaminants were 

washed away with sequential washing with buffer RW1 (700 µl) and RPE (500 µl, twice), 

and spinning for 15 s at 8000 x g. RNA was eluted in 30 µl H2O by centrifugation for 1 min 

at 8000 x g. RNA concentration was measured as described for DNA (section 2.2.1.2.2.). 

The RNA samples were stored at -80°C. 

 

2.2.1.6. Reverse-transcription reaction for cDNA generation (RT) 

Total RNA extracted using RNeasy Mini Kit was subjected to mRNA-specific RT-PCR 

reaction to synthesize cDNA. Buffers and reagents were from the RNA PCR Core Kit 

(Applied Biosystems). The reaction mixture was prepared as follows (volumes are given 

for one reaction vial): 
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Reagent:     Volume: 

10x PCR buffer (without MgCl2)   5 µl (final concentration: 1x) 

25 mM MgCl2      10 µl (final concentration: 5 mM) 

10 mM dNTPs mix    5 µl (final concentration: 1 mM) 

20 U/µl MuLV Reverse Transcriptase  2.5 µl (final concentration: 2.5 U/µl) 

Oligo dT primer (50 µM in 10 mM Tris)  2.5 µl (final concentration: 2.5 µM) 

RNA      2.5 µg 

RNase-free H2O     to final volume of 50 µl 

 

The mixture was incubated in a thermocycler using following conditions: 

 

Step:      Time and temperature: 

annealing     15 min at 25°C 

elongation     1h at 42°C 

inactivation of reverse transcriptase  5 min at 95°C 

 

Synthesized cDNA was stored at -20°C. 

 

2.2.1.7. Polymerase chain reaction (PCR) 

Classical polymerase chain reaction (PCR) mix was prepared as following (volumes are 

given for one reaction vial): 

Reagent:    Volume: 

10x PCR buffer     2.5 µl 

25 mM MgCl2    2.5 µl 

5 U/µl Taq DNA Polymerase  0.4 µl 

10 mM dNTPs mix   0.5 µl 

100 pmol primer forward  0.75 µl 

100 pmol primer reverse  0.75 µl 

DNA template    1 µl 

H2O     to volume of 25 µl 
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Steps of the PCR reaction used for gene cloning were as following: 

 

Step:      Time and temperature: 

initialization     5 min at 95°C 

denaturation     1 min at 95°C 

annealing     1 min at 58°C  30-35 cycles 

elongation     2 min at 72°C 

termination     10 min at 72°C 

final hold     4°C 

 

The PCR conditions (annealing temperature, elongation time) were optimized for specific 

genes and primers. The PCR products were electrophoretically separated on an agarose 

gel containing ethidium bromide. 

 

2.2.1.8. Site directed mutagenesis (SDM) 

In order to introduce point mutation to the DNA sequence, site directed mutagenesis 

(SDM) using linear amplification PCR technique was performed. As a first step, primers 

introducing the desired mutation into the amplified sequence were designed. The criteria 

for primer design were as follows: melting temperature (Tm) of the primers was higher 

than 65°C, and the mutation site was located in the middle of the primer sequence. Total 

volume of PCR reaction mix was of 50 µl. In order to minimalize the chances of 

introducing unwanted mutations, high fidelity KOD Hot Start DNA Polymerase (Novagene) 

was used. Maximum 20 cycles were executed. Following PCR, in order to digest 

methylated template plasmid, reaction mix was subjected to the restriction reaction with 

DpnI enzyme, for 1h. Finally, PCR mutated product was transformed into competent E. 

coli bacteria. Clones were analyzed using restriction digest mapping and subsequently 

sequenced, to confirm the occurrence of a desired mutation. 
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2.2.1.9. Purification of PCR products and other DNA fragments 

Purification of PCR products/DNA fragments was performed prior to restriction enzyme 

digestion and/or sequencing using QIAquick PCR purification kit (Qiagen) and according to 

the manufacturer’s protocol. Briefly, 5 volumes of buffer PB were added to 1 volume of 

the PCR product and mixed (until a color of the mixture turned yellow, indicating pH value 

equal or lower than 7.5, suitable for DNA/column binding). Sample was applied on the 

column and centrifuged for 1 min at 17 000 x g. All the following centrifugation steps 

were carried out under the same conditions. Next, the column was washed with 0.75 ml 

of buffer PE and centrifuged. Additional spinning was performed, to remove residual 

wash buffer from the column.  QIAquick column was then placed in a fresh collecting tube 

and the purified DNA was eluted with 30-50 µl of buffer EB. 

 

2.2.1.10. Quantitative real-time PCR (qRT-PCR) 

The cDNA was pipetted into a 96-well plate. Each reaction was performed as triplicate of 

total volume of 25 µl. qPCR was performed using Power SYBR Green PCR Master Mix 

(Applied Biosystems). Quantitative RT-PCR reaction mixture consisted of: 

- 1 µl of reverse-transcribed cDNA (product of a reaction described at p. 2.2.1.6) 

- 1 µl forward/reverse primer respectively;  

primer stock solutions were:  for HUWE1 – 10 µM (400 pM end concentration) 

    for ß-actin – 5 µM (200 pM end concentration) 

- 9.5 µl of H2O 

- 12.5 µl of the Power SYBR Green PCR Master Mix 

Gene expression was analyzed using the 7500 Real-Time PCR Systems and Sequence 

Detection Software v.2.0.2. (Applied Biosystems). Huwe1 gene expression level was 

calculated relatively to ß-actin mRNA as an endogenous reference using the following 

formula: X = 2-ΔCt, where Ct stands for cycle threshold and ΔCt = Ctgene of interest – Ctreference 

gene, i.e. 2-(ΔCt of Huwe1 – ΔCt of ß-actin). The resulting relative increase in reporter fluorescent dye 

emission was monitored for 42 cycles. The mean expression values +/- SD were calculated 

from triplicated samples. 
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2.2.1.11. Agarose gel electrophoresis 

Agarose gel electrophoresis was applied to separate DNA fragments according to their 

size. The percentage of the gel was dependent on the predicted size of DNA fragments to 

be detected and separated. The agarose suspension in TAE buffer, usually between 0.7% 

(w/v) and 2% (w/v), was boiled in a microwave oven until completely dissolved, and 

cooled down to the temperature ~50°C. Next, ethidium bromide was added to the final 

concentration of 0.003% and the agarose gel was poured to the cast and cooled down until 

set. The DNA samples, mixed with 1/5 volume of 5x loading buffer, were loaded on the gel. 

The gel was run for 30 min to 1 h, at 100 V. DNA fragments were visualized with the UV 

transilluminator. 

 

2.2.1.12. Purification of PCR products and DNA fragments from 

agarose gel 

PCR products and DNA fragments subjected to cloning, were purified from agarose gel 

using QIAquick Gel Extraction kit according to manufacturer’s protocol. First, slice of the 

agarose gel containing desired DNA fragment was excised with a scalpel, transferred to an 

Eppendorf tube and weighed. Next, to 1 volume of the gel, 3 volumes of QG buffer were 

added. Tube was incubated at 50°C for 10 min or until the gel slice completely dissolved. 

To increase the yield of DNA fragments, 1 gel volume of isopropanol was added to the 

sample, and mixed. Afterwards, sample was applied to the QIAquick column and 

centrifuged for 1 min at 10000 x g. The DNA was washed with 0.75 ml of PE buffer, and 

centrifuged using the same conditions. To remove any residues of PE buffer, 

centrifugation step was repeated after discarding the flow-through. The DNA was eluted 

into the fresh tube using 30 µl of EB buffer. The concentration and the quality of the DNA 

was measured by NanoDrop 1000 and agarose gel electrophoresis. Samples were stored 

at -20°C for further use. 
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2.2.1.13. Transient transfection and shRNA-mediated knock-down 

2.2.1.13.1. Electroporation of mammalian cells 

COS7 cells were transiently transfected with different expression plasmids using 

electroporation system – Gene Pulser Xcell™ (Bio-Rad). For one electroporation, two T175 

flasks of COS7 cells growing in confluence were used. Briefly, cells were washed with 20 

ml of PBS and trypsinized with 5 ml of trypsin-EDTA (0.25%) solution for 5 min at 37°C. In 

order to stop the trypsinization process, 10 ml of MEF medium was added and the cells 

were collected to 50 ml Falcon tubes. Next, cells were centrifuged for 5 min at 1000 rpm 

and, after discarding the medium, washed with 10 ml of PBS. Centrifugation step was 

repeated. 40 µg of plasmid DNA intended for electroporation was placed in 0.4 cm gap 

electroporation cuvette. COS7 cells were resuspended in 0.8 ml of ice-cold PBS and 

transferred to the cuvette containing plasmid. Cells were electroporated with 400 V, 960 

µF capacitance and the resistance +∞. Electroporated cells were immediately transferred 

to 20 ml of MEF medium and centrifuged for 5 min at 1000 rpm. The cell pellet was 

resuspended in 50 ml of fresh MEF medium and the cells were plated in 5 x T75 flasks. 

 

2.2.1.13.2. Polyethylenimine (PEI)-mediated transient transfection 

HEK293T cells were transiently transfected with mammalian expression plasmids using 

branched polyethylenimine (PEI) transfection reagent. PEI solution used for transfection 

was prepared as follows: 100 µl of PEI stock solution (10 mg/ml PEI in H2O, density=1.030 

g/ml) was diluted in 10 ml of ddH2O or 1x PBS. Solution was kept at 4°C. One day before 

the procedure, cells were seeded the way they reach 70% confluency on the day of 

transfection. For 150 mm dish, 6.5 x 103 of HEK293T cells was seeded and incubated 

overnight at 37°C. Shortly before the transfection, DNA plasmid and PEI stock solution 

were diluted in DMEM as follows: 13 µg of plasmid in 3.125 ml of DMEM and 2.5 µg of PEI 

per 1 µg of plasmid DNA in 3.125 of DMEM. Diluted PEI solution was combined with the 

DNA solution, immediately vortexed and incubated at RT for 10 min. MEF medium was 

aspirated from 150 mm dish and replaced with 30 ml of DMEM. DNA-PEI mix was added 

drop-wise to the cells evenly over the entire surface of the dish. After 6 h of incubation at 
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37°C, PEI-containing DMEM was replaced by MEF medium. Next, cells were incubated for 

24-48 h at 37°C in CO2 atmosphere, and harvested for the experiment. 

 

2.2.1.13.3. shRNA-mediated gene knock-down 

The expression of target genes (Huwe1, Rnf20, Rnf40) was knocked-down by selective 

inactivation of corresponding mRNA induced by the short hairpin RNA (shRNA). The 

experiments were performed simultaneously with transient transfection of RINT1 

expression construct in order to analyze the effect of knock-down on RINT1 protein 

stability. Briefly, plasmid encoding shRNA and plasmid encoding RINT1, were transiently 

introduced to the cells using FuGENE® HD transfection reagent, according to 

manufacturer’s instructions. The ratio of FuGENE® HD : DNA used was 2:1, and the ratio 

of shRNA plasmid to DNA plasmid was 5:1. Cells were harvested 48h post-transfection, 

lysed and analyzed by Western blot. 

 

2.2.2. Cellular biological methods 

2.2.2.1. Cell culture  

All the cell lines were propagated at 37° in an incubator with a humidified 5% CO2 

atmosphere. Cells were grown as adherent culture, maintained by replacement of fresh 

MEF medium every 2-3 days and passaged when reached the confluency of 80%. All cell 

culture work was performed under sterile conditions. 

 

2.2.2.2. Maintenance of eukaryotic cell lines 

For a long-term use, cell lines were stored in liquid nitrogen, and for a short-term use, at  

-80°C. 

Freezing of the cells 

Adherent cells from one confluent T175 culture flask were harvested by washing them 

with 15 ml of PBS 1x, trypsinizing with 5 ml of trypsine-EDTA (0.25%) for 5 min at 37°C, 

and centrifuging in 15 ml of MEF medium for 5 min at 1000 rpm. Next, the cell pellet was 

resuspended in 10 ml of freezing medium (see Materials section) and evenly distributed 



Materials and methods 

 

59 
 

in 10 x 1ml Nunc™ cryogenic tubes (Thermo Scientific). Tubes with cells were kept on ice 

for 2 min and placed at -80°C or in the liquid nitrogen, according to the purpose of their 

use.  

 

Thawing of the cells 

Thawing procedure is characterized by a rapid increase in temperature and fast exchange 

of culture medium in order to avoid toxic effects of the high content of DMSO in the 

freezing medium. To thaw the cell line, cryo tubes with frozen cells were placed directly in 

the water bath at 37°C. As soon as frozen medium started to thaw, cells were 

immediately transferred into Falcon tube with 10 ml of pre-warmed MEF medium and 

resuspended. Cell suspension was centrifuged for 5 min at 1500 rpm. Cell pellet was 

washed with 10 ml of PBS, centrifuged again for 5 min at 1500 rpm, and resuspended in 5 

ml of MEF medium. Finally, medium with cells was pipetted to the T25 culture flask and 

placed at 37°C in the cell incubator. 

 

2.2.2.3. Flow cytometric analysis of cell death 

2.2.2.3.1. Plasma membrane permeabilization 

Cell death analysis was performed using flow cytometry. Dying cells shrink and become 

more granular resulting in a lower forward scatter index (FSC) and increased side scatter 

index (SCC), respectively. Death-associated loss of membrane impermeability can be 

monitored by using propidium iodide (PI) staining (SCC/strength of PI emission signal). In 

living cells, PI does not penetrate. However, PI stains nuclei of dead cells fluorescent red. 

Briefly, cells were centrifuged for 5 min at 1000 rpm, washed with PBS, suspended in PBS 

and stained by mixing with 1:1 volume of PI solution (5 µg/ml in PBS). Next, cells were 

immediately subjected to FACS analysis (PI excitation wavelength is 535 nm and emission 

wavelength is 617 nm).  

The results are presented as percentage of “specific cell death”, calculated according to 

the following formula (Ehret, Westendorp et al. 1996): 

                                              dead cells [%] – dead cells [%] (untreated control) 

                                                        100 – dead cells [%] (untreated control) 
= 

  “Specific 
cell death” [%] x 100 ( ) 
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2.2.2.3.2. Analysis of apoptotic nuclear fragmentation 

Fragmentation of cell nuclei was analyzed essentially according to the method of Nicoletti 

et al. (Nicoletti, Migliorati et al. 1991). Cell nuclei were isolated by cell lysis and staining 

with PI using following buffer: 0.1 % Na-citrate, 0.1% (v/v) Triton X-100 and 50 g/ml PI. 

Measurement of fluorescence signal enables an assessment of the amount of subG1 

nuclear fraction, which is characteristic for apoptotic nuclear fragmentation. Cells were 

centrifuged at 2000 rpm for 5 min, washed with PBS, and carefully suspended in 100 l of 

Nicoletti lysis buffer. After overnight lysis at 4oC in dark, isolated nuclei were analyzed by 

flow cytometry (PI fluorescence readout). 

 

2.2.2.4. Flow cytometric analysis of cell cycle 

Cells were harvested and suspended in a 1 ml of wash buffer (PBS + 0.1% FBS), then fixed 

by drop-wise addition of 3 ml of absolute ethanol while vortexing. Next, cells were 

incubated o/n at 4oC, washed with PBS and suspended in 1 ml of the PI staining solution 

(3.8 mM Na-citrate, 40 g/ml PI) supplemented with 50 l of RNAase A stock solution (10 

g/ml RNase A, Qiagen). Subsequently, samples were analyzed by FACS. 

 

2.2.2.5. DAPI and TUNEL staining 

In order to investigate morphological changes of nuclei characteristic for apoptotic 

fragmentation, labeling of nuclear DNA in Rint1 inducible knock-out MEF cell lines was 

performed. Cells were stained using 4’6-diamidino-2-phenylindole (DAPI) blue-fluorescent 

dye (Invitrogen, #D1306) according to the manufacturer’s protocol. Briefly, cells growing 

on the microscope slides were fixed and permeabilized (4% paraformaldehyde in PBS and 

0.1% Triton X-100 in PBS, respectively), followed by equilibration with PBS. Diluted DAPI 

stock solution (end concentration 300 nM in PBS) was applied on the cells and incubated 

for 5 min. Samples were rinsed 2-3 times in PBS, drained and mounted with a ProLong 

Gold antifade reagent (ThermoFisher Scientific, #P36930). 

Further verification of putative apoptosis was performed using ApopTag Plus® Fluorescein 

In Situ Apoptosis Detection Kit (Chemicon International, #S7111) following manufacturer’s 

manual. This technique uses principles of the TUNEL (terminal deoxynucleotidyl 
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transferase dUTP nick end labeling) assay and allows for detection of single- and double-

stranded DNA breaks . 

 

2.2.2.6. 4-hydroxytamoxifen (OHT)-induced knock-out 

Mouse embryonic fibroblast (MEF) cell lines were generated by Dr. Pierre-Olivier 

Frappart. Cells were isolated from embryonic day E13.5 Rint1 Flox/Flox embryos and 

immortalized following the “3T3 protocol” (Todaro and Green 1963). After 

immortalization, MEFs were transduced with retroviruses carrying pMSCVpuro construct 

(to generate EV control) or pMSCVpuro-Cre-ER(T2) (construct encoding Cre recombinase 

under control of estrogen receptor-driven promoter); for cell line specification see 

Materials and Methods p. 2.1.3.. To delete Rint1, cells were treated with 1 μM 4-

hydroxytamoxifen (4-OHT) (Sigma-Aldrich, #H7904) for 48 h or 96 h. The knock-out 

efficiency was monitored by genomic DNA PCR, with following primers: for WT allele: 

RINT7512F (5’-TTCCTACTGACTTGCTGTGAT-3’) and RINT8345R (5’-

ACTTCTGGATGACTGAGGAC-3’), for Δ allele: RINT6542F (5’-TAACCCCTGACCCATCTCTC-3’) 

and RINT8345R. 

 

2.2.3. Biochemical methods 

2.2.3.1. Yeast two-hybrid assay 

The yeast two-hybrid assay was performed by Dr. Stefan Push, University of Heidelberg, 

Heidelberg, Germany as previously described (Weiler, Blaes et al. 2014). 

 

2.2.3.2. SDS-PAGE and Western blotting 

Cell pellet was resuspended in ice-cold lysis buffer with protease inhibitor mixture and 

incubated for 30 min at 4°C on a rotary shaker. Next, cell lysates were sonicated for 4-5 

sec, 30% of amplification, and centrifuged at 14000 x g for 15 min at 4°C. The supernatant 

was transferred to a fresh tube and the protein concentration was determined using the 

spectrophotometric analysis. Aliquots of cell lysates (e.g. 40 µg) were separated using 

SDS-facilitated polyacrylamide gel electrophoresis (SDS-PAGE). Separation conditions 
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were: polyacrylamide gels of single percentage (8%, 10% or 12%, depending on the 

protein size), or a gradient gel (4-15%), used in case of HUWE1-specific IP experiments 

(MW 482 kDa) and 100 V with 25 mA. The gel was blotted to nitrocellulose membrane 

(Hybond ECL, GE Healthcare Life Sciences) o/n using wet transfer system (Bio-Rad) at 4°C 

(with ice coat and constant mixing). Transfer conditions were 30 V (const.) and 90 mA. 

After blotting, membranes were blocked by 1 h washing in blocking solution (4% 

powdered milk in TBST 0.05%), washed 10 min with TBST 0.05% and incubated for 1h or 

o/n with primary antibody (suspended in 4% powdered milk, TBST 0.05%), at RT or 4°C, 

respectively. Then, membranes were washed 3 x 10 min with TBST 0.1% solution and 

stained with horseradish peroxidase-conjugated secondary antibody for 1 h at RT. Next, 

membranes were 3 x washed, each washing step of 10 min, with TBST 0.1%, TBST 0.05% 

and TBS, consecutively. The protein-specific signal was detected by enhanced 

chemiluminescence using Western Lightning Chemiluminescence Reagent (PerkinElmer), 

according to the manufacturer’s protocol. Signal intensity was analyzed by densitometry 

using ImageJ software. 

 

2.2.3.3. Protein immunoprecipitation 

Cells were lysed using lysing buffer for immunoprecipitation experiments (see Materials 

section). Immunoprecipitation of tag-fused proteins was performed using anti-FLAG® M2 

Affinity Gel (Sigma-Aldrich), anti-HA Affinity Matrix (Roche) or GFP-Trap®_A (ChromoTek), 

depending on the protein’s tag and according to manufacturer’s protocol. Briefly, cell 

lysates were incubated with specific antibody conjugated with matrix (e.g. agarose 

beads), for 30 min to o/n, at 4°C. Next, matrix was washed 6 x with ice-cold TBS buffer. 

Tag-fused protein was eluted using SDS-PAGE sample buffer and by boiling the samples 

for 5 min at 95°C.  Samples were subjected to Western blot analysis immediately after 

being eluted. 

 

2.2.3.4. Mass-spectrometry analysis 

Mass spectrometry analysis of immunoprecipitated GFP-tagged RINT1 protein and GFP-

tagged empty vector control, was performed by the Genomics and Proteomics Core 

Facility, DKFZ, Heidelberg, Germany, and by the Core Facility for mass spectrometry, 
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ZMBH, Heidelberg, Germany. Analysis of obtained results was performed using Scaffold4 

software. 
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3. Results 

3.1. RINT1 degradation 

3.1.1. RINT1 has a short half-life 

Despite the ubiquitous expression of RINT1 in a large number of mammalian tissues (e.g. 

according to BioGPS database, biogps.org, and others, see Introduction section), 

endogenous RINT1 levels are hardly detectable using commercially available antibodies. 

Although low specificity of the antibodies definitely contributes to this observation, it also 

indicates putative fast turnover and/or low stability of the protein. Indeed, the initial 

study showed that the level of overexpressed RINT1 decreased fast and spontaneously 

during 24-48 h upon the expression (Fig. 18A), suggesting a short half-life of RINT1. 

Consistently with this assumption, an inhibition of protein translation by cycloheximide 

(CHX) in COS-7 cells expressing N-terminally FLAG-tagged RINT1, resulted in almost 

complete depletion of RINT1 levels already within 8 h of the treatment (Fig. 18B). A 

significant decrease of the protein level was observed after 1 h of the CHX administration 

(Fig. 10B). 

A.       B. 

 

 

 

 

 

 

 

 

 

Figure 18. RINT1 is an unstable protein. (A) Overexpressed RINT1 levels in COS-7 cells decrease 

fast and spontaneously during 24 h post-transfection. (B) FLAG-RINT1 levels in COS-7 cells 

significantly decrease upon cycloheximide treatment. 

 

To verify whether the N-terminal position of the FLAG-tag influences fast decay of RINT1 

upon the CHX treatment, an experiment with C-terminally tagged protein version was 

performed. The results were similar to the ones previously described: FLAG-C-RINT1 

levels significantly decreased after 1h of protein biosynthesis inhibitor treatment, and 8 h 

of drug activity was enough to deplete protein from the cells completely (Fig. 19). This 
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experiment showed, that low stability of overexpressed RINT1 is not tag-position-

dependent. 

 

 

 

 

 

 

 

 

 

 

Figure 19. Fast cellular turnover of overexpressed RINT1 is not tag-position-dependent. COS-7 

cells were electroporated with indicated plasmids. At 24 h post-transfection, the cells were 

incubated with 12.5 µg/ml CHX for 0 h, 1 h and 8 h and were collected for WB. ß-tubulin was used 

as a control. 

 

 

In order to quantify RINT1 degradation and to determine the exact half-life of the protein, 

a CHX-chase study was performed. To do this, HEK293T cells were transfected with FLAG-

N-RINT1 or FLAG-C-RINT1 plasmids, and the CHX was added. Cellular levels of FLAG-RINT1 

were detected by Western blot (WB) at indicated time points, and quantified using 

ImageJ software. As expected, RINT1 decay was fast and resulted in total depletion after 6 

h of the CHX treatment (Fig. 20). The half-life of the N-terminally FLAG-tagged protein 

was calculated to be 38.5 min, and 40.46 min for the C-terminally tagged protein version. 

 

 

 

 

 

Cells: COS7 
Construct: N-terminal FLAG-RINT1 

Cells: COS7 
Construct: C-terminal FLAG-RINT1 
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A. 

 

 

 

 

 

 

 

 

 

 

B. 

 

 

 

 

  

 

 

 

 

 

Figure 20. RINT1 has a short half-life. HEK293T cells were transfected with plasmid FLAG-N-RINT1 

(A) or FLAG-C-RINT1 (B). At 24 h post-transfection, the cells were incubated with 25µg/ml CHX for 

different times (15 min to 6 h) and harvested for WB. ß-tubulin was used as a loading control 

(upper panels). Half-life was calculated based on WB bands intensities measured by the ImageJ 

software and evaluated following the gel analysis method outlined in the ImageJ documentation 

(lower panels). 
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Since no significant effect of the FLAG-tag positioning on degradation pattern of RINT1 

was observed (Fig. 11-12), the N-terminally FLAG-tagged protein version was applied for 

all subsequent experiments. 

 

3.1.2. RINT1 is degraded via proteasomal pathway 

Apart from investigating CHX influence on RINT1 cellular levels, protein stability was 

tested by the treatment of HEK293T cells transiently expressing FLAG-Rint1 plasmid with 

proteasome inhibitor, MG132. Interestingly, after 8h of the treatment, MG132 not only 

prevented RINT1 from degradation leading to significant protein accumulation, but a 

shifted-up band appeared, indicating putative post-translational modification (PTM) of 

the protein (Fig. 21, arrow indicates a “shifted-up band”). 

 

 

 

 

 

 

 

 

 

Figure 21. RINT1 is stabilized upon MG132 treatment. HEK293T cells expressing RINT1 were 

treated with 10 µM of proteasomal inhibitor MG132 for 0 h, 1 h and 8 h. Cells were harvested and 

analyzed by WB. ß-tubulin was used as a loading control. MG132 strongly stabilized RINT1 levels 

and 8 h of the treatment resulted in a shifted-up band. 

 

To delineate biological pathways involved in the regulation of RINT1 stability, RINT1-

transfected COS-7 cells were treated with or without addition of CHX with following 

agents: (i) leupeptin, an inhibitor of cysteine and trypsin-like proteases, (ii) ammonium 

chloride (NH4Cl) or (iii) chloroquine, inhibitors of lysosomal protein degradation and 

autophagy, (iv) rapamycin, an autophagy inducer, and (v) MG132, an inhibitor of 

proteasomal activity. Thus, three putative degradation pathways were tested: (1) 

lysosomal degradation pathway, (2) autophagy and (3) proteasomal degradation 

pathway. None of the (i-iv) treatments significantly affected RINT1 stability. All the 

chemicals were inefficient to block RINT1 degradation with an exception of MG132, which 
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clearly stabilized protein levels (Fig. 22). These results showed that RINT1 is degraded via 

a proteasomal pathway. 

 

Figure 22. RINT1 is degraded via proteasomal degradation pathway. COS-7 cells were 

electroporated with FLAG-Rint1 plasmid. At 24h post-electroporation, indicated chemicals were 

added: 12.5 µg/ml CHX, 5 mM NH4Cl, 0.2 µM rapamycin, 10 µM MG132, 25 µM chloroquine or 20 

µM leupeptin. After 8h of the treatment, cells were collected for WB analysis. ß-tubulin was used 

as a loading control. 

 

 

3.2. RINT1 ubiquitination 

Proteins degraded by the proteasome are usually modified by polyubiquitination 

(polyubiquitin, polyUb), a post-translational modification (PTMs) mediated by the activity 

of an E3 ligase. RINT1 was found to be degraded via proteasomal pathway, and the 

inhibition of proteasome activity resulted in the generation of an additional RINT1 form of 

higher molecular weight (“shifted-up band”) indicating a PTM. 
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3.2.1. RINT1 is polyubiquitinated 

To verify covalent attachment of polyUb chains to the RINT1 molecule, a co-

immunoprecipitation (co-IP)-mediated approach was applied. HEK293T cells were co-

transfected with plasmids harboring cDNA of human FLAG-tagged RINT1 and HA-tagged 

ubiquitin. 24 h after transfection, cells were treated with or without MG132 for 8 h, lysed 

and subjected to IP with either anti-FLAG or anti-HA antibodies. Immunoprecipitates were 

analyzed by WB (Fig. 23). 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. RINT1 is polyubiquitinated. HEK293T cells were co-transfected with indicated 

plasmids, treated or not with 10 µM MG132 for 8 h and lysed. Co-immunoprecipitates were 

subjected to WB analysis.  

 

In samples, in which RINT1 and ubiquitin were co-expressed, high molecular complexes 

were detected representing polyubiquitinated fraction of RINT1. The results clearly 

demonstrated, that RINT1 protein is modified by ubiquitination. 
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3.2.2. K48-linked polyubiquitin chains target RINT1 for proteasomal 

degradation 

Protein ubiquitination has different functions depending on which lysine (K) residue of 

ubiquitin is used as a polyUb chain linker. K48-mediated polyubiquitination is the most 

established as a mediator of proteasomal protein degradation. In K48-mediated 

polyubiquitin chain ubiquitin monomers are linked one to another via their lysine residue 

on the position 48. To define whether RINT1 ubiquitination is associated with protein 

degradation, FLAG-RINT1 was co-expressed in HEK293T cells together with plasmid 

encoding HA-tagged ubiquitin mutant, which lacked six out of seven lysines of ubiquitin 

aa sequence. All the lysines except lysine 48 were mutated to arginine (HA-Ub-K48). Thus, 

the detected ubiquitin chain could only be formed via the remained, non-mutated lysine. 

Co-IP-mediated analysis clearly confirmed that RINT1 was modified by K48-linked polyUb 

chains marking it for proteasomal degradation (Fig. 24). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. RINT1 is polyubiquitinated via K48- and K63-linked ubiquitin chains. HEK293T cells 

were co-transfected with indicated plasmids. Co-immunoprecipitates were subjected to WB 

analysis. 
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3.2.3. RINT1 is also polyubiquitinated by K29- and K63-linked chains 

The finding that RINT1 is markedly ubiquitinated with or without addition of MG132 (Fig. 

15), suggested the existence of additional ubiquitination modes of RINT1, besides the one 

mediated by K48 linkage. Thus, next experiments were designed to verify whether RINT1 

ubiquitination had only degradative functions, or other, related to signaling and/or 

regulation of protein functions. To answer this question, the series of co-IP experiments 

was performed. HEK293T cells were co-transfected with FLAG-RINT1 plasmid and HA-

tagged ubiquitin mutants: HA-Ub-K29, encoding ubiquitin with only one lysine residue on 

the position 29 (Fig. 25), or HA-Ub-K63 mutant, harboring ubiquitin with only K63 lysine 

residue (Fig. 24). All other lysines were mutated to arginine. In an analogous manner to 

previously described experiment, if RINT1-ubiquitin interaction was detected, it could 

only originate from the polyUb chains formed via K29- or K63-linkage. Cells were lysed, 

subjected to IP with either FLAG- or HA-antibody and analyzed by WB. The study revealed 

that RINT1 was also polyubiquitinated by K29- and K63-mediated polyUb chains, which 

are often addressed to have regulatory functions. 

 

IP results: 
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Input control:  

 

Figure. 25. RINT1 is polyubiquitinated via K29-linked ubiquitin chains. HEK293T cells were co-

transfected with indicated plasmids as described for Fig. 16. Co-immunoprecipitates were 

subjected to WB analysis. 

 

 

3.2.4. RINT1 is modified by mono- or linear ubiquitin chains 

Modification of a target protein function could also be achieved by attaching unbranched 

polyUb chain, which is a particular way of inter-ubiquitin linkage, called “head-to-tail” (or 

linear, or M1-linked) chain, leading to linear polyubiquitination. To investigate whether 

RINT1 could be subjected to this special way of ubiquitination, a co-IP experiment was 

performed, using lysine-less Ub mutant (Ub-K0), and FLAG-RINT1. Notably, in addition to 

forming linear polyUb chains, Ub-K0 might also attach to the target protein as a 

monomer, at one or multiple sites (monoubiquitination). Interestingly, RINT1 interacted 

covalently with Ub-K0 (Fig. 26), indicating linear ubiquitination of RINT1 and/or 

monoubiquitination. 
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IP results: 

 

 

 

 

 

 

 

 

 

 

 

Input control: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 26. RINT1 is polyubiquitinated via lysineless ubiquitin mutant. HEK293T cells were co-

transfected with indicated plasmids (as previously described for Fig. 16). Co-immunoprecipitates 

were subjected to WB analysis. 
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In conclusion, RINT1 was demonstrated to be polyubiquitinated not only by K48-polyUb 

chains, which target the protein for degradation, but also by K29-, K63-poluUb, and linear 

ubiquitin chains, or even monoubiquitination, at one or multiple sites, for regulatory 

and/or signaling purposes. To assay a relative abundance of the identified Ub linkages at 

the RINT1 protein, a co-transfection/co-IP experiment with all HA-Ub constructs 

previously applied (Fig. 23-26) and analyzed by detection with common antibodies was 

performed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. RINT1 is polyubiquitinated by K29-, K48-, K63- and K0 ubiquitin chains. HEK293T cells 

were co-transfected with indicated plasmids. Co-immunoprecipitates were subjected to WB 

analysis. 

 

The results shown in Figures 27 and 28 summarize all verified modes of ubiquitination of 

RINT1. Interestingly, as shown in Fig. 28, co-transfection of HEK293T cells with FLAG-

RINT1 and plasmids encoding HA-tagged non-mutated ubiquitin, or ubiquitin lysine 

mutants, resulted in relatively different RINT1-specific signal, depending on the ubiquitin 

mutant introduced to the cells. The strongest signal and clearly detectable ladder was 

observed in the case of co-transfection with HA-Ub-K29 and HA-Ub-K0 plasmids, 

suggesting a relative prevalence of these RINT1 modifications. 
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Figure 28. RINT1-specific signal intensity depends on the ubiquitin mutant interacting with 

RINT1. HEK293T cells were co-transfected with indicated plasmids. Lysates were subjected to WB 

analysis. ß-actin was used as a loading control. 

 

 

3.2.5. Screening for RINT1 interactors reveals protein candidates 

involved in ubiquitination 

In order to unravel the mechanism of RINT1 ubiquitination as well as a putative role of 

this process and possibly the function of the RINT1 itself, two screens, a yeast two-hybrid 

(Y2H) assay and mass spectrometry analysis, were performed. The specific objective of 

these screens was to identify proteins interacting with RINT1, especially E3 ubiquitin 

ligase(s), and mediating post-translational modifications. 
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3.2.5.1. Results of yeast two-hybrid screen 

Yeast two-hybrid screen was executed by Dr. Stefan Pusch, DKFZ, Heidelberg, Germany. It 

resulted in detection of several interesting candidates for RINT1-binding partners. The 

candidates were proteins related to introduction of ubiquitination or other post-

translation protein modifications. Following proteins, which fulfilled this requirement, 

were detected: 

 SUMO2 (small ubiquitin-related modifier 2), 

 PSME1 (proteasome activator complex subunit 1), 

 PKIA (cAMP-dependent protein kinase inhibitor alpha), 

 SENP8 (sentrin-specific protease 8 or NEDD8-specific protease 1), and 

 STK10 (serine/threonine protein kinase 10). 

Proteins listed above, indicated that RINT1 might be subjected to other PTMs, besides 

ubiquitination. In particular, detection of SUMO2 suggested a possibility of SUMOylation 

of RINT1, as SUMO protein is known to be involved in this process. Thus, SUMO2 was 

selected as promising candidate for further analysis and verification of the results of yeast 

two-hybrid assay. Of note, no E3 ubiquitin ligase was found by the screen procedure. 

 

3.2.5.2. Mass spectrometry analysis 

Next, mass spectrometry-mediated analysis was applied as another approach to detect 

binding partners of RINT1. In particular, the analysis was aimed at identification of 

proteins involved in PTM mediation and/or cellular pathways previously described as 

common with RINT1. HEK293T cells overexpressing GFP-tagged RINT1 were lysed and 

subjected to IP with GFP-binding alpaca antibody (having reduced background signal due 

to the lack of the light Ig light chains). In order to provide specificity for test, independent 

GFP-EV control analysis was included. Putative binding-partners were considered only 

when they were identified in the GFP-RINT1 pull down experiment and not in the GFP-EV 

one. Two independent screens were performed in cooperation with two core facility 

laboratories. SDS-PAGE gels containing immunoprecipitates were submitted for mass 

spectrometric analysis to the DKFZ Genomics and Proteomics Core Facility, and the ZMBH 

Core Facility for Mass Spectrometry (both Heidelberg, Germany). Similarly to the analysis 
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of the results of the yeast two-hybrid assay, proteins of interest were identified on the 

basis of possible engagement in mediation of PTMs as well as participation in cellular 

processes previously identified in the context of RINT1 function. In addition, they were 

verified for specificity of interaction using GFP-RINT1-transfected samples versus EV-GFP-

transfected control. The list of identified binding partners as well as examples of false-

positive results (e.g. CAND1_HUMAN) are shown in the table (Tab. VII). Partner proteins 

should be considered as a RINT1-specific interactors only if found in GFP-RINT1, and not 

in GFP-EV sample. The examples of false-positive results (e.g. CAND1_HUMAN) are shown 

in the table. 
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Conditions of mass spectrometry analysis 

 

Database: 

Database Name: the SwissProt_2013_07 database  

Taxonomy: Homo sapiens 

Number of Proteins: 20341 

 

Search Engine:  

Mascot, Version: 2.4.1 

Fragment Tolerance: 0,50 Da (Monoisotopic) 

Parent Tolerance: 100 PPM (Monoisotopic) 

Digestion Enzyme: Trypsin 

Max Missed Cleavages: 1 

Probability Model:  

X-13-150-03: Peptide Prophet with Delta Mass Correction [+2 and below,+3,+4,+5,+6 and above] 

X-13-150-04: Peptide Prophet with Delta Mass Correction [+2 and below,+3,+4,+5,+6 and above] 

X-13-150-05: Peptide Prophet with Delta Mass Correction [+2 and below,+3,+4,+5,+6 and above] 

X-13-150-06: Peptide Prophet with Delta Mass Correction [+1,+2,+3,+4,+5,+6 and above] 

X-13-150-07: Peptide Prophet with Delta Mass Correction [+2 and below,+3,+4,+5,+6,+7 and 

above] 

X-13-150-08: Peptide Prophet with Delta Mass Correction [+1,+2,+3,+4,+5,+6 and above] 

 

Scaffold Version:  

Scaffold_4.0.7 

Peptide Thresholds: 90% minimum 

Protein Thresholds: 90% minimum and 1 peptide minimum 

Peptide FDR: 1,9% (Prophet) 

Protein FDP: 1,9% (Prophet) 

 

 

Database search: Charge state deconvolution and deisotoping were not performed. All 

MS/MS samples were analyzed using Mascot (Matrix Science, London, UK; version 2.4.1). 

Mascot was set up to search the SwissProt_2013_07 database (selected for Homo 

sapiens, 20341 entries) assuming the digestion enzyme to be trypsin. Mascot was 

searched with a fragment ion mass tolerance of 0,50 Da and a parent ion tolerance of 100 

ppm. Carbamidomethyl of cysteine was specified in Mascot as a fixed modification. 

Deamidated of asparagine and glutamine, oxidation of methionine, phosphorylation of 

serine, threonine and tyrosine and GlyGly of lysine were specified in Mascot as variable 

modifications.  
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Criteria for protein identification: Scaffold (version Scaffold_4.0.7, Proteome Software 

Inc., Portland, OR) was used to validate MS/MS based peptide and protein identifications. 

Peptide identifications were accepted if they could be established at greater than 90,0% 

probability by the Peptide Prophet algorithm (Ramakrishnan, Vogel et al. 2009) with 

Scaffold delta-mass correction. Protein identifications were accepted if they could be 

established at greater than 90,0% probability and contained at least 1 identified peptide.  

Protein probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii, Keller 

et al. 2003). Proteins that contained similar peptides and could not be differentiated 

based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. 

 

In both experiments, HUWE1 E3 ubiquitin ligase was identified as a binding partner of 

RINT1. In addition, the analysis performed by the ZMBH core facility identified three other 

E3 ubiquitin ligases: RNF20 and RNF40, known to form a functional heterodimeric 

complex RNF20/40, and TRIM25 E3 ligase. Since TRIM25 was also identified in EV control-

transfected sample, this protein was not regarded as a specific interactor of RINT1. 

Interestingly, SUMO2 was also found to be a binding partner of RINT1 by one of the 

screens, which confirmed the result of the yeast two-hybrid assay. In consequence, the 

proteins: HUWE1, RNF20, RNF40 and SUMO2, were subjected to further tests in order to 

verify their binding to RINT1 and the role in RINT1 post-translational modifications. Of 

note, the analysis identified Xaa-Pro aminopeptidase 1 (XPP1) as RINT1 binding partner 

confirming its specificity, since this proteins was previously reported to be RINT1 

interaction-partner (source database: IntAct, (Stelzl, Worm et al. 2005)). 

 

3.2.6. HUWE1 and RNF20/40 interact with RINT1 

Since mass spectrometry analysis strongly suggested, that HUWE1 and RNF20/40 are E3 

ubiquitin ligases able to interact with RINT1, subsequent IP experiments were performed 

to confirm the relevance of these interactions.  

HEK293T cells were co-transfected to express GFP-tagged RINT1 and HA-tagged HUWE1 

or RNF40 proteins. EV (tag)-co-transfected cells were included into analysis to verify 

specificity of binding. The cellular lysates were subsequently subjected to GFP-mediated 
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IP. Then, the WB membranes were probed with anti-HA antibody. In the 

immunoprecipitates of RINT1, an interaction band(s) were observed (Fig. 29), indicating 

HUWE1-and RNF40-specific signals. No signal was detected for cells harboring GFP-EV 

control. Thus, interaction between RINT1 and HUWE1 and between RINT1 and RNF40, 

was confirmed. 

A       B 

 

 

 

 

 

 

 

 

Figure 29. HUWE1 and RNF40 E3 ubiquitin ligases interact with RINT1. A. HEK293T cells were co-

transfected with GFP-RINT1 and HA-tagged HUWE1. HUWE1 was identified in RINT1 

immunoprecipitate. B. HEK293T cells were co-transfected with GFP-RINT1 and HA-tagged RNF40. 

RNF40 was identified in RINT1 pull-down. 

 

To verify whether the observed interaction between RINT1 and HUWE1 is not tag-

dependent, and given a substrate promiscuity of HUWE1, a FLAG-RINT1 expression 

construct was used for additional IP experiment. The analysis was performed as described 

for GFP-tagged RINT1. Anti-FLAG antibody-mediated detection showed a clear HUWE1-

specific signal, and positively verified binding of HUWE1 to RINT1 (Fig. 30). RINT1 could 

not be detected in HUWE1 cell lysate pull-down (data not shown). This result could be 

explained by a low amount of total cellular HUWE1 protein interacting with RINT1, thus 

staying below detection limits even after pull-down. 
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Figure 30. HUWE1 E3 ubiquitin ligase interact with RINT1. HEK293T cells were co-transfected 

with FLAG-RINT1 and HA-tagged HUWE1. HUWE1 was identified in RINT1 immunoprecipitate.  

 

3.2.6.1. HUWE1 and RNF20/40 are RINT1 E3 ligases 

The co-IP analyses confirmed mass spectrometry results and binding RINT1 to HUWE1 

and RNF40 E3 ligases. To corroborate the function of HUWE1 and RNF20/40 complex in 

RINT1 degradation, the experiments involving shRNA-mediated depletion of ligases were 

performed. HEK293T cells were co-transfected with FLAG-RINT and the plasmids 

harboring shRNA against HUWE1-, RNF40- or RNF20-specific mRNA (respectively), to 

down-regulate E3 ligases expression. The plasmid encoding shRNA-scramble was included 

into study as an EV-control. 24 h after transfection, cells were lysed and subjected to WB 

analysis. To confirm the reduction of the cellular levels of E3 ligase upon overexpression 

of shRNA plasmid, membranes were probed with anti-HUWE1, anti-RNF40, or anti-RNF20 

antibodies, depending on the experiment and the specific shRNA plasmid used. 

Subsequently, WB membranes were probed with anti-FLAG antibody, to determine the 

impact of E3 ligase depletion on putative stabilization of RINT1. Anti-calnexin or anti-ß-

actin antibodies were used as loading controls. The experimental assumption was made 

that the knock-down of E3 ligase responsible for RINT1 polyubiquitination leading to 

protein degradation, could prevent the protein from proteasomal processing, thus 

resulting in stabilization of its cellular levels. Indeed, shRNA-mediated depletion of all 
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tested E3 ligases led to strong stabilization of RINT1, being a consequence of the 

inhibition of protein degradation (Fig. 31). The observed changes in protein levels were 

additionally quantified by densitometric analysis. In addition, in the case of HUWE1, 

knock-down was also confirmed at the mRNA level using reverse-transcription qRT-PCR 

(data not shown). 

 

A.                  B.     

 

 

 

 

 

 

C.          

 

 

 

 

 

 

Figure 31. HUWE1 and RNF20/40 E3 ligases regulate RINT1 stability. A. shRNA-mediated 

depletion of HUWE1 promotes stabilization of RINT1. B. shRNA-mediated depletion of RNF40 

promotes stabilization of RINT1. C. shRNA-mediated depletion of RNF20 promotes stabilization of 

RINT1. 

 

Interestingly, this effect was the most pronounced in the case of the RNF20 knock-down, 

since the minor reduction in the ubiquitin ligase protein level resulted in a high increase 

of RINT1-specific signal (Fig. 31C).  
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These experiments demonstrated the functional importance of revealed interactions 

between HUWE1, RNF20, RNF40 and RINT1, and showed that these ligases regulate 

RINT1 stability by targeting it towards proteasomal degradation pathway. 

 

3.2.7. Mapping ubiquitination sites of RINT1 

3.2.7.1. In silico analysis predicted several putative ubiquitination 

sites along RINT1 sequence 

In order to identify target sites within RINT1, which could be subjected to ubiquitination, 

the in silico prediction using the on-line available software was performed 

(www.ubpred.org and www.bdmpub.biocuckoo.org). The analysis revealed multiple, 

lysine residues, which could presumably be modified by ubiquitination, and assigned 

confidence (probability) of their occurrence (Fig. 32). Specifically, six lysine residues (K24, 

K29, K41, K108, K293, K578) were assigned high or medium confidence, while four lysine 

residues (K62, K114, K525, K771) were of low for possible regarding ubiquitination. 

 

 

 

 

Figure 32. RINT1 has multiple putative ubiquitination target sites. RINT1 lysine residues 

predicted to be a possible subject of ubiquitination. Colors mark the confidence of prediction: red 

= high confidence, blue = medium confidence, green = low confidence. 

 

3.2.7.2. Site-directed mutagenesis of major in silico predicted 

ubiquitination site does not affect polyubiquitination of 

RINT1 

Since lysine 24 (K24) was in silico predicted to be one of two major RINT1 residues 

probable to undergo ubiquitination (highest confidence score assigned together with 

residue K288), a site-directed mutagenesis approach was performed. RINT1 mutant 

protein where lysine on the position 24 was mutated to arginine was generated and 

designated “RINT1-K24R” (K to R mutation, FLAG-RINT1-c.71A>G). Positioning of the K24 

N C 
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residue near the beginning of the protein sequence (N terminus) and in the vicinity of 

several putative ubiquitination sites of lower probability, suggested its particular role. 

HEK293T cells were transfected to co-express FLAG-tagged RINT1 or RINT1-K24R proteins 

together with HA-tagged ubiquitin, and co-IP experiment was performed. Unfortunately, 

upon FLAG-mediated IPs against RINT1 or RINT1-K24R proteins, no difference in signal 

intensity for ubiquitin (HA-mediated ubiquitin detection) could be detected. No 

difference was also seen for FLAG-mediated RINT1 detection in case of HA-mediated IP 

against ubiquitin. This result strongly suggested a lack of major functional role of K24 site 

in the ubiquitination of RINT1 protein (Fig 33).  

 

 

 

 

 

 

 

 

 

 

 

Figure 33. RINT1 K24 is not of a major importance for RINT1 ubiquitination. HEK293T cells were 

co-transfected with indicated plasmids. Co-immunoprecipitates were subjected to WB analysis. 

 

Although this experiment did not entirely exclude a role for K24 residue in targeting 

RINT1 for degradation, the similarly high intensity of ubiquitination-specific signals for WT 

and K24R-mutated version of RINT1 indicated an existence of multiple active 

ubiquitination sites along RINT1 sequence. 

 

3.2.7.3. Truncated versions of RINT1 are stabilized upon proteasome 

inhibition 

In order to determine which region of RINT1 protein sequence is of a major importance 

for K48-mediated ubiquitination and subsequent protein degradation, several RINT1-
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truncated mutants were analyzed. The mutant constructs were as follows: (i) RINT1-N, N-

terminal part of the protein, 1-264 amino acids out of 792, (ii) RINT1-M, middle part of 

the protein, 200-585 amino acids, (iii) RINT1-C, C-terminal part of RINT1, 565-792 amino 

acids, (iv) RINT1-Δ1, lacking first 62 amino acids of RINT1, (v) RINT1-Δ2, 115-792 amino 

acids, and (vi) RINT1-Δ3, 294-792 amino acids (Fig. 34). Three generated RINT1 “Δ” 

truncated mutants lacked the three major groups of putative ubiquitination adjacent 

sites, as defined via in silico prediction).  

 

 

 

 

 

 

 

 

 

Figure 34. RINT1 truncated mutants are stabilized upon MG132 treatment. Scheme represent 

RINT1-truncated fragments (RINT1-N, RINT1-M, RINT1-C, RINT1-Δ1, RINT1-Δ2, RINT-Δ3) and 

shows MG132-stabilized parts of the protein. 

 

The constructs, encoding FLAG-tagged RINT1 truncated mutants, were introduced to 

HEK293T cells. 24 h after transfection MG132 or CHX were added to the cell culture, in 

order to inhibit proteasomal degradation or block protein translation, respectively. WB 

analysis showed that (1) all the expressed mutant proteins were stabilized upon MG132 

treatment, and (2) the level of mutant proteins decreased upon CHX treatment (Fig. 35). 

In addition, as previously reported for the wild-type protein, the protein levels of RINT1-

Δ1, RINT1-Δ2 and RINT1-Δ3 mutants were not only stabilized by MG132, but the 

C N 
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additional, shifted-up band was detected (Fig. 35, arrows), directly indicating their post-

translational modification. 

All of tested proteins were successfully expressed in the cells except one, FLAG-RINT1-C 

mutant, which signal could not be reliably detected despite several attempts. MG132 

treatment did not lead to the appearance of RINT1-C mutant-specific band, thus to the 

protein stabilization. Therefore, inability to detect this mutant seems not be related to 

rapid proteasome-mediated degradation, but rather to other mechanism leading to 

protein instability (other proteases, protein misfolding). 

Altogether, these findings indicated that RINT1 truncated mutants are degraded via 

proteasomal degradation pathway. Thus, the sequence of the expressed protein 

fragments include lysines residues tagged by ubiquitin for the degradation. Therefore, it 

indicates the existence of multiple ubiquitination sites within RINT1 protein, all leading to 

K48-mediated proteasomal decay. Moreover, in truncated mutants different 

ubiquitination sites might be active, thus having alternative function, i.e. substituting for 

each other. This observation suggests also an involvement of more than one E3 ubiquitin 

ligase, which is consistent with the previous results, and/or, of an E3 ligase of low 

substrate specificity for the recognition of protein sequences for K48-linkage anchoring. 
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Figure 35. RINT1 truncated mutants are degraded via proteasomal pathway. HEK293T cells were 

transfected with indicated RINT1-mutants and treated or not with 10 µM MG132 or 25 µg/ml 

CHX. A. RINT1-N and RINT1-M mutants are stabilized upon MG132 treatment and depleted upon 

CHX treatment. B. RINT1-Δ1, RINT1-Δ2, and RINT1-Δ3 mutants are stabilized upon MG132 

treatment and depleted upon CHX treatment. Additional “shifted-up” bands for higher molecular 

form of RINT1 are indicated with arrows. 
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3.3. RINT1 and SUMOylation 

The screens, originally intended to discover RINT1-binding partners related to the 

ubiquitination, revealed several other interesting proteins, potentially involved in 

different RINT1 post-translational modifications. SUMO2 protein was one of them, found 

independently as a RINT1 interaction partner in yeast two-hybrid assay, as well as in the 

mass spectrometry screen. 

 

3.3.1. Prediction of putative SUMOylation sites of RINT1 

As a first step in unraveling presumed RINT1 SUMOylation, in silico prediction of putative 

SUMO-target sites within RINT1 was performed. Software used (www.phosida.com, 

sumosp.biocuckoo.org/online.php) indicated two lysines, K449 and K525, as potentially 

capable of being modified by SUMO protein(s). 

Based on the position of the two sites identified, two mutant versions of RINT1 were 

generated by site-directed mutagenesis: RINT1-K449R (point mutation c.A1346G) and 

RINT1-K525R (point mutation c.1574G). HEK293T cells were transfected to transiently 

express FLAG-RINT1 WT, FLAG-RINT1-K449R or FLAG-RINT10K525R mutants, with HA-

SUMO1, HA-SUMO2 or EV-HA control. Subsequently, WB analysis of cellular lysates was 

performed. In the samples expressing FLAG-RINT1-K449R mutant together with HA-

tagged SUMO1 protein, the RINT1 FLAG-specific band appeared shifted up as compared 

with RINT1 WT co-transfected with EV-HA control (Fig. 36A). This effect was not observed 

in the sample co-expressing FLAG-RINT1-K525R mutant together with HA-SUMO1 (Fig. 

36B). This result suggested that lysine residue on the position 449 is not involved in the 

SUMOylation of RINT1, while K525 appears to be an active SUMO1-target site. In the case 

of experiments with co-expression of the HA-tagged SUMO2 protein, WBs were not 

conclusive. 
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A           B 

 

 

 

 

 

 

 

 

 

 

Figure 36. Putative SUMOylation of RINT1. HEK293T cells were co-transfected with indicated 

plasmids. A. RINT1-specific band in the sample co-transfected with FLAG-RINT1-K449R and HA-

SUMO1 was shifted-up to a higher molecular weight as compared to the control sample 

transfected with FLAG-RINT1 WT and EV-HA. K525 of RINT1 is potential SUMO-target residue. B. 

This effect was not observed in the case of lysates of the cells co-transfected with FLAG-RINT1-

K525R, indicating that K525 of RINT1 is a potential SUMO-target residue. 

 

3.3.2. Putative interaction of RINT1 with SUMO1 and SUMO2 

proteins 

To further verify, if RINT1 is a subject of SUMOylation several experimental approaches 

were applied. Results of these preliminary experiments indicated covalent modification of 

RINT1 by SUMO1 and/or SUMO2 proteins, however further optimization steps and 

independent repetitions are needed to definitely confirm this finding. 

HEK293T cells were transfected to co-express FLAG-RINT1 protein (or FLAG-EV control 

plasmid) together with HA-tagged SUMO1 or SUMO2 proteins. The samples were 

subsequently subjected to FLAG- or HA-mediated IP. The WB membranes were probed 

with anti-HA and anti-FLAG antibodies, respectively. In the samples expressing FLAG-

RINT1 and HA-SUMO1, a very weak signal for FLAG-specific band was detected (HA-

mediated IP), suggesting the putative interaction between FLAG-RINT1 and HA-SUMO1 

proteins. This band was not observed in the samples expressing FLAG-RINT1 and HA-

SUMO2 protein. Notably, the levels of over-expressed HA-SUMO2 protein were low as 

compared with HA-SUMO1 over-expression (data not shown). 
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To increase specificity of the detection, a GFP-directed IP approach, using anti-GFP alpaca 

antibody (low background noise due to high specificity and a lack of light chains), was 

applied. EGFP-RINT1 or EGFP-EV control plasmids were overexpressed in HEK293T cells. 

Next, IP with an anti-GFP-antibody, WB and probing for endogenous SUMO1/2 proteins 

with specific anti-SUMO1 and anti-SUMO2 antibodies was performed. As a result, 

SUMO2-specific signal was detected, in contrary to the lysates of EGFP-EV control-

transfected cells. Interestingly, no SUMO1-specific band was detected (data not shown).  
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4. Discussion 

4.1. Unstable proteins and their significance for cellular homeostasis 

Protein turnover, including intracellular degradation and changes in the protein dilution 

rate, controls many vital cellular processes, such as signal transduction pathways, cell 

cycle progression, transcription, differentiation, or apoptosis (Hershko and Ciechanover 

1998; Ciechanover, Orian et al. 2000; Glickman and Ciechanover 2002; Ciechanover 

2005). At the level of the individual protein, the half-life is extremely important, as it is 

fundamental for the metabolism and the communication between the cell and its 

external environment. Moreover, at the level of organism, protein turnover rate plays an 

important role in disease (Schwartz and Ciechanover 1999; Nakayama and Nakayama 

2006). For example, disturbance in protein half-life may cause cancer (e.g. 

neuroendocrine tumors as a consequence of increased turnover of succinate 

dehydrogenase) or neurodegeneration (e.g. during mice embryonic development due to 

extension of a half-life Hes7 transcription factor by 8 min) (Hirata, Bessho et al. 2004; 

Yang, Matro et al. 2012). 

 

Proteins vary widely in term of the lability. The proteins with the shortest lifespan exist 

only minutes (e.g. E. coli heat shock response protein sigma 32 has a half-life of 4 min, 

eukaryotic p53 tumor suppressor has a life of ~5-20 min, and c-myc proto-oncogene has a 

half-life of ~30 min), whereas others are highly stable and their half-life is measured in 

months or even years, in case of the proteins of certain postmitotic tissues (e.g. eye lens 

crystalline with a half-life of ~70 years or elastin with a half-life of ~80 years) (Ramsay, 

Evan et al. 1984; Grossman, Straus et al. 1987; Giaccia and Kastan 1998; Verzijl, DeGroot 

et al. 2000; D'Angelo, Raices et al. 2009; Savas, Toyama et al. 2012). The significance of 

short-lived proteins cannot be underestimated, as they are among the most substantial to 

the cell survival and have mainly regulatory functions. For example, rapid removal of 

cyclins and cyclin-dependent kinases (CDKs) as well as cell cycle regulators, such as p21, 

p53 or p73, provides means for cell cycle control and allows for quick response to the 

changes in the environment and adaptation to new conditions, therefore for maintenance 

of the cellular homeostasis. Short-lived proteins also contribute to the regulation of 
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biological clock and circadian rhythm (e.g. TOC1) (Glickman and Ciechanover 2002; 

Lecker, Goldberg et al. 2006; van der Lee, Lang et al. 2014). 

With only ~40 min of experimentally determined lifespan, RINT1 certainly belongs to the 

category of the proteins with a short half-life. It is probably this feature, which allows 

RINT1 to fulfill regulatory functions. This assumption is reflected by an involvement of 

RINT1 in multiple, apparently unrelated, cellular processes, such as cell cycle progression 

(Xiao, Liu et al. 2001), ER-Golgi trafficking (Hirose, Arasaki et al. 2004; Arasaki, Taniguchi 

et al. 2006; Lin, Liu et al. 2007; Sun, Shestakova et al. 2007; Arasaki, Takagi et al. 2013), 

telomere length maintenance (Kong, Meloni et al. 2006), or the potential oncogenic and 

tumor suppressor functions (Lin, Liu et al. 2007; Quayle, Chheda et al. 2012; Fan, Wang et 

al. 2014; Park, Tao et al. 2014). Thus, modulation of the RINT1 half-life might be of a great 

importance for the cell survival and overall cellular homeostasis.  

 

4.2. Post-translational modifications and their modulatory effects on 

protein functions 

By definition, post-translational modifications (PTMs) occur after the translation of a 

given protein from respective mRNA has been completed. PTMs could involve different 

chemical alterations, like covalent addition of functional groups to proteins (e.g. 

phosphorylation, acetylation, glycosylation, methylation) or small regulatory proteins 

(e.g. ubiquitination, SUMOylation, neddylation, ISGylation) or the proteolytic cleavage of 

certain regulatory protein subunits (e.g. activation of proteolytic function of caspases 

upon cleavage). By all these different means, PTMs highly increase functional diversity of 

proteins beyond this encoded by the genome, and are an actual driver of plasticity of the 

proteome in response to changing cellular needs. 

 

4.2.1. Putative roles of RINT1 ubiquitination in the context of known 

cellular functions of RINT1 

Ubiquitination is well known for its potent role in the degradation of proteins, as well as 

for its miscellaneous regulatory functions. Moreover, different modes of (poly)ubiquitin 

chain formation modulate the impact of this PTM on proteins and enhance functional 
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meaning of the ubiquitination itself. Therefore, it is of particular interest to discuss the 

current findings in the light of the already established cellular roles of RINT1. 

 

4.2.1.1. Degradative functions of RINT1 ubiquitination 

The experimental work clearly showed that RINT1 cellular levels are tightly regulated by 

ubiquitination. RINT1 is not only polyubiquitinated at different sites, but also by different 

inter-ubiquitin chain linkage types: K29-, K48-, K63- and K0 (as linear polyubiquitination 

and/or monoubiquitination). Depending on a particular lysine residue involved in the 

chain formation, ubiquitination of RINT1 may have different roles and different impact on 

protein functions. In that respect, K48-linked polyubiquitination, as a PTM which is best 

established for targeting proteins for 26S proteasomal degradation, could be of a major 

importance for the regulation of the protein half-life, since RINT1 depletion was 

completely blocked by MG132 treatment (Figs. 21 and 22). In addition, pharmacological 

modulation of lysosomal and autophagic protein degradation pathways had no significant 

effects on RINT1 stability (Fig. 22). 

In contrast to K48-mediated modification, functions of K29-, K63- and K0 ubiquitination 

are much more elusive. Since a role in the regulation of protein degradation by K63-, and 

to a lesser extent K0-/linear or K29-mediated ubiquitin linkages, appears to be mostly 

limited to autophagic or lysosomal processes, detection of these specific modifications on 

RINT1 protein, may indicate their other, non-degradative but rather modulatory roles 

(Kim, Hailey et al. 2008; Zotti, Uva et al. 2011; Shaid, Brandts et al. 2013; Zhang, Xu et al. 

2013). Nevertheless, some experimental evidence point also towards the K29-, 

monoubiquitination and linear polyubiquitination as possible promoters of the 

proteasomal protein degradation (Kirisako, Kamei et al. 2006; Boutet, Disatnik et al. 2007; 

Kravtsova-Ivantsiv, Cohen et al. 2009; Prakash, Inobe et al. 2009; Carvallo, Munoz et al. 

2010; Yin, Gui et al. 2010; Zhao and Ulrich 2010; Dammer, Na et al. 2011). Since this 

observation relates to eukaryotic cells as well as bacteria and considering the fact that the 

proteasome has the ability of recognizing very diverse ubiquitin(-chains)-derived signals 

(except K63-polyubiquitination), it is also possible that the RINT1 is directed to the 26S 

proteasome turnover not only by K48-, but also by other ubiquitin-linkage type(s) (Xu, 

Duong et al. 2009). 
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4.2.1.2. Non-degradative functions of RINT1 ubiquitination 

Ubiquitination serves not only for degradation of targeted proteins. It is also involved in 

the regulation of many other vital cellular processes and pathways. The canonically non-

degradative modes of ubiquitination, such as attachment of monoubiquitin as well as 

linear-(K0-), K29- and K63-mediated polyubiquitinations were found to be present at 

RINT1. These modifications are known to play a role in processes such as: DNA damage 

response and error-free post-replication repair, cell cycle progression, protein sorting, 

endocytosis, or in general, in signal transduction (Passmore and Barford 2004; Pickart and 

Eddins 2004; Huang and D'Andrea 2006; Mukhopadhyay and Riezman 2007; Clague and 

Urbe 2010; Ramadan and Meerang 2011; Mocciaro and Rape 2012). 

Therefore, considering the many different cellular roles of the above mentioned 

ubiquitination modes (K29-, K63-, linear- and monoubiquitination), it is tempting to 

speculate that participation of RINT1 in a DNA damage-induced G2/M cell cycle arrest, as 

well as in the ER-Golgi trafficking, could be modulated by non-degradative poly- and/or 

multiple monoubiquitination. The involvement of RINT1 in such spatially and temporally 

separated processes (Xiao, Liu et al. 2001; Hirose, Arasaki et al. 2004; Sun, Shestakova et 

al. 2007; Aoki, Ichimura et al. 2009; Schmitt 2010), suggests the necessity of altering its 

cellular location and interaction with different protein binding partners, which could be 

achieved by such versatile post-translational modification as ubiquitination. 

One of the examples of modulatory effect of polyubiquitination on the protein function is 

its ability to change protein conformation. The attachment of ubiquitin molecules 

modifies structure of the target protein and precisely regulates formation of different 

protein complexes, thus affects protein activity in a specific time and compartment within 

the cell. The control of protein-protein interactions may be executed by modifications 

identified for RINT1, in particular K63-, but also K29-linked polyubiquitin chains (Passmore 

and Barford 2004; Wang, Gao et al. 2012; Shembade and Harhaj 2015). The structural 

protein modification may result not only from the coupling of multiple ubiquitins, but also 

from the single molecule of Ub appended to the substrate (monoubiquitination), which 

subsequently attaches to a ubiquitin-binding domain (UBD) of the same protein (Schnell 

and Hicke 2003). The detection of the covalent interaction-pattern between Ub-K0 

mutant and RINT1 protein in the co-immunoprecipitation experiments (Fig. 26) suggests 
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linear polyubiquitination, but also multiple monoubiquitination of RINT1. It is thus very 

likely that the supposed monoubiquitination of RINT1 serves as a modifier of a protein 

structure, leading to augmentation of RINT1 binding-partners spectrum.  

Still, modulation of protein conformation might not be the sole function of RINT1 

monoubiquitination. This kind of post-translational modification is, in general, 

characteristic for proteins involved in the membrane protein trafficking (Rotin, Staub et 

al. 2000; Katzmann, Odorizzi et al. 2002), a cellular process in which RINT1 was found to 

play an important role (Hirose, Arasaki et al. 2004; Arasaki, Taniguchi et al. 2006; Arasaki, 

Takagi et al. 2013).  

Monoubiquitination is known to be an essential and at the same time sufficient endocytic 

signal for the proteins located on the surface of the cell (Shih, Sloper-Mould et al. 2000; 

Haglund, Sigismund et al. 2003), as well as for the sorting of transmembrane proteins. 

However, its modulatory role in case of the involvement of RINT1 in the membrane 

trafficking might be more indirect. Some of the proteins incorporated to the cell and 

sorted in an ubiquitin-dependent process are not modified by Ub, but need to interplay 

with an intermediary protein-factor, which regulates their transport and is itself subjected 

to monoubiquitination. For example epsins, proteins involved in endocytosis and 

participating in the formation of clathrin-coated vesicles, contain ubiquitin-interacting 

motifs (UIMs), which bind monoUb prior to the internalization of receptors at the plasma 

membrane. Another example is Vps27p protein from Saccharomyces cerevisiae. Like 

epsins, it interacts with monoUb through its UIM and this interaction is essential for 

endosomal cargo sorting (Myat, Henry et al. 2002; Shih, Katzmann et al. 2002; Schnell and 

Hicke 2003). It is thus possible, that the presumed multiple monoubiquitination of RINT1 

is a necessary signal allowing RINT1 to act as such an intermediary protein factor for the 

efficient and accurate inter-membrane transport of other proteins and, in consequence, 

changes their intracellular localization.  

Another putative role of monoubiquitination of RINT1 is related to its function in the 

process of the DNA repair (Xiao, Liu et al. 2001). In order to properly correct genetic 

material, accurate recruitment of proteins constituting DNA repair machinery to the spot 

where DNA damage occurred, is essential. The signal for translocation might be provided 

by monoubiquitination. Such mechanism was described for the Fanconi anemia protein 
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(FANCD2), which is targeted to the nuclear foci and co-localizes with BRCA1 upon 

monoubiquitination in the S phase of the cell cycle (Garcia-Higuera, Taniguchi et al. 2001; 

Gregory, Taniguchi et al. 2003; Nakanishi, Yang et al. 2005). It is quite likely, that the co-

localization of RINT1 with RAD50, and their acting in the process of the radiation-induced 

G2/M cell cycle checkpoint, is driven by (mono)ubiquitination of the protein(s). To 

provide more information on this topic, it would be interesting to investigate RINT1 

monoubiquitination in the context of various DNA-damage triggers and in different stages 

of the cell cycle. It should be stressed, that hypothetically monoubiquitination of RINT1 

might steer both binding to different interaction-partners, and, at the same time, its 

intracellular location during the specific stage of the cell cycle. 

Linear attachment of ubiquitin molecules by polyUb K0-linkage is yet another, and 

importantly, rarely occurring non-degradative mode of ubiquitination, which was found 

to be mediated by the Linear Ubiquitin Chain Assembly Complex (LUBAC). Interestingly, 

current experimental work identified K0-mediated Ub linkages at the RINT1 protein, 

which could be indicative of linear polyubiquitination. Moreover, LUBAC is recognized as a 

major player in signaling pathways crucial for innate and adaptive immunity (Rieser, 

Cordier et al. 2013), such as TNFR1-induced signaling during inflammatory response. 

Although there is yet no evidence of RINT1 participation in the immunity-related signaling 

pathways, bearing in mind functions of linear ubiquitination and the fact, that this 

modification potentially affects RINT1, it is suggestive to investigate a putative role of 

RINT1 in the immune system. To this end, high levels of RINT1 transcripts detected in T 

and B cells of mice are of potential interest (according to BioGPS database search, 

www.biogps.org). 

 

4.2.2. Characteristics and functions of HUWE1 and RNF20/40 in 

relation to known functions of RINT1 

The alignment of amino acid sequences of stabilized RINT1 fragments strongly suggested 

the existence of more than one ubiquitin-binding site within RINT1 protein, as well as 

presumably, more than one E3 ligase targeting RINT1 for the proteasomal degradation. 

Indeed, mass spectrometry analysis of RINT1 immunoprecipitates identified two E3 

ligases, HUWE1 and RNF20/40 complex, as RINT1 binding partners. Subsequently, series 
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of co-immunoprecipitation experiments confirmed these interactions (Fig. 29-30). The 

current study has shown that both enzymes regulate RINT1 stability (Fig. 31), which is in 

line with the previous reports describing them as crucial modulators of protein levels. On 

the one hand, HUWE1 polyubiquitinates and targets for the proteasomal degradation 

such important proteins as: major anti-apoptotic regulator Mcl1 (Zhong, Gao et al. 2005), 

tumor suppressor BRCA1 (Wang, Lu et al. 2014), proto-oncogenes N-Myc and c-Myc 

(Zhao, Heng et al. 2008) or developmental master regulator MyoD (Noy, Suad et al. 2012). 

On the other hand, the RNF20/40 complex acts as a proteasomal-degradation promoter 

of Syntaxin 1, a major component of exocytosis membrane fusion machinery (Chin, 

Vavalle et al. 2002), a transcription factor AP-2α (Ren, Sheng et al. 2013), and of p42 

isoform of tumor supressor Ebp1 (Liu, Oh et al. 2009).  

However, both ligases are known to have not only degradative, but also regulatory impact 

on their targets. This is possible through their capability to form ubiquitin chains other 

than mediated by K48-inter-ubiquitin linkages. For example, HUWE1 was found to 

catalyze formation of the K63-ubiquitin poly-chains at the c-Myc protein (Adhikary, 

Marinoni et al. 2005). Moreover, both HUWE1 and RNF20/40 are able to 

monoubiquitinate their substrates: HUWE1 modifies DNA polymerase ß (Parsons, Tait et 

al. 2009), while RNF20/40 complex is responsible for monoubiquitination of histone H2B 

(Zhu, Zheng et al. 2005). The above-mentioned different modes of the ubiquitination 

catalyzed by HUWE1 and RNF20/40, suggest that K63- and/or putative multiple 

monoubiquitination of RINT1 might be triggered by HUWE1 and RNF20/40 E3 ubiquitin 

ligases in addition to their primarily role as modulators of stability, and thus cellular levels 

of RINT1 protein. 

While it is relatively common, that a given protein interacts with, and is modified by more 

than one E3 ubiquitin ligase, it remains very often challenging to determine the cellular 

function of the introduced ubiquitin chains. Strikingly, both newly identified RINT1 

interactors, HUWE1 and RNF20/40 complex, intersect with RINT1 regarding their 

participation in common cellular processes. For instance, both HUWE1 and RNF20/40 

ligases modify substrates crucial for the cell cycle arrest, DNA repair, genome stability and 

tumorigenesis. 
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4.2.2.1. Role of HUWE1 in the context of cellular functions of  RINT1 

The first literature report regarding RINT1 addressed its role as a protein interacting with 

RAD50, thus involved in the G2/M cell cycle checkpoint activation, upon the irradiation-

induced DNA damage (Xiao, Liu et al. 2001). It is not yet known which mechanisms 

regulate RINT1 activation or function in this process. Presumably, certain post-

translational modifications, such as the ubiquitination, might play a modulatory or 

triggering role. HUWE1 is known to control the DNA repair pathway by 

monoubiquitinating and, in turn, regulating steady-state levels of the DNA polymerase ß, 

one of the crucial enzymes for the base excision repair (BER) pathway (Parsons, Tait et al. 

2009). However, in the context of an established RINT1 function in ensuring proper 

genomic integrity (Xiao, Liu et al. 2001; Lin, Liu et al. 2007; Park, Tao et al. 2014), the role 

of HUWE1 might be more indirect. For instance, both modifications identified for RINT1, 

putative monoubiquitination at multiple sites, as well as K63-polyubiquitination, might 

potentially control the recruitment of RINT1 to RAD50, and favor this interaction over 

others. Importantly, as mentioned before, both modes of ubiquitination are known to be 

catalyzed by HUWE1 E3 ubiquitin ligase (Zhao, Heng et al. 2008; de Groot, Ganji et al. 

2014; Jang, Shi et al. 2014). It is worth noting, that HUWE1 also regulates cellular 

functions of other proteins involved in the cell cycle checkpoint triggering and DNA repair 

signaling, such as p53, Cdc6, BRCA1 or TopBP1 (Hall, Kow et al. 2007; Herold, Hock et al. 

2008; Peter, Bultinck et al. 2014; Wang, Lu et al. 2014). Hereby, the regulation is achieved 

by modulating protein levels via targeting for proteasomal degradation. 

Correspondingly, one of the best described functions of HUWE1 is its involvement in the 

regulation of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, by 

controlling levels of Shoc2 scaffold complex and the Raf-1 protein (Jang, Shi et al. 2014). It 

is another example of significant, regulatory role of HUWE1 ligase, resulting from assuring 

appropriate cellular levels of the proteins which are the key-players in the specific 

signaling pathways. Similarly, by targeting RINT1 for the 26S proteasomal degradation, 

HUWE1 contributes to the regulation of all the downstream processes demanding RINT1 

functional activity. 

HUWE1 was also found to act as a modulator of the dishevelled protein Dvl, hereby being 

involved in the Wnt/ß-catenin canonical signaling pathway. Interestingly, in this case 
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regulatory role of the E3 ubiquitin ligase is linked to the formation of K63-polyubiquitin 

chains and the negative feedback loop (de Groot, Ganji et al. 2014). Modification of Dvl by 

HUWE1 inhibits its multimerization, which is indispensable for the protein acting in the 

cell proliferation, segmentation and in the neuroblast specification. The K63-mediated 

polyubiquitination of Dvl illustrates how HUWE1 may influence protein function by 

modifying its spatial structure, thus capability of complex formation. Further research 

would answer the question, whether this mechanism of HUWE1 action is applicable to 

the RINT1 protein. 

Another link between known functions of RINT1 and HUWE1 is their tumor supressor 

activity. It was shown, that RINT1-depleted cells exhibit abnormalities during the cell 

division (Arasaki, Taniguchi et al. 2006), and the inactivation and subsequent 

heterozygous loss of Rint1 gene led to tumor formation in animal model (Lin, Liu et al. 

2007). Moreover, recent exome sequencing studies of breast cancer patients supported 

role of RINT1 as a tumor suppressor protein (Park, Tao et al. 2014). However, it is not 

recognized yet what kind of mechanisms underlie and provide this function for the RINT1 

protein. It is very likely, that one of the several currently reported modes of RINT1 

ubiquitination: K29-, K63-, and/or mono-/linear-ubiquitination, are driving its 

oncosuppresor activity. However, it is of course also possible, that HUWE1 provides this 

function of RINT1 simply by tagging it for the proteasomal degradation (K48-linked Ub 

chains) and acting as a regulator of RINT1 cellular levels. Such a mechanism was already 

described for another HUWE1 target, transcription factor and potent tumor suppressor 

Ebp1 (Liu, Oh et al. 2009). 

Last but not least, both HUWE1 and RINT1 are strongly involved in maintaining correct 

cell proliferation and differentiation programs, thus cellular homeostasis. As a E3 

ubiquitin ligase polyubiquitinating and leading to the degradation of p53 molecule and 

many other substrates like Myc, ARF, PP5, or Mcl-1 proteins, HUWE1 is one of the key 

regulators of apoptosis. The control of cellular levels for listed proteins, imply HUWE1 

function in neural differentiation, proliferation, as well as in the development and growth 

of Myc-driven solid tumors (Adhikary, Marinoni et al. 2005; Chen, Kon et al. 2005; Zhong, 

Gao et al. 2005; Kurokawa, Kim et al. 2013). It is therefore possible, that the in vivo tumor 

formation observed for primary murine astrocytes overexpressing RINT1 (Quayle, Chheda 
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et al. 2012) is caused by overriding the control mechanism provided by HUWE1 E3 

ubiquitin ligase with excessive amounts of overexpressed RINT1 protein, which under 

normal conditions would lead to effective removal of ubiquitinated RINT1. 

 

4.2.2.2. Role of RNF20/40 vs. RINT1 functions 

RNF20/40 E3 ubiquitin ligase is well known for its functions regarding the gene regulation 

and transcriptional activation as well as for its potent role in the DNA damage response 

and the cell cycle progression.  

By selective regulation of gene expression, RNF20/40 was found to act as a putative 

tumor suppressor (Kim, Hake et al. 2005; Shema, Tirosh et al. 2008). This function is 

mostly associated with the histone monoubiquitination by RNF20, and resulting changes 

in the gene expression pattern (Kim, Hake et al. 2005; Zhu, Zheng et al. 2005; Kim, 

Guermah et al. 2009). Nevertheless, RNF20/40 complex acts also as a factor inhibiting 

tumor suppressive activity by polyubiquitinating and tagging for the proteasomal 

degradation isoform 2 of PA2G4 protein in cancer cells (Liu, Oh et al. 2009). Interestingly, 

RINT1 was described as a both tumor suppressor (Lin, Liu et al. 2007; Park, Tao et al. 

2014) and oncogene (Quayle, Chheda et al. 2012; Fan, Wang et al. 2014). Thus, it is 

tempting to hypothesize, that RNF20/40 might be the key regulator of the RINT1 activity 

in the tumor formation: either by its monoubiquitination, or by regulating cellular levels 

of the RINT1 protein. 

Another process, in which RNF20/40 ubiquitin ligase plays a significant role, is the 

regulation of the DNA repair by homologous recombination (HR). RNF20 is localized at the 

sites of double-stranded breaks (DSBs) and required for the DSB-induced 

monoubiquitination of histone H2B. Interestingly, the repair pathway involving RNF20 is 

not depend on H2AX, but associated with NBS1. Moreover, RNF20 activity seems to be a 

prerequisite for the accumulation of DNA repair proteins like BRCA1 and RAD51 at the 

sites of damage (Nakamura, Kato et al. 2011). Summarizing, RNF20/40 E3 ubiquitin ligase 

was found to have potent roles in the HR repair and in cell cycle checkpoint response to 

the irradiation-induced DNA damage. This is particularly interesting in the context of 

known roles of RINT1 in the DNA repair and in G2/M cell cycle checkpoint upon 

irradiation, as well as RINT1 interaction with RAD50 protein (Xiao, Liu et al. 2001). 
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Moreover, RAD50 plays a central role in the DSB repair and is a part of the MRN complex, 

which apart from RAD50 consists also of MRE11 and NBS1 proteins. Interestingly, MRE11 

and NBS1 are recruited to the DSBs by RNF20. This strongly suggests that RINT1, being a 

RAD50 interactor and itself ubiquitinated by RNF20/40 complex, can undergo the same 

mode of regulation for its recruitment to the MRN complex upon DNA damage-induced 

checkpoint control at the G2/M stage of the cell cycle. Therefore, the interaction between 

RINT1 and RAD50, as well as function of RINT1 in the DNA repair pathway might be driven 

by the activity of RNF20/40 ligase. 

 

4.2.3. A role of SUMOylation as possible modulator of known 

functions of RINT1 

SUMO protein was identified as the binding-partners of the RINT1 protein using both, the 

yeast two-hybrid assay and mass spectrometry screens. The interaction between RINT1 

and SUMO molecules was also suggested by preliminary co-immunoprecipitation 

experiments. These results indicate existence of yet another, besides ubiquitination, post-

translational modification of RINT1. The exact role of SUMOylation of RINT1 is to be 

discovered. However, knowing the crucial role of SUMO proteins in divergent cellular 

pathways, some assumptions of the impact of SUMOylation on RINT1 function could be 

made.  

Many described SUMO targets are transcription factors or proteins with general ability to 

influence gene expression (Wilson and Heaton 2008) and/or located in the nucleus. 

Therefore, SUMOylation is classically viewed as a major regulator of nuclear function. This 

overlaps with the observation, that apart from well-described cytosolic and membrane 

localizations of RINT1, the protein was additionally confirmed to be localized within the 

nucleus (Dr. P. Grigaravičius, unpublished data of our laboratory) corresponding with 

RINT1 function in regulation of DNA damage-induced cell cycle checkpoint as well as in 

telomere length maintenance (Xiao, Liu et al. 2001; Kong, Meloni et al. 2006). 

Nevertheless, more recent studies refer to SUMOylation as a possible modifier of the 

extra-nuclear proteins as well and regulator of very diverse cellular processes (Wasik and 

Filipek 2014). Similarly to the interaction between RINT1 and ubiquitin, functional 

importance of interaction between RINT1 and SUMO proteins could be crucial for 
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maintenance of cellular homeostasis. This may be predicted on the basis of common 

participation of RINT1 and SUMO1/2 in cellular processes as important as cell cycle 

progression, cell cycle checkpoint regulation, DNA damage repair and membrane 

trafficking (Sarangi and Zhao 2015). For RINT1, binding of SUMO to one or more lysine(s) 

might potentially modulate protein activity, subcellular localization or even stability 

(Geiss-Friedlander and Melchior 2007; Yang and Paschen 2009).  

In general, SUMOylation has a great impact on the DNA repair, for example it was shown, 

that SUMO proteins accumulate at DNA DSBs (Galanty, Belotserkovskaya et al. 2009; 

Morris, Boutell et al. 2009; Shima, Suzuki et al. 2013). In the course of DNA damage 

response (DDR), the role of SUMO manifests itself by the multilevel modulation of its 

target proteins. To this end, SUMOylation could be of potential, functional importance 

regarding involvement of RINT1 in DDR pathway as a binding partner of RAD50.  

SUMOylation plays also a crucial role in carcinogenesis, e.g. of prostate cancer or breast 

cancer, by regulating functions of key tumor suppressors and oncogenes such as p53 

(indirectly, via E3 ubiquitin ligase MDM2) or PTEN (Kim and Baek 2006; Geiss-Friedlander 

and Melchior 2007; Alshareeda, Negm et al. 2014; Chen and Lu 2015). Through its impact 

on genome stability, gene expression and protein-protein interactions, SUMOylation is 

also important for etiology of other human diseases, such as neuronal dysfunctions (e.g. 

Alzheimer’s, Parkinson’s and Huntington’s diseases) (Zhao 2007; Sarge and Park-Sarge 

2009; Yang and Chiang 2013; Henley, Craig et al. 2014). It is worth mentioning, that 

studies reporting the crosstalk between ubiquitination and SUMOylation exist (Papouli, 

Chen et al. 2005; Hunter and Sun 2008; Zhao, Brickner et al. 2014). In addition, possibility 

of targeting the same protein at one time by both ubiquitin and SUMO proteins was also 

reported (Lu, Liu et al. 2015). Moreover, it is also possible, that the same lysine residue 

within the same protein might be a target for both modifiers, and as a consequence, they 

might compete for the same site within the protein. Such mechanisms allow for 

modulating cellular functions (Chen and Lu 2015). It is thus reasonable to speculate that 

RINT1, as a tumor suppressor and an oncogene, might be subjected to this double 

modification and complex regulatory mechanism. However, further studies are required 

to support this hypothesis. 
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4.3. Conclusions and perspectives 

Experimental evidence presented in this work describes biochemical characteristics of the 

RINT1 protein, a novel oncogene and a tumor suppressor. Since RINT1 is a multifunctional 

protein involved in very diverse and crucial cellular pathways, and is indispensable for 

maintaining the cellular homeostasis, the information about its half-life and the mode of 

degradation may have broad implications and be the basis to disclose mechanisms 

governing modulation of its activity. Identification of ubiquitination and putative 

SUMOylation as two post-translational modifications affecting the RINT1 protein, as well 

as the novel finding that two E3 ubiquitin ligases modify RINT1, would potentially allow to 

design therapeutic strategy for the treatment of RINT1-related diseases, such as 

glioblastoma, breast cancer and Lynch syndrome cancers (Quayle, Chheda et al. 2012; 

Park, Tao et al. 2014). Nevertheless, it remains to be shown whether and how the 

reported RINT1 functions, like G2/M cell cycle checkpoint regulation, membrane 

trafficking and putative tumor suppression, could be modulated by HUWE1 and RNF20/40 

complex, novel binding partners reported in the present study. 
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8. Appendix 

8.1. The impact of RINT1 on the cell cycle and cell death in mouse 

embryonic fibroblasts (MEFs) 

It has been previously reported, that RINT1 could be involved in the regulation of cell 

cycle G2/M checkpoint (Xiao, Liu et al. 2001). Thus, to assay the effects of RINT1-

deficiency on cellular fate, two different mouse embryonic fibroblasts (MEFs) cell lines, 

POF35-5 and POF39-4, harboring inducible Rint1 genetic knockout under control of 4-

hydroxytamoxifen (4-OHT)-driven Cre recombinase were used. In addition, for each of the 

cell line, an EV control cell line, which did not express Cre recombinase (without 

possibility to knockout the Rint1 gene) was applied. In all experiments, cells were treated 

with 4-OHT for 0, 2 and 4 days. PCR analysis was performed to confirm the efficiency of 

Rint1 knock-out. 

 

8.1.1. Rint1-deficiency potentially leads to the cell cycle arrest of 

MEF cells 

To test the effects of 4-OHT-induced Rint1 knock-out on the cell cycle, two MEFs cell lines 

were used and the cell cycle profile was assayed using propidium iodide (PI) staining and 

the classical fluorescence-activated cell sorting (FACS)-mediated analysis. The results 

showed a possible block of the cell cycle in the G2/M phase of the cell cycle (in the case of  

POF39-4 cell line), when compared with the respective EV control line. The conclusions 

were drawn on the basis of event frequency (%) using FACS gating, however, further 

analysis by e.g. BrdU/PI staining or WB are needed to confirm this observation. 
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Figure A-1. Cell cycle analysis suggests block in G1/M phase upon Rint1 knock-out. 

Control cells (POF39-4 EV) or RINT1 KO cells (POF39-4 CER) were treated with 4-OHT for 4 

days. Results of representative experiment are presented.  

 

8.1.2. Rint1-deficiency leads to cell death of MEF cells 

To measure possibility of cell death induction upon Rint1 knock-out, a FACS-based 

measurement of membrane integrity loss monitored by PI uptake was applied (as 

described in the “Materials and methods” section). The experiments clearly showed, that 

Rint1 deficiency (upon 2 or 4 days of CRE-induced recombination) leads to an increased 

cell death in both cell lines investigated, as compared with the respective 4-OHT-treated 

EV control cell lines (regardless of a mild toxic effect ascribed to 4-OHT alone observed for 

EV control cell lines). Cell death observed at day 4th upon the 4-OHT treatment was more 

pronounced than after 2 days of the treatment. To compare the observed effects 

between different cell lines, a “specific cell death” (%) index was calculated, described in 

“Materials and Methods” section (cell death was normalized to the one observed for non-

4-OHT-treated controls). In conclusion, Rint1 protein was found to be essential for the 

survival of MEFs cells, since its knockout results in cell death. 
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Figure A-2. Cell death induced by RINT1 knock-out. Cells were treated with 4-OHT for 4 

days. Average values of duplicated measurements are presented. 

 

 

8.1.3. Analysis of cell apoptosis-induced nuclear fragmentation 

Intra-nucleosomal fragmentation of the genomic DNA and subsequent formation of 

characteristic nuclear fragments (so-called “subG1” population on the cell cycle diagram), 

constitute major features of the apoptotic cell death. Thus, to further characterize cell 

death process observed upon the Rint1 knock-out, analysis of nuclear fragmentation was 

performed. 

 

8.1.3.1. Microscopic analysis of DAPI staining 

4-OHT treatment of MEFs cell lines was performed in order to knock-out Rint1 (for 4 

days). Subsequently, cells were stained with DNA-intercalating dye DAPI and examined by 

fluorescence microscopy. Microscopic analysis demonstrated that no morphological 

changes characteristic for apoptotic fragmentation of the nuclei were detected in POF35-

5 or POF39-4 4-OHT-treated cells (data not shown). 
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8.1.3.2. FACS-mediated analysis of nuclear fragmentation 

The classical method of apoptotic nuclear fragmentation described by Nicoletti et. al., 

(Nicoletti, Migliorati et al. 1991) uses FACS to detect an apoptosis-specific subG1 

population of nuclear fragments (see “Materials and Methods” section). Although 

marginal increase in (%) of subG1 population was observed (2-5%) upon the 4-OHT 

treatment alone (2 and 4 days), it was not Rint1 related, since the same effect was 

observed for EV control cell lines. 

 

 

 

 

 

 

 

 

 

 

Figure A-3. Rint1 knock-out-induced cell death is not characterized by apoptotic nuclear 

fragmentation. Control cells (POF39-4 EV) or Rint1 KO cells (POF39-4 CER) were treated 

with 4-OHT for 4 days. Results of representative experiment are presented. 

 

 

8.1.3.3. TUNEL test 

Apoptosis-induced intranucleosomal fragmentation of chromatin can be detected by 

terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test (see “Materials 

and Methods” section for details). Both CRE MEF cell lines (POF35-5 and POF39-4), as well 

as EV control lines were treated for 0, 2 and 4 days with 4-OHT, to knock-out Rint1. Next, 

cells were stained using commercially available TUNEL kit, and fluorescence microscopic 

analysis was performed. The results did not show any significant apoptosis-related DNA 

damage in none of the investigated samples. 
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8.1.3.4. WB analysis of activation of apoptotic and DNA damage 

response signaling pathways upon Rint1 knock-out 

8.1.3.4.1. Apoptosis-related cleavage of poly (ADP-ribose) 

polymerase-1 (PARP) protein 

Generation of a cleaved form of PARP1 by activated Caspase-3 protein belongs to the late 

signaling events in an apoptotic process. Cells, in which Rint1 knock-out was induced 

upon the 4-OHT treatment (POF35-5 and POF39-4 cell lines; CRE and EV controls) were 

lysed and subjected to WB analysis. Membranes were probed with anti-PARP1 antibody. 

No cleaved form of PARP1, indicative for the apoptotic type of cell death was observed 

upon RINT1 depletion (Fig. A-4). However, clear caspase-induced PARP1 cleavage was 

observed in POF39-4 cell line upon control treatment with  etoposide (10 µM, 8 h), a 

classical apoptotic inducer. Similarly, no cleavage of caspase 3 could be detected in the 

cells dying upon Rint1 knock-out, additionally indicating a lack of activation of the 

apoptotic pathway, i.e. proteolytic activation of caspase 3 constitutes a necessary step in 

apoptosis. 

 

 

 

 

 

 

 

Figure A-4. Rint1 knock-out-induced cell death does not lead to PARP1 cleavage. Black 

arrow marks cleaved form of PARP1 in positive control sample treated with etoposide.  

 

 

8.1.3.5. DNA damage-induced expression of GADD153 

RINT1 is an interaction partner of Rad50, a protein involved in DNA double-strand break 

repair. Thus, activation of the DNA damage response upon Rint1 knock-out was 

investigated. GADD153 (CHOP10) is known as a growth arrest- and DNA damage-inducible 

gene. However, GADD153 was also postulated to play a role in the ER stress-mediated 

anti-PARP1 
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apoptosis pathway (Fornace, Nebert et al. 1989; Luethy, Fargnoli et al. 1990; McCullough, 

Martindale et al. 2001; Oyadomari and Mori 2004). 

POF39-4 MEFs CRE and EV cell lines were treated with 4-OHT for 0, 2 and 4 days. 

Subsequently, WB analysis was performed. Membranes were probed with anti-GADD153 

antibody. As a result, in POF39-4-CRE cells, treated with 4-OHT, a time-dependent 

accumulation of GADD153 protein was observed, which suggests an activation of DNA 

damage response upon Rint1 knock-out (data not shown). 

 

In conclusion, the observed cell death mode in MEFs cell lines upon the Rint1 knock-down 

does not resemble apoptosis, since no typical apoptotic features, such as apoptotic 

nuclear fragmentation, intranucleosomal cleavage of chromatin, caspase-3 proteasomal 

cleavage (activation) or cleavage of PARP1 were observed. It does not however relate to 

DNA damage-induced response and cell cycle arrest. Further experiments are necessary 

to delineate cell death modality and signaling pathways triggered by a Rint1 deficiency in 

MEFs (e. g. mitotic catastrophe, ER stress-induced cell death or other cell death forms). 
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8.2. Analysis of sequence conservation among RINT1 homologs 
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